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Abstract

In this paper, we are concerned with a finite volume method for a model with cross-diffusion
of the indirect transmission of an epidemic disease between two spatially distributed host popu-
lations having non-coincident spatial domains, transmission occurring through a contaminated
environment. The mobility of each class is assumed to be influenced by the gradient of the other
classes. We propose a Finite Volume scheme and proved the well-posedness, nonnegativity and
convergence of the discrete solution. The convergence proof is based on deriving a series of a
priori estimates and by using a general LP compactness criterion. Additionally, we address the
questions of existence of weak solutions and existence and uniqueness of classical solution by using,
respectively, a regularization method and an interpolation results between Banach spaces. The
proofs of these results are given in the Appendix. Finally, the numerical scheme is illustrated by
some examples.

Keywords : reaction-diffusion system, nonlocal cross-diffusion, weak solution, classical solution,
finite volume scheme, discrete compactness.
AMS Subject Classifications: 35K57, 35M10, 35A05

1. INTRODUCTION

In recent times there has been much activity concerning the development and analysis of
reaction-diffusion systems with cross-diffusion, see for more details Levin and Segel, [24], Okubo
[30], Mimura and Murray [28], Mimura and Kawasaki [27], Mimura and Yamaguti [29], Galiano
et al [19, 20], Bendahmane et al [5, 10] (see also [6, 8, 9, 11]), and many other authors.

This paper is devoted to the mathematical analysis of indirectly transmitted diseases with cross-
diffusion. We assume that a disease is transmitted between two host populations distributed over
non-coincident spatial domains, transmission occurring through a contaminated environment.

We assume that there are two independent host populations, H; and Hs, spatially distributed
over two spatial domains, ©; and Qs in IR?, Q; NQy # 0. Each population is subdivided into three
subclasses, susceptibles, infectives and recovered. The susceptible class consists of individuals who
are capable of becoming infected and the infective class consists of individuals who have contracted
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the disease and are capable of transmitting it. Susceptible individuals in the host population H;
can contract the disease from cross contacts with infected hosts from H; or with the environment.
Individuals in the host population Hy are infected by contact with the environment but there is
neither cross infection from infected hosts from Hs nor crisscross infection with Hj.

Our state variables (p(t, ), ¥ (t, x), x(t,2)) represent population densities of the subclasses of
susceptible, infective and recovered individuals from the total population H1 = ¢ + ¢ + x while
(u(t,z),v(t,x),w(t, z)) represent population densities of the susceptible, infective and recovered
subclasses of the total population Ho = u + v + w at time ¢ and position z. The variable ¢(z, t),
represents the proportion of contaminated habitat or environment. The first population will
follow a logistic dynamic with a spatially dependent birth-rate, b(z), identical in each subclass,
offspring being susceptible at birth because the disease is assumed to be benign in H;. A spatially
and density dependent mortality rate, m(x) + k(x)Hi, is considered allowing a spatially variable
carrying capacity. Let 1/)\; be the duration of the infective stage in population H;, i = 1,2. A
fixed proportion 0 < w; < 1 of infective individuals from H; become permanently immune, a
proportion 0 < 1 —w; < 1 reentering the susceptible class.

We assume also that the disease can be lethal in the second host population with a fixed survival
rate, 0 < e < 1. In the system (1.2)-(1.3), d;; : R — IR is a continuous function satisfying: there
exist constants M;;, C' > 0 such that for i = 1,2 and j =1, 2, 3,

(11) Mij S dij and |d”(11) — dz](12)| S C |11 — IQ| for all 11,12 S R.

A prototype of a nonlinear system that governs our model is,

Orp — di1 (/ wdx) Ay —div ((kuso + Y+ x)Veo + oV + SDVX)
Ql

= Fl(zasav’l/)v)(ac)v

(12) O — dia (/91 Q/de) Ay — div (ngo + (¢ + k12 + X)VY + 1PVX)
= FQ(:Ca(pawaX)c)a

Ox — dis (/Q xdw) Ax —div (XVsD +xVY+ (e +¢+ leX)vX)
= F3(:Ca(pawaX)C)a

in Q17 = (0,7T) x © the time-space cylinder,

Oru — doy (/ ud:c) Ay — div ((kglu +v+w)Vu +uVo + qu)
Qo
= Gl(xv u, v, w, C),

(1.3) Opv — dao (/Q2 v dz) Av — div (vVu + (u + koov + w)Vo + va)

= GQ(:C,U, v, w, C),

Orw — dos (/Q w da;) Aw — div (qu +wVo+ (utv+ k:ggw)Vw)

= G3(.’L’,U,’U,’U},C),
in QQ,T = (O,T) X QQ, and
(14) atC: K(SC,’I/),U,C),

in Qr = (21 UQ2) x (0,T). Systems (1.2) and (1.3) are supplemented with no-flux boundary
conditions:

(dn (/Q stJU) Vo + (kne+v+x)Ve + oVip + @VX) m =0,
(1.5) (d12 (/Q (0 d$) Vi + 9V + (o + k2t + x) V) + 7/)VX) ‘m =0,
(d13 (/Q Xdl’)VX +xVeo+ xVY+ (o + ¢ + k13X)'771 =0,
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on (0,T) x 99y,
(d21 (/ﬂ ud:c) Vu+ (ke1u+ v+ w)Vu + uVo + qu) ‘e =0,
2
(1.6) (d22 (/Q v dac) Vo +oVu+ (u+ kv + w)Vo + va) ‘M2 =0,
(d23 (/ﬂ w d:c) Vw+ wVu+wVo + (u+ v+ ngU}) ‘e = 0,
2

on (0,T) x 0Qs, n; being the outer unit normal to €; along its boundary 92; for i = 1,2, and
with nonnegative initial data:

(1'7) 5(0’ :L') = 50(1:) Z 0’ 5 = 8071/)7)(’ u7v7w7 C’

on their respective spatial domains of definition: Q for (¢, v, x), Q2 for (u,v,w) and Q7 U Qy for
¢, 0 < c¢p(x) < 1. Herein,

(1.8)
Fi(z,0,9,x,¢) = —on(z )%f —osi(z)ep + (1 —wi)Ayp + b(x) Hy — (m(x) + k(z)Hy)e,
Fy(z, 0,1, x,¢) = o )s;_lﬂ +o31(z)ep — Mp — (m(z) + k(z)Hi)p,
F3(z, 0,9, x,¢) = wihiy — (m(x) + k(x)Hy)x,
Gi(z,u,v,w,c) = —os2(x)cu,
Gg(z U, v, W, c) = o32(x)cu — Agv,
(acuvwc)—e)\gv i
K(z,¢,v,¢) = 013(x)(1 = ) + o23(2)(1 — ¢)v — 0(2)c,
Hi=¢p+9+x;

where 1/; and v, are the prolongation by zero of ¥ and v, on €; and 22, respectively.

In the above model we assume that individuals move from a higher to lower concentration
region. Cross-diffusion expresses the population fluxes of one species due to the presence of the
other species. Positive cross-diffusion term denotes one species tends to move in the direction of
lower concentration of another species. The dynamics of interacting population with self and cross-
diffusion are investigated by several researchers (see [34, 25, 19, 22] and the references therein).

The most interesting and real cases for this model are in dimension 3, but in 2-dimension it
also has a realistic interpretation.

We want to mention that in (1.2)-(1.3), the diffusion rates d;; > 0 are supposed to depend on the
whole of each population in the domain rather than on the local density for i = 1,2 and j = 1,2, 3.
This means that the diffusion of individuals is guided by the global state of the population in the
medium. For instance, if we want to model species having the tendency to leave crowded zones,
a natural assumption would be to assume that d;; is an increasing function of its argument. On
the other hand, if we are dealing with species attracted by the growing population in, one will
suppose that the nonlocal diffusion d;; decreases.

Note that, the parabolic (and elliptic) equations with nonlocal diffusion terms has already been
studied from a theoretical point of view by several authors. First, in 1997, M. Chipot and B.
Lovat [13] studied the existence and uniqueness of the solutions for a scalar parabolic equation
with a nonlocal diffusion term. Existence-uniqueness and long time behavior for other class of
nonlocal nonlinear parabolic equations and systems are studied in [1, 12, 31]. In passing we want
to mention that when cross-diffusion is ignored, this model is similar to this in [18].

For technical reasons we assume that the coefficients k;; satisfy

(1.9) ky>1fori=1,2,j=1,2,3,

this assumption will be used to prove the convergence of the numerical solution of the scheme to
a weak solution.

A major difficulty for the analysis of the system (1.2)-(1.4) is the strong coupling in the highest
derivatives. Note that standard parabolic theory is not directly aplicable to the reaction-diffusion
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system (1.2)-(1.4) due to the cross-diffusion terms. We point out that our problem (1.2)-(1.4) is
strongly nonlinear and so no maximum principle applies.

2. WEAK AND CLASSICAL SOLUTIONS

Before stating our results concerning the weak and the classical solutions, we collect some
preliminary material, including relevant notations and conditions imposed on the data of our
problem. Let €; be a bounded, open subsets of IR® with a smooth boundary 9€;; ; is the unit
outward normal to ; on 99, for i = 1,2. Next, |€2;| is the Lebesgue measure of Q; for i = 1, 2.
We denote by H'(€;) the Sobolev space of functions u : Q; — IR for which u € L*(Q;) and
Vu € L2(Q4;R?) for i = 1,2. For 1 < p < 400, || - | r(0,) is the usual norm in LP(§;) for i = 1, 2;
then

LY (Q;) = {u: @ — IR measurable and /Q |u(z)|Pdz < +o0},

L () = {u : ©; — IRy measurable and sgg lu(z)| < +o0}.

If X is a Banach space, a < b and 1 < p < 400, LP(a,b; X) denotes the space of all measurable
functions v : (a,b) — X such that || u(-) ||x belongs to L?(a,b).
Next T' is a positive number and

Qi = Qi x (0,1), X4 = 0 x (0,t) and Q; = (0,T) x (21 UQ),

fori=1,2and for 0 <t <T.
Our basic requirements are the following

013,023,090 € LT(Q7),
m < band b,m,k,0i1 € LT (Q1,7), fori=1,3,

032 € L (Q2,7)-

I/~
O
o =
= =

Now we define what we mean by weak solutions of the system (1.2)-(1.4). We also supply our
main existence results.

Definition 2.1. A weak solution of (1.2)-(1.4) is a set of nonnegative functions (¢, ¥, x), (u,v, w)
and ¢ such that,

ce C([0,T], L2(Q1 U D)), 0 < c(t,z) <1 a.e. in Qr,

(.0, x) € L*(0,T; H' (1, RY)), (u,v,w) € L*(0,T; H' (22, R%)),

(Orp, 1), Orx) € L2(0,T; (WH(Q1,IR?))*) and (dyu, v, Opw) € L*(0, T; (WH>°(Qs, IR?))*),
£(0) =& a.e. in Oy, O(0) =g a.e. in Q2 and c(0) = ¢y a.e. in QU UQa, for &= (p, 9, x)
and © = (u,v,w), and satisfying
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(2.4)
T
/ (Orp, P1), dt + // (du (/ wdw) Vo + (kg + ¢+ x)Ve + oV + sDVx> Vo du dt
1,7 Q1

//1TF1 0,9, X, €)¢1 d dt,

/ (Oeth, 2), dt + // <d12 (/Q P dac) Vi + Vo + (¢ + k12t + X))V + wvx> Vo dx dt

// Fy(z 807/)7)0 c)po d dt,
/ (0ex, 03), dt-i—// <d13(/Q de)VX-l-XV(p—l—le/J-i-(sD-i-?/J—i—knsX VX) Vo dz dt

// F3 501/)7)(5 ¢3d1’dt
1, T

c)
/ (O¢u,©1), dt + // (dgl (/ udm) Vu+ (ka1u+ v+ w)Vu + uVou + qu) VO, dx dt
2,7 Q2

// G1(z,u,v,w, )01 dzx dt,
2,7

/ (Ov, O2)4 dtJr// dgg(/ vdz)Vv+vVu+(u+kggv+wVv+va> VO, dx dt
2,7 Qo

// Ga(z,u,v,w, )0y dx dt,
2,7

/ (Orw, O3)y dt+// d23 </ wdz)Vw+qu+wVv+(u+v+k23w)Vw> VO3 dxdt
0 2T Qo

Gs(x,u,v,w,c)Oz dx dt,
Q2,1

// cathxdtf/ (x)F(O,x)dx:/ K(z,v,v,c)l dz dt,
T Q1UQ> Qr

for all ¢; € L2(0,T; WH>(Qy)), ©; € L2(0,T; W1>°(Qy)) fori=1,2,3, and T € D([0,T) x (21 U
Q2)). Here, (-,-), denotes the duality pairing between W>°(€;) and (W'>°(€;))* fori=1,2.

Theorem 2.1. Assume conditions (1.9) and (2.1)-(2.3) hold. If (¢o,%0,x0) € L?(Q1,IR?),
(uo, vo, wo) € L?(Q, IR?) and ¢y € L*(QUQ), 0 < ¢ < 1, then the problem (1.2)-(1.4) possesses
a weak solution.

To prove Theorem 2.1, we first prove existence of solutions to the approximate problem (A.1)-
(A.3) below by applying the Schauder fixed-point theorem (in an appropriate functional setting).
Then, having proved existence for the aproximate system, the final goal is to send the regularization
parameter € to zero to fabricate weak solutions of the original systems (1.2)-(1.4). Convergence is
achieved by means of a priori estimates and compactness arguments. The proof of Theorem 2.1
is given in Appendix A.

Note that we have not been able to prove uniqueness of weak solutions because of the presence
of nonlinear lower-order terms (cross-diffusion terms) in our model (1.2)-(1.4).

Let us define

dia (t) = dn (/Q o(t, ) dac) , dia(t) = dio (/Q Y(t, ) dac) , diz(t) = dy3 (/Q x(t, z) dac) , and,

i i i

day1 (t) = dor </Q u(t, x) d:c> s doa(t) = dgo (/Q v(t, ) d:c> , dos(t) = das </Q w(t, ) d:c) . Con-

cerning global existence of classical solutions, the second main result is summarized in the following
theorem.
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Theorem 2.2. (Strong solutions) Assume that dy1(t) = dy2(t) = dy3(t), doi(t) = dos(t) = das(t)
for a.e. t € (0,T), kij =2 fori=1,2, j =1,2,3, and (2.1)-(2.3) hold. Let (¢o,%0,X0) €
C?*0(Q1, R?) and (ug, vo, wo) € C*10(Qa, R?) for some 6 € (0, 1), satisfying, Vipo-m = Vapo-n, =
Vxo-m =0 on 001 and Vug -n2 = Vg -n2 = Vwg - 12 = 0 on Q2. Then the system (1.2)-(1.4)
has a unique, classical, global nonnegative solution (p,1,x) € C#’HG([O, +00) x 01, R?) and
(u,v,w) € CQTH’HG([O, +00) X Qo,R?). Furthermore, there are constants Cy,Cy > 0 (dependent
upon the initial data and the coefficients) such that,

0 < o(t,z),¥(t,x),x(t,z) <Cy for all z € Qq and t > 0,

2.5 —
(25) 0 <wu(t,z),v(t,z),w(t,z) < Cy for all x € Qg and t > 0.

The proof of Theorem 2.2 is based in a series of a priori estimates of the solutions in Banach
spaces, especially the boundness of the solutions in L*°, and then we apply the Sobolev embedding
and standard regularity results of parabolic equations (see e.g. [14, 21]). Appendix B contains the
proof of Theorem 2.2.

The plan of the paper is as follows: In Section 3, we propose a Finite Volume Scheme. We
prove the existence and convergence of the discrete solution in Section 4. Finally, in Section 5 we
give some numerical examples.

3. FINITE VOLUME APPROXIMATION

3.1. Admissible mesh. In this work we assume that Q; ¢ R?, fori = 1,2, d = 2 (respectively,
d = 3) is an open bounded polygonal (resp., polyhedral) connected domain with boundary 92; for
i =1,2. We consider a family 7;; of admissible meshes of the domain €;, ¢ = 1,2 consisting of
disjoint open and convex polygons (resp., polyhedra) called control volumes and 7}, is the union
of Tipn and Ton (T, = Tin U T2,n). The parameter h has the sense of an upper bound for the
maximum diameter of the control volumes in 7;p, ¢ = 1,2. Whenever T;p, i = 1,2 is fixed, we
will drop the subscript h in the notation. Of course, the mesh should be admissible in the sense
of [15].

A generic volume in 7;, is denoted by K;, ¢ = 1,2. For all K; € T, 5, we denote by |K;| the
d-dimensional Lebesgue measure of K;. For a given finite volume K;, we denote by N(K;) the
set of neighbors of K; which have a common interface with K;; a generic neighbor of K is often
denoted by L;. For all L; € N(K;), we denote by ok, 1, the interface between K; and L;; we
denote by 7k, 1, the unit normal vector to ok, 1, outward to K;. We have 1, x, = —nxk,,1,. For
an interface ok, 1, |0k, ;| will denote its (d — 1)-dimensional measure, i = 1, 2.

By saying that 7; 5, is admissible, we mean that there exists a family (zk,)x,e7; , such that the
straight line Tk, 21, is orthogonal to the interface ok, r,. The point zk, is referred to as the
center of K;. In the case where 7, is a simplicial mesh of §; (a triangulation, in dimension
d = 2), one takes for xg, the center of the circumscribed ball of K;. We also require that
Nk, L; - (o, —Tx,) > 0 (in the case of simplicial meshes, this restriction amounts to the Delaunay
condition, see e.g. Ref. [15]). The “diamond” constructed from the neighbor centers xg,, xr, and
the interface ok, r, is denoted by T, 1,; e.g. in the case 2k, € K;, 1, € L;, Tk, 1, is the convex

hull of TR, XL, and O'Ki,Li)' We have ; = UK«;GTi,h (ULiEN(Ki)TKiyLi)7 1=1,2.
We require local regularity restrictions on the family of meshes 7; j; namely, for ¢ = 1,2,

(32) 3’}/ >0 Vh VK; € 7;1}1 VL; € N(KZ) |UK,L|dK,L < v |K|
Herein, dg, 1, is the distance between xg, and zp, for i =1, 2.

A discrete function on the mesh 7; 4 is a set (wk, )k, e7; , for i = 1,2. Whenever convenient, we
identify it with the piecewise constant function w; j on €Q; such that w; p|x, = wg,. Finally, the
discrete gradient Vjw; p, of a constant per control volume function w; j is defined as the constant
per diamond T, 1, function, R%-valued, with the values
(3.3) (Vhwi,h)‘ = vKi,Liwi,h =d

Tr;,L;

wr, — WK, X
— K, 1, fori=1,2.
dKiqLi
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Remark 3.1. Because we consider no flur boundary condition, we do not need to distinguish
between interior and exterior control volumes; only inner interfaces between volumes are needed
in order to formulate the scheme.

3.2. Approximation of the nonlocal cross-diffusion model. To discretize (1.2-1.8), we choose
an admissible discretization of ); 7 consisting of an admissible mesh 7; 5, of ; and of a time step
size Aty > 0; both Aty and the size max,e7; , diam(K;) tend to zero as h — 0. We define Ny > 0
as the smallest integer such that (Np + 1)at, > T, and set t" := naty, for n € {0,..., N}
Whenever aty, is fixed, we will drop the subscript h in the notation.

Furthermore, we denote for i = 1,2, 3,

+1 _ +1+ +1+ +1+ +1t +1*t
Fn F ( n n ,wn n Cn )7

iK1 — Ti\TR, XK, K
n+1 __ n+1+ n+1+ nJrl+ n+1+ nJrl+
(34) Gz Koy T Gi (:CK Uy VK, Wk, o CK )’
n+1 __ n+1 n—i—lJr n—i—lJr n-|-1+
K™ = K(@g™ ¢ v k),

where K; € Q; for j =1,2, and K € Q; U Qs.

To approximate the cross-diffusive terms, we introduce the terms M"Jri( . and M”Jﬁ( .
1.1 " 2> 2

Herein, we make the choice

+ + + +
(35) Mn;ri(l Ly = Ml” (mln {(anrl ) @le } mln{wnJrl ) Q/JTLljl } mlD{XnJrl X?:rl })
(36) Mnj]riz o - M2 (Imn {un+1+ unJrl } mln{v"HJr,ijl } mln{w"+1+ wzjl—i-})

where qb}”ﬁ = max(0,¢"+1) for ¢ =, 1, x, u, v, w.

Remark 3.2. Note that the choice of the minimum in the discretization of M”Jﬁq L and
n+1

20 Ky Lo fori # 7 and i,5 = 1,2,3, is imposed to justify the non-negativity of our discrete
solution. Moreover, the choice of the diagonal terms MnJri(l L and ./\/l";r; L fori=1,2,3, is
made in order to preserve, at the discrete level, the structure of the cross- dzﬁuswn matriz My and

M.

The discrete initial conditions are given by:

1 1 o 1

3.7 0 = ) dx, [ — x)dx, — x)d
( ) (pKl |K1| 1()00( ) le |K1| 1/10( ) XK1 |K1| XO( )
1 1 1
(3.8) ug, = T uo(z)dz, VY, = e vo(z)de, wh, = ] wo(z) dz,
(3.9) &S = — [ colx)dz
K|

We use the following implicit finite volume scheme to advance the numerical solution from ¢"
to t"TL =t" + At
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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n+1 n+1 n+1 n+l  n+1 n+1 n+1
Vel s X VEveTins Wiy Vi Wi )KaeTs, and (¢ ) ke, such that

n+1

YK, — Pk oK, L] 1 1
(K= —du D> Kk, > ﬁ(@ff —ox )
Ki1,€T1,n L1EN(K1) Kt
oK, L] +1 +1 +1 +1 +1 +1
S D e L AN (AR o IS AN U A
LieN(Ky) R
1 1 1 1
ML 0G| = KT
A EZSR A P .
[ | = —du2 > KWk, > ﬁ(lﬂﬁf — i)
K1,€T1,n L1EN(K1) Kt
oK, L | +1 +1 +1 +1 +1 +1
- X g ML L G el MEE L - o)
LieN(Ky) R
1 1 1 1
ML L OG- XD = KB
+1 n
X, — Xk lok, Ly
|K1|1T1 —d13 Z |K10|X7IL<10 Z ﬁ(x’ifl - X?(Jlrl)
Ki1y€T1,n LieN(K1) e
oK., L | +1 +1 +1 +1 +1 n+1
=X T ML R ) M )
L1eN(Ky) R
1 1 1 1
M (T G| = K F
uht — u [ 2 41
|K2|2T2—d21 Z | K2, U, Z ﬁ(%’z —up,)
Koo €T LoeN(K>) 252
oK, L | +1 +1 +1 +1 +1 n+1
D I el LA A o ARSI (VAR S
L2EN(K2) 2,L2
1 1 1 1
ML it -t = KGR,
+1 n
Ui, — Uk 10Ky Lol nt1 41
o 2 — > Koo, > ﬁ(vg — vt
K2y €Ta,n L2EN(K>) 22
|‘7K L | +1 +1 +1 +1 +1 +1
- X ML e ) MR )
L2EN(Ka) 2,L2
1 1 1 1
MR i - i) = Kl G,
+1 n
Wi — W 0K, L | 1 1
|K2|2T2 — da3 Z | Ko, [wic, Z ﬁ(wZ: —wi, ')
Koo €Ta,n L2eN(K>) 252
|‘7K L | +1 +1 +1 +1 +1 +1
- X ML e ) MR )
L2EN(Ka) 2,L2
1 1 1 1
MG — i) = Kl G
i - Ck 1
|K|KT = |K|K5,
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for all K; € T; p, i =1,2 and n € [0, N3]. Herein

M?I}KI’LI = k11 mln{gﬁn+1+,¢zjl+}+m1n{1/)”+1+ n+1+}+m1n{x”+1+ XZTH_},

MiEh o = min i oY kg min {03 Y 4 min DG,

gan = min {5, op }+mm{¢"“+,w"+1+}+k13mm{x”+1+ it
oML =M min (el T
MEFL = ML= min g T
MiS e = M = min (G,

MSI}KQ,LQ = ky; min {un+1+ n+1+} + min {’U"+1 n+1 }+m1n {wn+1+ wz;g-lJr},

MQ;}KZYLZ = min {u”+1+ uZ:ﬁ}—i—kzgg min {U”+1+ Uzzrl+}+m1n {w"+1+ wz;rl+},

(3.18) M’Q’;}KM *mln{u”+1+,un+1 }+m1n{v”+1+, Z:1+}+k23min{w?2rl+ wz;rﬁ_},
MR = M min
My = MES L = min {0 )
Mg::,lKQ,L2 - 721::;,11(2@ = min {w"+1+ wz:l—i_}’

Note that the boundary condition is taken into account implicitly. Indeed, the parts of 0K; that
lie in 99Q; do not contribute to the LieN(K,) terms, which means that the flux zero is imposed

on the external edges of the mesh.
n+1

n+1

n+1 n+1

The set of values (

QOKI )

1/)K1 7XK1

YK eTipmeonN, o (

n+
uKz 7UK2 7wK2

1
)KzeTz,h,nE[O,Nh] and

(C?(H)KETh,ne[o,Nh] satisfying (3.7) -

(3.16) will be called a discrete solution.

The existence of solutions to the our discrete scheme is given in the following theorem.

Theorem 3.1. Assume that (¢, o
(L2(Q1UQ2)) T satisfying 0 < ¢y < 1.

€ (LQ(lelRB)) ’ (u07’005w0)

n+1 n+1
K, 7"/’}(1 ’XKl )KleTI hsn€[0,Np] :(

5X0)
Let (p

€ (L*(Q, RY))*

n+l  n+l | nt
UK2 ' VK, ’wKZ

and ¢y €

1
)K2€75,h,n6[0,Nh]

and (C?(+1)KeTh,ne[0,Nh] be the discrete solution generated by the finite volume scheme (3.7)-(3.16)

on a family of meshes satisfying (3.

1), (3.2).

Then, as h — 0, the discrete solution converges

(along a subsequence) a.e. on Q; 7 to a limit (v, v, X), (u,v,w) and ¢ which is a weak solution of

(1.2)-(1.8).

4. A PRIORI ESTIMATES AND EXISTENCE

4.1. Nonnegativity. We have the following lemma.

n+1

n+1
SDKI ]

Lemma 4.1. Let ( K, aXKl

(4

n+l  n+1

+
)Kleﬂ,h,nG[O,Nh]7 (UKZ y VK, ’wKZ

)K2€Ts.nmel0,N,] and

(™) ket mejo,N,) be a solution of the finite volume scheme (3.7)-(3.16). Then,

+1 +1 +1
((p?(l aw%l aX?{l )Kleﬂ,h,nG[O,Nh] (

nonnegative. Moreover c?jl <1 for

Proof. We prove the nonnegativity by induction, that for all n € [0, N3], min {go

The proof for the other components

n+1l n+l n+1
uKz ’UKQ ’wK2

all K € T, and n € [0, Np].

is analogous.

n+1

K1€7—1,h -

n+1
)KQGE,h,nE[O,Nh] and (CK )KGTh,nG[O,Nh] are
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For n > 0, we fix K; such that go"“ = min {(p"“}
n+1

LaeTin: We multiply equation (3.10) by

— Aty to deduce

(4.1)

oKy, L4
— KR TR =) = —du | Y [ Kalek,, | ot Y il (AR L
KipeTin LieN(ky) Ko

|0K17L1| n+1 n+1 n+1 n+1 n+1 n+1
—at Z dK I [M111 Kq1,Lq ((le (pKl ) +M112,K17L1 (1/] 1/1 )
LieN(K1) 1,41

n+1 n+1 n+1 n+1— n+1 n+1_
+M113 Ki,Lp (XLI — XK, )‘| YK, _At|K1|F1 K PK

n+1
L1159,

Taking into account the non-negativity of M and by the choice of K7 , we get

lok, .1,
At Z —== | du Z |K10l0%,, +M?I,1K1,Ll (i — ot et > 0.

d
LieN(Ky) ~BKula K1 €Tin
: n+1 n+1 :
Moreover, by the choice (3.5) of ML e, o, and MYTE ), we obtain
|0K17L1| n+1 n+1 n+1 n+1 n+1 n+1 n+l1— _
At § : dr. 1, M112,K1,L1 (1/1 1/1 ) 113,K1 Ly (XL1 — XK, ) YK, =0,
LieN(K1) 1,11

Similarly, by the definition of F’ 1";2 we have
(4.2)

- + + + +y +
Pyttt = (Uu( Yo T Y — oy () T o+ (1= wn) At

+b(@)Hy" — (m(x) + k() Hy )w}’éﬁ) P 20,

Finally, we use the identity <p"+1 = (go}‘(‘:l) ((p’}j'l) and the nonnegativity of ¢} to deduce

from (4.1) and (4.2) that (¢ "+1) = 0. By induction in n, we infer that
@Z“ >0 for all n € [0, Ny,] and Ly € Ty p.

Along the same lines as (1) i N, 1, We obtain the nonnegativity of the discrete solutions
g QOKI 1€T1,1,n€E[0,Np]» g

n+1 n+1l _n+1l n+1 n+1
W X D ki etipmeionns W v Wit ke neo,na) and (CT) ket e,V

Finally, in order to prove (by induction) that c}?“l < 1, we take K such that cg realizes
max (c’L’H)LeT Multiplying the equation (3.16) by (¢! — 1)T, with the same arguments as in
the above proof we find that (%' —1)T < 0. O

4.2. A priori estimates. Now, our goal is to establish some a priori (discrete energy) estimates
for the finite volume scheme.

Proposition 4.1. Let (go}‘(‘:l,w}?fl,xm )KLET: 1 n€[0,NA]» (uKtl,v%jl,w}g )K2€7-21h1n€[01Nh] and
(™) ket mejo,n,] e a solution of the finite volume scheme (3.7) - (3.16). Then there exist a con-
stant C; >0, (i =1,...,6), depending on the initial conditions, parameters of the nonlinearities,
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Q oandT, (1=1,2).

)

(4.3)
K; K n+1(2 K n412 <C
pa Xl e X IR g 3 1l G <
1€T1,n Ki€Ti,n Ki€Tin
Np, 3 Np,
doat >0 1Kokl +ZM > K s 30 I < o
n=0 Ki€Tin n=0 Ki€Ti,n n=0 Ki€Ti,n
OK,,L 2
Soat ¥ 3 bl (g g -
(4.4) =0 Ki€Tin LieN(K,) Bvh
- < 6
|0t Ly |1
ZM > Z s R (e
(45) n=0 Ki€T1 h L1€N K1, In
st =+ G X ) < G,
and

nJrl2
(46) max D Kl [uil| + max

2 2
S Il P e S Il P <
KoeTan (0. 2]

KoeTan ’ KoeTon

zAt DR DIy (R A

(4.7) = Ko€Tan LyEN(K>) dKs,Ls

+ ’w"“ wZ:'l’Q) < (s,

and
|0K27L2|_"+1 n+1 n+1|2
Suy ¥ sl (o
(48) n=0 K2€Ta,n LoeEN(K2) 2252
Jr}vn-H vfjl Jr}wn+1 wz+1 )SC(;,
where
Ve 1+ 1+ 1+ 1+ 1+ 1+
T min iy min (o min T

My = min Qg Y 4 min fop T op ) 4 min gt wp

Proof. We multiply (3.10), (3.11) and (3.12) by Atcp"“, Atw”H and Atx”“, respectively, and
add together the outcomes. Summing the resulting equation over K; and n y1elds

S1+ S22+ 53+ 54 =0,
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where

Np,
= Z Z |K1|( 9071?;1 - @KJ@?{? (Z/JHH T/JKIWJHH (X?{Tl - XKI)X?(T),
n=0K1€T1,n

ZM >y B&i’mldl« > IKlolw’;?lU)(sﬁZfl ettt

K,,L
= Ki1€Tin L1EN (K1) s Ki1,€T1,n

+ di2 ( Z |K10|w?(10> (,L/JnJrl ,L/JnJrl)wnJrl

Ki1,€T1,n

. dw,( 5 |K10|x;z10) - x;;tl)x;ztl] |

K1y €T1.n
|O—K1,L1| n+1 n+1 n+1
ZAt Z Z dr. 1. Mln JK1,Ly ((le — Pk, )
n=0  Ki1€Tin L1EN(K1) bl

n+1 n+1 n+1 n+1 n+1 n+1 n+1
+ ‘/\/1112,}(1 Ly (1/] 1/1 ) 113 Ki,L1 (XL1 — XK, ):| YK,

M G = e+ ML L T =)

121, K4, lo2 kq,L
1,L1 1,L1

M (- x}?{l)} Pt

la3 K,y

MR R M - )

131,K4,0q 132, Kky,0q

1 1 1 1
ML O = x| )

Np,
n+1 n+1 n+1 n+1 n+1_ n+1
- E At E |K1|(F1K1‘PK1 F2K1w F3K1XK1 )
n=0  Ki€Tin

Observe that, using the inequality “a(a — b) > 1(a* — b%)”, we obtain

S

Y

1

52 > K (i1 = [ |+ T = ke, + i = i)
n=0K1€T1,n

1

Il (e I N R A I T A s O B

Ki€Ti,n
Gathering by edges, we obtain

n
ZAt Z Z oKy, L | dun (ZKIOGTUL'KM'(‘DKM) n+l _ nt1|2

K L
dr, L, 2 ! '

. dy2 (ZKloe'T;h |K10|¢K10) |¢n+1 wﬁrl 2

dis (ZKloeTm |K10|X?<10) n1 n+12
5 XK, — XL,

= K1€T1,n L1EN(Ky)

+
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Next, using (A.7) where f1 (), fF (), and f2(x) are replaced by min {gp”+1+, gp’ifl }, min {1/)"+1+ "+1+}
and min {¢”+1+, w”“ } respectively, we deduce

|0-K1,L1|_”Jrl n+1 n+1|2
53>CZM X ML, (k" = ok
n=0  Ki1€Tin L1EN(K1) R
1 1 1 1
R o had -
n+1

Now we use the nonnegativity of gp”“, 7, and x"+1 and the discrete expressions of Fy, Iy, F3
to deduce

Np,
Siz=cyat 3 K (e it + )

n=0  Ki€Tin

Np,
+C’ZAt Z |K|(|¢n+1 +‘wn+1 |n+1 )

n=0  Ki€Tin
for some constants C,C’ > 0. Collecting the previous inequalities we obtain

(4.9)

1
5 3 1l (o[ = lekl ol = ot P - )

K1€7—1,h

Np,
vy st S il (jeR + s+ )

n=0 Ki€Ti,n
d ( K, |on )
+ZM >, > lZKl’h' - ZKlOEﬂéhl et |t — it
n=0  Ki1€Tin L1EN(K1) KL

iz ( K1 lvg,, )
L ZKloeT;h| 1Yk, gnt _gah

di3 (leoeﬁ,h |K10|X?(10)
2

n+1 n+1
X5 = XT

+CZ N Z Z Mﬂ’fiﬂ (‘wnJrl (Pzirl

d
—0  Ki€Tin LieN(K,) ~Euvl

+1 +1 +1 +112

Ny
n 2 n n
<03 st 30 (IR R+ -
n=0  Ki€Ti,n
By an application of the discrete Gronwall inequality, (4.3) follows from (4 9) Consequently, (4.9)
implies the estimates (4.4)—(4.5). Along the same lines as ((p}’(Jlrl, w%rl’ xKl YkeT nm€[0,N,]> We

obtain the estimates (4.6), (4.7) and (4.8) for the discrete solutions (u’}fl U}gl,w%rl). This

concludes the proof of Proposition 4.1. O

4.3. Existence of a solution for the finite volume scheme. The existence of a solution for
the finite volume scheme is given in the following proposition.

Proposition 4.2. Let D; and Dy be admissible discretizations of Q1r and QQT respectively.

Then1 the (fiscrete problem (3.7) - (3.16) admlits at least one solution ((p}’(Jlrl, w%rl’ xKl YkeT . €[0,N ]
(gt vt Wit koems wmelon,] end (C) ke, mefo.Na]
Proof. First we introduce the Hilbert space

Eh = Hh(Ql) X Hh(Ql) X Hh(Ql),
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of triples u} ™ = (Pt it 1) of discrete functions on Q5. We denote by Hy, (1) C L?(€4)

the space of functions which are piecewise constant on each control volume K;. We defined the
norm

lait 15, = (o™ i + 90 o + 0 )
+ (b g + 198 gy + 165 e )-
where the discrete seminorm | - |§{h(91) of wy, € Hp(y) is given by

|wh|Hh(Ql = Z Z |TK1 L1|

KleTl n Li€EN(K1)

and the L?(Q) norm of wy, € Hp, (1) is given by

2
lwnllZoiyy = Y, K| [w [*
Ki€Tin

le — WKy

Ky,Ly

Let @), = (1.0, P20, ¥3,1) € Er and define the discrete bilinear forms

Bh(uZJrl’ q)h> - Z |K1| (SQTII(JlrleKl + 7/’;?;1902,1(1 + Xrll(Jlr1<P3,K1>a
Ki€Ti,n

alﬁh(uz-‘rl, @h> =

|0K1,L1| d1y (ZKIUETLh |K10|(p?{10) n+1 n+1
Z Z d 9 (‘PLI — YK, 1,0, — p1.K,)
Ki€Tin LieN(K,) ~Kula

di2 (ZKloeTm |K10 W’%lo)

+ 5 (W =) (e, — 02.k,)
diz (ZKI €Ti,n |K10|X?{1 )
+ ° 5 LT =X D (esn, — es.ky)

Similarly, for given matrices M} := ((M"H , define the bilinear

1;; Ky, L1)1<i’j<3)K€Th,LEN(K)
form

1 |UK i
Qs (M )L @) = - Z Z 1,.L1 {M?lel Ll(‘PTLlirl 80?;[1)

d
KleTl n LIEN(K,) Bl

+1 +1 +1 +1 +1 +1 +1 +1
ML @R =) ML = D] (e - )

1 1 1 1 1 1
M - + M?;;Kl W )
+1 +1 +1 +1 +1
+M?23 Ki,L1 (le - XTIl(l )] (@SLI - 503 Kl)
1 1 1 1 1 1
M R = e ME L 0 = o)

1 1 1 1 1
ML O =] et - w??))

Multiplying (3.10), (3.11) and (3.12) by ¢1,k, p2 k and p3 g, respectively, summing in K € Ty,
we get the equation

1
_(Bh(uZ“a‘I’h)—Bh(UZa‘I)h))+“1 Rt @) 4 ag (M up ) upt @)

At
+ Bu(Rp(ap ™), ®p) = 0,
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here the entries /\/l""ﬂ( o, of M are defined from ujt! with the help of formulas (3.5). Fur-
thermore, Ry (u "+1) = (Fﬁ;l, F;Zl, Fg;l) with the discrete functions Ff;l, F;Zl, Fg;l defined
from uZH by formulas (3.4). It is clear that, u}} being given, there exists a solution uZ“ of the
above equation if and only if there exists a discrete solution of (3.7)-(3.12) at the time step (n+1).

Now we define, by duality, the mapping P from Ej, into itself:

VO, € By [Pu)th), @] = (Bh( B ®y) — By(uf, @5)) + arp(u)tt @)
Jrag AWM T aptt @) + B (Ry(u) ™), @5).

Now, using Lemma 4.1, Proposition 4.1, and an application of Young’s inequality to deduce

Pup™),upt] > C HuZHH; - HuZHHEh —C" >0 for HuZHHEh large enough,
for some constants C,C’,C"” > 0. We deduce that

P, uf™] >0 for Huh+1HE large enough.
This implies (see for e.g. [26] and [33]): there exists u} ™' such that
P(uptt) =o0.

Thus uZH does exist. Then, we obtain the existence of at least one solution to the scheme uZ“.

Along the same lines as u} ™', we obtain the existence of the discrete solutions (u’}fl U?(erl, w”K;rl)

n+1
and ¢ .

O

4.4. Convergence of the scheme. In this section, we prove that the family of discrete solutions
Ui h = (pn,Yn,xn) and Uz = (up, v, wy) are relatively compact in L'. We first apply the
following lemma (see the proof of this lemma in Appendix A in [7]):

Lemma 4.2. Let Q be an open domain in IR, T > 0, Qr = (0,T)xQ. Let (T")n be an admissible
family of meshes of Q satisfying the restriction (3.1); let (ath);, be the associated time steps.

For all h > 0, assume that discrete functions uZ‘H , ( ,’:H) and discrete
n€(0,Np] n€[0,Ny]
fields (.7?,?“) satisfy the discrete evolution equations
nE[O,Nh]
un-{-l n
(4.10) forn €[0,Ny], L = ho— divy, [FpH) + fptt

with a family (ul), of initial data. Assume that for all Q' € §Q, there exists a constant M (Q')
such that

Ny Ny,

411 AtH "+1’ AtH "+1’ AtH "+1’ M)
( ) ano uh LI(Q/) f LI(Q’) + Zn 0 LI(Q/) - ( )
and, moreover,

4.12 tH "+1‘ M(Q).

( ) Z A Vh’u LI(Q/) - ( )

Assume that the family (ul)n, is bounded in L}, .(Q2). Then there exists a measurable function u
on Qr such that, along a subsequence,

Np n .
ano ZKeTh uKJrl]l(tn,th]XK — u in L, ([0,T] x Q) as h — 0.

Denoted by M” the 3 x 3 matrix on Q, 7 with the entries ./\/lf;_j given by

n+1 . —
m] . E E E M’iij,Kan : ]1(tn7tn+1]><TKn,Ln for k = 1,2.

n=0 Kx€Tw,n LyeN(Ky)
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Observe that we may consider that the evolution of the first component (@Z+1)ne[o, N, the solution
(3.10) is governed by the system of discrete equations

n+1 n
Pr, — Pk 1 1
413 L L= > loken Frf v o+ f
( ) At |K1| | 1 1| K, Ll 1,01 f
LiEN(K})
Herein,
n+1 . n+1
K Fl NCR
n+1 n+1 n+1 n+1
Pn+1 . n C'OLl B s0K1 n+1 C'OLl s0K1
Fitb=du | Y Kulek, | v, + MUY e
) 0 dK L JK1,Lq dK L
K1 €Tin 1,L1 1,L1
n+1 n+1 n+1 n+1
et VI TV e X X
112, k9,0, d Ki,L, + 113,K,,L; d K1,Lq
Ki,L1 Ki,L1

IS

n n+1 n+1 n+1
[dn E |K10|90K10 Viney M, VEGL P,
Ki,€Tin

1 1 1 1
+ Mt vihLl’L/JnJr + M™T V}(hLl){Thfr

112, k4,1 113, k4,1
1 1 1

It is easy to see that equations (4.13) have the form (4.10) required in Lemma 4.2.

Observe that from Lemma 4.1 and Proposition 4.1, the local L! bounds (4.11) and (4.12) are ve-
rified. Consequently from Lemma 4.2, there exit uy € (L2(0,T; H'(21))3, ug € (L?(0,T; H*(Q2))3
¢ € L>®(Qr) and subsequences of uy p, = (©n,¥n, Xn), Uz,n = (Up, Vh, wr), cn, not labelled, such
that, as h — 0,

(i) usn — . strongly in (L 1(Qn T>>3 and a.e. in Q. 1,

(i) Vpugp — Vu, weakly in (LQ(QH” ))3%3,

(iii) M “Viu, p — My (u,)Vu, weakly in (Ll(Qn,T))BXB,

(iv) (Fi(uin, cn), Gi(uzn, cn), K(¥n, vn, cn)) — (F(u, ¢), G(ug, ¢), K(¥, v, ¢)) strongly
in (LY(Q1,7))%, (LY(Qa,r))? and (L*(Qr))® repectively,

(v) cn — ¢ strongly in L*(Qr),

(4.14)

fork =1,2and v =1,2,3.

4.5. Convergence Analysis. Our final goal is to show that the limit functions u; = (¢, ¥, x),
uy = (u,v,w) and ¢ constructed in (4.14) constitute a weak solution of our cross-diffusion system.
We start by passing to the limit in (3.10) to get the first equality in Definition 2.1, the arguments for
the passage to the limit in the rest of the equalities (2.4) are entirely similar. Let ¢ € D([0,T)x ;).

Set ¢%, = ¢(t",xK,) for all Ky € 71, and n € [0, Nj, + 1]. We multiply the discrete equation
(3.10) by Atqb?(“. Summing the result over K1 € 71, and n € [0, Np], yields

Sty Sh 4 sh=gh
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where

Np,
St=20 2 Kol ek ok

n=0 K1€T1,n
Np,
n |O—K1,L1| n+1 n+1y n+1
- E Atdyy E |K10l0%,, E E e (P1, —¢5 ) Pk s
n=0 Ki1,€T1,n K1€T1,n LiEN (K1) K1l

0Ky, L4
ZM DX ML T - D ML W et

d
n=0 Ki€Tin L1EN(K1) KL

n+1 n+1 n+1 n+1
+M113 Ky, Ll(XLl — XK, )] ¢K1 )

Np,
Sp=> at > |EKi|FE ot

n=0 KE'Ti,h

An integration-by-parts and keeping in mind that qb%”l = 0 for all Ky € Ty, we get from (4.14)
(i) the convergence (along a subsequence)

T
lim S = / / gaat(b*/ ©o9(0
h—0 0 Ql Ql

Gathering by edges and using the definition (3.3) of V},, we have

Ny
1
:5 ZAtdll Z |K10|(‘0?(10 X
n=0

Ki,€T1,n
n+1 n+1 ¢n+1 ¢n+1

Z Z $|UK17L1|dK17L1 dchl i

d d
Ki€Ti,n L1EN(KY) Ki,L Ki,L,

:% ZAtdll Z |K10|50?(10 x

n=0 K1,€T1,n

Z Z |TK1,L1| (VK1,L1(JDZ+1 : VK1,L1) (v¢(tn+1’ ‘rKl,Ll) . VKhLl)a

K1€Ti,n L1EN(K)

where Tx, 1, is some point on the segment with the endpoints x,,zr,. Since the values of Vg, 1,
are directed by vk, r,,, we have

(VKI,Lﬁ@ZJrl . 77K1,L1) (Véb(tnﬂ,iflﬁ,/:l) ‘ VKl,Ll) = Vi, epth - Vo™ 2 L)

Moreover, each term corresponding to Tk, 1, appears twice in the above formula,
T
Sy = / di1 (/ en(t, ) dfﬂ) Vien (Vo)n,
0 |95 951
where
(v¢)h|(t",t"+1]XTK1,L1 = v¢(tn+1"rK1,L1)'

Observe that from the continuity of V¢ we get (V) — V¢ in L°(Q1,7). Hence using the sharp
Sobolev embedding and the interpolation between L2(0,T; L (1)) and L>(0,T; L*(Q1)), and
the weak L2 convergence of V@, to Vg, we pass to the limit in S¥ and S¥, as h — 0. Then,
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again along a subsequence, we have

T
}1113%)52 */0 dll(/Ql Sﬁ(tv$)d$)/91 Ve Vo,

%li% Sg = / . (Mllz (507 "/)7 X)VSQ + Mhz (507 "/)7 X)V1/1 + M113 (‘Pa 1/’) X)VX) ' Vd)
Qr

Finally, using (4.14) (iv), we deduce that S} converges to // Fi(p,%,x) ¢ as h — 0. Gathering

the obtained results, we justify the first equality in Deﬁmtlon 2.1. Reasoning along the same lines
as above, we conclude that also the rest of the equalities in Definition 2.1 hold. This concludes

the proof of Theorem 3.1

5. NUMERICAL RESULTS

Susceptible population (P Susceptible population (P Susceptible population (Pw)

140 140
120 120
100 100
80 80
60 60
40 40
20 20

Susceptible population (P Susceptible population (P

100

70
80 60

50
60

40
40 30

20
20

10
0

Susceptible population (P Susceptlble population (P

14
25

13
20 12

11
15

10
10 9

8
5

7

6
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FIGURE 1. Example 1. Disease-free populations (P;) for different times, ¢ = 0.01,0.1, 1.

In this section we give numerical results from our finite volume scheme. We take the domains as
follow 1 = (0,1) x(0,1) and Q2 = (0.5,1.5) x (0, 1), such that 2; Qs = (0.5,1.0) x (0,1) # . We
consider here a uniform mesh in both domains, given by a Cartesian grid with N, x Ny,, i =1,2
control volumes. Obviously, it is possible to consider unstructured meshes, but we will take here
to an uniform mesh Qr = {K;; € QK;; = (1 — 1)Ny,iNg)(j — 1)Ny, iNy),i = 1,..., Ny, j =
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1,...,N,}, for simplicity of the simulated models. The discretization in time is given by Nt =
500 time steps for T' = 0.5. That is, 6t = T/Nt and m(K) = 1/(NzNy). The parameters of the
model are given by
Jg11 = 08, 031 = 07, w1 = 01, )\1 = 12, b = 003, m = 001, k = 003,
032 = 0.97 )\2 = 36, € = 1.0, J13 = 0.3, 0923 = 0.3, 6 = 5H2.

Additionally, if we compute with constant diffusion, we will take d;; = 0.01 for ¢ = 1,2 and
7 =1,2,3. The nonlocal diffusion depends on the total population as we mentioned before. In the
case of simulation with nonlocal diffusion terms, they are given by a simple choice of the functions
d;; for i =1,2 and j =1,2,3 equal to

where ( = ¢,¥,x,u,v,w. For the cross diffusion parameters we take ki1 = ko3 = 1 and
k12 = k13 = ka2 = ka3 = 0.1 (up to a rescaling with respect to (1.9)). It is important to mention
that differences between constant and cross diffusion with this parameters of k;; are slight.
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FIGURE 2. Example 1. Disease-free populations (P) for different times, ¢ = 0.01,0.1, 1.
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5.1. Example 1. Behavior of disease-free populations.
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a) t =0.01 b) t=0.1 ¢) t=0.01

FIGURE 3. Example 2. Indirectly transmitted disease (P;) with non-local diffu-
sion, for different times. ¢ = 0.01,0.1, 1.

In this first example, we want to study the behavior of disease-free populations. To do this,
we remove the contaminant and the presence of infected and recovered populations, simply as
imposing initial data ¢ (z,y,0) = v(z,y,0) = x(x,y,0) = w(z,y,0) = ¢(x,y,0) = 0. This makes
that our system of 7 equations is reduced to just two decoupled equations:

Orp — d11 (/Q gad:c) Ay — div (k11g0V<p) =({b-—m)p— k502, in Q1,1

Oru — doy (/Q ud:c) Ay — div (kgluVu): 0, in Q2.7.

May be, these two equations have not the complexity of the original system of seven nonlinear
equations that we are interested in studying, but for simplicity, we want to highlight the difference
in behavior of the solutions for different types of diffusion, constant, non-local and cross-diffusion.
In this sense our scenario is as follows: we simulate the meeting of the two susceptible populations

"7

16

15

1.4

13

12

1.1
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¢ and u, although at the beginning both populations are separated. The population ¢ initially
located at the left side of its domain, and the population u on the right side of its respective
domain. For this, we assume that initially only susceptible populations are different from zero.
More precisely, the initial data are given by

o(x,y,0) =

u(z,y,0) =

0 in other case

0 in other case

{ 400 = € (1.25,1.5) x (0.25,0.75)

{ 160 z € (0,0.25) x (0.25,0.75)

In figure 1 and 2, we can observe the dynamics of both populations for different times, ¢t =
0.01,0.1,1. As time goes on, both populations begin to move toward the center of the domain
Q1 N Qe = (0.5,1.0) x (0,1) due to diffusion terms. The meeting is effective in all three cases, but
is most evident in the case of nonlocal diffusion (column 2 of Figures 1 and 2). In the case of
nonlocal diffusion, it increases in proportion to the total population of each susceptible population
, generating a first contact between P1 and P2 about the time, ¢ = 0.1 (see central pictures,
in column 2 and row 2, for both Figures 1 and 2). Then, at time ¢ = 1.0 both populations are

thoroughly mixed.
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FIicURE 4. Example 2.
sion, for different times.
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5.2. Example 2. Indirectly transmitted disease.
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FIGURE 5. Example 2. Indirectly transmitted disease (P;) with cross-diffusion,
for different times. ¢t = 0.01,0.1, 1.

In this Example 2, we want to study how localized sources of infection in the population P1,
could be affect the population P2, which is not initially involved in the transmission of the disease,
but who comes to be, due to the diffusive effects, and the pollutant which acts on the intersection
of the domains.

For them, we consider initially constant population of susceptible individuals in each domain
Q; and Qs, and a focus of infected individuals at the left end of the domain €27, modeled by sums

1 N
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FIGURE 6. Example 2. Indirectly transmitted disease (P») with cross-diffusion,
for different times. ¢t = 0.01,0.1, 1.

of hyperbolic secant. More precisely, our initial condition in this case is given by

w(zayvo):20 (:rvy) Ele
5

¥(z,y,0) = 1002 sech(25(x — x;))sech(25(y — y;)); (x,y) € D,

X(IL’,y,O):O (:rvy) Ele

where (z1,y1) = (0.252,0.252), (x2,y2) = (0.126,0.126), (x3,y3) = (0.126,0.378), (x4,y4) =
(0.378,0.126), and (x5,ys) = (0.378,0.378).
On the other hand, the initial conditions for u, v, w, are

U(IE,y,O) =50 (:rvy) € QQ}
U(ZC,y,O) =0 (:Cay) € QQ;
w($5y70) =0 (:Cay) € QQ;

The initial condition for the contaminant is given by c¢(x,y,0) = 0 for all (z,y) € 1 U Q.
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These initial conditions for the both populations given before mean that at ¢ = 0, for the first
population, we assume that the susceptible population is constant in the domain and there is no
presence of recovered population. Moreover, it is possible to observe, 5 pockets of high density
infected population which are located in the quadrant [0,0.5] x [0,0.5] which will diffuse the epi-
demic disease on the rest of the domain contaminating the environment, for this reason the second
population will be infected. Since at ¢ = 0, for the second population, we assume that the suscep-
tible population is constant in the entire domain and there is no presence of infected individuals
nor presence of recovered individuals. We compare simulations between non-local diffusion and
cross-diffusion.

First, in Figures 3, we can observe the effect of non local diffusion on Population 1 for different
times. In Figure 4, we can observed the effect of non local and cross diffusion on Population
2 for different times. The difference is more perceptible for susceptible individuals, for infective
and recovered individuals there is no much qualitative difference but it is possible to observed
quantitative variations. It is important to note here that the population P2 is affected because
infected individuals of the population P1 arrived to the area of interaction due to the diffusion,
and the contaminant begins to act.

From figures 5 and 6, we observe the same for the cross-diffusion. On the other hand, 6 shows
that in the case of cross diffusion P1 population, although equally altered by the disease is not
so much as in the case of non-local diffusion (Figure 4). Observe also that there is discontinuity
in the evolution of the population infected P2 (shown in column 3, row 2 and 3, Figure 4). This
discontinuity is due to the contaminant acts strongly in the population infected, and only acts to
the boundary x = 1. The non-local diffusion infected individual is not enough to observe migration
of the population towards = > 1. However, the susceptible population becomes extinct smoothly
(without apparent discontinuity) in the area of contamination, and this because of the migration
of this same population due to the diffusion.
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APPENDIX A. EXISTENCE OF WEAK SOLUTIONS

A.1. Existence of solutions for the approximate problems. This subsection is devoted to
proving existence of solutions to the approximate problem of systems (1.2)-(1.4). The existence
proof is based on the Shauder fixed-point theorem, a priori estimates, and the compactness method.
The approximation systems read:

(A.1)

oo —dn( | pde) g —div (b f () + 12 () + 200V + S (9 V0 + [ (0)9)
= Fye(o, 0", 9%, xT, "),

o o [ | V) A —div (£ (0)V + (1 (9) + kiaf (9) + 2 00) V0 + 12 (6)Vx)
= Focla. ot % X7, o),

Oex — das (/91 xdx)Ax —div (f;(X)V@ +FEOOVY A+ (FF () + f2 () + kmf?(x))vx)

= F375(SC,QO+,’I/}+,X+,C+),
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in QLT = (O,T) X Ql,
(A.2)
Opu — doy (/ﬂ udz) Ay — div ((kglfj(u) + () + £ (w)Vu + fF(u) Vo + fj(u)Vw)
’ =Gy e(z,ut, vt wh,ch),
v — daa (/ de) Av — div (fj(v)Vu + (fF (u) + koo f (v) + £ (w)) Vo + fj(v)Vw)
Q2

- G2,€(£7u+a ’U+,’LU+, C+)7

= G3,8($,U+,U+,w+,c+),
in QQ,T = (O,T) X QQ, and
(Ag) atC: K($77/)+av+70+)7

in Qr = (0,T) x (21 UQy). Herein, e > 0 is a small number,

Fo=—" andGie=—— fori=1,2,3,
S Tt Rk BT TEN B

(A4)

fela) = and bT = max (0,b) for any a,b € IR.

1+¢|al

We supplement (A.1), (A.2) and (A.3) with no-flux boundary conditions (1.5)-(1.6) and initial

data (1.7).
Observe that one can replace (A.1) and (A.2) by
(A.5)

Orp —dn (/ sOdﬂC) Ap —div (11 Ve + a12VY + a1 3Vx) = Fi(z, 017,07, x T, eT),
(951

Opp — dy2 (/ P dz) Ay —div (@21 Ve + a22VY + aa3Vx) = Foc(x, T, T, x T, ),
Q

Oix — di3 (/ X diﬂ) Ax —div (a31Vo+ a3 oV + as 3Vx) = B (z, 07,07, x 1, ),
(951

and

(A.6)

O — doy (/ udm) Au —div (B1,1Vu + B12Vv + B13Vw) = G e (z,u, v, wh, eh),
Qo
8tv - d22(

/ v dz) Av —div (B21Vu + B22Vv + B2 3Vw) = Goc(x,u™, v, wh, ™),
Qo

Ow — das (/ w dx) Aw — div (831 Vu + B32Vv + B3 3Vw) = G o (x,ut, v, wh, ™),
Qo

respectively. Herein, the diffusion matrix M, for i = 1, 2,

a1 Q12 013
Mi= |1 a2 a3

31 Q32 (33

(k1 fE () + [E () + () () [ ()
= fE@) (fF (@) + ko f T (0) + fF (X)) @)
fF(x) fE(x) (fF (o) + fH () +

Opw — dag (/Q wdm) Aw — div (fj(w)Vu + [ (w)Vo + (fF () + fF(v) + k?ggf:(’ll)))V’lU)

klsf,i(x)))

)
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and
(51,1 Bi,2 51,3)
Mo =|B21 Ba22 P23
B31 P32 33
(k21 £ (u) + f2(v) + f(w)) f(u) f(u)
= [ () (f& () + koo f (v) + f(w)) [ () ,
[ (w) [ (w) (f& () + fF(v) + kas f5 (w))

is uniformly nonnegative: using condition (1.9) and the inequality ab > —a; - % for all a,b € IR

one gets:
(A7)

T Mg = (bua S (9) + 12 (8) + 12 00) €8 + (kuafZ () + J2 () + £1(0) &
+ (Rt 00 + 2 (0) + 7)) & + FF ()& + )6
+ W)+ &)+ [ 00E +&)6
> (e = DFE @) + F2@)/2+ F100/2) 8 + (F(0)/2+ iz = DFF W) (00/2) 8
+ (FH@/2+ FE@)/2+ (s - DIF(0) €
>c(FH @)+ W)+ F200) (8 + 8 +8)20,

and

(A.8)
E" Mo > (ko = D) () + f2(0)/2+ fFw)/2) €8 + (2 (@)/2+ (ka2 = DJF (@) + [F(w)/2) €3
+ (£ @)/2 4 JF0)/2 + (ko = 1) fF () ) &
Zo(fH ) + ) + W) (G + 8+ &)= 0,

for some constant ¢ > 0 and for any & = (&1, &2,&3) € R3. We shall frequently use (A.7) and (A.8)
to prove the existence (and nonnegativity) of weak solutions.

A.2. Existence result to the fixed problem. In this subsection, we omit the dependence of
the solutions on the parameter e. We prove, for each fixed € > 0, the existence of solutions
to the fixed problem (A.1)-(A.2), by applying the Schauder fixed-point theorem. Since we use
Schauder fixed-point theorem, we need to introduce the following closed subsets of the Banach
space L?(Qr,IR™):

(A9) A ={U; = (ui1,ui2,ui3) € L*(Qir,R?) : Uil Lo 0.7 2205y 20,7501 (0)) < Casts

for i = 1,2, where Cq, > 0 and C4, > 0 are two constants that will be defined below. With
(®,9,X) € A1 and (u,v,w) € Ay fixed, let (p,1, %), (u,v,w) and ¢ be the unique weak solution

of the systems
(A.10)

o — (| o) Ap— div((nf @)+ £1(0) + 170V + 1@V + £ (7))
- Fl 8( ¢+5E ,Y+,C+),
o —dua (|| T A= div (£ (D)0 + (17) + koS (0) + £ (R)Vo + £ (D))

4 —+
:FQ,E(:C7§0+51/} X+ +)

FBE(:C(P 7/) X )
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in Qi =(0,T) x 4,

(A.11)

R (/Q W) A — div (ko f(@) + £ () + £2(@)Vu + £ @V + f(@)Vw)
=G (z,ut, vt wh, eh),

Bpv — dos ( /Q 2 mx) Av — div( FE@) YV + (fF @) + koo fF (@) + £ (@) Vo + fj(mw)
=Gac(z,ut, v, wr, ch),

Orw — das (/Qde:c)Aw div (12 @)Vu+ £(@)V0 + (2 (@) + J2(0) + kas f2 (@) V)
= Gs.(z,ut, o, wh, ch),

in QQ,T = (0, T) X QQ, and

(A.12) Oc = K(m,@+,5+,c+),

in QT = (O,T) X (Ql U QQ) i
Observe that for any fixed 1 € L?*(Q1 1) and ¥ € L?(Q2,7) , problem (A.12) is uniformly ODE,
so we have immediately:

Lemma A.1. Ifcy € L(R) and 0 < ¢ < 1, then (A.12) has a unique solution ¢ € LE(Qr) N
C(0,T; L?(R2)), satisfying:
0 <c(t,x) <1 for ae. (t,x) € Qr,

A.13
(A.13) lelleo,riza) < €

where C' > 0 is a constant which depends only on |collpe(qy: 1013l Lo (@, 7y0 1023l Loo (o )

||EHL2(Q17T)7 lell g2, 7y and |Qr].
Remark A.1. Note that the first estimate in (A.13) follows from the mazimum principle.

A.2.1. The fized-point method. Now, we introduce a map L; : A; — A; for ¢ = 1,2 such that
L1(2,¢,%) = (¢,9,x) and Lo(%, 7, W) = (u,v,w), where (©,1,%) and (u,v,w) solve (A.10) and
(A.11) respectively. By using the Schauder fixed-point theorem, we prove that the maps L; and
Ly have a fixed point for (A.10) and (A.11).

First, let us show that L; is a continuous mapping for i = 1, 2. For this, letting (,,1,, X,)e and
(Ue, Ve, We)e be sequences in A; and A, respectively. Next, we let (3,4,X) € Ay and (7,7, W) € Ay
be such that (,, ¥y, X¢)e = (., %) in L2(Q1,7,IR?) and (Ue, 0, We)e — (u,v,w) in L*(Qa,7,IR?)
as £ — oo. Define (¢y, 1y, X¢) = Ll(tpe,we, X,) and (W,W, wy) = La(Te, Up, We). The goal is to show
that (¢, e, x¢) converges to Ly (%,4,%) in L?(Q1.r, R?) and (ug, ve, we) converges to Lo(T, T, )
in L?(Q2,7,R?). Next, we need the following lemma:

Lemma A.2. The solutions (v, e, X¢) and (we, ve, wy) to systems (A.10) and (A.11) respectively
satisfy:

(i) The sequences (g, e, X¢)e and (wg, ve, we)e are bounded in L*(0,T; H*(Q1,IR*)NL>(0, T; L?(2;, R?))
and in L*(0,T; H'(Q2,R?)) N L>(0, T; L?*(Q,R?)), respectively.

(ii)  The sequences (pe, e, xe)e and (ug,ve, we)e are relatively compact in LQ(QLT,]RQ’) and in
L%(Qa.1,R?), respectively.
Proof. (i) We multiply the first, the second and the third equation in (A.10) by g, ¥ and X,
respectively, integrate over 2, using (A.7), and definition of F; . in A.4, yields

d

= | (el + el + Dol )da+d | (196l + V366 + Ve ) do

dt Q Q

(A.14) ' '

<c [ (o + el + bl ) o
Ql
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for some constant C' > 0. Herein, d = min(M1, M12, My3) (recall that M;; is defined in (1.1) for
1=1,2and j =1,2,3). In view of Gronwall’s inequality it follows from (A.14) that,

(A.15) s [ Gl 1ol 4 b Yo < explCT) o + 0 + ol
te(0, 1

which proves the first part of (i).
From (A.14) and (A.15) one may also conclude that,

T exp(CT
LEPOT o -+ w0 + Xol ey

a16) [ [ (Ve 4T+ [Vt <
Q11
yielding (i).
(4¢) Finally multiplying the first, the second and the third equation (A.10) by ¢1, @2, ps €
L?(0,T; HY(Q)), respectively and using the boundedness of f and F; . for i = 1,2, 3, and (A.16)
there exists a constant C(¢) > 0 such that

T T T
/ (Orpe, 1 ) dt| + / (Opthe, o ) dt| + / (Orxe, 3 ) dt
0 0 0

(A.17) 3
<C(e) Z H%”L?(O,T;Hl(ﬂ)) :
i=1

so we get (ii) for (e, Ve, xe)e-
Then, (ii) is a consequence of (i) and the uniform boundedness (A.17) of (¢¢, ¥¢, x¢)e in L2(0, T; (H*(Qy,1R?))")
Reasoning along the same lines for (g, 1¢, x¢)e yield (i) and (ii) for (ug, ve, we)e.

O

Remark A.2. Note that it is easy to deduce from Lemma A.2 that the constants C 4, > 0 and
Cua, >0 (consult (A.9)) are defined as follows:

(d+T)exp(CT)
Ca, = y [0 + %o + Xollp2(0y)
and
(d' +T) exp(CT)
Ca, = 7 |\uo+vo+w0||L2(Q2)

for some constant C > 0. Herein, d' = min (Ma1, Mag, Mas).

From Lemma A.2, there exist functions (¢g, ¥y, x¢) € L2(0,T; HY(Q1,1R?)) and (ug,ve, wy) €
L?(0,T; H'(Q2,1R?))such that, up to extracting subsequences if necessary,

(02, %0, xe) = (0,9, %) in (L*(Q1,r))® strongly, (g, ve, we) = (u,v,w) in (L*(Q2,7))? strongly,

and from this the continuity of L; on A; follows for ¢ = 1, 2.
We observe that, from Lemma A.2, L;(A4;) is bounded in the set

(A.18) & ={ue L*0,T; H'(Q:,R?) : e L*(0,T; (H' (2, R?)")},

for i = 1,2. By the results of [32], & < L2(Qi7T,IR3) is compact for i = 1,2, thus L; is
compact for 4 = 1,2. Now, by the Schauder fixed point theorem, the operators L; and Ly have a

fixed points (¢e, ¥, Xe) and (ue, ve, we ), respectively, such that Li(ee, ¥, Xe) = (¢e, e, Xe) and
Lo(ue, ve,we) = (ue, ve, we). Then there exists a solution (¢, e, Xe), (e, ve, we) and c. of

(A.19)

/ o s [ [ (] e Tt (S o) 4 520+ 5 G Vo £ (T

o) xe) Vordadi = [ [ Fiogl 0d o du
1,7
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(A.20)

/ e s [ [ (] et Tt )T () Ria ) 4 £ ()T

W) Vordadi = [ [ Faslogt 0d ¢ o du
(A.21) |
T
/O <atX€a¢3>1 dtﬁL//l’T (d13 (/Ql Xe d:L') Vxe + f:(Xs)v@s + fj(X€>V7/}s

() + [0 + b F (V) Vandodt = [ [ Fcoof, vt ondoat
(A.22)

/OT (Byue, ©1), dt+//” (dﬂ(/% e dx)Vug + (Bar f (ue) + FH () + £ (we)) Ve + £ (ue)Voe

+fj(u€)Vw€).ve1d:cdt:// Gie(z,ut v wl, e)0, dzdt,
2, T
(A.23)

/ o omy s [ [ (i (o) T £ )V (17 )+ R0 4 S )V

+ f:(va)ng).VGde dt = // Goc(z,ut v wh, )0y dz dt,
(A.24)
T
/ (Opwe, O3), dt +// <d23 (/ We dz) Vwe + £ (we)Vue + f (we) Ve
0 2,7 Q2

+ (fF (ue) + f(ve) + kggfj(wg))ng)'VGQ, dx dt = // Gse(z,ul v, wl, c)Osdxdt,

(A.25) / Osce I'dx dt :/ K(x,ve,ve, co)T dx dt,
Qr Qr
for all ¢; € L?(0,T; H(1)), ©; € L*(0,T; H (Q)) for i = 1,2,3, and " € L?(0,T; H(Q1 UQy)).

A.3. Existence of weak solutions. Note that since problem (A.12) is uniformly ODE, the
estimates (A.13) holds with ¢ replaced by c..

From Section A.1, we know there exist sequences (¢e,%e, Xe)e>0, (Ue, Ve, We)eso and ¢ of
solutions to (A.1), (A.2), (A.3). We have now the following series of a priori estimates.

Lemma A.3. Assume conditions (1.9) and (2.1)-(2.3) hold. If o, %0, X0 € L2 (1) and ug, vo, wo €
Li (Q2), then the solutions (e, Ve, Xe) and (ue, ve, W) are nonnegative. Moreover, there exist con-
stants ¢y, ca, c3,c4 > 0 not depending on € such that

(A26) H(Sﬁev "/)Ea X€)|‘LW(O,T;L2(91’RS)) + H(usv Ve, wE)HL‘”(O,T;LQ(QZ,IRS)) <,
(A27) ||Fi78(" Pe 1/183 Xes CE)HLI(QLT) + HGi,E(" Ueg,y Vey We, CE)HLI(QZ,T) < Co,
fori=1,2,3,
(A.28) HVQOEHLZ(QLT) + ||V7/Js||L2(Q1,T) + ||VX5HL2(Q17T)

+ HVUEHLZ(QQ’T) + HVUEHLZ(QQ,T) + ||V’LU5HL2(Q2,T) S c3,
(A.29)

10 2ell 20,7, (w1 (1)) + 106%ell 20,7, (wroe @)y T 106Xl 20,7, (w10 020
+ ||atu5||L2(01T1(Wl,oo(ﬂ2))*) + Hatva||L2(01T1(Wl,oo((22))*) + ||atw8|‘L2(01T1(Wl,oo(ﬂ2))*) < .
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Proof. In the weak formulation (A.19)-(A.21) we take ¢1 = —p_, ¢2 = —t7 and ¢35 = —x , and
we integrate over €y instead 1,7, we get from (A.7)

1d

(A.30) 23t Jy,

()w;f + oz |+ ]x;]Q) dz < 0.

This yields the nonnegativity of (¢., Y., xc). Reasoning along the same lines for (¢., ¥, xc) yields
the nonnegativity of (u., ve, we).
Observe that

2 2 2
|F1,8('59083w65X8)c)|+|F2,8('59083w63><€ac)|+|F3,E('3S0651/185X830)|SC(|SDE| +|1/18| +|X8| )a

and
|G175(',’UJ5,’UE,’LU€,C)| + |G275(',’UJ5,’UE,U}5,C>| + |G375(',’UJ5,’UE,U}5,C)| < C(|U€|2 + |U€|2 + |’LU€|2),

for some constant C' > 0. Now we exploit this and (A.26) to deduce (A.27)

By the (weak) lower semicontinuity properties of norms, the estimates (A.15) and (A.16) hold
with (we, ¥e, x¢) and (ug, ve, wy) replaced by (@, e, Xe) and (ue, ve, w:). Moreover, the constants
¢1, cs are independent of £ (consult the proof of Lemma A.2).

Finally using the weak formulation (A.19), we deduce from (A.26) and (A.28): for all ¢; €
L2(0, T; Wh>o(Qy))
(A.31)

T
/0 (Orpe, P1), dt

di1 (/Q Ve dm)

+C (I9el e 07512000 + el 75050000 + IXe e 0,232 )
X (”VSQEHL?(QLT) + Hv"/)EHLZ(QLT) + HVXEHLZ(QLT) ) ||v¢1||L2(O,T;Lx(Ql))

< sup
te(0,T]

HV‘JDEHLZ(QLT) ||V¢1||L2(Q1,T)

O (L @ell e 0,m;22(00)) T el e 0,702 (00)) + IXell oo (0722000
X (14 el 2(@u ) + 1l gy my + el
S C/' |‘¢1HL2(07T;W1,00(91)),

12(@1.0) ) 191l 200,750 (01

for some constant C, C’, C" > 0 independent of €. From this we deduce the bound
(A-SQ) ||at80€HL2(07T;(W1,OO(Q))*) < C".

Reasoning along the same lines for ¢, yields (A.32) for ¢¢, Xe, e, v and we . O

In view of Lemma A.3 and Aubin’s lemma, we can assume there exist limit functions (p, ¥, x, u, v, w)
such that as £ — 0 the following convergences hold (modulo extraction of subsequences, which we
do not bother to relabel):
(A.33)
(¢csthe, xe) = (9,10, X) a.e. in Qq.1, and strongly in L?(Q1.r,IR?), weakly in L?(0,T; H'(Q,R?)),
(te, Ve, we) — (u,v,w) ae. in Qo 7, and strongly in L?(Q2. 7, R?), weakly in L?(0,T; H (22, R?)),
Fi (o, 0e,0e, Xes Ce) = Fi(-, 0,1, X, ¢) a.e. in Q1,1 and strongly in L'(Q1 1)
and G (-, Ue, Ve, we, ¢c) — Gi(+,u,v,w,¢) a.e. in Qo and strongly in L?(Qa 1),

fori = 17 25 3. Addltlona’HY7 (atQOE, at’l/)Ea 8tX€) - (at% 8t1/}5 8tx) and (at’ll,g, (9,51)5, atwe) - (atua 8,51), atw)
weakly in L2(0,T; (W1(Q1,1R?*))*) and L2(0, T; (W1H>°(, R?))*), respectively.
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An application of Young and Hoélder inequalities we get

EPeP
- <V2|p. — 2| =2

[l fe(pe) <P|‘L2(QLT) < V2 |lp. SDHL?(QLT)%»\/_ T+ 202 | 20y

EQPeP
<V2]lee — ¢l +\/§‘
(A_34) : L2(@Q1,m) (1+5§08)2/3(€¢6)172/3 L2(Q1.7)

_ 2/3 |, 2/3

< V2l = elliagun + V2 2L

2/3
<V2llpe = Pll2or my + V2R N0ellTE 0 2y
lellzaorizecan) -
Thanks to the Sobolev embedding (H*(21) C L%(Q1)) we deduce from (A.34)
(A.35) fe(we) = p a.e. in Q1 1 and strongly in L"(Q1,r) for all 1 <r < 2.

In the same way we get

(A 36) (fs("/’s)a fs(Xs)) - (7/}, X) a.e. in Q1,7 and strongly in LT(QLT),
’ (fe(ue), fe(ve), fe(we)) = (u,v,w) a.e. in Q2 and strongly in L™(Q2,7),

forall 1 <r < 2. Finally, by passing to the limit € — 0 in the weak formulation (A.19)-(A.25), with
d; € L2(0,T; Wh°(Q)), ©; € L2(0, T; Wh*2(Q)) for i = 1,2,3, and T € D([0, T) x (21 U)),
we obtain in this way that the limit (¢, ), x, u, v, w,c) is a solution of system (1.2)-(1.4) in the
sense of Definition 2.1.

APPENDIX B. EXISTENCE AND UNIQUENESS OF THE CLASSICAL SOLUTION (PROOF OF
THEOREM 2.2)

In this proof we adapt the result obtained in [9] (and the references therein) to the system (1.2),
(1.3) and (1.4) with (2.1)-(2.3) and

kij:2fori:1,2,j:1,2,3,d11(/ @dm):dlg(/ wdx):dm(/ de),
(951 (971 (971
d21(/Q udm):dgg(/g ’l}dw):dgg(/g wdw)

Now, we describe the steps to show existence of strong solutions and boundness of solutions.

Observe that for any fixed (o, %0, x0) € (W1P(Q1))? (p > 3), there exists a maximal existence
time T € (0, +00] such that the system (1.2) has a unique solution (¢, 1, x) € (C(0,T; WP(Q;)N
C>=(Q))? (see the result of Amann [2] (see also [3, 4]) for more detrails).

Now, letting w = ¢ + 1 + x and summing the equations in (1.2), the result is (recall that (B.1)
holds)

(B.2)

Oyw — div (dll (/( gad:c) +2 w)Vw = b(x)Hy — (m(z) + k(z)H1)H, in Q1.7,
2

Vw-n=0 on (0,T)x 90, w(0,z)=we(x)=¢wo+ o+ Xo, x € Q.

An application of maximum principle to (B.2) (see for e.g. [21]), we deduce that there exists a
constant Cy depending upon the initial data so that

(B.3) 0 < o(t,x),¥(t, ), x(t,r) < Co for all z € Q; and t > 0.
Since dq1 (/ <pdac) +2w € L*=([0,T) x ) and
Q

b(x)Hy — (m(x) + k(x)Hy)Hy € L*°([0,T) x 1),
we can apply the Holder continuity result to (B.2) (see Theorem 1.3, p. 43 in [14] and we get
(B.4) w e C%A([0,T) x Q1) for some B € (0,1).
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Now we let @0 = dq1 (/
Ql
(B.5)

Oy — (du (/Q @dm) +2 w) Al = —(dn (/Q SOd?U) +2 w) (b(x) — (m(x) + k(x)H1))H
—wddyq (/Q gpd:c) in Q1,r,

Vi -n=0 on(0,T)x 8%, @(0,z)=do(z)= dn(/
Q1

© dx)w + w?. Clearly @ satisfies

good:v)wo—i-wg, z € .
To continue we will need the following lemma proved in [21] (see Theorem 9.1 in [21] for more
details).

Lemma B.1. Let 3 < g < 400. Suppose u is a solution to the following problem

Owu — a(t,z)Au = f(t,z) in Qr,
Vu-n=0 on (0,T)x 09, u(0,z)=ue(z), z €.

where T < +00 and a is a positive bounded continuous function on Qr. Suppose that f € LI(Qr).
Then there exists a constant C, depending on the bounds of a, Q@ T and q such that

lellwzs@ry < Ca(IlFlzaiar + ol 30, )
where ug satisfies the compatibility condition Vug -1 =0 on 0S.

Herein W2 (Qr) = {u : HuHqu(QT) < C} and

lull 21 () = (//Q (|u|q+|Vu|q+|Au|q+|8tu|q)dzdt>
T

Observe that 0 < dq1 (/
Q

q

godz)JrQw € L°°([0,T) x Q1) and

(di (/Q <pdz)+2 w)(b(x) — (m(z) + k() H) Hi — wdydiy (/

gpd:c)e L=([0,T) x 1.
951

Thus we can use Lemma B.1 together with w € C%ﬂ([O, T) x Q1) to obtain
(B.6)

Iz 00y < C(H(dn(/ﬂl ) +20)(b(x) — (m(z) + k(x)H)))Hy w@tdn(/gl pdr)

d11 (/ ©o dl‘)’wo —l—wg . )
Q1 W27E'q(91)

<, forall 3 < g < 400,
for some constants C, C’ > 0. An application of Sobolev embedding theorem for parabolic equation
(see Lemma 3.3, p. 80 in [21]), we get @ € C#’HP(QLT) for any 0 < p < 1. Using this and
W = dw + w?, we get

(B.7) w € CHTP*”P(QLT) for any 0 < p < 1.
Observe that we can write (1.2) in the following form:
0o —div ((du | pdo) +u)Vio + p¥w) = Fa(w, 0,0 x.0) in Qur,
931
([ (] ede)+w)96+00)= Falopvx.0) in Qur.
Q1 Q1

sodw) +w)Vx + wa)z F3(z, 0,9, x,¢) in Qi7,
1951

Vo-n=V¢p-n=Vx-n=0 onddh,
90(0"%‘) = (100(1')’ Q/J(Oaw) = 1/’0(35) and X(O,ZE) = XO(‘T) T €,

La(Q1,1)
d
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Now we apply the Holder continuity result to (B.8) (see e.g. Theorem 1.3, p. 43 in [14]), we
deduce

(B.9) 0,1, x € C2*(Q1,7) for some 0 < a < 1.
Herein we have used that ¢, ), x, and Vi, Vi), Vx are bounded because of (B.3) and (B.7).

Observe that (@,1, %) = <(d11 (/Q godx)—i—w)go, (d11 (/Q <pdac) +w)w,(d11 (/Q godm) +w)x>

satisfies the following system

(B.10)
09 — (d11 (/Q <pdac) +w)Ap = (d13 (/

2 dl‘) +’LU)F1 (:L'a ®, 1/% X C)
Ql

w0y (wrdn ([ pdr)) i Qur,
0,51/; — (dn (/Q godm) —l—w)Aiﬁ = (dn (/Q <pdac) +w)Fa(z, 0,9, X, ¢)
+10 (w + d11 (/Q gad:c)) in Q1,1,

@ o) +u) Py, 0,1, X, )

+x0% (w +di1 (/Q @dz)) in Q1,r,

1

1

B — (du(/Q

Vg n=Vi.n=Vy n=0 ond,
50.2) = (du (| eodo) +un(e)eo(z), 9(0.2) = ([

Q 931

and x(0,z) = (d11 (/Q ©o dm) +wo(x))xo(x), T € Q.

<pdac) +w)Ax = (d11 (/

1 Q1

0 d )+ (@) o (@),

Therefore from the definition of @ (recall that @ = dq1 ( /

@dz)w + w? ), (B.3) and (B.6), we
931

deduce

(B.11) HwHqu,l(QLT) < C, for all 3 < g < +oo,

for some constant C' > 0. In particular, we have dyw € L9(Q1,r) for all 1 < ¢ < 4+o00. Using this,

w E C%ﬂ(QTj), (dll(/Q godx)—l—w)Fl(x,(p,z/J,x,c) + <p0t(w + du(/ @dm)))é Lq(QTj),

Q

<d11 (/Q gadx)+w)F2(x,<p,1/),x,c)+7,/}8t(w+d11 (/Q gpdx)))e LYQ17), <d11 (/Q gpdx)+w)

F3(1'55071/)7Xac)+X8t(w+dll(/

wdz))) € LYQ;,r) and Lemma B.1, we get
931

(B.12) 12l cury + [,

+ %] 1121 < C, for all 3 < g < o0,
7 (Q1,1) ||XHWq (Q1.1) q

for some constant C' > 0.

Next we use the definition of (, 1, and ¥ (recall that (@, 1, X) = ((dn (/ ® dx) +w)e, (d11 (/ © dx) +w)p,
Q1 (95

(d11 (/ gpd:c) +w)x> to deduce from (B.3), (B.11), (B.12) and the Sobolev embedding theorem
Q

for parabolic equation (see Lemma 3.3, p. 80 in [21])

(B.13) w1, x € CIEJ’HP(QLT) for any 0 < p < 1.
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Exploiting (B.7) and (B.13), and using the Schauder estimate (see Theorem 5.3, p. 320-321 in
[21]) applied to (B.5), we deduce

w e C¥’2+9(Q17T) for some 6 € (0,1).

This implies that (recall that @ = dy; (/ @dm)w + w2)

Qq

w E C#vQJFG(Ql,T) and Qyw € Cg’e(QT,T)-

Then an another application of Schauder estimates to (B.10), we get

(B.14) G0, X € CHQuy).
Finally, we use the definition of (g, W, X) to deduce from (B.14)
(B.15) ., x € CFHOQu ).

Finally the solution (p, ), x) exists globally in time. Reasoning along the same lines for (¢, ¥, x)
yields:

(u,v,w) € CQTH’HG([O, +00) x Oz, IR?).
This concludes the proof of Theorem 2.2.
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