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1 Introduction

This work deals with the mathematical analysis and the numerical computation of transient
electromagnetic fields in nonlinear magnetic media with hysteresis.

The phenomenon of hysteresis has been observed for a long time in many different areas
of science and engineering and, in particular, in the area of magnetism. Many ferromagnetic
materials present this behavior which essentially means that the magnetic induction at each
particular point depends not only on its present magnetic intensity, but also on the past
magnetic history of the volume element under consideration. Thus, building a mathematical
model of the magnetic constitutive law is a very difficult task and numerical simulation of
devices involving ferromagnetic materials is still quite a challenge.

From the physical point of view one must distinguish between scalar hysteresis models
and vectorial hysteresis models. Scalar models correspond to the cases where magnetic
induction and magnetic field are aligned at any position and at any time. On the contrary,
if the magnetic field and the magnetic induction may be non-collinear, a vectorial model
must be considered. In this work we will restrict ourselves to scalar hysteresis models.

The results presented in this work complement those in [3, 4], where the mathemati-
cal and numerical analysis of a two-dimensional (2D) nonlinear axisymmetric eddy current
model was performed under fairly general assumptions on the H-B curve, but without con-
sidering hysteresis effects. Now, the constitutive relation between H and B is given by a
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rather general hysteresis operator. Like in [3, 4], we assume axisymmetry of the fields and in
view of applications we also consider that the source inputs are current intensities or voltage
drops. With this in mind, two source terms are considered: either the magnetic field on the
boundary (Dirichlet condition) or the magnetic flux across a meridian section of the device
(magnetic flux condition) are given. These source terms are physically realistic in the sense
that there are many real applications where they can be readily obtained from measurable
quantities (see [9, 1, 2, 22, 19, 28]). Moreover, we consider a time and space dependent
electrical conductivity, an important issue because this quantity is typically a function of
temperature which, in its turn, is a time dependent field. For both problems, an existence
result is achieved under suitable assumptions.

For the numerical solution, we consider the classical Preisach model as hysteresis oper-
ator, a finite element discretization by piecewise linear functions on triangular meshes, and
the backward Euler scheme for time discretization.

In the context of parabolic equations with hysteresis there are several publications de-
voted to the mathematical analysis of the problem (see, [32, 33, 34, 16, 27] and more recently
[10, 13, 11]). In particular, [13] deals with an abstract parabolic equation motivated by a
2D eddy current model with hysteresis, but the numerical analysis and computer implemen-
tation of the problem are not considered. Numerical approximation of parabolic problems
with hysteresis are considered, for instance, in [30, 31]. In the context of the computa-
tional methods for 2D eddy current models with hysteresis we mention [28, 29]. However,
to the best of the authors’ knowledge, the parabolic problem presented in [28] has not been
mathematically analyzed yet.

In the present work, by using appropriate weighted two-dimensional Sobolev spaces for
axisymmetric problems, we prove the existence of solution to a weak formulation in terms
of the magnetic field. The method used for this purpose is the Rothe’s method that consists
of introducing an implicit time discretization, obtaining a priori estimates and then passing
to the limit as the time-step goes to zero (see [25]). This approximation procedure is often
used in the analysis of equations including a memory operator (see, for instance, [11, 34])
because at each time step we deal with a stationary problem where the memory operator
is reduced to a nonlinear operator of the unknown field at this time step. In particular,
we base our proof on arguments given in [34] where existence of solution to a homogeneous
Dirichlet problem is achieved. Let us remark that, to the best of the author’s knowledge,
the problems addressed in this paper do not fit in this or other existing results because, on
the one hand, in our case the coefficients depend on time and, on the other hand, different
boundary conditions are considered.

The outline of this work is as follows: in Section 2 and Section 3 we recall, respectively,
some basic principles of magnetic hysteresis and the properties of hysteresis operators that
will be used in the mathematical analysis of the problem. To make the document self-
contained, in Section 4 we include a detailed description of the classical Preisach model
following Mayergoyz [20]. In particular, we recall the method to identify, for a particular
magnetic material, the function defining the associated Preisach operator.

Next, in Section 5, we introduce the transient eddy current model with hysteresis to be
analyzed. The axisymmetric case is considered and the two alternative types of source terms
are introduced. In Section 6, after recalling some analytical tools, weak formulations are
obtained. Then, existence of solution is proved for both formulations. Section 7 is devoted
to the numerical implementation of the fully-discrete problem arising from backward Euler
time-discretization and a finite element method for space discretization. Finally, in Section 8,
a numerical test is reported.
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2 Magnetic hysteresis

Ferromagnetic materials are very sensitive to be magnetized. These materials are made up of
small regions known as magnetic domains. Domains are very small regions in the material
structure, where all the dipoles are paralleled in the same direction. In each domain, all
of the atomic dipoles are coupled together in a preferential direction (see Figure 1 (left)).
In other words, the domains are like small permanent magnets oriented randomly in the
material.

Ferromagnetic materials become magnetized when the magnetic domains within the
material are aligned (see Figure 1 (right)). This can be done by subjecting the material
to a strong external magnetic field or by passing electrical current through it. Then, some
or all of the domains can become aligned. The more the aligned domains, the stronger the
magnetic field in the material. When all of the domains are aligned, the material is said to
be magnetically saturated. This means that no additional amount of external magnetization
force will cause an increase in its internal level of magnetization. After removing this external
field, most of the domains come back to random positions, but a few of them still remain in
their changed position. Because of these unchanged domains the substance becomes slightly
magnetized permanently. The phenomenon which causes B to lag behind H, so that the
magnetization curve for increasing and decreasing fields is not the same, is called hysteresis
and the loop traced out by the magnetization curve is called a hysteresis cycle or hysteresis
loop.

Figure 1: Randomly oriented domains (left) and aligned domains (right).

Figure 2 shows an example of a hysteresis loop. In this loop we represent the relationship
between the induced magnetic flux density B and the magnetizing field H. It is often referred
to as the B-H loop.

The loop is generated by measuring the magnetic flux of a ferromagnetic material while
the magnetizing field is changing. We start at the demagnetized state, that is, when a
ferromagnetic material has never been previously magnetized or has been thoroughly de-
magnetized.

We consider a demagnetized ferromagnetic material subjected to a monotonically in-
creasing magnetic field starting from zero. Then, the couples (H(t),B(t)) describe the curve
labelled 1 shown in Figure 2. Thus, the magnetic induction also increases up to a max-
imum value Bm at which saturation is attained. This curve is called initial (or normal)
magnetization curve.

Next, we decrease monotonically the magnetic field from the saturation value Hm to
the opposite saturation value −Hm. Then, points (H(t),B(t)) do not trace back the above
initial curve but follow curve labelled 2 until the magnetic field attains the value −Hm. If we
increase again the magnetic field, then points (H(t),B(t)) describe curve labelled 3. More
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Figure 2: Magnetic hysteresis.

generally, if the magnetic field oscillates between two extreme and opposite values Hm and
−Hm monotonically (i.e., H(t) does not have any local extrema apart from the global ones)
then the couples (H(t),B(t)) follow alternatively curves 2 and 3 in the indicated sense, i.e.,
they travel along the so-called hysteresis major loop.

Two important quantities are related with ferromagnetic materials: the remanence and
the coercive fields. Remanence represents the magnetization after applying a large magnetic
field and then removing it. Thus, it corresponds to the remanent magnetic induction denoted
by Br in Figure 2. In its turn, the coercive field is the intensity of the magnetic field needed
to bring the magnetization from the remanent value to zero, i.e., the value Hc in Figure 2.

H

B

Figure 3: Hysteresis loops for soft (left) and hard (right) magnetic materials.

According to these parameters, ferromagnetic materials can be classified in soft and hard
magnetic materials. Soft magnetic materials have small coercive fields, so they are easy to
magnetize and their hysteresis loops are thin. On the contrary, hard magnetic materials
have large coercive fields and they tend to stay magnetized, while soft materials do not (see
Figure 3).

3 Hysteresis operators

3.1 Basic properties

The hysteresis phenomenon is present not only in electromagnetism but also in different ar-
eas of science such as mechanics, among others. Hysteresis modelling early work date back
to 1935 and was proposed by the physicist F. Preisach [23] in the context of ferromagnetism.
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From the mathematical point of view, we refer to the monograph of mathematicians Kras-
nosel’skĭi and Pokrovskĭi [18] as well as to the books by Visintin [34] and Brokate [8] and,
from a physical point of view, to Mayergoyz [20] and Bertotti [6].

In this section, we recall some basic background material on hysteresis operators based
on the description given in [34], which will be used in the sequel.

Let us start by considering a simple setting, namely, a system whose state is characterized
by two scalar variables, u and w, both of them depending on time t. Let us suppose that
the evolution of w is determined by the one of u.

For instance, in Figure 4, if u increases from u1 to u2, the pair (u,w) moves along the
monotone curve abc. Conversely, if u decreases from u2 to u1, then (u,w) moves along a
different monotone curve cda. Moreover, if u inverts its motion when u1 < u(t) < u2, then
(u,w) moves inside of the hysteresis region, namely, the part of the (u,w)-plane that is
bounded by the major loop abcd. Here we assume that pair (u,w) moves along continuous
curves so we speak of continuous hysteresis. Although most typical examples of hysteresis
phenomena exhibit hysteresis loops, the occurrence of loops should not be regarded as an
essential feature of hysteresis.

Figure 4: Hysteresis loop.

According to [34], we can distinguish two main characteristics of hysteresis phenomena:
the memory effect and the rate independence.

To illustrate these concepts, we consider the (u,w) relation introduced above. The
memory effect means that, at any instant t, the value of w(t) depends on the previous
evolution of u rather than only on u(t). On the other hand, rate independence means that,
at any instant t, w(t) depends just on the range of function u : [0, t] → R and on the order
in which the values of u before t have been attained. In other words, w does not depend on
the velocity of u.

We notice that, even in most typical hysteresis phenomena, like ferromagnetism, ferro-
electricity or plasticity, memory effects are not purely rate independent, since hysteresis is
coupled with viscous-type effects. However, in several cases the rate independent component
prevails, provided that evolution is not too fast.

In order to introduce a functional setting for hysteresis operators, we first notice that, at
any instant t, w(t) will depend not only on the previous evolution of u (i.e., on u|[0,t]) but also
on the “initial state” of the system. Due to the memory dependence of hysteresis processes,
additional information is needed to make up for the lack of history when the process begins.
This initial information must represent the “history” of function u before t = 0. Hence,
not only the standard initial value (u(0), w(0)) must be provided. In general, we consider a
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variable ξ containing all the information about the “initial state”. For instance, we express
this as follows:

F̃ : C([0, T ])× Y → C([0, T ])

(u, ξ) → w = F̃(u, ξ)

with Y a suitable metric space. Thus, F̃(·, ξ) represents an operator between spaces of
time-dependent functions, for each fixed ξ.

We introduce the following definitions related to the previous discussion.

An operator F̃(·, ξ) is said to be causal if for any t ∈ [0, T ], the output w(t) = [F̃(u, ξ)](t)
is independent of u|[t,T ], i.e.,

∀(u1, ξ), (u2, ξ) ∈ Dom(F̃),

u1|[0,t] = u2|[0,t] ⇒ [F̃(u1, ξ)](t) = [F̃(u2, ξ)](t) ∀t ∈ (0, T ].

We require the path of the pair (u,w) to be invariant with respect to any increasing diffeo-
morphism ϕ : [0, T ] → [0, T ], i.e.,

∀(u, ξ) ∈ Dom(F̃),

F̃(u ◦ ϕ, ξ) = F̃(u, ξ) ◦ ϕ in [0, T ].

This means that at any instant t, w(t) only depends on u|[0,t] and on the order in which the
values of u have been attained before t (rate independence).

We characterize a hysteresis operator as a causal and rate independent operator.

In what follows we shall deal with hysteresis operators that are continuous in the following
sense:

∀
{
(un, ξn),∈ Dom(F̃)

}
n∈N

, if un → u uniformly in [0, T ] and ξn → ξ in Y,

then F̃(un, ξn) → F̃(u, ξ) uniformly in [0, T ]. (3.1)

Another property which may be fulfilled by hysteresis operators is order preservation,
that is,

∀(u1, ξ1), (u2, ξ2),∈ Dom(F̃), if u1 ≤ u2 and ξ1 ≤ ξ2,

then |[F̃(u1, ξ1)](t)| ≤ |[F̃(u2, ξ2)](t)| ∀t ∈ (0, T ]. (3.2)

Moreover, it is also natural to require the following property, usually named piecewise
monotonicity :

∀(u, ξ) ∈ Dom(F̃), ∀[t1, t2] ⊂ [0, T ],

if u is either nondecreasing or nonincreasing in [t1, t2], then so is F̃(u, ξ). (3.3)

We notice that the classical L2-monotonicity property

∫ T

0

(
[F̃(u1, ξ)](t)− [F̃(u2, ξ)](t)

)
(u1(t)− u2(t)) dt ≥ 0 ∀u1, u2 ∈ Dom(F̃)

is a too strong requirement for hysteresis operators. Actually, a rate independent operator
is monotone with respect to the usual scalar product of L2(0, T ) only if it is of the form
F̃(u, ξ) = ϕ ◦ u for some function ϕ : R → R (see [7, Chapter I]).
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3.2 Space and time dependence

The hysteresis operators introduced in the above section work between spaces of continuous
functions, i.e.,

F̃ : C([0, T ])× Y → C([0, T ]),

where we recall that Y is a suitable metric space containing all the information about the
desired “initial state”. These operators are usually employed in problems in which time
is the only independent variable, like in the case of ordinary differential equations. In the
case of partial differential equations, these operators cannot be directly applied and it is
necessary to define a suitable operator F acting between function spaces involving the space
variable.

To begin with, we first define appropriate Lebesgue spaces that will be used for the
mathematical analysis of the problem (see [34, Section XII.2]).

Let Q be a Banach space and Ω an open subset of RN (N ≥ 1) with Lipschitz continuous
boundary. We define S(Ω;Q) to be the family of simple functions Ω → Q, namely, functions
with finite range such that the inverse image of any element of Q is measurable. Then, we
introduce the space of strongly measurable functions:

M(Ω;Q) :=
{
v : Ω → Q : ∃ {vn ∈ S(Ω;Q)}n∈N such that

vn → v strongly in Q a.e. in Ω
}
.

Now, we are in a position to introduce a space-time hysteresis operator. Given a hys-
teresis operator F̃ , we introduce, for any u : Ω× [0, T ] → R such that u(x, ·) ∈ C([0, T ]) and
any ξ : Ω → Y , the corresponding space dependent operator F : M(Ω;C([0, T ]) × Y ) →
M(Ω;C([0, T ])) as follows

[F(u, ξ)](x, t) := [F̃(u(x, ·), ξ(x))](t), ∀ t ∈ [0, T ], a.e in Ω.

We notice that operator F̃ is here applied at each point x ∈ Ω independently, hence, the
output [F(u, ξ)](x, t) depends on u(x, ·)|[0,t], but not on u(y, ·)|[0,t] for y 6= x.

Remark 1 Recall that the “initial state” ξ contains the “history” information needed to
compute F .

We conclude by summarizing some properties that will be useful in the following sections.
In particular, given an “initial state” ξ, F can be:

• Causal

∀v1, v2 ∈ M(Ω;C([0, T ])), if v1 = v2 in [0, t] a.e. in Ω,

then [F(v1, ξ)](·, t) = [F(v2, ξ)](·, t) ∀ t ∈ [0, T ], a.e. in Ω. (3.4)

• Strongly continuous

∀ {vn ∈ M(Ω;C([0, T ]))}n∈N , if vn → v uniformly in [0, T ] a.e. in Ω,

then F(vn, ξ) → F(v, ξ) uniformly in [0, T ] a.e. in Ω. (3.5)

• Piecewise monotone

∀ v ∈ M(Ω;C([0, T ])) , ∀[t1, t2] ⊂ [0, T ],

if v(x, ·) is affine in [t1, t2] a.e. in Ω, then

([F(v, ξ)](x, t2)− [F(v, ξ)](x, t1)) (v(x, t2)− v(x, t1) ≥ 0 a.e. in Ω. (3.6)
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4 The Preisach scalar hysteresis model

Different models have been proposed to represent the magnetic hysteresis phenomenon. At
the macroscopic level, the most popular is the classical Preisach model [24]. This model is
based on some hypotheses concerning the physical mechanisms of magnetization, and for
this reason was primarily known in the area of magnetics. Nowadays it is recognized as a
fundamental tool for describing a wide range of hysteresis phenomena in different subjects
as electromagnetism and mechanics, among others. As mentioned in the introduction, in
this section we briefly recall the classical definition and some properties of this operator
following the works of Mayergoyz and Visintin (see [20, 34]).

4.1 Mathematical definition and properties

The classical Preisach model is constructed from an infinite set of hysteresis operators called
relay operators. A relay operator is represented by elementary rectangular loops with “up”
and “down” switching values. Given any couple ρ = (ρ1, ρ2) ∈ R

2, with ρ1 < ρ2, the
corresponding relay operator hρ, depicted in Figure 5, is defined as follows: for any u ∈
C([0, T ]) and ξ ∈ {1,−1}, hρ(u, ξ) is a function from [0, T ] to R such that,

hρ(u, ξ)(0) :=





−1 if u(0) ≤ ρ1,
ξ if ρ1 < u(0) < ρ2,
1 if u(0) ≥ ρ2.

Figure 5: Scalar relay.

Then, for any t ∈ (0, T ], let us set Xu(t) := {τ ∈ (0, t] : u(τ) ∈ {ρ1, ρ2}} and define

hρ(u, ξ)(t) :=





hρ(u, ξ)(0) if Xu(t) = ∅,
−1 if Xu(t) 6= ∅ and u(maxXu(t)) = ρ1,
1 if Xu(t) 6= ∅ and u(maxXu(t)) = ρ2.

We notice that hρ = ±1 with “switch-up” and “switch-down” values at ρ2 and ρ1,
respectively. The value of the relay operator remains at the last value (±1) until u takes
the value of one opposite switch, that is, switch to value +1 when u attains the value ρ2
from below, and to −1 when it attains ρ1 from above. This operator is the simplest model
of discontinuous hysteresis.
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Now, given ρ0 > 0, let us introduce the Preisach triangle T := {ρ = (ρ1, ρ2) ∈ R
2 :

−ρ0 ≤ ρ1 ≤ ρ2 ≤ ρ0} (see Figure 6 (left)). Let us denote by Y the family of Borel measurable
functions T → {−1, 1} and by ξ a generic element of Y . Let us define the Preisach operator

F̃ : C([0, T ])× Y −→ C([0, T ]),

(u, ξ) 7−→ [F̃(u, ξ)](t) =

∫

T

[hρ(u, ξ(ρ))](t)p(ρ) dρ, (4.7)

where p ∈ L1(T ) with p > 0 is known as the Preisach function. The Preisach model can be
understood as the “sum” of a family of relays, distributed with a certain density p.

From the above definition of the hysteresis operator and [34, Theorems 1.2 and 3.2] we
have the following result:

Lemma 1 Given ξ ∈ Y , the Preisach operador F̃(·, ξ) : C([0, T ]) → C([0, T ]) is a hysteresis
operator, strongly continuous and piecewise monotone. Moreover

∣∣∣[F̃(u, ξ)](t)
∣∣∣ ≤

∫

T

p(ρ) dρ ∀u ∈ C([0, T ]).

As in Section 3.2 it is possible to define the operator F : M(Ω;C([0, T ]) × Y ) →
M(Ω;C([0, T ])) as follows: given (u, ξ) ∈ M(Ω;C([0, T ])× Y )

[F(u, ξ)](r, z, t) := [F̃(u(r, z), ξ(r, z))](t) ∀t ∈ [0, T ], a.e. in Ω. (4.8)

Then, by using similar results as those stated in Propositions 3.1 and 3.2 from [34, Section
XII.3], adapted to the case of weighted Sobolev spaces, we can prove the following one:

Lemma 2 Let ξ : Ω → Y be an “initial state”. Then, the operator F(·, ξ) : L2
r(Ω;C(0, T )) →

L2
r(Ω;C(0, T )) is causal, strongly continuous, piecewise monotone and affinely bounded (cf. (3.4),

(3.5), (3.6) and (6.42), respectively).

4.2 Geometric interpretation

The understanding of the Preisach operator is considerably facilitated by its geometric inter-
pretation. This interpretation is based on the fact that there is a one-to-one correspondence
between relay operators hρ and points (ρ1, ρ2) of the Preisach triangle T .

We notice that, given u ∈ C([0, T ]) and ξ, each relay hρ(u, ξ(ρ)) is such that, for any
t ∈ [0, T ],

hρ(u, ξ(ρ))(t) :=





1 if u(t) ≤ ρ1,
−1 if u(t) ≥ ρ2,
±1 if ρ2 < u(t) < ρ1,

(4.9)

and the choice of the sign above depends on u|[0,t] and ξ(ρ). Therefore, for a given u(t), all
the relays hρ such that ρ1 ≥ u(t) are “switched down”. Similarly the relays hρ such that
ρ2 ≤ u(t) are “switched up” (see Figure 6 (right)).

9



Figure 6: Preisach triangle (left) and Preisach domain (right).

Now, to understand the geometrical interpretation of the Preisach operator, we consider
a simple setting and proceed in the same way as described by Mayergoyz in [20]. First
we consider a function u(t) ∈ C([0, T ]) as that shown in Figure 7 such that at some time
t0, u(t0) < −ρ0. Notice that, because of this particular choice of u, all the relays are well
defined in T for t > t0 without the need of giving an “initial state” ξ. Therefore, to simplify
the notation, from now on, we drop out ξ and write [hρ(u)](t) := [hρ(u, ξ)](t). Given that,
u(t0) ≤ −ρ0 ≤ ρ1 for all (ρ1, ρ2) ∈ T , then from (4.9) it follows that all the relay operators
[hρ(u)](t

0) = −1 in T . Now, since u increases monotonically for t ∈ [t0, t1], from the
definition of the relay operator, the relays will only change to a positive state. Thus, at each
time t ≥ t0, triangle T is subdivided into two sets (one possibly empty):

S−
u (t) = {(ρ1, ρ2) ∈ T : [hρ(u)](t) = −1} and S+

u (t) = {(ρ1, ρ2) ∈ T : [hρ(u)](t) = 1} .
(4.10)

Figure 7: Continuous function u.

Since the change to a positive state of the relay hρ depends only on the value of ρ2, we
obtain that the interface Lu(t) between these two subsets is the line ρ2 = u(t) (see Figure 8
(left)) which moves up as u increases in time. Function u increases until it reaches some
maximum value u1 (−ρ0 < u1 < ρ0) at time t1 (see Figure 7)
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Figure 8: Lu(t): u(t) is increasing (left) and attains a maximum at u1 (right).

Next, u(t) decreases monotonically for t ∈ [t1, t2]. Then, the relays will only change to
a negative state. Since changing to a negative state of the relay hρ depends only on the
value of ρ1, we obtain that the line ρ1 = u(t) moves from right to left (see Figure 9 (left)).
Function u decreases until it reaches, at time t2, some value u2 > −ρ0. At this point, the
interface Lu(t) between S

+
u (t) and S

−
u (t) has now two segments, the horizontal and vertical

ones depicted in Figure 9 (right).

Figure 9: Lu(t): u(t) is decreasing from u1 (left) and attains a minimum at u2 (right).

Next, u(t) increases again until it reaches at time t3 some maximum value u3 < u1.
Geometrically, this increment produces a new horizontal segment in Lu(t) which moves up.
This motion ends when the maximum u3 is reached. This is shown in Figure 10 (left).
Finally u(t) decreases until it reaches, at time t4, some minimum value u4 > u2. This
variation results in a new vertical segment in Lu(t) that moves from right to left as it is
shown in Figure 10 (right). As shown in this figure, at this point, Lu(t) has two vertices
(u2, u1) and (u4, u3).
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Figure 10: Lu(t): u(t) attains a maximum at u3 (left) and attains a minimum at u4 (right).

Remark 2 A similar figure is obtained if we consider another function v ∈ C([0, T ]) such
that, at some time t0, v(t0) > ρ0. We assume that v(t) decreases to v1 > −ρ0, then increases
to v2 ≤ ρ0, next decreases to v3 > v1 and finally increases to v4 < v2, as depicted in Figure 11
(right). Lv(t) is illustrated in Figure 11 (left).

Figure 11: Staircase line Lv(t) (left) and input v(t) (right).

We can summarize the above analysis as follows; for a given u ∈ C([0, T ]) as the one
shown in Figure 7 and any time t, the triangle T is subdivided into two sets: S+

u (t) consisting
of points (ρ1, ρ2) for which the corresponding relay operators hρ(u) are positive, and S−

u (t)
consisting of points (ρ1, ρ2) for which the corresponding relay operators hρ(u) are negative.
The interface Lu(t) between S

+
u (t) and S

−
u (t) is a staircase line whose vertices have coordi-

nates (ρ1, ρ2) coinciding respectively with the local minimum and maximum values of u at
previous instants of time. At time t, the staircase line Lu(t) intersects the line ρ1 = ρ2 at
(u(t), u(t)). Lu(t) moves up as u(t) increases and it moves from right to left as u(t) decreases
(see Figure 12).
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Figure 12: Staircase line Lu(t) moving right to left (left) and moving up (right).

Hence, from the latter we notice that, at any time t, the integral in (4.7) can be subdivided
into two integrals, over S+

u (t) and S
−
u (t), respectively:

wu(t) := [F̃(u)](t) =

∫

T

[hρ(u)](t)p(ρ) dρ

=

∫

S+
u (t)

[hρ(u)](t)p(ρ) dρ+

∫

S−
u (t)

[hρ(u)](t)p(ρ) dρ.

(We recall that, because of the particular choice of the values of u we do not need an “initial
state” ξ.) Moreover, because of (4.10) and the latter equality we obtain that

wu(t) =

∫

S+
u (t)

p(ρ) dρ−
∫

S−
u (t)

p(ρ) dρ. (4.11)

Remark 3 To compute the Preisach model in (t0, T ], in general it is enough to know u(t0),
the Preisach function p and the history of u represented by S+

u (t) and S
−
u (t), which contain

the least amount of information to compute (4.11).

From (4.11), it follows that [F̃(u)](t) depends on the particular subdivision of the limiting
triangle T into S+

u (t) and S
−
u (t). Therefore, it depends on the shape of the interface Lu(t),

which in its turn is determined by the extremum values of u(t) at previous time. It turns out
that not all extremal input values needed. In fact, given the dependence of the staircase line
Lu(t), we can see that the Preisach operator has a wiping-out property. This property states
that each time the input reaches a local maximum u(t), Lu(t) erases, or “wipes out” the
previous vertices of the staircase whose ρ2 value is lower than the value u(t). Similarly, each
time an input reaches a local minimum u(t), the memory curve erases all previous vertices
whose ρ1 value is higher than the u(t) value.

To illustrate this property, we consider a simple setting. Let u ∈ C([0, T ]) be charac-
terized by a finite decreasing sequence {u1, u3, u5, u7} of local maxima and an increasing
sequence {u2, u4, u6, u8} of local minima, with −ρ0 < ui < ρ0, i = 1, . . . , 8 (see Figure 13).
Now, let us assume that u(t) is monotonically increasing until it reaches u9, such that
u3 < u9 < u1. This increase of u(t) results in the formation of a new line in Lu(t) which
intersects the line ρ1 = ρ2 horizontally and moves up until the maximum value u9 is reached.
Then we obtain a modified staircase line Lu(t) where all vertices whose ρ2-coordinates are
below u9 have been wiped out (see Figure 14).
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Figure 13: Function u (left) and initial staircase line Lu (right).

Figure 14: Function u (left) and Lu for increasing u until u9 (right).

Similarly, instead of assuming that u(t) is monotonically increasing, let us suppose that
it decreases until it reaches u9, such that u2 < u9 < u4. Function u and the corresponding
staircase line Lu(t) are depicted in Figure 15.

Figure 15: Function u (left) and Lu for decreasing u until u9 (right).

Another important property of the Preisach operator is referred to as the congruency
property. This property states that, as the input is cycled between two extremum values,

14



the minor loop traced will have the same shape, independently of history. However, the
position of the minor loop along the output axis will be determined by the history of past
input variations (see Figure 16, for further details, see [20]).

Figure 16: Congruency property.

4.3 Computation of the Preisach model

Once we have the distribution function and an “initial state”, given u ∈ C([0, T ]) we can
compute wu(t) := [F̃(u)](t) by means of (4.7). Based on this feature, Mayergoyz [20]
developed an approach for the computation of the Preisach model that does not require the
Preisach function p but the so-called Everett function which describes the effect of p on the
hysteresis operator. In what follows, for the sake of completeness, we describe the approach
proposed by Mayergoyz in [20].

To obtain the Everett function, the so-called first order transition curves are required.
To define such a curve, first we consider a function u ∈ C([0, T ]), such that at time t0,
u(t0) ≤ −ρ0. Then, u increases monotonically until it reaches some value ρ′2 at time t1.
We denote wρ′

2
:= wu(t

1). A first order transition curve is formed by the above monotonic
increase of u followed by a subsequent monotonic decrease, namely, from ρ′2, u decreases
monotonically until it reaches some value ρ′1 < ρ′2 at time t2; we denote wρ′

2
,ρ′

1
:= wu(t

2) (see
Figures 18 and 17).
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Figure 17: First order transition curve.

Figure 18: Staircase line Lu(t) at time t1 (left) and at time t2 (right).

We define the Everett function E : T → R by

E(ρ′1, ρ
′
2) :=

wρ′
2
− wρ′

2
,ρ′

1

2
. (4.12)

From (4.11), we notice that

wρ′
2
,ρ′

1
− wρ′

2
=

(∫

S+
u (t2)

p(ρ) dρ−
∫

S−
u (t2)

p(ρ) dρ

)
−
(∫

S+
u (t1)

p(ρ) dρ−
∫

S−
u (t1)

p(ρ) dρ

)

= −2

∫

T (ρ′
1
,ρ′

2
)
p(ρ) dρ,

with T (ρ′1, ρ
′
2) the triangle shown in Figure 18 (right) with the vertex of the right angle at

(ρ′1, ρ
′
2). This is so because S+

u (t
2) = S+

u (t
1) \ T (ρ′1, ρ

′
2) and S−

u (t
2) = S−

u (t
1) ∪ T (ρ′1, ρ

′
2)

(see Figure 18 (right)). Therefore, we obtain the following relation between the Preisach
function p and the Everett function E:

E(ρ1, ρ2) =

∫

T (ρ1,ρ2)
p(ρ) dρ ∀(ρ1, ρ2) ∈ T . (4.13)
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To take into account this relation in the computation of the Preisach operator, first we
rewrite (4.11), by adding and subtracting the integral of p over S+

u (t) as follows:

wu(t) = 2

∫

S+
u (t)

p(ρ) dρ−
∫

T

p(ρ) dρ,

where T is the Preisach triangle. Moreover, from (4.13) and the definition of the Preisach
triangle T = T (−ρ0, ρ0) (cf. Figure 6 (left)) it follows that,

wu(t) = 2

∫

S+
u (t)

p(ρ) dρ− E(−ρ0, ρ0). (4.14)

Provided that the Preisach function p is known, to obtain wu(t) we can compute the both
terms on the right-hand side of (4.14). For this purpose we further assume that u is piece-
wise monotonic and distinguish two cases: u monotonically increasing and u monotonically
decreasing in an interval (t′, t) for some t′ < t. For decreasing u, we subdivide S+

u (t) into
n trapezoids Qk(t) (see Figure 19 (left)). We can perform this subdivision because, for de-
creasing arguments, the staircase line Lu(t) intersects the line ρ1 = ρ2 vertically. Then we
have

∫

S+
u (t)

p(ρ) dρ =

n(t)∑

k=1

∫

Qk(t)
p(ρ) dρ, (4.15)

where n(t) is the number of local maxima of u up to time t that have not been wiped-out
(recall the wipe-out process as illustrated in Figure 15)

Figure 19: Staircase line for a decreasing input (left) and a increasing input (right).

Each trapezoid Qk(t) depends on the local maximum Mk and on the local minima mk

and mk−1. Notice that, for k = 1, m0 = −ρ0. Moreover, each trapezoid can be represented
as the set difference of two triangles T (mk−1,Mk) and T (mk,Mk):

∫

Qk(t)
p(ρ) dρ =

∫

T (mk−1,Mk)
p(ρ) dρ−

∫

T (mk,Mk)
p(ρ) dρ. (4.16)

Now, from (4.13), it follows that

∫

S+
u (t)

p(ρ) dρ =

n(t)∑

k=1

(E(mk−1,Mk)− E(mk,Mk)) . (4.17)
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Finally, from (4.17) and (4.14), we obtain

wu(t) = 2

n(t)∑

k=1

(E(mk−1,Mk)− E(mk,Mk))− E(−ρ0, ρ0).

Since we consider u monotonically decreasing in (t′, t), we obtain that the last minimum
value mn(t) is equal to the current value of u, namely, mn(t) = u(t). Then

wu(t) = −E(−ρ0, ρ0) + 2

n(t)−1∑

k=1

(E(mk−1,Mk)− E(mk,Mk)) (4.18)

+ 2
(
E(mn(t)−1,Mn(t))− E(u(t),Mn(t))

)
. (4.19)

Because of the decomposition of S+
u into trapezoids (see Figure 19), this expression is valid

only for u being monotonically decreasing in (t′, t). If u(t) is monotonically increasing, then
the staircase line Lu(t) intersects the line ρ1 = ρ2 horizontally. Hence, we may decompose
S+
u into trapezoids and a triangle (see Figure 19 (right)). It follows that

∫

S+
u (t)

p(ρ) dρ =

n(t)−1∑

k=1

(E(mk−1,Mk)− E(mk,Mk)) + E(mn(t)−1,Mn(t)). (4.20)

In this case, the last maximum value Mn(t) is equal to the current value of u, namely,
Mn(t) = u(t). Hence, from (4.20) we write (4.14) for a monotonically increasing u in (t′, t)
as follows:

wu(t) = −E(−ρ0, ρ0) + 2

n(t)−1∑

k=1

(E(mk−1,Mk)− E(mk,Mk)) + 2E(mn(t)−1, u(t)). (4.21)

From (4.18) and (4.21) we obtain the following expression to compute the Preisach operator
in terms of the Everett function

wu(t) :=





−E(−ρ0, ρ0) + 2

n(t)−1∑

k=1

(E(mk−1,Mk)− E(mk,Mk))

+ 2
(
E(mn(t)−1,Mn(t))− E(u(t),Mn(t))

)
for u decreasing,

−E(−ρ0, ρ0) + 2

n(t)−1∑

k=1

(E(mk−1,Mk)− E(mk,Mk))

+ 2E(mn(t)−1, u(t)) for u increasing.

As an example, we compute wu(t) by using the Preisach function p given by the Factorized-
Lorentzian distribution (see [6]):

p(ρ1, ρ2) := N

((
1 +

(
ρ2 − ω

γω

)2
)(

1 +

(
ρ1 + ω

γω

)2
))−1

(4.22)

with parameters N = 1, ω = 0.8 and γ = 0.6 (see Figure 20). The Preisach triangle T is
characterized by ρ0 = 5.
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Figure 20: Factorized-Lorentzian distribution function p (left) and corresponding Everett
function (right).

We compute the wu − u loop in two cases. First we consider the input function u(t)
shown in Figure 21. The evolution of the corresponding wu − u loop are shown in Figure 22
at times t1, t2, t3 and t4.
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Figure 21: Function u(t).
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Figure 22: wu − u curve at time t1, t2, t3 and t4.

Finally we consider the input function u(t) shown in Figure 23. In this case we present
in Figure 24 the final staircase line and the complete wu − u loop.
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Figure 23: Function u(t).
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Figure 24: Staircase function (left) and wu − u curve (right).

Remark 4 In the previous examples we consider different inputs u, such that u(t0) ≥ ρ0 or
u(t0) ≤ −ρ0. Clearly, in both cases S+

u (t
0) and S−

u (t
0) are determined and because of that,

there is not need to consider additional information to compute wu(t), t ≥ t0. In particular,
we have wu(t

0) = E(−ρ0, ρ0) if u(t0) ≥ ρ0, and −E(−ρ0, ρ0) if u(t0) ≤ −ρ0. However,
in the case of −ρ0 < u(t0) < ρ0, to compute wu(t

0) we must have an “initial state”. To
illustrate this we consider three different previous “histories” of u as shown in the curves
u1(t), u2(t) and u3(t) in Figure 25. The curves u1 and u3 are extreme cases in which:

u1(t) ≤ u1(t
0) = u0 ∀t ≤ t0

u3(t) ≥ u3(t
0) = u0 ∀t ≤ t0.

Instead, u2 takes values large and smaller that u0 for t < t0.

Figure 25: Functions u1(t), u2(t) and u3(t).

We show in Figure 26 (left) the corresponding staircase lines Lu1
, Lu2

and Lu3
and in

Figure 26 (right) the corresponding values of wu(u1), wu(u2) and wu(u3) at time t = t0 (w1
u,

w2
u and w3

u, respectively). Notice that the three values are different; w1
u and w3

u lie on the
major loop, whereas w2

u lies in the interval (w1
u, w

3
u).
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Figure 26: Staircase function (left) wu − u curve (right).

In what follows, we will take into account the previous discussion to study a particular
transient eddy current problem where hysteresis effects are considered.

5 The transient eddy current model with hysteresis

Eddy currents are modeled by the so-called low-frequency Maxwell’s equations:

curlH = J ,
∂B

∂t
+ curlE = 0,

divB = 0,

where we have used the standard notation in electromagnetism: E is the electric field, B
the magnetic induction, H the magnetic field and J the current density.

In order to obtain a closed system we need constitutive laws. We have the Ohm’s law in
conductors,

J = σE,

where σ is the electrical conductivity and we consider the constitutive equation

B = µ0 (H +M) ,

where M is the magnetization and µ0 is the magnetic permeatibity of the vacuum. In
ferromagnetic and ferrimagnetic materials, where hysteresis phenomena may occur, the de-
pendence between M and H exhibits a history-dependent behavior and must be represented
by a suitable constitutive law accounting for hysteresis. We synthetically represent this de-
pendence in the form

M = F(H),

whereF is a vector hysteresis operator (see [21, 20]). This dependence is nonlocal in time but
pointwise in space. We notice that a real ferromagnetic material may exhibit rate dependent
memory effects but they will not be considered in this analysis.

From the above equations we can easily obtain the following vector partial differential
equation in conductors:

∂B

∂t
+ curl

(
1

σ
curlH

)
= 0, (5.23)
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which has to be solved together the constitutive equation

B = µ0 (H +F(H)) (5.24)

in a conducting domain Ω̃ ⊂ R
3.

5.1 Axisymmetric eddy current model

In many applications the computational domain Ω̃ has cylindrical symmetry and all fields
are independent of the angular variable θ. In such a case, in order to reduce the dimension
and thereby the computational effort, it is convenient to consider a cylindrical coordinate
system (r, θ, z). Let us denote by er, eθ and ez the corresponding unit vectors of the local
orthonormal basis.

Moreover, let us assume the magnetic field has only azimuthal component, i.e., it is of
the form,

H(r, z, t) = H(r, z, t)eθ. (5.25)

If we also assume that the materials composing the domain have an isotropic behavior, then
B has only azimuthal component too:

B(r, z, t) = B(r, z, t)eθ. (5.26)

We notice that any field of the form (5.26) is divergence–free.
According to (5.25),

curlH(r, z, t) = − ∂

∂z
H(r, z, t)eθ +

1

r

∂

∂r
(rH)(r, z, t)ez, (5.27)

and then equation (5.23) reads

∂B

∂t
− ∂

∂r

(
1

σr

∂(rH)

∂r

)
− ∂

∂z

(
1

σ

∂H

∂z

)
= 0.

This equation holds in a meridian section Ω of Ω̃, for all time t ∈ [0, T ].
In order to write a well-posed problem we must add an initial condition

B(r, z, 0) = B0(r, z) in Ω, (5.28)

and appropriate source terms. In view of applications, we will consider alternatively the two
following cases:

• Non-homogeneous Dirichlet condition:

H(r, z, t) = g(r, z, t) on Γ,

where g is a given function and Γ := ∂Ω. For applications of this model, we refer for instance
to [1, 2, 17], where a Dirichlet problem arises in the simulation of metallurgical electrodes,
or the computation of current losses in a toroidal laminated core [19, 22]. In this case, the
Dirichlet boundary data g can be obtained from the current intensity.

• Magnetic flux condition:

∫

Ω
B(r, z, t) drdz = b(t), (5.29)

rH|Γ = ψ(t) on Γ, (5.30)
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where b is a given function but ψ is unknown; the meaning of the last condition is just that
at each time t, rH is constant on Γ. The above integral in (5.29) represents the magnetic
flux b(t) through a meridian section Ω of the domain. Such a condition holds, for instance,
in toroidal transformers when a voltage drop between the ends of the coil is applied (see, for
instance, [28]).

Finally, taking into account that the involved fields are scalar, relation (5.24) can be
described as

B(r, z, t) = µ0 (H(r, z, t) + [F(H)](r, z, t)) , (5.31)

where F is a scalar hysteresis operator.

All together, the two resulting axisymmetric problems read:

Problem 5.1 Find HD(r, z, t) and BD(r, z, t) such that

∂BD

∂t
− ∂

∂r

(
1

σr

∂(rHD)

∂r

)
− ∂

∂z

(
1

σ

∂HD

∂z

)
= f in Ω× (0, T ), (5.32)

BD = µ0 (HD + F(HD, ξ)) in Ω× (0, T ), (5.33)

HD = g on Γ× (0, T ), (5.34)

BD|t=0 = BD0 in Ω. (5.35)

Problem 5.2 Find HN (r, z, t), BN (r, z, t) and ψ(t) such that

∂BN

∂t
− ∂

∂r

(
1

σr

∂(rHN )

∂r

)
− ∂

∂z

(
1

σ

∂HN

∂z

)
= f in Ω× (0, T ), (5.36)

BN = µ0 (HN + F(HN , ξ)) in Ω× (0, T ), (5.37)

rHN (r, z, t) = ψ(t) on Γ× (0, T ), (5.38)∫

Ω
BN (r, z, t) drdz = b(t) in (0, T ), (5.39)

BN |t=0 = BN0 in Ω. (5.40)

In the problems above σ(r, z, t), f(r, z, t), g(r, z, t), b(t), ξ(r, z), BD0(r, z) and BN0(r, z) are
given functions.

Remark 5 For the sake of completeness, in (5.32) and (5.36) we have considered a general
right-hand side f . Moreover, we consider a space and time dependent electrical conductivity
σ because, in practical applications, σ is a function of temperature which, in its turn, is a
time dependent field.

Remark 6 Notice that, in order to compute the hysteresis operator [F(H)] a.e. in Ω×[0, T ],
we need to provide an appropriate “initial state” (cf. Remark 1). From a practical point of
view, a typical initial condition (cf. (5.35) and (5.40)) is the so-called demagnetized or
virginal state of the material, namely, (B,H)|t=0 = (0, 0). The demagnetized state can be
achieved, for instance, by heating the material above its Curie temperature. Another method
that returns the material to a nearly demagnetized state is to apply a magnetic field with a
direction that changes back and forth, while at the same time its amplitude reduces to zero.
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6 Mathematical analysis

In this section, we derive weak formulations for Problems 5.1 and 5.2, and prove that they are
well-posed. The techniques used for this purpose are based on [34, Chapter IX], where the
existence of solution to a similar 2D problem in standard Sobolev spaces with homogeneous
Dirichlet condition is proved (for a homogeneous Neumann condition we refer to [12, 31]).

The presence of time dependent coefficients, the different source terms (cf. (5.34) and
(5.39)) and the fact that the problems are posed on weighted Sobolev spaces because of the
cylindrical symmetry assumption brings some technical complications to the analysis with
respect to previous works on the subject. In particular, (5.38)–(5.39) yield a non-classical
boundary condition for the resulting non-linear parabolic problem. Such a condition and
the fact of having a time dependent conductivity (cf. Remark 5), lead us to deal with a
time dependent bilinear form which, instead of being elliptic, satisfies a G̊arding’s inequality.
On the other hand, with respect to Problem 5.1, in order to deal with condition (5.34) we
have to introduce a lifting of the boundary data which brings additional complications in
the mathematical analysis.

First, we introduce some preliminary results.

6.1 Functional spaces and preliminary results

We define appropriate weighted Sobolev spaces that will be used for the mathematical anal-
ysis of the problem and recall some of their properties. For the sake of simplicity, in this
paragraph the partial derivatives will be denoted by ∂r and ∂z.

Let Ω ⊂
{
(r, z) ∈ R

2 : r > 0
}

be a bounded connected two-dimensional open set with
a connected Lipschitz boundary Γ. Let L2

r(Ω) denote the weighted Lebesgue space of all
measurable functions u defined in Ω for which

‖u‖2L2
r(Ω) :=

∫

Ω
|u|2r drdz <∞.

The weighted Sobolev space H1
r(Ω) consists of all functions in L2

r(Ω) whose first derivatives
are also in L2

r(Ω). We define the norms and semi-norms in the standard way; in particular,

|u|2H1
r(Ω) :=

∫

Ω

(
|∂ru|2 + |∂zu|2

)
r drdz.

Let H̃1
r(Ω) := H1

r(Ω) ∩ L2
1/r(Ω), where L2

1/r(Ω) denotes the set of all measurable functions u
defined in Ω for which

‖u‖2L2
1/r

(Ω) :=

∫

Ω

|u|2
r

drdz <∞.

H̃1
r(Ω) is a Hilbert space with the norm

‖u‖2
H̃1

r(Ω)
:= ‖u‖2H1

r(Ω) + ‖u‖2L2
1/r

(Ω) .

We recall from [15, Section 3] that functions in H̃1
r(Ω) have traces on Γ. We denote

H̃1/2
r (Γ) :=

{
v|Γ : v ∈ H̃1

r(Ω)
}

endowed with the norm

‖g‖
H̃

1/2
r (Γ)

:= inf
{
‖v‖

H̃1
r(Ω)

: v ∈ H̃1
r(Ω), v|Γ = g

}

which makes the trace operator v → v|Γ continuous.
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Also, let us introduce the function space Ĥ1
r(Ω) defined by

Ĥ1
r(Ω) :=

{
u ∈ L2

r(Ω) : ∂r(ru) ∈ L2
1/r(Ω), ∂zu ∈ L2

r(Ω)
}

which is a Hilbert space with the norm

‖u‖2
Ĥ1

r(Ω)
:=
(
‖u‖2L2

r(Ω) + ‖∂r(ru)‖2L2
1/r

(Ω) + ‖∂zu‖2L2
r(Ω)

)1/2
.

Clearly H̃1
r(Ω) ⊂ Ĥ1

r(Ω).
Finally, given a Banach space Q, we introduce the space L2

r(Ω;Q) of all function u : Ω →
Q such that

‖u‖2L2
r(Ω;Q) :=

∫

Ω
‖u(r, z)‖2Q r drdz <∞.

Remark 7 For Ω being a meridian section of a 3D axisymmetric domain Ω̃, the space
Ĥ1

r(Ω) can be considered as an axisymmetric version of the 3D space H(curl, Ω̃) := {u ∈
L2(Ω̃)3 : curl u ∈ L2(Ω̃)3}. In fact, it is easy to see that G(r, z) ∈ Ĥ1

r(Ω) if and only if
G(r, z, θ) = G(r, z)eθ(θ) ∈ H(curl, Ω̃). Similarly, we deduce that G(r, z) ∈ H̃1

r(Ω) if and
only if G(r, z, θ) = G(r, z)eθ(θ) ∈ H1(Ω̃)3.

Moreover, given G of the form G(r, z, θ) = G(r, z)eθ(θ), then divG = 0 and G · n = 0
on ∂Ω̃, i.e., G belong to H0(div

0; Ω̃) := {u ∈ L2(Ω̃)3 : divu = 0, u · n = 0}. Thus Ĥ1
r(Ω)

can be identified with a closed subspace of H(curl, Ω̃) ∩ H0(div
0; Ω̃) continuously included

in Hs(Ω̃)3 for s > 1/2, which, in turn, is compactly included in L2(Ω̃)3 (see [14, Theorem
I.1.3]). Then,

Ĥ1
r(Ω) ⊂ L2

r(Ω)

with compact inclusion and, hence, H̃1
r(Ω) is also compactly included in L2

r(Ω).

6.2 Weak formulation

In order to give a weak formulation of the above problems, let us define the closed subspaces
of H̃1

r(Ω) and Ĥ1
r(Ω)

U :=
{
G ∈ H̃1

r(Ω) : G|Γ = 0
}
,

W :=
{
G ∈ Ĥ1

r(Ω) : rG|Γ is constant
}
,

respectively. Hence, for each t ∈ [0, T ] a weak formulation of Problem 5.1 is given by:

Problem 6.1 Given g ∈ H2(0, T ; H̃
1/2
r (Γ)), f ∈ H1(0, T ;U ′), BD0 ∈ L2

r(Ω), and ξ : Ω → Y ,
find HD ∈ L2(0, T ; H̃1

r(Ω))∩L∞(0, T ; L2
r(Ω)) and BD ∈ L2(0, T ; L2

r(Ω)) with ∂tBD ∈ L2(0, T ;U ′),
such that

〈
∂BD

∂t
,G

〉

U ,U ′

+

∫

Ω

1

σr

(
∂(rHD)

∂r

∂(rG)

∂r
+
∂(rHD)

∂z

∂(rG)

∂z

)
drdz = 〈f,G〉U ,U ′

∀G ∈ U , a.e. in [0, T ],

BD = µ0 (HD + F(HD, ξ)) in Ω× (0, T ),

HD = g on Γ× (0, T ),

BD|t=0 = BD0 in Ω.

We use the classical notation 〈·, ·〉U ,U ′ for the duality product between U and its dual space
U ′.

Before stating a weak formulation of Problem 5.2, we notice that if the boundary of Ω
intersects the symmetry axis (r = 0), then ψ(t) should be identically zero because r vanishes
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there. In that case, (5.38) would become a homogeneous Dirichlet boundary condition and
Problem 5.2 without condition (5.39) would be exactly Problem 5.1 with g = 0, so there is no
reason for (5.39) to hold for a given b(t). However, this does not happen in the application
that motivates this problem in which the domain does not intersect the symmetry axis (see
[28]). This is the reason why, from now on when dealing with Problem 5.2, we will assume
that

inf{r > 0 : (r, z) ∈ Ω} > 0 (6.41)

and, hence, L2
r(Ω) and L2

1/r(Ω) are both identical to L2(Ω). Similarly, Ĥ1
r(Ω) is identical to

H1(Ω).
Straightforward computations lead to the following weak formulation for Problem 5.2

(see [3]):

Problem 6.2 Given b ∈ H2(0, T ), f ∈ H1(0, T ;W ′), BN0 ∈ L2
r(Ω) and ξ : Ω → Y , find

HN ∈ H1(0, T ; L2
r(Ω)) ∩ L∞(0, T ;W) and BN ∈ L2(0, T ; L2

r(Ω)) with ∂tBN ∈ L2(0, T ;W ′),
such that

〈
∂BN

∂t
,G

〉

W,W ′

+

∫

Ω

1

σr

(
∂(rHN )

∂r

∂(rG)

∂r
+
∂(rHN )

∂z

∂(rG)

∂r

)
drdz

= 〈f,G〉W,W ′ +
(
b′(t)− 〈f, r−1〉W,W ′

)
(rG) |Γ ∀G ∈ W, a.e. in [0, T ],

BN = µ0 (HN + F(HN , ξ)) in Ω× (0, T ),

BN |t=0 = BN0 in Ω.

We introduce the following assumptions that will be used to prove the existence of a
solution to Problem 6.1 and Problem 6.2:

H.1 F : L2
r(Ω;C([0, T ])×Y ) → L2

r(Ω;C([0, T ])) is causal, strongly continuous and piecewise
monotone (cf. (3.4)–(3.6)). We also assume that F is affinely bounded, namely,

∃LF > 0, ∃ τ ∈ L2
r(Ω) : ∀ v ∈ L2

r(Ω;C([0, T ])),

‖[F(v, ξ)](r, z, ·)‖C([0,T ]) ≤ LF ‖v(r, z, ·)‖C([0,T ]) + τ(r, z) a.e. in Ω. (6.42)

H.2 σ : (0, T ) × Ω → R belongs to W1,∞(0, T ; L∞(Ω)) and there exist non-negative con-
stants σ∗ and σ∗ such that

σ∗ ≤ σ(r, z, t) ≤ σ∗ ∀t ∈ [0, T ], a.e. in Ω.

H.3 There exist (H0D,W0D) ∈ H̃1
r(Ω)× L2

r(Ω) or (H0N ,W0N ) ∈ W × L2
r(Ω), such that

BD0(r, z) = µ0 (H0D +W0D) (r, z) and BN0(r, z) = µ0 (H0N +W0N ) (r, z) a.e in Ω.

Also, for each t ∈ [0, T ], let at(·, ·) be the bilinear form defined by

at(G1, G2) :=

∫

Ω

1

σ(·, t)

(
1

r

∂(rG1)

∂r

1

r

∂(rG2)

∂r
+
∂G1

∂z

∂G2

∂z

)
r drdz, G1, G2 ∈ Ĥ1

r(Ω).

(6.43)
From assumption H.2 it is straightforward to obtain the following result (see [4, Lemma 2.1]):

Lemma 3 The bilinear forms at : Ĥ
1
r(Ω)× Ĥ1

r(Ω) → R, t ∈ [0, T ], are continuous uniformly
in t and they satisfy the G̊arding’s inequality

at(G,G) + λ‖G‖2L2
r(Ω) ≥ γ‖G‖2

Ĥ1
r(Ω)

∀G ∈ Ĥ1
r(Ω), ∀t ∈ [0, T ], (6.44)

with λ = γ = 1/σ∗. Moreover, there exists γu > 0 such that

at(G,G) ≥ γu‖G‖2H̃1
r(Ω)

∀G ∈ U , ∀t ∈ [0, T ]. (6.45)
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Finally, we introduce the linear operator A(t) : Ĥ1
r(Ω) → Ĥ1

r(Ω)
′ induced by at(·, ·),

namely,
〈A(t)H,G〉

Ĥ1
r(Ω),Ĥ1

r(Ω)′
:= at(H,G) ∀H,G ∈ Ĥ1

r(Ω).

Clearly A(t) is linear and continuous, i.e., it belongs to L(Ĥ1
r(Ω), Ĥ

1
r(Ω)

′), for all t ∈ [0, T ].

Remark 8 From the definition of at(·, ·), it follows that at : H̃1
r(Ω)× H̃1

r(Ω) → R, t ∈ [0, T ],
are continuous uniformly in t, and therefore, the linear operator A(t) : H̃1

r(Ω) → H̃1
r(Ω)

′

belongs to L(H̃1
r(Ω), H̃

1
r(Ω)

′) for all t ∈ [0, T ].

The next section is devoted to study the existence of solution to Problems 6.1 and 6.2.
The proof is carried out through three different steps: time discretization, a priori estimates
and passage to the limit by using compactness. This approximation procedure is often used
in the analysis of equations that include a memory operator since at any time-step we solve
a stationary problem in which this operator is reduced to a standard nonlinear mapping.

6.3 Existence of solution

In this section we will prove that, under certain assumptions, there exist (HN , BN ) solution
of Problem 6.2.

6.3.1 Time discretization

Let us fix m ∈ N and set ∆t := T/m. Now, for n = 1, . . . ,m, we define tn := n∆t,
bn := b(tn), σn(r, z) := σ(r, z, tn), fn := f(tn) and A(tn) := An. Notation ∂̄zn refers to the
difference quotient

∂̄zn :=
zn − zn−1

∆t
.

A time discretization of Problem 6.2 based on backward Euler’s scheme reads as follows:

Given H0
N = H0N and W 0

N = W0N in Ω, find Hn
N ∈ W and Wn

N ∈ L2
r(Ω), n = 1, . . . ,m,

satisfying

µ0∂̄H
n
N + µ0∂̄W

n
N +AnHn

N = Rn
N in W ′, (6.46)

Wn
N = [F(HN∆tn , ξ)](t

n), (6.47)

where HN∆tn : [0, tn] → W is the piecewise linear in time interpolant of {H i
N}ni=0 given by

HN∆tn(t
0) := H0N ; (6.48)

HN∆tn(t) := H i−1
N + (t− ti−1) ∂̄H i

N , t ∈ (ti−1, ti], i = 1, . . . , n, (6.49)

and
〈Rn

N , G〉W,W ′ := 〈fn, G〉W,W ′ +
(
∂̄bn − 〈fn, r−1〉W,W ′

)
(rG) |Γ.

We notice that, since for n ∈ {1, . . . ,m} we already know H1
N , . . . , H

n−1
N , we have that

Wn
N (·) = [F(HN∆tn , ξ)](·, tn) depends only on HN∆tn(·, t)|[0,tn−1], which is known, and on

Hn
N , which must be determined.
In order to analyze the discrete problem, we define Fn : Ω × R −→ R as follows: given

s ∈ R

Fn(r, z, s) := [F(Us, ξ)](r, z, t
n) a.e. in Ω,

with Us the piecewise linear in time function such that Us(r, z, t
l) = H l

N (r, z), l = 0, . . . , n−1
and Us(r, z, t

n) = s. This allows us to introduce the operator F
n : L2

r(Ω) → L2
r(Ω) defined

by F
n(G)(·) := Fn(·, G(·)) for all G ∈ L2

r(Ω). The following lemma provides some properties
of Fn that will be used in the sequel.
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Lemma 4 For all n = 1, . . . ,m, Fn : L2
r(Ω) → L2

r(Ω) is a continuous and monotone opera-
tor. Moreover,

∫

Ω
F
n(G)Gr drdz ≥ −C1 ‖G‖L2

r(Ω) − C2 ∀G ∈ L2
r(Ω), (6.50)

where C1, C2 > 0 depend on
{
H l
N

}n−1

l=0
but are independent of G.

Proof The continuity and non-decreasing properties of Fn follows from H.1 (cf. (3.5), (3.6)
and (6.42)), whereas (6.50) is derived from (6.42).

Thus, from the theory of monotone operators, it follows that (6.46)–(6.47) has a unique
solution (see, for instance, [26, Theorem 2.18]).

6.3.2 A priori estimates

The aim of this section is to prove an a priori estimate for the solution of (6.46)–(6.47).
Here and thereafter C and c, with or without subscripts, will be used for positive con-

stants not necessarily the same at each occurrence, but always independent of the time-step
∆t.

Lemma 5 There exists C > 0 such that, for all l = 1, . . . ,m,

∆t
l∑

n=1

∥∥∂̄Wn
N

∥∥2
W ′ +

∥∥∥H l
N

∥∥∥
2

Ĥ1
r(Ω)

+∆t
l∑

n=1

∥∥∂̄Hn
N

∥∥2
L2
r(Ω)

≤ C.

Proof Let apply (6.46) to (Hn
N −Hn−1

N ). For n = 1, . . . ,m we obtain

µ0∆t

∥∥∥∥∥
Hn
N −Hn−1

N

∆t

∥∥∥∥∥

2

L2
r(Ω)

+

∫

Ω

µ0
∆t

(Wn
N −Wn−1

N )(Hn
N −Hn−1

N ) + 〈AnHn
N , H

n
N −Hn−1

N 〉W,W ′

= 〈fn, Hn
N −Hn−1

N 〉W,W ′ +
(
∂̄bn − 〈fn, r−1〉W,W ′

) (
rHn

N − rHn−1
N

)
|Γ.

(6.51)

First, we estimate the terms on the left hand side. From the piecewise monotonicity of F
(cf. (3.6)) we have that

∫

Ω

1

∆t
(Wn

N −Wn−1
N )(Hn

N −Hn−1
N ) drdz ≥ 0. (6.52)

On the other hand, in order to estimate the last term on the left-hand side of (6.51) we use
the identity 2(p− q)p = p2 + (p− q)2 − q2 to obtain that

2〈AnHn
N , H

n
N −Hn−1

N 〉W,W ′ ≥ 〈AnHn
N , H

n
N 〉W,W ′ − 〈AnHn−1

N , Hn−1
N 〉W,W ′

= 〈AnHn
N , H

n
N 〉W,W ′ − 〈An−1Hn−1

N , Hn−1
N 〉W,W ′ + 〈(An−1 −An)Hn−1

N , Hn−1
N 〉W,W ′ (6.53)

where

∣∣〈(An−1 −An)Hn−1
N , Hn−1

N 〉W,W ′

∣∣ ≤ Cσ ‖∂tσ‖L∞(0,T ;L∞(Ω))∆t
∥∥Hn−1

N

∥∥2
Ĥ1

r(Ω)
. (6.54)
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Summing up (6.51) for n = 1, . . . , l with l ∈ {1, . . . ,m}, from (6.52)–(6.54) we obtain

l∑

n=1

µ0∆t
∥∥∂̄Hn

N

∥∥2
L2
r(Ω)

+
1

2
〈AlH l

N , H
l
N 〉W,W ′

≤ 1

2
〈A0H0N , H0N 〉W,W ′ +

l∑

n=1

Cσ ‖∂tσ‖L∞(0,T,L∞(Ω))∆t
∥∥Hn−1

N

∥∥2
Ĥ1

r(Ω)

+
l∑

n=1

〈fn, Hn
N −Hn−1

N 〉W,W ′ +
l∑

n=1

(
∂̄bn − 〈fn, r−1〉W,W ′

) (
rHn

N − rHn−1
N

)
|Γ.

(6.55)

Next, we estimate the last two terms on the right-hand side of (6.55). By summation by
parts, Young’s inequality and the fact that (rG) |Γ ≤ C ‖G‖

Ĥ1
r(Ω)

∀G ∈ W, we have that

∣∣∣∣∣

l∑

n=1

(
∂̄bn − 〈fn, r−1〉W,W ′

) (
rHn

N − rHn−1
N

)
|Γ
∣∣∣∣∣

=

∣∣∣∣
(
∂̄bl − 〈f l, r−1〉W,W ′

)(
rH l

N

)
|Γ −

(
∂̄b1 − 〈f1, r−1〉

)
(rH0N ) |Γ

−
l−1∑

n=1

(
∂̄bn+1 − ∂̄bn − 〈fn+1 − fn, r−1〉W,W ′

)
(rHn

N ) |Γ
∣∣∣∣

≤ Cε

{
‖b‖2H2(0,T ) + ‖f‖2H1(0,T ;W ′) +∆t

l−1∑

n=1

∣∣∣∣
∂̄bn+1 − ∂̄bn

∆t

∣∣∣∣
2

+∆t
l−1∑

n=1

∥∥∂̄fn+1
∥∥2
W ′

}

+ ε
∥∥∥H l

N

∥∥∥
2

Ĥ1
r(Ω)

+∆t
l−1∑

n=1

‖Hn
N ‖2

Ĥ1
r(Ω)

+ ‖H0N‖2
Ĥ1

r(Ω)
. (6.56)

In a similar way,

∣∣∣∣∣

l∑

n=1

〈fn, Hn
N −Hn−1

N 〉W,W ′

∣∣∣∣∣ ≤ Cε ‖f‖2H1(0,T ;W ′) + ε
∥∥∥H l

N

∥∥∥
2

Ĥ1
r(Ω)

+∆t
l−1∑

n=1

‖Hn
N ‖2

Ĥ1
r(Ω)

+ ‖H0N‖2
Ĥ1

r(Ω)
, (6.57)

for all ε > 0. On the other hand, in order to deal with the second term on the left-hand side
of (6.55), we first notice that H l

N = H0N +∆t
∑l

n=1 ∂̄H
n
N and then

∆t
l∑

n=1

∥∥∂̄Hn
N

∥∥2
L2
r(Ω)

≥ 1

T





∥∥H l
N

∥∥2
L2
r(Ω)

2
− ‖H0N‖2L2

r(Ω)



 .

Hence, from Lemma 3 (cf. (6.44)) we obtain that there exists γ̂ := min
{ µ0

4T ,
1
2

}
γ, such that

µ0∆t

l∑

n=1

∥∥∂̄Hn
N

∥∥2
L2
r(Ω)

+
1

2
〈AlH l

N , H
l
N 〉W,W ′

≥ ∆tµ0
2

l∑

n=1

∥∥∂̄H i
N

∥∥2
L2
r(Ω)

+ γ̂
∥∥∥H l

N

∥∥∥
2

Ĥ1
r(Ω)

− µ0
‖H0N‖2L2

r(Ω)

2T
. (6.58)
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Then, by replacing (6.56)–(6.58) into (6.55) and choosing ε =
γ̂

4
we obtain

µ0∆t

2

l∑

n=1

∥∥∂̄Hn
N

∥∥2
L2
r(Ω)

+
γ̂

2

∥∥∥H l
∆t

∥∥∥
2

Ĥ1
r(Ω)

≤ C

{
‖b‖2H2(0,T ) + ‖f‖2H1(0,T ;W ′) +∆t

l∑

n=1

∣∣∣∣
∂̄bn − ∂̄bn−1

∆t

∣∣∣∣
2

+∆t
l∑

n=1

∥∥∂̄fn
∥∥2
W ′

}

+ C∆t

l∑

n=1

∥∥Hn−1
N

∥∥2
Ĥ1

r(Ω)
+

(
µ0
2T

+
1

2σ∗
+ 2

)
‖H0N‖2

Ĥ1
r(Ω)

.

Hence, by using the discrete Gronwall’s lemma we obtain

∆t
l∑

n=1

∥∥∂̄Hn
N

∥∥2
L2
r(Ω)

+
∥∥∥H l

∆t

∥∥∥
2

Ĥ1
r(Ω)

≤ C, l = 1, . . . ,m,

with C > 0 depending on ‖b‖H2(0,T ), ‖H0N‖
Ĥ1

r(Ω)
, ‖f‖H1(0,T ;W ′) and ‖σ‖W1,∞(0,T ;L∞(Ω)).

Finally, we estimate
∑l

n=1

∥∥∂̄Wn
N

∥∥2
W ′ by using (6.46) and the last inequality.

6.3.3 Convergence

Now, we will define a family of approximate solutions to Problem 6.2 and prove its weak
convergence to a solution. With this aim, we introduce some notation: let WN∆t : [0, T ] →
L2
r(Ω) be the piecewise linear in time interpolant of {Wn

N }mn=0 (cf. (6.48)–(6.49)). We also
introduce the step function HN∆t : [0, T ] → W by:

HN∆t(t
0) := H0N ; HN∆t(t) := Hn

N , t ∈ (tn−1, tn], i = n, . . . ,m, (6.59)

and define the step functions A∆t and RN∆t in a similar way.
Using the above notation we rewrite equation (6.46) as follows:

µ0
∂HN∆t

∂t
+ µ0

∂WN∆t

∂t
+A∆tHN∆t = RN∆t in W ′, a.e. in (0, T ). (6.60)

From Lemma 5 we deduce that there exists C > 0 such that
∥∥∥∥
∂WN∆t

∂t

∥∥∥∥
L2(0,T ;W ′)

+
∥∥A∆tHN∆t

∥∥
L∞(0,T ;W ′)

+ ‖HN∆t‖H1(0,T ;L2
r(Ω))∩L∞(0,T ;Ĥ1

r(Ω))
+
∥∥HN∆t

∥∥
L∞(0,T ;Ĥ1

r(Ω))
≤ C. (6.61)

Moreover, since H1(0, T ; L2
r(Ω)) = L2

r(Ω;H
1(0, T )) →֒ L2

r(Ω;C([0, T ])) with continuous injec-
tion, by using the affinely bounded assumption and (6.61) it follows that there exist LF > 0
and τ ∈ L2

r(Ω) such that

‖WN∆t‖L2
r(Ω×[0,T ]) ≤

√
T ‖WN∆t‖L2

r(Ω;C([0,T ])) ≤
√
TLF ‖HN∆t‖L2

r(Ω;C([0,T ]))+
√
T ‖τ‖L2

r(Ω) ≤ C.

This allows us to conclude that there exists HN , WN and X such that,

HN∆t −→ HN in H1(0, T ; L2
r(Ω)) ∩ L∞(0, T ; Ĥ1

r(Ω)) weakly star, (6.62)

HN∆t −→ HN in L∞(0, T ; Ĥ1
r(Ω)) weakly star, (6.63)

WN∆t −→WN in L2
r(Ω× [0, T ]) weakly, (6.64)

∂

∂t
HN∆t −→

∂

∂t
HN in L2(0, T ;W ′) weakly, (6.65)

∂

∂t
WN∆t −→

∂

∂t
WN in L2(0, T ;W ′) weakly, (6.66)

A∆tHN∆t −→ X in L∞(0, T ;W ′) weakly star. (6.67)

31



Let RN ∈ H1(0, T ;W ′) defined by

〈RN , G〉W,W ′ := 〈f,G〉W,W ′ +
(
b′(t)− 〈f, r−1〉W,W ′

)
(rG) |Γ ∀G ∈ W, a.e. in [0, T ].

By passing to the limit in (6.60) we obtain

µ0
∂HN

∂t
+ µ0

∂WN

∂t
+X = RN in W ′, a.e. in (0, T ), (6.68)

because RN∆t → RN in L2(0, T ;W ′), for f ∈ H1(0, T ;W ′) and b ∈ H2(0, T ). The next step is
to prove that X = AHN and WN = F(HN , ξ). The first equality, follows from (6.63), (6.67)
and H.2. To prove the latter, first we recall that by virtue of the assumption on the domain
(6.41), L2

r(Ω) and Ĥ1
r(Ω) are both identical to L2(Ω) and H1(Ω), respectively. Therefore, the

last equality follows from the inclusions

H1(0, T ; L2
r(Ω)) ∩ L2(0, T ; Ĥ1

r(Ω)) ⊂ Hs(Ω;H1−s(0, T )) ⊂ L2
r(Ω;C([0, T ])) s ∈ (0, 1/2),

(6.69)

being the first continuous and the latter compact (see [34, Chapter IX, (1.45)]), and the
strong continuity of F .

As a consequence of this, we obtain the following result.

Theorem 6.1 Let us assume hypotheses H.1, H.2 and H.3. Then, Problem 6.2 has a solu-
tion.

Proof From (6.68) it follows that

〈
∂BN

∂t
,G

〉

W,W ′

+ at(HN , G)

= 〈f,G〉W,W ′ +
(
b′(t)− 〈f, r−1〉W,W ′

)
(rG) |Γ ∀G ∈ W, a.e. in [0, T ],

BN = µ0 (HN + F(HN , ξ)) in Ω× (0, T ).

Moreover, from the compact inclusion (6.69) and the strongly continuous assumption (cf. (3.5))
we have that HN∆t(0) → HN (0) and WN∆t(0) → F(HN , ξ)(0) in L2

r(Ω). Therefore (HN , BN )
is a solution to Problem 6.2.

A similar result hold for Problem 6.1.

Theorem 6.2 Let us assume hypotheses H.1, H.2 and H.3. Then Problem 6.1 has a solu-
tion.

Proof We only give a sketch of the proof. First, we consider a lifting of the boundary
data. We notice that, from the regularity of g, there exists Hg ∈ H2(0, T ; H̃1

r(Ω)) such that
Hg|Γ = g and

‖Hg‖Hk(0,T ;H̃1
r(Ω))

≤ C ‖g‖
Hk(0,T ;H̃

1/2
r (Γ))

, k = 1, 2, (6.70)

being C a constant independent of g (cf. [4, Section 2.3]). Then, we write HD = Hu + Hg

with Hu ∈ U , so that the existence of weak solutions can be deduced by applying argu-
ments similar to those used to prove the existence of solution to Problem 6.2 (see also
[34, Chapter IX]). Although the latter does not consider weighted Sobolev spaces, mi-
nor modifications of their arguments lead to the existence of solution to Problem 6.1.
In particular, we obtain the corresponding compactness result (cf. (6.69)) by identifying
the axisymmetric space H1(0, T ; L2

r(Ω)) ∩ L∞(0, T ; H̃1
r(Ω)) with its respective 3D version

H1(0, T ; L2(Ω̃)3) ∩ L∞(0, T ; H1(Ω̃)3) ⊂ L2(Ω̃;C([0, T ])), the latter with compact inclusion.
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Remark 9 There is not a uniqueness result for a generic hysteresis operator satisfying
(3.4)–(3.6), even though it is possible to prove such a result by choosing a particular operator,
for instance, the Prandtl-Ishlinskii operator of play type (see, for instance, [16] and more
recently [11, Theorem 5.1]).

To end this section, notice that, from Lemma 2 we obtain the following existence result.

Theorem 6.3 Let us assume that H.2 and H.3 hold true. Then, by choosing as hysteresis
operator in the constitutive equations (5.33) and (5.37) the classical Preisach operator F
(cf. (4.7) and (4.8)), it follows that there exist (HD, BD) and (HN , BN ) solutions to Prob-
lems 6.1 and 6.2, respectively.

7 Numerical approximation

In this section we present a numerical implementation to solve a full discretization of Prob-
lem 6.1. The same procedure can be straightforwardly extended to solve Problem 6.2. For
the sake of simplicity, in what follows we will drop subscript D. Let us recall that different
algorithms have been proposed to approximate non-linear partial differential equation with
hysteresis; see, for instance [30, 31, 28, 29].

From now on we will assume that Ω is a convex polygon. We associate a family of
partitions {Th}h>0 of Ω into triangles, where h denotes the mesh size. Let Vh be the space
of continuous piecewise linear finite elements vanishing on the symmetry axis (r = 0), so
that Vh ⊂ H̃1

r(Ω). We also consider the finite-dimensional space Uh := Vh ∩U and denote by
Vh(Γ) the space of traces on Γ of functions in Vh.

By using the above finite element space for the space discretization and the backward
Euler scheme for time discretization, we are led to the following Galerkin approximation of
Problem 6.1:

Problem 7.1 Given B0
h = µ0

(
H0

h +W0

)
with H0

h ∈ Vh and W0 ∈ L2
r(Ω), find H

n
h ∈ Vh and

Bn
h ∈ L2

r(Ω), n = 1, . . . ,m, such that

1

∆t

∫

Ω
Bn

hGhr drdz +

∫

Ω

1

σnr

(
∂(rHn

h )

∂r

∂(rGh)

∂r
+
∂(rHn

h )

∂z

∂(rGh)

∂z

)
drdz

= 〈fn, Gh〉U ,U ′ +
1

∆t

∫

Ω
Bn−1

h Ghr drdz ∀Gh ∈ Uh,

Bn
h (r, z) = Bn(Hn

h )(r, z) a.e. in Ω,

Hn
h = gnh on Γ,

where H0
h ∈ Vh and gnh ∈ Vh(Γ) are convenient approximations of H0 ∈ H̃1

r(Ω) (cf. H.3) and
g(tn), for n = 1, . . . ,m, respectively, and Bn : L2

r(Ω) → L2
r(Ω), n = 1, . . . ,m, is such that,

given u ∈ L2
r(Ω), and an initial state ξ

Bn(u)(r, z) := µ0 (u(r, z) + [F(Uh∆tn , ξ)](r, z, t
n)) a.e. in Ω, (7.71)

with Uh∆tn being the piecewise linear in time function such that Uh∆tn(r, z, t
l) = H l

h(r, z),
l = 0, . . . , n− 1, and Uh∆tn(r, z, t

n) = u(r, z) a.e. in Ω.

At each time step of the above algorithm, we must solve a non-linear problem. With
this purpose, we have used a duality iterative algorithm which is based on some properties
of the Yosida regularization of maximal monotone operators. This algorithm, introduced by
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Figure 27: rH on the boundary.

Bermúdez and Moreno [5], has been extensively used for a wide range of applications with
good numerical results. It seems to be very promising to handle the hysteresis non-linearity
because it takes advantage of the spatial independence of the hysteresis operator.

In order to complete the proposed numerical scheme, a particular hysteresis operator
must be considered (cf. (7.71)). In view of applications we have considered the classical
Preisach model described in Section 4.

8 Numerical example

In this section we report the results of a numerical test obtained with a Fortran code im-
plementing the numerical method described in Section 7 to approximate the solution to
Problem 6.1.

Let us consider the eddy current Problem 6.1 with Ω := [R1, R2] × [0, d] and the non-
homogeneous Dirichlet condition given by g = (rH)/(2πr) where the constant value rH(t)
on the boundary is depicted in Figure 27 as a function of time which has been taken from
a numerical simulation with the code described in [3]. The geometrical and physical data
have been summarized in Table 1 below.

Table 1: Geometrical and physical data for the test
Internal radius, R1: 0.0825 m
External radius, R2: 0.0925 m
Thickness, d: 0.00065 m
Electrical conductivity, σ: 4×106 (Ohm/m)−1

Frequency, f : 50 Hz

In practical applications the measurable data is the B-H curve, usually represented by
the Everett function. We assume that the B-H relation (cf. (5.33)) is given by the Preisach
operator characterized by the Everett function depicted in Figure 28 (left) which comes
from experimental measurements. Figure 28 (right) shows the major loop of the B-H curve
obtained with this Everett function.
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Figure 28: Everett function (left) and the corresponding B-H curve (right).

Figure 29 (left) shows the evolution of the B-H curve in a fixed point of the mesh and
Figure 29 (right) the waveforms in the middle and at the surface of the domain. Whereas
Figure 30 shows the magnetic field and magnetic induction, at different times on a fixed
domain. In Figure 29 (right), we can see the presence of skin effect.
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Figure 29: B-H curve at the surface of the domain (left) and B vs. time in the middle and
at the surface of the domain (right).
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Figure 30: Magnetic field H (left) and magnetic induction B (right) at times t = 0.00125,
0.0025, 0.0050, 0.0100 and 0.0200 s.
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2005.

[27] R. E. Showalter, Little T. D., and U. Hornung, Parabolic pde with hysteresis, 1996.
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