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Université Victor Segalen Bordeaux 2,

F-33076 Bordeaux Cedex, France

mostafa
−
bendahmane@yahoo.fr

Michel Langlais
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Universidad de Concepción,

Concepción - Chile

mauricio@ing-mat.udec.cl

Abstract

In this paper, we are concerned with a finite volume method for a model with cross-diffusion
of the indirect transmission of an epidemic disease between two spatially distributed host popu-
lations having non-coincident spatial domains, transmission occurring through a contaminated
environment. The mobility of each class is assumed to be influenced by the gradient of the other
classes. We propose a Finite Volume scheme and proved the well-posedness, nonnegativity and
convergence of the discrete solution. The convergence proof is based on deriving a series of a
priori estimates and by using a general Lp compactness criterion. Additionally, we address the
questions of existence of weak solutions and existence and uniqueness of classical solution by using,
respectively, a regularization method and an interpolation results between Banach spaces. The
proofs of these results are given in the Appendix. Finally, the numerical scheme is illustrated by
some examples.

Keywords : reaction-diffusion system, nonlocal cross-diffusion, weak solution, classical solution,
finite volume scheme, discrete compactness.
AMS Subject Classifications: 35K57, 35M10, 35A05

1. Introduction

In recent times there has been much activity concerning the development and analysis of
reaction-diffusion systems with cross-diffusion, see for more details Levin and Segel, [24], Okubo
[30], Mimura and Murray [28], Mimura and Kawasaki [27], Mimura and Yamaguti [29], Galiano
et al [19, 20], Bendahmane et al [5, 10] (see also [6, 8, 9, 11]), and many other authors.
This paper is devoted to the mathematical analysis of indirectly transmitted diseases with cross-
diffusion. We assume that a disease is transmitted between two host populations distributed over
non-coincident spatial domains, transmission occurring through a contaminated environment.
We assume that there are two independent host populations, H1 and H2, spatially distributed
over two spatial domains, Ω1 and Ω2 in IR3, Ω1∩Ω2 6= ∅. Each population is subdivided into three
subclasses, susceptibles, infectives and recovered. The susceptible class consists of individuals who
are capable of becoming infected and the infective class consists of individuals who have contracted
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the disease and are capable of transmitting it. Susceptible individuals in the host population H1

can contract the disease from cross contacts with infected hosts from H1 or with the environment.
Individuals in the host population H2 are infected by contact with the environment but there is
neither cross infection from infected hosts from H2 nor crisscross infection with H1.

Our state variables (ϕ(t, x), ψ(t, x), χ(t, x)) represent population densities of the subclasses of
susceptible, infective and recovered individuals from the total population H1 = ϕ + ψ + χ while
(u(t, x), v(t, x), w(t, x)) represent population densities of the susceptible, infective and recovered
subclasses of the total population H2 = u + v + w at time t and position x. The variable c(x, t),
represents the proportion of contaminated habitat or environment. The first population will
follow a logistic dynamic with a spatially dependent birth-rate, b(x), identical in each subclass,
offspring being susceptible at birth because the disease is assumed to be benign in H1. A spatially
and density dependent mortality rate, m(x) + k(x)H1, is considered allowing a spatially variable
carrying capacity. Let 1/λi be the duration of the infective stage in population Hi, i = 1, 2. A
fixed proportion 0 ≤ w1 ≤ 1 of infective individuals from H1 become permanently immune, a
proportion 0 ≤ 1− w1 ≤ 1 reentering the susceptible class.

We assume also that the disease can be lethal in the second host population with a fixed survival
rate, 0 ≤ ε ≤ 1. In the system (1.2)-(1.3), dij : IR → IR is a continuous function satisfying: there
exist constants Mij , C > 0 such that for i = 1, 2 and j = 1, 2, 3,

(1.1) Mij ≤ dij and |dij(I1)− dij(I2)| ≤ C |I1 − I2| for all I1, I2 ∈ IR.

A prototype of a nonlinear system that governs our model is,

(1.2)



























































∂tϕ− d11

(

∫

Ω1

ϕdx
)

∆ϕ− div
(

(k11ϕ+ ψ + χ)∇ϕ+ ϕ∇ψ + ϕ∇χ
)

= F1(x, ϕ, ψ, χ, c),

∂tψ − d12

(

∫

Ω1

ψ dx
)

∆ψ − div
(

ψ∇ϕ+ (ϕ+ k12ψ + χ)∇ψ + ψ∇χ
)

= F2(x, ϕ, ψ, χ, c),

∂tχ− d13

(

∫

Ω1

χdx
)

∆χ− div
(

χ∇ϕ+ χ∇ψ + (ϕ+ ψ + k13χ)∇χ
)

= F3(x, ϕ, ψ, χ, c),

in Q1,T = (0, T )× Ω1 the time-space cylinder,

(1.3)



























































∂tu− d21

(

∫

Ω2

u dx
)

∆u− div
(

(k21u+ v + w)∇u + u∇v + u∇w
)

= G1(x, u, v, w, c),

∂tv − d22

(

∫

Ω2

v dx
)

∆v − div
(

v∇u + (u+ k22v + w)∇v + v∇w
)

= G2(x, u, v, w, c),

∂tw − d23

(

∫

Ω2

w dx
)

∆w − div
(

w∇u + w∇v + (u+ v + k23w)∇w
)

= G3(x, u, v, w, c),

in Q2,T = (0, T )× Ω2, and

(1.4) ∂tc = K(x, ψ, v, c),

in QT = (Ω1 ∪ Ω2) × (0, T ). Systems (1.2) and (1.3) are supplemented with no-flux boundary
conditions:

(1.5)































(

d11

(

∫

Ω1

ϕdx
)

∇ϕ+ (k11ϕ+ ψ + χ)∇ϕ+ ϕ∇ψ + ϕ∇χ
)

·η1 = 0,

(

d12

(

∫

Ω1

ψ dx
)

∇ψ + ψ∇ϕ+ (ϕ+ k12ψ + χ)∇ψ + ψ∇χ
)

·η1 = 0,

(

d13

(

∫

Ω1

χdx
)

∇χ+ χ∇ϕ+ χ∇ψ + (ϕ+ ψ + k13χ
)

·η1 = 0,
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on (0, T )× ∂Ω1,

(1.6)































(

d21

(

∫

Ω2

u dx
)

∇u+ (k21u+ v + w)∇u + u∇v + u∇w
)

·η2 = 0,

(

d22

(

∫

Ω2

v dx
)

∇v + v∇u+ (u+ k22v + w)∇v + v∇w
)

·η2 = 0,

(

d23

(

∫

Ω2

w dx
)

∇w + w∇u+ w∇v + (u+ v + k23w
)

·η2 = 0,

on (0, T ) × ∂Ω2, ηi being the outer unit normal to Ωi along its boundary ∂Ωi for i = 1, 2, and
with nonnegative initial data:

(1.7) ξ(0, x) = ξ0(x) ≥ 0, ξ = ϕ, ψ, χ, u, v, w, c,

on their respective spatial domains of definition: Ω1 for (ϕ, ψ, χ), Ω2 for (u, v, w) and Ω1 ∪Ω2 for
c, 0 ≤ c0(x) ≤ 1. Herein,
(1.8)


































































F1(x, ϕ, ψ, χ, c) = −σ11(x)
ϕψ

H1
− σ31(x)cϕ + (1− w1)λ1ψ + b(x)H1 − (m(x) + k(x)H1)ϕ,

F2(x, ϕ, ψ, χ, c) = σ11(x)
ϕψ

H1
+ σ31(x)cϕ − λ1ψ − (m(x) + k(x)H1)ψ,

F3(x, ϕ, ψ, χ, c) = w1λ1ψ − (m(x) + k(x)H1)χ,

G1(x, u, v, w, c) = −σ32(x)cu,
G2(x, u, v, w, c) = σ32(x)cu − λ2v,

G3(x, u, v, w, c) = ǫλ2v,

K(x, ψ, v, c) = σ13(x)(1 − c)ψ̃ + σ23(x)(1 − c)ṽ − δ(x)c,

H1 = ϕ+ ψ + χ;

where ψ̃ and ṽ, are the prolongation by zero of ψ and v, on Ω1 and Ω2, respectively.
In the above model we assume that individuals move from a higher to lower concentration

region. Cross-diffusion expresses the population fluxes of one species due to the presence of the
other species. Positive cross-diffusion term denotes one species tends to move in the direction of
lower concentration of another species. The dynamics of interacting population with self and cross-
diffusion are investigated by several researchers (see [34, 25, 19, 22] and the references therein).

The most interesting and real cases for this model are in dimension 3, but in 2-dimension it
also has a realistic interpretation.
We want to mention that in (1.2)-(1.3), the diffusion rates dij > 0 are supposed to depend on the
whole of each population in the domain rather than on the local density for i = 1, 2 and j = 1, 2, 3.
This means that the diffusion of individuals is guided by the global state of the population in the
medium. For instance, if we want to model species having the tendency to leave crowded zones,
a natural assumption would be to assume that dij is an increasing function of its argument. On
the other hand, if we are dealing with species attracted by the growing population in, one will
suppose that the nonlocal diffusion dij decreases.
Note that, the parabolic (and elliptic) equations with nonlocal diffusion terms has already been
studied from a theoretical point of view by several authors. First, in 1997, M. Chipot and B.
Lovat [13] studied the existence and uniqueness of the solutions for a scalar parabolic equation
with a nonlocal diffusion term. Existence-uniqueness and long time behavior for other class of
nonlocal nonlinear parabolic equations and systems are studied in [1, 12, 31]. In passing we want
to mention that when cross-diffusion is ignored, this model is similar to this in [18].

For technical reasons we assume that the coefficients kij satisfy

(1.9) kij > 1 for i = 1, 2, j = 1, 2, 3,

this assumption will be used to prove the convergence of the numerical solution of the scheme to
a weak solution.

A major difficulty for the analysis of the system (1.2)-(1.4) is the strong coupling in the highest
derivatives. Note that standard parabolic theory is not directly aplicable to the reaction-diffusion
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system (1.2)-(1.4) due to the cross-diffusion terms. We point out that our problem (1.2)-(1.4) is
strongly nonlinear and so no maximum principle applies.

2. Weak and classical solutions

Before stating our results concerning the weak and the classical solutions, we collect some
preliminary material, including relevant notations and conditions imposed on the data of our
problem. Let Ωi be a bounded, open subsets of IR3 with a smooth boundary ∂Ωi; ηi is the unit
outward normal to Ωi on ∂Ωi, for i = 1, 2. Next, |Ωi| is the Lebesgue measure of Ωi for i = 1, 2.
We denote by H1(Ωi) the Sobolev space of functions u : Ωi → IR for which u ∈ L2(Ωi) and
∇u ∈ L2(Ωi; IR

3) for i = 1, 2. For 1 ≤ p ≤ +∞, ‖ · ‖Lp(Ωi) is the usual norm in Lp(Ωi) for i = 1, 2;
then

Lp
+(Ωi) = {u : Ωi −→ IR+ measurable and

∫

Ωi

|u(x)|pdx < +∞},

L∞
+ (Ωi) = {u : Ωi −→ IR+ measurable and sup

x∈Ωi

|u(x)| < +∞}.

If X is a Banach space, a < b and 1 ≤ p ≤ +∞, Lp(a, b;X) denotes the space of all measurable
functions u : (a, b) −→ X such that ‖ u(·) ‖X belongs to Lp(a, b).

Next T is a positive number and

Qi,t = Ωi × (0, t), Σi,t = ∂Ωi × (0, t) and Qt = (0, T )× (Ω1 ∪Ω2),

for i = 1, 2 and for 0 < t ≤ T .
Our basic requirements are the following

σ13, σ23, δ ∈ L∞
+ (QT ),(2.1)

m < b and b,m, k, σi1 ∈ L∞
+ (Q1,T ), for i = 1, 3,(2.2)

σ32 ∈ L∞
+ (Q2,T ).(2.3)

Now we define what we mean by weak solutions of the system (1.2)-(1.4). We also supply our
main existence results.

Definition 2.1. A weak solution of (1.2)-(1.4) is a set of nonnegative functions (ϕ, ψ, χ), (u, v, w)
and c such that,

c ∈ C([0, T ], L2(Ω1 ∪Ω2)), 0 ≤ c(t, x) ≤ 1 a.e. in QT ,
(ϕ, ψ, χ) ∈ L2(0, T ;H1(Ω1, IR

3)), (u, v, w) ∈ L2(0, T ;H1(Ω2, IR
3)),

(∂tϕ, ∂tψ, ∂tχ) ∈ L2(0, T ; (W 1,∞(Ω1, IR
3))∗) and (∂tu, ∂tv, ∂tw) ∈ L2(0, T ; (W 1,∞(Ω2, IR

3))∗),
ξ(0) = ξ0 a.e. in Ω1, Θ(0) = Θ0 a.e. in Ω2 and c(0) = c0 a.e. in Ω1 ∪Ω2, for ξ = (ϕ, ψ, χ)
and Θ = (u, v, w), and satisfying
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(2.4)
∫ T

0

〈∂tϕ, φ1〉1 dt+
∫ ∫

Q1,T

(

d11

(

∫

Ω1

ϕdx
)

∇ϕ+ (k11ϕ+ ψ + χ)∇ϕ+ ϕ∇ψ + ϕ∇χ
)

·∇φ1 dx dt

=

∫ ∫

Q1,T

F1(x, ϕ, ψ, χ, c)φ1 dx dt,

∫ T

0

〈∂tψ, φ2〉1 dt+
∫ ∫

Q1,T

(

d12

(

∫

Ω1

ψ dx
)

∇ψ + ψ∇ϕ+ (ϕ+ k12ψ + χ)∇ψ + ψ∇χ
)

·∇φ2 dx dt

=

∫ ∫

Q1,T

F2(x, ϕ, ψ, χ, c)φ2 dx dt,

∫ T

0

〈∂tχ, φ3〉1 dt+
∫ ∫

Q1,T

(

d13

(

∫

Ω1

χdx
)

∇χ+ χ∇ϕ+ χ∇ψ + (ϕ+ ψ + k13χ)∇χ
)

·∇φ2 dx dt

=

∫ ∫

Q1,T

F3(x, ϕ, ψ, χ, c)φ3 dx dt,

∫ T

0

〈∂tu,Θ1〉2 dt+
∫ ∫

Q2,T

(

d21

(

∫

Ω2

u dx
)

∇u + (k21u+ v + w)∇u + u∇v + u∇w
)

·∇Θ1 dx dt

=

∫ ∫

Q2,T

G1(x, u, v, w, c)Θ1 dx dt,

∫ T

0

〈∂tv,Θ2〉2 dt+
∫ ∫

Q2,T

(

d22

(

∫

Ω2

v dx
)

∇v + v∇u+ (u+ k22v + w)∇v + v∇w
)

·∇Θ2 dx dt

=

∫ ∫

Q2,T

G2(x, u, v, w, c)Θ2 dx dt,

∫ T

0

〈∂tw,Θ3〉2 dt+
∫ ∫

Q2,T

(

d23

(

∫

Ω2

w dx
)

∇w + w∇u + w∇v + (u + v + k23w)∇w
)

·∇Θ3 dx dt

=

∫ ∫

Q2,T

G3(x, u, v, w, c)Θ3 dx dt,

−
∫ ∫

QT

c ∂tΓ dx dt−
∫

Ω1∪Ω2

c0(x)Γ(0, x) dx =

∫ ∫

QT

K(x, ψ, v, c)Γ dx dt,

for all φi ∈ L2(0, T ;W 1,∞(Ω1)), Θi ∈ L2(0, T ;W 1,∞(Ω2)) for i = 1, 2, 3, and Γ ∈ D([0, T )× (Ω1∪
Ω2)). Here, 〈·, ·〉i denotes the duality pairing between W 1,∞(Ωi) and (W 1,∞(Ωi))

∗ for i = 1, 2.

Theorem 2.1. Assume conditions (1.9) and (2.1)-(2.3) hold. If (ϕ0, ψ0, χ0) ∈ L2(Ω1, IR
3),

(u0, v0, w0) ∈ L2(Ω2, IR
3) and c0 ∈ L2(Ω1∪Ω2), 0 ≤ c0 ≤ 1, then the problem (1.2)-(1.4) possesses

a weak solution.

To prove Theorem 2.1, we first prove existence of solutions to the approximate problem (A.1)-
(A.3) below by applying the Schauder fixed-point theorem (in an appropriate functional setting).
Then, having proved existence for the aproximate system, the final goal is to send the regularization
parameter ε to zero to fabricate weak solutions of the original systems (1.2)-(1.4). Convergence is
achieved by means of a priori estimates and compactness arguments. The proof of Theorem 2.1
is given in Appendix A.

Note that we have not been able to prove uniqueness of weak solutions because of the presence
of nonlinear lower-order terms (cross-diffusion terms) in our model (1.2)-(1.4).

Let us define

d̃11(t) = d11

(∫

Ωi

ϕ(t, x) dx

)

, d̃12(t) = d12

(∫

Ωi

ψ(t, x) dx

)

, d̃13(t) = d13

(∫

Ωi

χ(t, x) dx

)

, and,

d̃21(t) = d21

(∫

Ωi

u(t, x) dx

)

, d̃22(t) = d22

(∫

Ωi

v(t, x) dx

)

, d̃23(t) = d23

(∫

Ωi

w(t, x) dx

)

. Con-

cerning global existence of classical solutions, the second main result is summarized in the following
theorem.
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Theorem 2.2. (Strong solutions) Assume that d̃11(t) = d̃12(t) = d̃13(t), d̃21(t) = d̃22(t) = d̃23(t)
for a.e. t ∈ (0, T ), kij = 2 for i = 1, 2, j = 1, 2, 3, and (2.1)-(2.3) hold. Let (ϕ0, ψ0, χ0) ∈
C2+θ(Ω1, IR

3) and (u0, v0, w0) ∈ C2+θ(Ω2, IR
3) for some θ ∈ (0, 1), satisfying, ∇ϕ0 ·η1 = ∇ψ0 ·η1 =

∇χ0 · η1 = 0 on ∂Ω1 and ∇u0 · η2 = ∇v0 · η2 = ∇w0 · η2 = 0 on ∂Ω2. Then the system (1.2)-(1.4)

has a unique, classical, global nonnegative solution (ϕ, ψ, χ) ∈ C
2+θ
2

,2+θ([0,+∞) × Ω1, IR
3) and

(u, v, w) ∈ C
2+θ
2

,2+θ([0,+∞)× Ω2, IR
3). Furthermore, there are constants C1, C2 > 0 (dependent

upon the initial data and the coefficients) such that,

0 ≤ ϕ(t, x), ψ(t, x), χ(t, x) ≤ C1 for all x ∈ Ω1 and t > 0,

0 ≤ u(t, x), v(t, x), w(t, x) ≤ C2 for all x ∈ Ω2 and t > 0.
(2.5)

The proof of Theorem 2.2 is based in a series of a priori estimates of the solutions in Banach
spaces, especially the boundness of the solutions in L∞, and then we apply the Sobolev embedding
and standard regularity results of parabolic equations (see e.g. [14, 21]). Appendix B contains the
proof of Theorem 2.2.

The plan of the paper is as follows: In Section 3, we propose a Finite Volume Scheme. We
prove the existence and convergence of the discrete solution in Section 4. Finally, in Section 5 we
give some numerical examples.

3. Finite Volume Approximation

3.1. Admissible mesh. In this work we assume that Ωi ⊂ IRd, for i = 1, 2, d = 2 (respectively,
d = 3) is an open bounded polygonal (resp., polyhedral) connected domain with boundary ∂Ωi for
i = 1, 2. We consider a family Ti,h of admissible meshes of the domain Ωi, i = 1, 2 consisting of
disjoint open and convex polygons (resp., polyhedra) called control volumes and Th is the union
of T1,h and T2,h (Th = T1,h ∪ T2,h). The parameter h has the sense of an upper bound for the
maximum diameter of the control volumes in Ti,h, i = 1, 2. Whenever Ti,h, i = 1, 2 is fixed, we
will drop the subscript h in the notation. Of course, the mesh should be admissible in the sense
of [15].
A generic volume in Ti,h is denoted by Ki, i = 1, 2. For all Ki ∈ Ti,h, we denote by |Ki| the
d-dimensional Lebesgue measure of Ki. For a given finite volume Ki, we denote by N(Ki) the
set of neighbors of Ki which have a common interface with Ki; a generic neighbor of Ki is often
denoted by Li. For all Li ∈ N(Ki), we denote by σKi,Li

the interface between Ki and Li; we
denote by ηKi,Li

the unit normal vector to σKi,Li
outward to Ki. We have ηLi,Ki

= −ηKi,Li
. For

an interface σKi,Li
, |σKi,Li

| will denote its (d− 1)-dimensional measure, i = 1, 2.
By saying that Ti,h is admissible, we mean that there exists a family (xKi

)Ki∈Ti,h
such that the

straight line xKi
xLi

is orthogonal to the interface σKi,Li
. The point xKi

is referred to as the
center of Ki. In the case where Ti,h is a simplicial mesh of Ωi (a triangulation, in dimension
d = 2), one takes for xKi

the center of the circumscribed ball of Ki. We also require that
ηKi,Li

· (xLi
−xKi

) > 0 (in the case of simplicial meshes, this restriction amounts to the Delaunay
condition, see e.g. Ref. [15]). The “diamond” constructed from the neighbor centers xKi

, xLi
and

the interface σKi,Li
is denoted by TKi,Li

; e.g. in the case xKi
∈ Ki, xLi

∈ Li, TKi,Li
is the convex

hull of xKi
,xLi

and σKi,Li
). We have Ωi = ∪Ki∈Ti,h

(

∪Li∈N(Ki)TKi,Li

)

, i = 1, 2.

We require local regularity restrictions on the family of meshes Ti,h; namely, for i = 1, 2,

(3.1) ∃γ > 0 ∀h ∀Ki ∈ Ti,h ∀Li ∈ N(Ki) diam (Ki) + diam (Li) ≤ γdKi,Li
,

(3.2) ∃γ > 0 ∀h ∀Ki ∈ Ti,h ∀Li ∈ N(Ki) |σK,L|dK,L ≤ γ |K|.
Herein, dKi,Li

is the distance between xKi
and xLi

for i = 1, 2.
A discrete function on the mesh Ti,h is a set (wKi

)Ki∈Ti,h
for i = 1, 2. Whenever convenient, we

identify it with the piecewise constant function wi,h on Ωi such that wi,h|Ki
= wKi

. Finally, the
discrete gradient ∇hwi,h of a constant per control volume function wi,h is defined as the constant

per diamond TKi,Li
function, IRd-valued, with the values

(3.3)
(

∇hwi,h

)∣

∣

∣

TKi,Li

= ∇Ki,Li
wi,h := d

wLi
− wKi

dKi,Li

ηKi,Li
for i = 1, 2.
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Remark 3.1. Because we consider no flux boundary condition, we do not need to distinguish
between interior and exterior control volumes; only inner interfaces between volumes are needed
in order to formulate the scheme.

3.2. Approximation of the nonlocal cross-diffusion model. To discretize (1.2-1.8), we choose
an admissible discretization of Qi,T consisting of an admissible mesh Ti,h of Ωi and of a time step
size ∆th > 0; both ∆th and the size maxKi∈Ti,h

diam(Ki) tend to zero as h→ 0. We define Nh > 0
as the smallest integer such that (Nh + 1)∆th ≥ T , and set tn := n∆th for n ∈ {0, . . . , Nh}.
Whenever ∆th is fixed, we will drop the subscript h in the notation.

Furthermore, we denote for i = 1, 2, 3,

Fn+1
i,K1

= Fi(x
n+1+

K1
, ϕn+1+

K1
, ψn+1+

K1
, χn+1+

K1
, cn+1+

K ),

Gn+1
i,K2

= Gi(x
n+1+

K2
, un+1+

K2
, vn+1+

K2
, wn+1+

K2
, cn+1+

K ),

Kn+1
K = K(xn+1+

K , ψn+1+

K , vn+1+

K , cn+1+

K ),

(3.4)

where Kj ∈ Ωj for j = 1, 2, and K ∈ Ω1 ∪ Ω2.

To approximate the cross-diffusive terms, we introduce the terms Mn+1
1ij,K1,L1

and Mn+1
2ij,K2,L2

.

Herein, we make the choice

Mn+1
1ij,K1,L1

:= M1ij

(

min {ϕn+1+

K1
, ϕn+1+

L1
},min{ψn+1+

K1
, ψn+1+

L1
},min{χn+1+

K1
, χn+1+

L1
}
)

(3.5)

Mn+1
2ij,K2,L2

:= M2ij

(

min {un+1
K2

+
, un+1

L2

+},min{vn+1
K2

+
, vn+1

L2

+},min{wn+1
K2

+
, wn+1

L2

+}
)

(3.6)

where φn+1+

j = max(0, φn+1
j ) for φ = ϕ, ψ, χ, u, v, w.

Remark 3.2. Note that the choice of the minimum in the discretization of Mn+1
1ij,K1,L1

and

Mn+1
2ij,K2,L2

for i 6= j and i, j = 1, 2, 3, is imposed to justify the non-negativity of our discrete

solution. Moreover, the choice of the diagonal terms Mn+1
1ii,K1,L1

and Mn+1
2ii,K2,L2

for i = 1, 2, 3, is

made in order to preserve, at the discrete level, the structure of the cross-diffusion matrix M1 and
M2.

The discrete initial conditions are given by:

ϕ0
K1

=
1

|K1|

∫

K1

ϕ0(x) dx, ψ0
K1

=
1

|K1|

∫

K1

ψ0(x) dx, χ0
K1

=
1

|K1|

∫

K1

χ0(x) dx,(3.7)

u0K2
=

1

|K2|

∫

K2

u0(x) dx, v0K2
=

1

|K2|

∫

K2

v0(x) dx, w0
K2

=
1

|K2|

∫

K2

w0(x) dx,(3.8)

c0K =
1

|K|

∫

K

c0(x) dx,(3.9)

We use the following implicit finite volume scheme to advance the numerical solution from tn

to tn+1 = tn + ∆t,:
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Determine (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h
, (un+1

K2
, vn+1

K2
, wn+1

K2
)K2∈T2,h

and (cn+1
K )K∈Th

such that

|K1|
ϕn+1
K1

− ϕn
K1

∆t
− d11





∑

K10
∈T1,h

|K10 |ϕn
K10





∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(ϕn+1
L1

− ϕn+1
K1

)

−
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
111,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+ Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)
]

= |K1|Fn+1
1,K1

,

(3.10)

|K1|
ψn+1
K1

− ψn
K1

∆t
− d12





∑

K10
∈T1,h

|K10 |ψn
K10





∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(ψn+1
L1

− ψn+1
K1

)

−
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
121,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
122,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+ Mn+1
123,K1,L1

(χn+1
L1

− χn+1
K1

)
]

= |K1|Fn+1
2,K1

,

(3.11)

|K1|
χn+1
K1

− χn
K1

∆t
− d13





∑

K10
∈T1,h

|K10 |χn
K10





∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(χn+1
L1

− χn+1
K1

)

−
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
131,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
132,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+ Mn+1
133,K1,L1

(χn+1
L1

− χn+1
K1

)
]

= |K1|Fn+1
3,K1

,

(3.12)

|K2|
un+1
K2

− unK2

∆t
− d21





∑

K20
∈T2,h

|K20 |unK20





∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

(un+1
L2

− un+1
K2

)

−
∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

[

Mn+1
211,K2,L2

(un+1
L2

− un+1
K2

) +Mn+1
212,K2,L2

(vn+1
L2

− vn+1
K2

)

+ Mn+1
213,K2,L2

(wn+1
L2

− wn+1
K2

)
]

= |K2|Gn+1
1,K2

,

(3.13)

|K2|
vn+1
K2

− vnK2

∆t
− d22





∑

K20
∈T2,h

|K20 |vnK20





∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

(vn+1
L2

− vn+1
K2

)

−
∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

[

Mn+1
221,K2,L2

(un+1
L2

− un+1
K2

) +Mn+1
222,K2,L2

(vn+1
L2

− vn+1
K2

)

+ Mn+1
223,K2,L2

(wn+1
L2

− wn+1
K2

)
]

= |K2|Gn+1
2,K2

,

(3.14)

|K2|
wn+1

K2
− wn

K2

∆t
− d23





∑

K20
∈T2,h

|K20 |wn
K2





∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

(wn+1
L2

− wn+1
K2

)

−
∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

[

Mn+1
231,K2,L2

(un+1
L2

− un+1
K2

) +Mn+1
232,K2,L2

(vn+1
L2

− vn+1
K2

)

+ Mn+1
233,K2,L2

(wn+1
L2

− wn+1
K2

)
]

= |K2|Gn+1
3,K2

,

(3.15)

|K|c
n+1
K − cnK

∆t
= |K|Kn+1

K ,(3.16)
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for all Ki ∈ Ti,h, i = 1, 2 and n ∈ [0, Nh]. Herein

Mn+1
111,K1,L1

:= k11 min {ϕn+1
K1

+
, ϕn+1

L1

+}+min {ψn+1
K1

+
, ψn+1

L1

+}+min {χn+1
K1

+
, χn+1

L1

+},

Mn+1
122,K1,L1

:= min {ϕn+1
K1

+
, ϕn+1

L

+}+ k12 min {ψn+1
K1

+
, ψn+1

L1

+}+min {χn+1
K1

+
, χn+1

L1

+},

Mn+1
133,K1,L1

:= min {ϕn+1
K1

+
, ϕn+1

L1

+}+min {ψn+1
K1

+
, ψn+1

L1

+}+ k13 min {χn+1
K1

+
, χn+1

L1

+},

Mn+1
112,K1,L1

= Mn+1
113,K1,L1

:= min {ϕn+1
K1

+
, ϕn+1

L1

+},

Mn+1
121,K1,L1

= Mn+1
123,K1,L1

:= min {ψn+1
K1

+
, ψn+1

L1

+},

Mn+1
131,K1,L1

= Mn+1
132,K1,L1

:= min {χn+1
K1

+
, χn+1

L1

+},

(3.17)

Mn+1
211,K2,L2

:= k21 min {un+1
K2

+
un+1
L2

+}+min {vn+1
K2

+
, vn+1

L2

+}+min {wn+1
K2

+
, wn+1

L2

+},

Mn+1
222,K2,L2

:= min {un+1
K2

+
, un+1

L2

+}+ k22 min {vn+1
K2

+
, vn+1

L2

+}+min {wn+1
K2

+
, wn+1

L2

+},

Mn+1
233,K2,L2

:= min {un+1
K2

+
, un+1

L2

+}+min {vn+1
K2

+
, vn+1

L2

+}+ k23 min {wn+1
K2

+
, wn+1

L2

+},

Mn+1
212,K2,L2

= Mn+1
213,K2,L2

:= min {un+1
K2

+
, un+1

L2

+},

Mn+1
221,K2,L2

= Mn+1
223,K2,L2

:= min {vn+1
K2

+
, vn+1

L2

+},

Mn+1
231,K2,L2

= Mn+1
232,K2,L2

:= min {wn+1
K2

+
, wn+1

L2

+},

(3.18)

Note that the boundary condition is taken into account implicitly. Indeed, the parts of ∂Ki that
lie in ∂Ωi do not contribute to the

∑

Li∈N(Ki)
terms, which means that the flux zero is imposed

on the external edges of the mesh.

The set of values (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh] , (un+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and

(cn+1
K )K∈Th,n∈[0,Nh] satisfying (3.7) - (3.16) will be called a discrete solution.

The existence of solutions to the our discrete scheme is given in the following theorem.

Theorem 3.1. Assume that (ϕ0, ψ0, χ0) ∈ (L2(Ω1, IR
3))+, (u0, v0, w0) ∈ (L2(Ω2, IR

3))+ and c0 ∈
(L2(Ω1∪Ω2))

+ satisfying 0 ≤ c0 ≤ 1. Let (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh] , (u
n+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh]

and (cn+1
K )K∈Th,n∈[0,Nh] be the discrete solution generated by the finite volume scheme (3.7)-(3.16)

on a family of meshes satisfying (3.1), (3.2). Then, as h → 0, the discrete solution converges
(along a subsequence) a.e. on Ωi,T to a limit (ϕ, ψ, χ), (u, v, w) and c which is a weak solution of
(1.2)-(1.8).

4. A priori estimates and existence

4.1. Nonnegativity. We have the following lemma.

Lemma 4.1. Let (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh], (u
n+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and

(cn+1
K )K∈Th,n∈[0,Nh] be a solution of the finite volume scheme (3.7)-(3.16). Then,

(ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh], (u
n+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and (cn+1
K )K∈Th,n∈[0,Nh] are

nonnegative. Moreover cn+1
K ≤ 1 for all K ∈ Th and n ∈ [0, Nh].

Proof. We prove the nonnegativity by induction, that for all n ∈ [0, Nh], min {ϕn+1
K1

}
K1∈T1,h

≥ 0.

The proof for the other components is analogous.
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For n ≥ 0, we fix K1 such that ϕn+1
K1

= min {ϕn+1
L1

}
L1∈T1,h

. We multiply equation (3.10) by

−∆tϕn+1
K1

−
to deduce

−|K1|ϕn+1
K1

−
(ϕn+1

K1
− ϕn

K1
) = −d11





∑

K10
∈T1,h

|K10 |ϕn
K10



∆t
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(ϕn+1
L1

− ϕn+1
K1

)ϕn+1
K1

−

− ∆t
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
111,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)

]

ϕn+1
K1

− − ∆t|K1|Fn+1
1,K1

ϕn+1
K1

−
.

(4.1)

Taking into account the non-negativity of Mn+1
111,K1,L1

and by the choice of K1 , we get

∆t
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(

d11





∑

K10
∈T1,h

|K10 |ϕn
K10



+Mn+1
111,K1,L1

)

(ϕn+1
L1

− ϕn+1
K1

)ϕn+1
K1

− ≥ 0.

Moreover, by the choice (3.5) of Mn+1
112,K1,L1

and Mn+1
113,K1,L1

, we obtain

∆t
∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

) +Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)
]

ϕn+1
K1

−
= 0,

Similarly, by the definition of Fn+1
1,K1

we have

Fn+1
1,K1

ϕn+1
K1

−
=

(

−σ11(x)ϕn+1
K1

+
ψn+1
K1

+
/H1

+ − σ31(x)c
n+1
K1

+
ϕn+1
K1

+
+ (1− w1)λ1ψ

n+1
K1

+

+ b(x)H+
1 − (m(x) + k(x)H+

1 )ϕn+1
K1

+

)

ϕn+1
K1

− ≥ 0.

(4.2)

Finally, we use the identity ϕn+1
K1

= (ϕn+1
K1

)+ − (ϕn+1
K1

)− and the nonnegativity of ϕ0
K1

to deduce

from (4.1) and (4.2) that (ϕn+1
K1

)− = 0. By induction in n, we infer that

ϕn+1
L1

≥ 0 for all n ∈ [0, Nh] and L1 ∈ T1,h.

Along the same lines as (ϕn+1
K1

)K1∈T1,h,n∈[0,Nh], we obtain the nonnegativity of the discrete solutions

(ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh], (u
n+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and (cn+1
K )K∈Th,n∈[0,Nh].

Finally, in order to prove (by induction) that cn+1
K ≤ 1, we take K such that cK realizes

max (cn+1
L )L∈T

. Multiplying the equation (3.16) by (cn+1
K − 1)+, with the same arguments as in

the above proof we find that (cn+1
K − 1)+ ≤ 0. �

4.2. A priori estimates. Now, our goal is to establish some a priori (discrete energy) estimates
for the finite volume scheme.

Proposition 4.1. Let (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh], (u
n+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and

(cn+1
K )K∈Th,n∈[0,Nh] be a solution of the finite volume scheme (3.7) - (3.16). Then there exist a con-

stant Ci > 0, (i = 1, . . . , 6), depending on the initial conditions, parameters of the nonlinearities,
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Ωi and T , (i = 1, 2) .

max
[0,Nh]

∑

K1∈T1,h

|K1|
∣

∣ϕn+1
K1

∣

∣

2
+ max

[0,Nh]

∑

K1∈T1,h

|K1|
∣

∣ψn+1
K1

∣

∣

2
+ max

[0,Nh]

∑

K1∈T1,h

|K1|
∣

∣χn+1
K1

∣

∣

2 ≤ C1,

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
∣

∣ϕn+1
K1

∣

∣

3
+

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
∣

∣ψn+1
K1

∣

∣

3
+

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
∣

∣χn+1
K1

∣

∣

3 ≤ C1,

(4.3)

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2
+
∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2

+
∣

∣χn+1
K1

− χn+1
L1

∣

∣

2
)

≤ C2,

(4.4)

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

Mn+1

1K1,L1

(

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2

+
∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2
+
∣

∣χn+1
K1

− χn+1
L1

∣

∣

2
)

≤ C3,

(4.5)

and

max
[0,Nh]

∑

K2∈T2,h

|K2|
∣

∣un+1
K2

∣

∣

2
+ max

[0,Nh]

∑

K2∈T2,h

|K2|
∣

∣vn+1
K2

∣

∣

2
+ max

[0,Nh]

∑

K2∈T2,h

|K2|
∣

∣wn+1
K2

∣

∣

2 ≤ C4,(4.6)

Nh
∑

n=0

∆t
∑

K2∈T2,h

∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

(

∣

∣un+1
K2

− un+1
L2

∣

∣

2
+
∣

∣vn+1
K2

− vn+1
L2

∣

∣

2

+
∣

∣wn+1
K2

− wn+1
L2

∣

∣

2
)

≤ C5,

(4.7)

and

Nh
∑

n=0

∆t
∑

K2∈T2,h

∑

L2∈N(K2)

|σK2,L2
|

dK2,L2

Mn+1

2K2,L2

(

∣

∣un+1
K2

− un+1
L2

∣

∣

2

+
∣

∣vn+1
K2

− vn+1
L2

∣

∣

2
+
∣

∣wn+1
K2

− wn+1
L2

∣

∣

2
)

≤ C6,

(4.8)

where

Mn+1

1K1,L1
= min {ϕn+1

K1

+
, ϕn+1

L1

+}+min {ψn+1
K1

+
, ψn+1

L1

+}+min {χn+1
K1

+
, χn+1

L1

+},

Mn+1

2K2,L2
= min {un+1

K2

+
, un+1

L2

+}+min {vn+1
K2

+
, vn+1

L2

+}+min {wn+1
K2

+
, wn+1

L2

+}.

Proof. We multiply (3.10), (3.11) and (3.12) by ∆tϕn+1
K1

, ∆tψn+1
K1

and ∆tχn+1
K1

, respectively, and
add together the outcomes. Summing the resulting equation over K1 and n yields

S1 + S2 + S3 + S4 = 0,
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where

S1 =

Nh
∑

n=0

∑

K1∈T1,h

|K1|
(

(ϕn+1
K1

− ϕn
K1

)ϕn+1
K1

+ (ψn+1
K1

− ψn
K1

)ψn+1
K1

+ (χn+1
K1

− χn
K1

)χn+1
K1

)

,

S2 = −
Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

d11

(

∑

K10
∈T1,h

|K10 |ϕn
K10

)

(ϕn+1
L1

− ϕn+1
K1

)ϕn+1
K1

+ d12

(

∑

K10
∈T1,h

|K10 |ψn
K10

)

(ψn+1
L1

− ψn+1
K1

)ψn+1
K1

+ d13

(

∑

K10
∈T1,h

|K10 |χn
K10

)

(χn+1
L1

− χn+1
K1

)χn+1
K1

]

,

S3 = −
Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(

[

Mn+1
111,K1,L1

(ϕn+1
L1

− ϕn+1
K1

)

+Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

) + Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)
]

ϕn+1
K1

+
[

Mn+1
121,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
122,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
123,K1,L1

(χn+1
L1

− χn+1
K1

)
]

ψn+1
K1

+
[

Mn+1
131,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
132,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
133,K1,L1

(χn+1
L1

− χn+1
K1

)
]

χn+1
K1

)

,

S4 = −
Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
(

Fn+1
1,K1

ϕn+1
K1

+ Fn+1
2,K1

ψn+1
K1

+ Fn+1
3,K1

χn+1
K1

)

.

Observe that, using the inequality “a(a− b) ≥ 1
2 (a

2 − b2)”, we obtain

S1 ≥ 1

2

Nh
∑

n=0

∑

K1∈T1,h

|K1|
(

∣

∣ϕn+1
K1

∣

∣

2 −
∣

∣ϕn
K1

∣

∣

2
+
∣

∣ψn+1
K1

∣

∣

2 −
∣

∣ψn
K1

∣

∣

2
+
∣

∣χn+1
K1

∣

∣

2 −
∣

∣χn
K1

∣

∣

2
)

=
1

2

∑

K1∈T1,h

|K1|
(

∣

∣

∣
ϕNh+1
K1

∣

∣

∣

2

−
∣

∣ϕ0
K1

∣

∣

2
+
∣

∣

∣
ψNh+1
K1

∣

∣

∣

2

−
∣

∣ψ0
K1

∣

∣

2
+
∣

∣

∣
χNh+1
K1

∣

∣

∣

2

−
∣

∣χ0
K1

∣

∣

2
)

,

Gathering by edges, we obtain

S2 =

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1





d11

(

∑

K10
∈T1,h

|K10 |ϕn
K10

)

2

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2

+
d12

(

∑

K10
∈T1,h

|K10 |ψn
K10

)

2

∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2

+
d13

(

∑

K10
∈T1,h

|K10 |χn
K10

)

2

∣

∣χn+1
K1

− χn+1
L1

∣

∣

2



 .
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Next, using (A.7) where f+
ε (ϕ), f+

ε (ψ), and f+
ε (χ) are replaced by min {ϕn+1

K1

+
, ϕn+1

L1

+}, min {ψn+1
K1

+
, ψn+1

L1

+}
and min {ψn+1

K1

+
, ψn+1

L1

+} respectively, we deduce

S3 ≥ c

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

Mn+1

1K1,L1

(

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2

+
∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2
+
∣

∣χn+1
K1

− χn+1
L1

∣

∣

2
)

.

Now we use the nonnegativity of ϕn+1
K1

, ψn+1
K1

and χn+1
K1

, and the discrete expressions of F1, F2, F3

to deduce

S4 ≥− C

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
(

∣

∣ϕn+1
K1

∣

∣

2
+
∣

∣ψn+1
K1

∣

∣

2
+
∣

∣χn+1
K1

∣

∣

2
)

+ C′

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
(

∣

∣ϕn+1
K1

∣

∣

3
+
∣

∣ψn+1
K1

∣

∣

3
+
∣

∣χn+1
K1

∣

∣

3
)

,

for some constants C,C′ > 0. Collecting the previous inequalities we obtain

1

2

∑

K1∈T1,h

|K1|
(

∣

∣

∣ϕ
Nh+1
K1

∣

∣

∣

2

−
∣

∣ϕ0
K1

∣

∣

2
+
∣

∣

∣ψ
Nh+1
K1

∣

∣

∣

2

−
∣

∣ψ0
K1

∣

∣

2
+
∣

∣

∣χ
Nh+1
K1

∣

∣

∣

2

−
∣

∣χ0
K1

∣

∣

2
)

+ C′

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
(

∣

∣ϕn+1
K1

∣

∣

3
+
∣

∣ψn+1
K1

∣

∣

3
+
∣

∣χn+1
K1

∣

∣

3
)

+

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1





d11

(

∑

K10
∈T1,h

|K10 |ϕn
K10

)

2

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2

+
d12

(

∑

K10
∈T1,h

|K10 |ψn
K10

)

2

∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2
+
d13

(

∑

K10
∈T1,h

|K10 |χn
K10

)

2

∣

∣χn+1
K1

− χn+1
L1

∣

∣

2





+ c

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

Mn+1

1ij,K,L

(

∣

∣ϕn+1
K1

− ϕn+1
L1

∣

∣

2

+
∣

∣ψn+1
K1

− ψn+1
L1

∣

∣

2
+
∣

∣χn+1
K1

− χn+1
L1

∣

∣

2
)

.

≤ C

Nh
∑

n=0

∆t
∑

K1∈T1,h

|K1|
(

∣

∣ϕn+1
K1

∣

∣

2
+
∣

∣ψn+1
K1

∣

∣

2
+
∣

∣χn+1
K1

∣

∣

2
)

.

(4.9)

By an application of the discrete Gronwall inequality, (4.3) follows from (4.9). Consequently, (4.9)
implies the estimates (4.4)–(4.5). Along the same lines as (ϕn+1

K1
, ψn+1

K1
, χn+1

K1
)K1∈T1,h,n∈[0,Nh], we

obtain the estimates (4.6), (4.7) and (4.8) for the discrete solutions (un+1
K2

, vn+1
K2

, wn+1
K2

). This
concludes the proof of Proposition 4.1. �

4.3. Existence of a solution for the finite volume scheme. The existence of a solution for
the finite volume scheme is given in the following proposition.

Proposition 4.2. Let D1 and D2 be admissible discretizations of Q1,T and Q2,T respectively.

Then, the discrete problem (3.7) - (3.16) admits at least one solution (ϕn+1
K1

, ψn+1
K1

, χn+1
K1

)K1∈T1,h,n∈[0,Nh],

(un+1
K2

, vn+1
K2

, wn+1
K2

)K2∈T2,h,n∈[0,Nh] and (cn+1
K )K∈Th,n∈[0,Nh]

Proof. First we introduce the Hilbert space

Eh = Hh(Ω1)×Hh(Ω1)×Hh(Ω1),
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of triples un+1
h = (ϕn+1

h , ψn+1
h , χn+1

h ) of discrete functions on Ω1. We denote by Hh(Ω1) ⊂ L2(Ω1)
the space of functions which are piecewise constant on each control volume K1. We defined the
norm

∥

∥un+1
h

∥

∥

2

Eh
:=

(

∣

∣ϕn+1
h

∣

∣

2

Hh(Ω1)
+
∣

∣ψn+1
h

∣

∣

2

Hh(Ω1)
+
∣

∣χn+1
h

∣

∣

2

Hh(Ω1)

)

+
(

∥

∥ϕn+1
h

∥

∥

2

L2(Ω1)
+
∥

∥ψn+1
h

∥

∥

2

L2(Ω1)
+
∥

∥χn+1
h

∥

∥

2

L2(Ω1)

)

,

where the discrete seminorm | · |2Hh(Ω1)
of wh ∈ Hh(Ω1) is given by

|wh|2Hh(Ω1)
:=

1

2

∑

K1∈T1,h

∑

L1∈N(K1)

|TK1,L1
|
∣

∣

∣

∣

wL1
−wK1

dK1,L1

∣

∣

∣

∣

2

,

and the L2(Ω1) norm of wh ∈ Hh(Ω1) is given by

‖wh‖2L2(Ω1)
:=

∑

K1∈T1,h

|K1| |wK1
|2.

Let Φh = (ϕ1,h, ϕ2,h, ϕ3,h) ∈ Eh and define the discrete bilinear forms

Bh(u
n+1
h ,Φh) =

∑

K1∈T1,h

|K1| (ϕn+1
K1

ϕ1,K1
+ ψn+1

K1
ϕ2,K1

+ χn+1
K1

ϕ3,K1
),

a1,h(u
n+1
h ,Φh) =

∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1





d11

(

∑

K10
∈T1,h

|K10 |ϕn
K10

)

2
(ϕn+1

L1
− ϕn+1

K1
)(ϕ1,L1

− ϕ1,K1
)

+
d12

(

∑

K10
∈T1,h

|K10 |ψn
K10

)

2
(ψn+1

L1
− ψn+1

K1
)(ϕ2,L1

− ϕ2,K1
)

+
d13

(

∑

K10
∈T1,h

|K10 |χn
K10

)

2
(χn+1

L1
− χn+1

K1
)(ϕ3,L1

− ϕ3,K1
)





Similarly, for given matrices Mn+1
h :=

(

(

Mn+1
1ij,K1,L1

)

1≤i,j≤3

)

K∈Th,L∈N(K)

, define the bilinear

form

a2,h(Mn+1
h (un+1

h )un+1
h ,Φh) =

1

2

∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(

[

Mn+1
111,K1,L1

(ϕn+1
L1

− ϕn+1
K1

)

+Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

) + Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)
]

(ϕn+1
1,L1

− ϕn+1
1,K1

)

+
[

Mn+1
121,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
122,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
123,K1,L1

(χn+1
L1

− χn+1
K1

)
]

(ϕn+1
2,L1

− ϕn+1
2,K1

)

+
[

Mn+1
131,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
132,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
133,K1,L1

(χn+1
L1

− χn+1
K1

)
]

(ϕn+1
3,L1

− ϕn+1
3,K1

)

)

.

Multiplying (3.10), (3.11) and (3.12) by ϕ1,K , ϕ2,K and ϕ3,K , respectively, summing in K ∈ Th,
we get the equation

1

∆t

(

Bh(u
n+1
h ,Φh)−Bh(u

n
h,Φh)

)

+a1,h(u
n+1
h ,Φh) + a2,h(Mn+1

h (un+1
h );un+1

h ,Φh)

+Bh(Rh(u
n+1
h ),Φh) = 0,
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here the entries Mn+1
1ij,K1,L1

of Mn+1
h are defined from un+1

h with the help of formulas (3.5). Fur-

thermore, Rh(u
n+1
h ) := (Fn+1

1,h , Fn+1
2,h , Fn+1

3,h ) with the discrete functions Fn+1
1,h , Fn+1

2,h , Fn+1
3,h defined

from un+1
h by formulas (3.4). It is clear that, un

h being given, there exists a solution un+1
h of the

above equation if and only if there exists a discrete solution of (3.7)-(3.12) at the time step (n+1).
Now we define, by duality, the mapping P from Eh into itself:

∀Φh ∈ Eh [P(un+1
h ),Φh] =

1

∆t
(Bh(u

n+1
h ,Φh)−Bh(u

n
h ,Φh)) + a1,h(u

n+1
h ,Φh)

+ a2,h(Mn+1
h (un+1

h );un+1
h ,Φh) +Bh(Rh(u

n+1
h ),Φh).

Now, using Lemma 4.1, Proposition 4.1, and an application of Young’s inequality to deduce

[P(un+1
h ),un+1

h ] ≥ C
∥

∥un+1
h

∥

∥

2

Eh
− C′

∥

∥un+1
h

∥

∥

Eh
− C′′ ≥ 0 for

∥

∥un+1
h

∥

∥

Eh
large enough,

for some constants C,C′, C′′ > 0. We deduce that

[P(un+1
h ),un+1

h ] > 0 for
∥

∥un+1
h

∥

∥

Eh
large enough.

This implies (see for e.g. [26] and [33]): there exists un+1
h such that

P(un+1
h ) = 0.

Thus un+1
h does exist. Then, we obtain the existence of at least one solution to the scheme un+1

h .

Along the same lines as un+1
h , we obtain the existence of the discrete solutions (un+1

K2
, vn+1

K2
, wn+1

K2
)

and cn+1
K .

�

4.4. Convergence of the scheme. In this section, we prove that the family of discrete solutions
u1,h = (ϕh, ψh, χh) and u2,h = (uh, vh, wh) are relatively compact in L1. We first apply the
following lemma (see the proof of this lemma in Appendix A in [7]):

Lemma 4.2. Let Ω be an open domain in IRd, T > 0, ΩT = (0, T )×Ω. Let (T h)h be an admissible
family of meshes of Ω satisfying the restriction (3.1); let (∆th)h be the associated time steps.

For all h > 0, assume that discrete functions
(

un+1
h

)

n∈[0,Nh]
,
(

fn+1
h

)

n∈[0,Nh]
and discrete

fields
(

~Fn+1
h

)

n∈[0,Nh]
satisfy the discrete evolution equations

(4.10) for n ∈ [0, Nh],
un+1
h − unh

∆t
= divh [ ~Fn+1

h ] + fn+1
h

with a family (u0h)h of initial data. Assume that for all Ω′ ⋐ Ω, there exists a constant M(Ω′)
such that

(4.11)
∑Nh

n=0
∆t
∥

∥

∥un+1
h

∥

∥

∥

L1(Ω′)
+
∑Nh

n=0
∆t
∥

∥

∥ fn+1
h

∥

∥

∥

L1(Ω′)
+
∑Nh

n=0
∆t
∥

∥

∥

~Fn+1
h

∥

∥

∥

L1(Ω′)
≤M(Ω′).

and, moreover,

(4.12)
∑Nh

n=0
∆t
∥

∥

∥∇hu
n+1
h

∥

∥

∥

L1(Ω′)
≤M(Ω′).

Assume that the family (uh0 )h is bounded in L1
loc(Ω). Then there exists a measurable function u

on ΩT such that, along a subsequence,

∑Nh

n=0

∑

K∈Th

un+1
K 11(tn,tn+1]×K −→ u in L1

loc([0, T ]× Ω) as h→ 0.

Denoted by Mh
κ the 3× 3 matrix on Qκ,T with the entries Mh

κij
given by

Mh
κij

:=
1

2

Nh
∑

n=0

∑

Kκ∈Tκ,h

∑

Lκ∈N(Kκ)

Mn+1
κij,Kκ,Lκ

: 11(tn,tn+1]×TKκ,Lκ
for κ = 1, 2.
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Observe that we may consider that the evolution of the first component (ϕn+1
h )n∈[0,Nh] the solution

(3.10) is governed by the system of discrete equations

(4.13)
ϕn+1
K1

− ϕn
K1

∆t
=

1

|K1|
∑

L1∈N(K1)

|σK1,L1
| ~Fn+1

K1,L1
·νK1,L1

+ fn+1
K1

.

Herein,

fn+1
K :=Fn+1

1,K1
,

~Fn+1
K,L :=d11





∑

K10
∈T1,h

|K10 |ϕn
K10





ϕn+1
L1

− ϕn+1
K1

dK1,L1

νK1,L1
+Mn+1

111,K1,L1

ϕn+1
L1

− ϕn+1
K1

dK1,L1

νK1,L1

+Mn+1
112,K1,L1

ψn+1
L1

− ψn+1
K1

dK1,L1

νK1,L1
+Mn+1

113,K1,L1

χn+1
L1

− χn+1
K1

dK1,L1

νK1,L1

≡1

d

[

d11





∑

K10
∈T1,h

|K10 |ϕn
K10



∇K1,L1
ϕn+1
h +Mn+1

111,K1,L1
∇K1,L1

ϕn+1
h

+Mn+1
112,K1,L1

∇K1,L1
ψn+1
h +Mn+1

113,K1,L1
∇K1,L1

χn+1
h

]

.

It is easy to see that equations (4.13) have the form (4.10) required in Lemma 4.2.
Observe that from Lemma 4.1 and Proposition 4.1, the local L1 bounds (4.11) and (4.12) are ve-

rified. Consequently from Lemma 4.2, there exit u1 ∈ (L2(0, T ;H1(Ω1))
3, u2 ∈ (L2(0, T ;H1(Ω2))

3

c ∈ L∞(QT ) and subsequences of u1,h = (ϕh, ψh, χh), u2,h = (uh, vh, wh), ch, not labelled, such
that, as h→ 0,

(i) uκ,h → uκ strongly in (L1(Qκ,T ))
3 and a.e. in Qκ,T ,

(ii) ∇huκ,h −→ ∇uκ weakly in (L2(Qκ,,T ))
3×3,

(iii) Mh
κ∇huκ,h −→ Mκ(uκ)∇uκ weakly in (L1(Qκ,T ))

3×3,

(iv) (Fi(u1,h, ch), Gi(u2,h, ch),K(ψh, vh, ch)) −→ (F (u1, c), G(u2, c),K(ψ, v, c)) strongly

in (L1(Q1,T ))
3, (L1(Q2,T ))

3 and (L1(QT ))
3 repectively,

(v) ch → c strongly in L2(QT ),

(4.14)

for κ = 1, 2 and i = 1, 2, 3.

4.5. Convergence Analysis. Our final goal is to show that the limit functions u1 = (ϕ, ψ, χ),
u2 = (u, v, w) and c constructed in (4.14) constitute a weak solution of our cross-diffusion system.
We start by passing to the limit in (3.10) to get the first equality in Definition 2.1, the arguments for
the passage to the limit in the rest of the equalities (2.4) are entirely similar. Let φ ∈ D([0, T )×Ω1).

Set φnK1
:= φ(tn, xK1

) for all K1 ∈ T1,h and n ∈ [0, Nh + 1]. We multiply the discrete equation

(3.10) by ∆tφn+1
K . Summing the result over K1 ∈ T1,h and n ∈ [0, Nh], yields

Sh
1 + Sh

2 + Sh
3 = Sh

4 ,
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where

Sh
1 =

Nh
∑

n=0

∑

K1∈T1,h

|K1| (ϕn+1
K1

− ϕn
K1

)φn+1
K1

,

Sh
2 =−

Nh
∑

n=0

∆t d11





∑

K10
∈T1,h

|K10 |ϕn
K10





∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

(ϕn+1
L1

− ϕn+1
K1

)φn+1
K1

,

Sh
3 =−

Nh
∑

n=0

∆t
∑

K1∈T1,h

∑

L1∈N(K1)

|σK1,L1
|

dK1,L1

[

Mn+1
111,K1,L1

(ϕn+1
L1

− ϕn+1
K1

) +Mn+1
112,K1,L1

(ψn+1
L1

− ψn+1
K1

)

+Mn+1
113,K1,L1

(χn+1
L1

− χn+1
K1

)

]

φn+1
K1

,

Sh
4 =

Nh
∑

n=0

∆t
∑

K∈T1,h

|K1|Fn+1
1,K1

φn+1
K1

.

An integration-by-parts and keeping in mind that φNh+1
K = 0 for all K1 ∈ T1,h, we get from (4.14)

(i) the convergence (along a subsequence)

lim
h→0

Sh
1 = −

∫ T

0

∫

Ω1

ϕ∂tφ−
∫

Ω1

ϕ0φ(0, ·).

Gathering by edges and using the definition (3.3) of ∇h, we have

Sh
2 =

1

2

Nh
∑

n=0

∆td11





∑

K10
∈T1,h

|K10 |ϕn
K10



×

∑

K1∈T1,h

∑

L1∈N(K1)

1

d
|σK1,L1

| dK1,L1
d
ϕn+1
L1

− ϕn+1
K1

dK1,L1

φn+1
L1

− φn+1
K1

dK1,L1

=
1

2

Nh
∑

n=0

∆td11





∑

K10
∈T1,h

|K10 |ϕn
K10



×

∑

K1∈T1,h

∑

L1∈N(K1)

|TK1,L1
|
(

∇K1,L1
ϕn+1
h · νK1,L1

) (

∇φ(tn+1, xK1,L1
) · νK1,L1

)

,

where xK1,L1
is some point on the segment with the endpoints xK1

, xL1
. Since the values of∇K1,L1

are directed by νK1,L1
, we have

(

∇K1,L1
ϕn+1
h · ηK1,L1

) (

∇φ(tn+1, xK1,L1
) · νK1,L1

)

≡ ∇K1,L1
ϕn+1
h · ∇φ(tn+1, xK1,L1

).

Moreover, each term corresponding to TK1,L1
appears twice in the above formula,

Sh
2 =

∫ T

0

d11

(

∫

Ω1

ϕh(t, x) dx
)

∫

Ω1

∇hϕh · (∇φ)h,

where

(∇φ)h|(tn,tn+1]×TK1,L1
:= ∇φ(tn+1, xK1,L1

).

Observe that from the continuity of ∇φ we get (∇φ)h → ∇φ in L∞(Q1,T ). Hence using the sharp

Sobolev embedding and the interpolation between L2(0, T ;L2∗(Ω1)) and L∞(0, T ;L2(Ω1)), and
the weak L2 convergence of ∇hϕh to ∇ϕ, we pass to the limit in Sh

2 and Sh
3 , as h → 0. Then,
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again along a subsequence, we have

lim
h→0

Sh
2 =

∫ T

0

d11

(

∫

Ω1

ϕ(t, x) dx
)

∫

Ω1

∇ϕ · ∇φ,

lim
h→0

Sh
3 =

∫∫

ΩT

(

M112(ϕ, ψ, χ)∇ϕ+M112(ϕ, ψ, χ)∇ψ +M113(ϕ, ψ, χ)∇χ
)

· ∇φ.

Finally, using (4.14) (iv), we deduce that Sh
4 converges to

∫∫

Q1,T

F1(ϕ, ψ, χ)φ as h→ 0. Gathering

the obtained results, we justify the first equality in Definition 2.1. Reasoning along the same lines
as above, we conclude that also the rest of the equalities in Definition 2.1 hold. This concludes
the proof of Theorem 3.1

5. Numerical Results

a) constant diffusion b) non local diffusion c) cross diffusion

Figure 1. Example 1. Disease-free populations (P1) for different times, t = 0.01, 0.1, 1.

In this section we give numerical results from our finite volume scheme. We take the domains as
follow Ω1 = (0, 1)×(0, 1) and Ω2 = (0.5, 1.5)×(0, 1), such that Ω1∩Ω2 = (0.5, 1.0)×(0, 1) 6= ∅. We
consider here a uniform mesh in both domains, given by a Cartesian grid with Nxi

×Nyi
, i = 1, 2

control volumes. Obviously, it is possible to consider unstructured meshes, but we will take here
to an uniform mesh ΩR = {Kij ∈ Ω|Kij = (i − 1)Nx, iNx)(j − 1)Ny, jNy), i = 1, . . . , Nx, j =
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1, . . . , Ny}, for simplicity of the simulated models. The discretization in time is given by Nt =
500 time steps for T = 0.5. That is, δt = T/Nt and m(K) = 1/(NxNy). The parameters of the
model are given by

σ11 = 0.8, σ31 = 0.7, ω1 = 0.1, λ1 = 12, b = 0.03, m = 0.01, k = 0.03,

σ32 = 0.9, λ2 = 36, ǫ = 1.0, σ13 = 0.3, σ23 = 0.3, δ = 52.

Additionally, if we compute with constant diffusion, we will take dij = 0.01 for i = 1, 2 and
j = 1, 2, 3. The nonlocal diffusion depends on the total population as we mentioned before. In the
case of simulation with nonlocal diffusion terms, they are given by a simple choice of the functions
dij for i = 1, 2 and j = 1, 2, 3 equal to

dij

(∫

Ωi

ζ dx

)

= 0.01

∫

Ωi

ζ dx,

where ζ = ϕ, ψ, χ, u, v, w. For the cross diffusion parameters we take k11 = k21 = 1 and
k12 = k13 = k22 = k23 = 0.1 (up to a rescaling with respect to (1.9)). It is important to mention
that differences between constant and cross diffusion with this parameters of kij are slight.

a) constant diffusion b) non local diffusion c) cross diffusion

Figure 2. Example 1. Disease-free populations (P2) for different times, t = 0.01, 0.1, 1.
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5.1. Example 1. Behavior of disease-free populations.

a) t = 0.01 b) t = 0.1 c) t = 0.01

Figure 3. Example 2. Indirectly transmitted disease (P1) with non-local diffu-
sion, for different times. t = 0.01, 0.1, 1.

In this first example, we want to study the behavior of disease-free populations. To do this,
we remove the contaminant and the presence of infected and recovered populations, simply as
imposing initial data ψ(x, y, o) = v(x, y, 0) = χ(x, y, 0) = w(x, y, 0) = c(x, y, 0) = 0. This makes
that our system of 7 equations is reduced to just two decoupled equations:

∂tϕ− d11

(

∫

Ω1

ϕdx
)

∆ϕ− div
(

k11ϕ∇ϕ
)

= (b −m)ϕ− kϕ2, in Q1,T

∂tu− d21

(

∫

Ω2

u dx
)

∆u− div
(

k21u∇u
)

= 0, in Q2,T .

May be, these two equations have not the complexity of the original system of seven nonlinear
equations that we are interested in studying, but for simplicity, we want to highlight the difference
in behavior of the solutions for different types of diffusion, constant, non-local and cross-diffusion.
In this sense our scenario is as follows: we simulate the meeting of the two susceptible populations
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ϕ and u, although at the beginning both populations are separated. The population ϕ initially
located at the left side of its domain, and the population u on the right side of its respective
domain. For this, we assume that initially only susceptible populations are different from zero.
More precisely, the initial data are given by

ϕ(x, y, 0) =

{

160 x ∈ (0, 0.25)× (0.25, 0.75)
0 in other case

u(x, y, 0) =

{

400 x ∈ (1.25, 1.5)× (0.25, 0.75)
0 in other case

In figure 1 and 2, we can observe the dynamics of both populations for different times, t =
0.01, 0.1, 1. As time goes on, both populations begin to move toward the center of the domain
Ω1 ∩Ω2 = (0.5, 1.0)× (0, 1) due to diffusion terms. The meeting is effective in all three cases, but
is most evident in the case of nonlocal diffusion (column 2 of Figures 1 and 2). In the case of
nonlocal diffusion, it increases in proportion to the total population of each susceptible population
, generating a first contact between P1 and P2 about the time, t = 0.1 (see central pictures,
in column 2 and row 2, for both Figures 1 and 2). Then, at time t = 1.0 both populations are
thoroughly mixed.

a) t = 0.01 b) t = 0.1 c) t = 0.01

Figure 4. Example 2. Indirectly transmitted disease (P2) with non-local diffu-
sion, for different times. t = 0.01, 0.1, 1.
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5.2. Example 2. Indirectly transmitted disease.

a) t = 0.01 b) t = 0.1 c) t = 0.01

Figure 5. Example 2. Indirectly transmitted disease (P1) with cross-diffusion,
for different times. t = 0.01, 0.1, 1.

In this Example 2, we want to study how localized sources of infection in the population P1,
could be affect the population P2, which is not initially involved in the transmission of the disease,
but who comes to be, due to the diffusive effects, and the pollutant which acts on the intersection
of the domains.

For them, we consider initially constant population of susceptible individuals in each domain
Ω1 and Ω2, and a focus of infected individuals at the left end of the domain Ω1, modeled by sums
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a) t = 0.01 b) t = 0.1 c) t = 0.01

Figure 6. Example 2. Indirectly transmitted disease (P2) with cross-diffusion,
for different times. t = 0.01, 0.1, 1.

of hyperbolic secant. More precisely, our initial condition in this case is given by

ϕ(x, y, 0) = 20 (x, y) ∈ Ω1,

ψ(x, y, 0) = 100

5
∑

1

sech(25(x− xj))sech(25(y − yj)); (x, y) ∈ Ω1,

χ(x, y, 0) = 0 (x, y) ∈ Ω1,

where (x1, y1) = (0.252, 0.252), (x2, y2) = (0.126, 0.126), (x3, y3) = (0.126, 0.378), (x4, y4) =
(0.378, 0.126), and (x5, y5) = (0.378, 0.378).
On the other hand, the initial conditions for u, v, w, are

u(x, y, 0) = 50 (x, y) ∈ Ω2,

v(x, y, 0) = 0 (x, y) ∈ Ω2,

w(x, y, 0) = 0 (x, y) ∈ Ω2,

The initial condition for the contaminant is given by c(x, y, 0) = 0 for all (x, y) ∈ Ω1 ∪ Ω2.
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These initial conditions for the both populations given before mean that at t = 0, for the first
population, we assume that the susceptible population is constant in the domain and there is no
presence of recovered population. Moreover, it is possible to observe, 5 pockets of high density
infected population which are located in the quadrant [0, 0.5]× [0, 0.5] which will diffuse the epi-
demic disease on the rest of the domain contaminating the environment, for this reason the second
population will be infected. Since at t = 0, for the second population, we assume that the suscep-
tible population is constant in the entire domain and there is no presence of infected individuals
nor presence of recovered individuals. We compare simulations between non-local diffusion and
cross-diffusion.

First, in Figures 3, we can observe the effect of non local diffusion on Population 1 for different
times. In Figure 4, we can observed the effect of non local and cross diffusion on Population
2 for different times. The difference is more perceptible for susceptible individuals, for infective
and recovered individuals there is no much qualitative difference but it is possible to observed
quantitative variations. It is important to note here that the population P2 is affected because
infected individuals of the population P1 arrived to the area of interaction due to the diffusion,
and the contaminant begins to act.

From figures 5 and 6, we observe the same for the cross-diffusion. On the other hand, 6 shows
that in the case of cross diffusion P1 population, although equally altered by the disease is not
so much as in the case of non-local diffusion (Figure 4). Observe also that there is discontinuity
in the evolution of the population infected P2 (shown in column 3, row 2 and 3, Figure 4). This
discontinuity is due to the contaminant acts strongly in the population infected, and only acts to
the boundary x = 1. The non-local diffusion infected individual is not enough to observe migration
of the population towards x > 1. However, the susceptible population becomes extinct smoothly
(without apparent discontinuity) in the area of contamination, and this because of the migration
of this same population due to the diffusion.
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Appendix A. Existence of weak solutions

A.1. Existence of solutions for the approximate problems. This subsection is devoted to
proving existence of solutions to the approximate problem of systems (1.2)-(1.4). The existence
proof is based on the Shauder fixed-point theorem, a priori estimates, and the compactness method.
The approximation systems read:
(A.1)


























































∂tϕ− d11

(

∫

Ω1

ϕdx
)

∆ϕ− div
(

(k11f
+
ε (ϕ) + f+

ε (ψ) + f+
ε (χ))∇ϕ+ f+

ε (ϕ)∇ψ + f+
ε (ϕ)∇χ

)

= F1,ε(x, ϕ
+, ψ+, χ+, c+),

∂tψ − d12

(

∫

Ω1

ψ dx
)

∆ψ − div
(

f+
ε (ψ)∇ϕ + (f+

ε (ϕ) + k12f
+
ε (ψ) + f+

ε (χ))∇ψ + f+
ε (ψ)∇χ

)

= F2,ε(x, ϕ
+, ψ+, χ+, c+),

∂tχ− d13

(

∫

Ω1

χdx
)

∆χ− div
(

f+
ε (χ)∇ϕ+ f+

ε (χ)∇ψ + (f+
ε (ϕ) + f+

ε (ψ) + k13f
+
ε (χ))∇χ

)

= F3,ε(x, ϕ
+, ψ+, χ+, c+),
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in Q1,T = (0, T )× Ω1,
(A.2)


























































∂tu− d21

(

∫

Ω2

u dx
)

∆u − div
(

(k21f
+
ε (u) + f+

ε (v) + f+
ε (w))∇u + f+

ε (u)∇v + f+
ε (u)∇w

)

= G1,ε(x, u
+, v+, w+, c+),

∂tv − d22

(

∫

Ω2

v dx
)

∆v − div
(

f+
ε (v)∇u + (f+

ε (u) + k22f
+
ε (v) + f+

ε (w))∇v + f+
ε (v)∇w

)

= G2,ε(x, u
+, v+, w+, c+),

∂tw − d23

(

∫

Ω2

w dx
)

∆w − div
(

f+
ε (w)∇u + f+

ε (w)∇v + (f+
ε (u) + f+

ε (v) + k23f
+
ε (w))∇w

)

= G3,ε(x, u
+, v+, w+, c+),

in Q2,T = (0, T )× Ω2, and

(A.3) ∂tc = K(x, ψ+, v+, c+),

in QT = (0, T )× (Ω1 ∪ Ω2). Herein, ε > 0 is a small number,

(A.4)



















Fi,ε =
Fi

1 + ε |Fi|
and Gi,ε =

Gi

1 + ε |Gi|
for i = 1, 2, 3,

fε(a) =
a

1 + ε |a| and b
+ = max (0, b) for any a, b ∈ IR.

We supplement (A.1), (A.2) and (A.3) with no-flux boundary conditions (1.5)-(1.6) and initial
data (1.7).

Observe that one can replace (A.1) and (A.2) by
(A.5)






























∂tϕ− d11

(

∫

Ω1

ϕdx
)

∆ϕ− div (α1,1∇ϕ+ α1,2∇ψ + α1,3∇χ) = F1,ε(x, ϕ
+, ψ+, χ+, c+),

∂tψ − d12

(

∫

Ω1

ψ dx
)

∆ψ − div (α2,1∇ϕ+ α2,2∇ψ + α2,3∇χ) = F2,ε(x, ϕ
+, ψ+, χ+, c+),

∂tχ− d13

(

∫

Ω1

χdx
)

∆χ− div (α3,1∇ϕ+ α3,2∇ψ + α3,3∇χ) = F3,ε(x, ϕ
+, ψ+, χ+, c+),

and
(A.6)






























∂tu− d21

(

∫

Ω2

u dx
)

∆u− div (β1,1∇u + β1,2∇v + β1,3∇w) = G1,ε(x, u
+, v+, w+, c+),

∂tv − d22

(

∫

Ω2

v dx
)

∆v − div (β2,1∇u + β2,2∇v + β2,3∇w) = G2,ε(x, u
+, v+, w+, c+),

∂tw − d23

(

∫

Ω2

w dx
)

∆w − div (β3,1∇u+ β3,2∇v + β3,3∇w) = G3,ε(x, u
+, v+, w+, c+),

respectively. Herein, the diffusion matrix Mi for i = 1, 2,

M1 =





α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3





=





(k11f
+
ε (ϕ) + f+

ε (ψ) + f+
ε (χ)) f+

ε (ϕ) f+
ε (ϕ)

f+
ε (ψ) (f+

ε (ϕ) + k12f
+
ε (ψ) + f+

ε (χ)) f+
ε (ψ)

f+
ε (χ) f+

ε (χ) (f+
ε (ϕ) + f+

ε (ψ) + k13f
+
ε (χ))



 ,
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and

M2 =





β1,1 β1,2 β1,3
β2,1 β2,2 β2,3
β3,1 β3,2 β3,3





=





(k21f
+
ε (u) + f+

ε (v) + f+
ε (w)) f+

ε (u) f+
ε (u)

f+
ε (v) (f+

ε (u) + k22f
+
ε (v) + f+

ε (w)) f+
ε (v)

f+
ε (w) f+

ε (w) (f+
ε (u) + f+

ε (v) + k23f
+
ε (w))



 ,

is uniformly nonnegative: using condition (1.9) and the inequality ab ≥ −a2

2 − b2

2 for all a, b ∈ IR
one gets:

ξTM1ξ =
(

k11f
+
ε (ϕ) + f+

ε (ψ) + f+
ε (χ)

)

ξ21 +
(

k12f
+
ε (ψ) + f+

ε (ϕ) + f+
ε (χ)

)

ξ22

+
(

k13f
+
ε (χ) + f+

ε (ϕ) + f+
ε (ψ)

)

ξ23 + f+
ε (ϕ)(ξ2 + ξ3)ξ1

+ f+
ε (ψ)(ξ1 + ξ3)ξ2 + f+

ε (χ)(ξ1 + ξ2)ξ3

≥
(

(k11 − 1)f+
ε (ϕ) + f+

ε (ψ)/2 + f+
ε (χ)/2

)

ξ21 +
(

f+
ε (ϕ)/2 + (k12 − 1)f+

ε (ψ)f+
ε (χ)/2

)

ξ22

+
(

f+
ε (ϕ)/2 + f+

ε (ψ)/2 + (k13 − 1)f+
ε (χ)

)

ξ23

≥c
(

f+
ε (ϕ) + f+

ε (ψ) + f+
ε (χ)

)(

ξ21 + ξ22 + ξ23

)

≥ 0,

(A.7)

and

ξTM2ξ ≥
(

(k21 − 1)f+
ε (u) + f+

ε (v)/2 + f+
ε (w)/2

)

ξ21 +
(

f+
ε (u)/2 + (k22 − 1)f+

ε (v) + f+
ε (w)/2

)

ξ22

+
(

f+
ε (u)/2 + f+

ε (v)/2 + (k23 − 1)f+
ε (w)

)

ξ23

≥c
(

f+
ε (u) + f+

ε (v) + f+
ε (w)

)(

ξ21 + ξ22 + ξ23

)

≥ 0,

(A.8)

for some constant c > 0 and for any ξ = (ξ1, ξ2, ξ3) ∈ R3. We shall frequently use (A.7) and (A.8)
to prove the existence (and nonnegativity) of weak solutions.

A.2. Existence result to the fixed problem. In this subsection, we omit the dependence of
the solutions on the parameter ε. We prove, for each fixed ε > 0, the existence of solutions
to the fixed problem (A.1)-(A.2), by applying the Schauder fixed-point theorem. Since we use
Schauder fixed-point theorem, we need to introduce the following closed subsets of the Banach
space L2(QT , IR

n):

(A.9) Ai = {Ui = (ui,1, ui,2, ui,3) ∈ L2(Qi,T , IR
3) : ‖Ui‖L∞(0,T ;L2(Ωi))∩L2(0,T ;H1(Ωi))

≤ CAi
},

for i = 1, 2, where CA1
> 0 and CA2

> 0 are two constants that will be defined below. With
(ϕ, ψ, χ) ∈ A1 and (u, v, w) ∈ A2 fixed, let (ϕ, ψ, χ), (u, v, w) and c be the unique weak solution
of the systems
(A.10)


























































∂tϕ− d11

(

∫

Ω1

ϕdx
)

∆ϕ− div
(

(k11f
+
ε (ϕ) + f+

ε (ψ) + f+
ε (χ))∇ϕ + f+

ε (ϕ)∇ψ + f+
ε (ϕ)∇χ

)

= F1,ε(x, ϕ
+, ψ

+
, χ+, c+),

∂tψ − d12

(

∫

Ω1

ψ dx
)

∆ψ − div
(

f+
ε (ψ)∇ϕ+ (f+

ε (ϕ) + k12f
+
ε (ψ) + f+

ε (χ))∇ψ + f+
ε (ψ)∇χ

)

= F2,ε(x, ϕ
+, ψ

+
, χ+, c+),

∂tχ− d13

(

∫

Ω1

χdx
)

∆χ− div
(

f+
ε (χ)∇ϕ+ f+

ε (χ)∇ψ + (f+
ε (ϕ) + f+

ε (ψ) + k13f
+
ε (χ))∇χ

)

= F3,ε(x, ϕ
+, ψ

+
, χ+, c+),
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in Q1,T = (0, T )× Ω1,
(A.11)


























































∂tu− d21

(

∫

Ω2

u dx
)

∆u− div
(

(k21f
+
ε (u) + f+

ε (v) + f+
ε (w))∇u + f+

ε (u)∇v + f+
ε (u)∇w

)

= G1,ε(x, u
+, v+, w+, c+),

∂tv − d22

(

∫

Ω2

v dx
)

∆v − div
(

f+
ε (v)∇u+ (f+

ε (u) + k22f
+
ε (v) + f+

ε (w))∇v + f+
ε (v)∇w

)

= G2,ε(x, u
+, v+, w+, c+),

∂tw − d23

(

∫

Ω2

w dx
)

∆w − div
(

f+
ε (w)∇u+ f+

ε (w)∇v + (f+
ε (u) + f+

ε (v) + k23f
+
ε (w))∇w

)

= G3,ε(x, u
+, v+, w+, c+),

in Q2,T = (0, T )× Ω2, and

(A.12) ∂tc = K(x, ψ
+
, v+, c+),

in QT = (0, T )× (Ω1 ∪ Ω2).
Observe that for any fixed ψ ∈ L2(Q1,T ) and v ∈ L2(Q2,T ) , problem (A.12) is uniformly ODE,

so we have immediately:

Lemma A.1. If c0 ∈ L∞
+ (Ω) and 0 ≤ c0 ≤ 1, then (A.12) has a unique solution c ∈ L∞

+ (QT ) ∩
C(0, T ;L2(Ω)), satisfying:

0 ≤ c(t, x) ≤ 1 for a.e. (t, x) ∈ QT ,
‖c‖C(0,T ;L2(Ω)) ≤ C,

(A.13)

where C > 0 is a constant which depends only on ‖c0‖L∞(Ω), ‖σ13‖L∞(Q1,T ), ‖σ23‖L∞(Q2,T ),
∥

∥ψ
∥

∥

L2(Q1,T )
, ‖c‖L2(Q1,T ) and |QT |.

Remark A.1. Note that the first estimate in (A.13) follows from the maximum principle.

A.2.1. The fixed-point method. Now, we introduce a map Li : Ai → Ai for i = 1, 2 such that
L1(ϕ, ψ, χ) = (ϕ, ψ, χ) and L2(u, v, w) = (u, v, w), where (ϕ, ψ, χ) and (u, v, w) solve (A.10) and
(A.11) respectively. By using the Schauder fixed-point theorem, we prove that the maps L1 and
L2 have a fixed point for (A.10) and (A.11).

First, let us show that Li is a continuous mapping for i = 1, 2. For this, letting (ϕℓ, ψℓ, χℓ)ℓ and

(uℓ, vℓ, wℓ)ℓ be sequences in A1 and A2 respectively. Next, we let (ϕ, ψ, χ) ∈ A1 and (u, v, w) ∈ A2

be such that (ϕℓ, ψℓ, χℓ)ℓ → (ϕ, ψ, χ) in L2(Q1,T , IR
3) and (uℓ, vℓ, wℓ)ℓ → (u, v, w) in L2(Q2,T , IR

3)

as ℓ→ ∞. Define (ϕℓ, ψℓ, χℓ) = L1(ϕℓ, ψℓ, χℓ) and (uℓ, vℓ, wℓ) = L2(uℓ, vℓ, wℓ). The goal is to show

that (ϕℓ, ψℓ, χℓ) converges to L1(ϕ, ψ, χ) in L
2(Q1,T , IR

3) and (uℓ, vℓ, wℓ) converges to L2(u, v, w)

in L2(Q2,T , IR
3). Next, we need the following lemma:

Lemma A.2. The solutions (ϕℓ, ψℓ, χℓ) and (uℓ, vℓ, wℓ) to systems (A.10) and (A.11) respectively
satisfy:

(i) The sequences (ϕℓ, ψℓ, χℓ)ℓ and (uℓ, vℓ, wℓ)ℓ are bounded in L2(0, T ;H1(Ω1, IR
3))∩L∞(0, T ;L2(Ω1, IR

3))
and in L2(0, T ;H1(Ω2, IR

3)) ∩ L∞(0, T ;L2(Ω2, IR
3)), respectively.

(ii) The sequences (ϕℓ, ψℓ, χℓ)ℓ and (uℓ, vℓ, wℓ)ℓ are relatively compact in L2(Q1,T , IR
3) and in

L2(Q2,T , IR
3), respectively.

Proof. (i) We multiply the first, the second and the third equation in (A.10) by ϕℓ, ψℓ and χℓ

respectively, integrate over Ω1, using (A.7), and definition of Fi,ε in A.4, yields

d

dt

∫

Ω1

(

|ϕℓ|2 + |ψℓ|2 + |χℓ|2
)

dx+ d

∫

Ω1

(

|∇ϕℓ|2 + |∇ψℓ|2 + |∇χℓ|2
)

dx

≤ C

∫

Ω1

(

|ϕℓ|2 + |ψℓ|2 + |χℓ|2
)

dx,

(A.14)
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for some constant C > 0. Herein, d = min(M11,M12,M13) (recall that Mij is defined in (1.1) for
i = 1, 2 and j = 1, 2, 3). In view of Gronwall’s inequality it follows from (A.14) that,

(A.15) sup
t∈(0,T )

∫

Ω1

(|ϕℓ|2 + |ψℓ|2 + |χℓ|2
)

dx ≤ exp(CT ) ‖ϕ0 + ψ0 + χ0‖L2(Ω1)
,

which proves the first part of (i).
From (A.14) and (A.15) one may also conclude that,

∫ ∫

Q1,T

(|∇ϕℓ|2 + |∇ψℓ|2 + |∇χℓ|2)dx dt ≤
T exp(CT )

d
‖ϕ0 + ψ0 + χ0‖L2(Ω1)

,(A.16)

yielding (i).
(ii) Finally multiplying the first, the second and the third equation (A.10) by ϕ1, ϕ2, ϕ3 ∈

L2(0, T ;H1(Ω)), respectively and using the boundedness of f+
ε and Fi,ε for i = 1, 2, 3, and (A.16)

there exists a constant C(ε) > 0 such that
∣

∣

∣

∣

∣

∫ T

0

〈∂tϕℓ, ϕ1 〉 dt
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

〈∂tψℓ, ϕ2 〉 dt
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

〈∂tχℓ, ϕ3 〉 dt
∣

∣

∣

∣

∣

≤ C(ε)

3
∑

i=1

‖ϕi‖L2(0,T ;H1(Ω)) .

(A.17)

so we get (ii) for (ϕℓ, ψℓ, χℓ)ℓ.
Then, (ii) is a consequence of (i) and the uniform boundedness (A.17) of (ϕℓ, ψℓ, χℓ)ℓ in L

2(0, T ; (H1(Ω1, IR
3))′)

Reasoning along the same lines for (ϕℓ, ψℓ, χℓ)ℓ yield (i) and (ii) for (uℓ, vℓ, wℓ)ℓ.
�

Remark A.2. Note that it is easy to deduce from Lemma A.2 that the constants CA1
> 0 and

CA2
> 0 (consult (A.9)) are defined as follows:

CA1
=

(d+ T ) exp(CT )

d
‖ϕ0 + ψ0 + χ0‖L2(Ω1)

and

CA2
=

(d′ + T ) exp(CT )

d′
‖u0 + v0 + w0‖L2(Ω2)

for some constant C > 0. Herein, d′ = min (M21,M22,M23).

From Lemma A.2, there exist functions (ϕℓ, ψℓ, χℓ) ∈ L2(0, T ;H1(Ω1, IR
3)) and (uℓ, vℓ, wℓ) ∈

L2(0, T ;H1(Ω2, IR
3))such that, up to extracting subsequences if necessary,

(ϕℓ, ψℓ, χℓ) → (ϕ, ψ, χ) in (L2(Q1,T ))
3 strongly, (uℓ, vℓ, wℓ) → (u, v, w) in (L2(Q2,T ))

3 strongly,

and from this the continuity of Li on Ai follows for i = 1, 2.
We observe that, from Lemma A.2, Li(Ai) is bounded in the set

(A.18) Ei =
{

u ∈ L2(0, T ;H1(Ωi, IR
3)) : ∂tu ∈ L2(0, T ; (H1(Ωi, IR

3))∗)
}

,

for i = 1, 2. By the results of [32], Ei →֒ L2(Qi,T , IR
3) is compact for i = 1, 2, thus Li is

compact for i = 1, 2. Now, by the Schauder fixed point theorem, the operators L1 and L2 have a
fixed points (ϕε, ψε, χε) and (uε, vε, wε), respectively, such that L1(ϕε, ψε, χε) = (ϕε, ψε, χε) and
L2(uε, vε, wε) = (uε, vε, wε). Then there exists a solution (ϕε, ψε, χε), (uε, vε, wε) and cε of

∫ T

0

〈∂tϕε, φ1〉1 dt+
∫ ∫

Q1,T

(

d11

(

∫

Ω1

ϕε dx
)

∇ϕε + (k11f
+
ε (ϕε) + f+

ε (ψε) + f+
ε (χε))∇ϕε + f+

ε (ϕε)∇ψε

+ f+
ε (ϕε)∇χε

)

·∇φ1 dx dt =
∫ ∫

Q1,T

F1,ε(x, ϕ
+
ε , ψ

+
ε , χ

+
ε , c)φ1 dx dt,

(A.19)
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∫ T

0

〈∂tψε, φ2〉1 dt+
∫ ∫

Q1,T

(

d12

(

∫

Ω1

ψε dx
)

∇ψε + f+
ε (ψε)∇ϕε + (f+

ε (ϕε) + k12f
+
ε (ψε) + f+

ε (χε))∇ψε

+ f+
ε (ψε)∇χε

)

·∇φ2 dx dt =
∫ ∫

Q1,T

F2,ε(x, ϕ
+
ε , ψ

+
ε , χ

+
ε , c)φ2 dx dt,

(A.20)

∫ T

0

〈∂tχε, φ3〉1 dt+
∫ ∫

Q1,T

(

d13

(

∫

Ω1

χε dx
)

∇χε + f+
ε (χε)∇ϕε + f+

ε (χε)∇ψε

+ (f+
ε (ϕε) + f+

ε (ψε) + k13f
+
ε (χε))∇χε

)

·∇φ2 dx dt =
∫ ∫

Q1,T

F3,ε(x, ϕ
+
ε , ψ

+
ε , χ

+
ε , c)φ3 dx dt,

(A.21)

∫ T

0

〈∂tuε,Θ1〉2 dt+
∫ ∫

Q2,T

(

d21

(

∫

Ω2

uε dx
)

∇uε + (k21f
+
ε (uε) + f+

ε (vε) + f+
ε (wε))∇uε + f+

ε (uε)∇vε

+ f+
ε (uε)∇wε

)

·∇Θ1 dx dt =

∫ ∫

Q2,T

G1,ε(x, u
+
ε , v

+
ε , w

+
ε , c)Θ1 dx dt,

(A.22)

∫ T

0

〈∂tvε,Θ2〉2 dt+
∫ ∫

Q2,T

(

d22

(

∫

Ω2

vε dx
)

∇vε + f+
ε (vε)∇uε + (f+

ε (uε) + k22f
+
ε (vε) + f+

ε (wε))∇vε

+ f+
ε (vε)∇wε

)

·∇Θ2 dx dt =

∫ ∫

Q2,T

G2,ε(x, u
+
ε , v

+
ε , w

+
ε , c)Θ2 dx dt,

(A.23)

∫ T

0

〈∂twε,Θ3〉2 dt+
∫ ∫

Q2,T

(

d23

(

∫

Ω2

wε dx
)

∇wε + f+
ε (wε)∇uε + f+

ε (wε)∇vε

+ (f+
ε (uε) + f+

ε (vε) + k23f
+
ε (wε))∇wε

)

·∇Θ3 dx dt =

∫ ∫

Q2,T

G3,ε(x, u
+
ε , v

+
ε , w

+
ε , c)Θ3 dx dt,

(A.24)

∫ ∫

QT

∂tcε Γ dx dt =

∫ ∫

QT

K(x, ψε, vε, cε)Γ dx dt,(A.25)

for all φi ∈ L2(0, T ;H1(Ω1)), Θi ∈ L2(0, T ;H1(Ω2)) for i = 1, 2, 3, and Γ ∈ L2(0, T ;H1(Ω1∪Ω2)).

A.3. Existence of weak solutions. Note that since problem (A.12) is uniformly ODE, the
estimates (A.13) holds with c replaced by cε.

From Section A.1, we know there exist sequences (ϕε, ψε, χε)ε>0, (uε, vε, wε)ε>0 and cε of
solutions to (A.1), (A.2), (A.3). We have now the following series of a priori estimates.

Lemma A.3. Assume conditions (1.9) and (2.1)-(2.3) hold. If ϕ0, ψ0, χ0 ∈ L2
+(Ω1) and u0, v0, w0 ∈

L2
+(Ω2), then the solutions (ϕε, ψε, χε) and (uε, vε, wε) are nonnegative. Moreover, there exist con-

stants c1, c2, c3, c4 > 0 not depending on ε such that

(A.26) ‖(ϕε, ψε, χε)‖L∞(0,T ;L2(Ω1,IR
3
))
+ ‖(uε, vε, wε)‖L∞(0,T ;L2(Ω2,IR

3
))
≤ c1,

(A.27) ‖Fi,ε(·, ϕε, ψε, χε, cε)‖L1(Q1,T ) + ‖Gi,ε(·, uε, vε, wε, cε)‖L1(Q2,T ) ≤ c2,

for i = 1, 2, 3,

(A.28)
‖∇ϕε‖L2(Q1,T ) + ‖∇ψε‖L2(Q1,T ) + ‖∇χε‖L2(Q1,T )

+ ‖∇uε‖L2(Q2,T ) + ‖∇vε‖L2(Q2,T ) + ‖∇wε‖L2(Q2,T ) ≤ c3,

(A.29)
‖∂tϕε‖L2(0,T,(W 1,∞(Ω1))∗)

+ ‖∂tψε‖L2(0,T,(W 1,∞(Ω1))∗)
+ ‖∂tχε‖L2(0,T,(W 1,∞(Ω1))∗)

+ ‖∂tuε‖L2(0,T,(W 1,∞(Ω2))∗)
+ ‖∂tvε‖L2(0,T,(W 1,∞(Ω2))∗)

+ ‖∂twε‖L2(0,T,(W 1,∞(Ω2))∗)
≤ c4.
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Proof. In the weak formulation (A.19)-(A.21) we take φ1 = −ϕ−
ε , φ2 = −ψ−

ε and φ3 = −χ−
ε , and

we integrate over Ω1 instead Q1,T , we get from (A.7)

(A.30)
1

2

d

dt

∫

Ω1

(

∣

∣ϕ−
ε

∣

∣

2
+
∣

∣ψ−
ε

∣

∣

2
+
∣

∣χ−
ε

∣

∣

2
)

dx ≤ 0.

This yields the nonnegativity of (ϕε, ψε, χε). Reasoning along the same lines for (ϕε, ψε, χε) yields
the nonnegativity of (uε, vε, wε).

Observe that

|F1,ε(·, ϕε, ψε, χε, c)|+ |F2,ε(·, ϕε, ψε, χε, c)|+ |F3,ε(·, ϕε, ψε, χε, c)| ≤ C(|ϕε|2 + |ψε|2 + |χε|2),

and

|G1,ε(·, uε, vε, wε, c)|+ |G2,ε(·, uε, vε, wε, c)|+ |G3,ε(·, uε, vε, wε, c)| ≤ C(|uε|2 + |vε|2 + |wε|2),

for some constant C > 0. Now we exploit this and (A.26) to deduce (A.27)
By the (weak) lower semicontinuity properties of norms, the estimates (A.15) and (A.16) hold

with (ϕℓ, ψℓ, χℓ) and (uℓ, vℓ, wℓ) replaced by (ϕε, ψε, χε) and (uε, vε, wε). Moreover, the constants
c1, c3 are independent of ε (consult the proof of Lemma A.2).
Finally using the weak formulation (A.19), we deduce from (A.26) and (A.28): for all φ1 ∈
L2(0, T ;W 1,∞(Ω1))
(A.31)

∣

∣

∣

∣

∣

∫ T

0

〈∂tϕε, φ1〉1 dt
∣

∣

∣

∣

∣

≤ sup
t∈[0,T ]

∣

∣

∣

∣

d11

(

∫

Ω1

ϕε dx
)

∣

∣

∣

∣

‖∇ϕε‖L2(Q1,T ) ‖∇φ1‖L2(Q1,T )

+C
(

‖ϕε‖L∞(0,T ;L2(Ω1))
+ ‖ψε‖L∞(0,T ;L2(Ω1))

+ ‖χε‖L∞(0,T ;L2(Ω1))

)

×
(

‖∇ϕε‖L2(Q1,T ) + ‖∇ψε‖L2(Q1,T ) + ‖∇χε‖L2(Q1,T )

)

‖∇φ1‖L2(0,T ;L∞(Ω1))

+C′
(

1 + ‖ϕε‖L∞(0,T ;L2(Ω1))
+ ‖ψε‖L∞(0,T ;L2(Ω1))

+ ‖χε‖L∞(0,T ;L2(Ω1))

)

×
(

1 + ‖ϕε‖L2(Q1,T ) + ‖ψε‖L2(Q1,T ) + ‖χε‖L2(Q1,T )

)

‖φ1‖L2(0,T ;L∞(Ω1))

≤ C′′ ‖φ1‖L2(0,T ;W 1,∞(Ω1))
,

for some constant C,C′, C′′ > 0 independent of ε. From this we deduce the bound

(A.32) ‖∂tϕε‖L2(0,T ;(W 1,∞(Ω))∗) ≤ C′′.

Reasoning along the same lines for ϕε yields (A.32) for ψε, χε, uε, vε and wε . �

In view of Lemma A.3 and Aubin’s lemma, we can assume there exist limit functions (ϕ, ψ, χ, u, v, w)
such that as ε→ 0 the following convergences hold (modulo extraction of subsequences, which we
do not bother to relabel):
(A.33)














(ϕε, ψε, χε) → (ϕ, ψ, χ) a.e. in Q1,T , and strongly in L2(Q1,T , IR
3), weakly in L2(0, T ;H1(Ω1, IR

3)),
(uε, vε, wε) → (u, v, w) a.e. in Q2,T , and strongly in L2(Q2,T , IR

3), weakly in L2(0, T ;H1(Ω2, IR
3)),

Fi,ε(·, ϕε, ψε, χε, cε) → Fi(·, ϕ, ψ, χ, c) a.e. in Q1,T and strongly in L1(Q1,T )
and Gi,ε(·, uε, vε, wε, cε) → Gi(·, u, v, w, c) a.e. in Q2,T and strongly in L2(Q2,T ),

for i = 1, 2, 3. Additionally, (∂tϕε, ∂tψε, ∂tχε) → (∂tϕ, ∂tψ, ∂tχ) and (∂tuε, ∂tvε, ∂twε) → (∂tu, ∂tv, ∂tw)
weakly in L2(0, T ; (W 1,∞(Ω1, IR

3))∗) and L2(0, T ; (W 1,∞(Ω2, IR
3))∗), respectively.
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An application of Young and Hölder inequalities we get

(A.34)

‖fε(ϕε)− ϕ‖L2(Q1,T ) ≤
√
2 ‖ϕε − ϕ‖L2(Q1,T ) +

√
2

∥

∥

∥

∥

εϕεϕ

1 + εϕε

∥

∥

∥

∥

L2(Q1,T )

≤
√
2 ‖ϕε − ϕ‖L2(Q1,T ) +

√
2

∥

∥

∥

∥

εϕεϕ

(1 + εϕε)2/3(εϕε)1−2/3

∥

∥

∥

∥

L2(Q1,T )

≤
√
2 ‖ϕε − ϕ‖L2(Q1,T ) +

√
2ε2/3

∥

∥

∥ϕ2/3
ε ϕ

∥

∥

∥

L2(Q1,T )

≤
√
2 ‖ϕε − ϕ‖L2(Q1,T ) +

√
2ε2/3 ‖ϕε‖2/3L∞(0,T ;L2(Ω1))

×‖ϕε‖L2(0,T ;L6(Ω1))
.

Thanks to the Sobolev embedding (H1(Ω1) ⊂ L6(Ω1)) we deduce from (A.34)

(A.35) fε(ϕε) → ϕ a.e. in Q1,T and strongly in Lr(Q1,T ) for all 1 ≤ r ≤ 2.

In the same way we get

(A.36)
(fε(ψε), fε(χε)) → (ψ, χ) a.e. in Q1,T and strongly in Lr(Q1,T ),
(fε(uε), fε(vε), fε(wε)) → (u, v, w) a.e. in Q2,T and strongly in Lr(Q2,T ),

for all 1 ≤ r ≤ 2. Finally, by passing to the limit ε→ 0 in the weak formulation (A.19)-(A.25), with
φi ∈ L2(0, T ;W 1,∞(Ω1)), Θi ∈ L2(0, T ;W 1,∞(Ω2)) for i = 1, 2, 3, and Γ ∈ D([0, T )× (Ω1 ∪ Ω2)),
we obtain in this way that the limit (ϕ, ψ, χ, u, v, w, c) is a solution of system (1.2)-(1.4) in the
sense of Definition 2.1.

Appendix B. Existence and uniqueness of the classical solution (proof of
Theorem 2.2)

In this proof we adapt the result obtained in [9] (and the references therein) to the system (1.2),
(1.3) and (1.4) with (2.1)-(2.3) and

kij = 2 for i = 1, 2, j = 1, 2, 3, d11

(

∫

Ω1

ϕdx
)

= d12

(

∫

Ω1

ψ dx
)

= d13

(

∫

Ω1

χdx
)

,

d21

(

∫

Ω2

u dx
)

= d22

(

∫

Ω2

v dx
)

= d23

(

∫

Ω2

w dx
)

.

(B.1)

Now, we describe the steps to show existence of strong solutions and boundness of solutions.

Observe that for any fixed (ϕ0, ψ0, χ0) ∈ (W 1,p(Ω1))
3 (p > 3), there exists a maximal existence

time T ∈ (0,+∞] such that the system (1.2) has a unique solution (ϕ, ψ, χ) ∈ (C(0, T ;W 1,p(Ω1)∩
C∞(Ω))3 (see the result of Amann [2] (see also [3, 4]) for more detrails).

Now, letting w = ϕ+ψ+χ and summing the equations in (1.2), the result is (recall that (B.1)
holds)
(B.2)










∂tw − div

(

(

d11

(

∫

Ω1

ϕdx
)

+2w
)

∇w
)

= b(x)H1 − (m(x) + k(x)H1)H1 in Q1,T ,

∇w · η = 0 on (0, T )× ∂Ω1, w(0, x) = w0(x) = ϕ0 + ψ0 + χ0, x ∈ Ω.

An application of maximum principle to (B.2) (see for e.g. [21]), we deduce that there exists a
constant C0 depending upon the initial data so that

(B.3) 0 ≤ ϕ(t, x), ψ(t, x), χ(t, x) ≤ C0 for all x ∈ Ω1 and t > 0.

Since d11

(

∫

Ω1

ϕdx
)

+2w ∈ L∞([0, T )× Ω) and

b(x)H1 − (m(x) + k(x)H1)H1 ∈ L∞([0, T )× Ω1),

we can apply the Hölder continuity result to (B.2) (see Theorem 1.3, p. 43 in [14] and we get

(B.4) w ∈ C
β
2
,β([0, T )× Ω1) for some β ∈ (0, 1).
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Now we let w̃ = d11

(

∫

Ω1

ϕdx
)

w + w2. Clearly w̃ satisfies

(B.5)






























∂tw̃ −
(

d11

(

∫

Ω1

ϕdx
)

+2w
)

∆w̃ = −
(

d11

(

∫

Ω1

ϕdx
)

+2w
)

(b(x)− (m(x) + k(x)H1))H1

−w∂td11
(

∫

Ω1

ϕdx
)

in Q1,T ,

∇w̃ · η = 0 on (0, T )× ∂Ω1, w̃(0, x) = w̃0(x) = d11

(

∫

Ω1

ϕ0 dx
)

w0 + w2
0, x ∈ Ω1.

To continue we will need the following lemma proved in [21] (see Theorem 9.1 in [21] for more
details).

Lemma B.1. Let 3 < q < +∞. Suppose u is a solution to the following problem
{

∂tu− a(t, x)∆u = f(t, x) in QT ,
∇u · η = 0 on (0, T )× ∂Ω, u(0, x) = u0(x), x ∈ Ω.

where T < +∞ and a is a positive bounded continuous function on QT . Suppose that f ∈ Lq(QT ).
Then there exists a constant Cq depending on the bounds of a, Ω T and q such that

‖u‖W 2,1
q (QT ) ≤ Cq

(

‖f‖Lq(QT ) + ‖u0‖
W

2− 2
q
,q
(Ω)

)

where u0 satisfies the compatibility condition ∇u0 · η = 0 on ∂Ω.

Herein W 2,1
q (QT ) = {u : ‖u‖W 2,1

q (QT ) ≤ C} and

‖u‖W 2,1
q (QT ) =

(

∫ ∫

QT

(

|u|q + |∇u|q + |∆u|q + |∂tu|q
)

dx dt

)
1
q

.

Observe that 0 < d11

(

∫

Ω1

ϕdx
)

+2w ∈ L∞([0, T )× Ω1) and

(d11

(

∫

Ω1

ϕdx
)

+2w)(b(x) − (m(x) + k(x)H1))H1 − w∂td11

(

∫

Ω1

ϕdx
)

∈ L∞([0, T )× Ω1).

Thus we can use Lemma B.1 together with w ∈ C
β
2
,β([0, T )× Ω1) to obtain

(B.6)

‖w̃‖W 2,1
q (Q1,T ) ≤ C

(

∥

∥

∥

∥

(d11

(

∫

Ω1

ϕdx
)

+2w)(b(x) − (m(x) + k(x)H1))H1 − w∂td11

(

∫

Ω1

ϕdx
)

∥

∥

∥

∥

Lq(Q1,T )

+

∥

∥

∥

∥

d11

(

∫

Ω1

ϕ0 dx
)

w0 + w2
0

∥

∥

∥

∥

W
2− 2

q
,q
(Ω1)

)

≤ C′, for all 3 < q < +∞,

for some constants C,C′ > 0. An application of Sobolev embedding theorem for parabolic equation

(see Lemma 3.3, p. 80 in [21]), we get w̃ ∈ C
1+ρ
2

,1+ρ(Q1,T ) for any 0 < ρ < 1. Using this and
w̃ = dw + w2, we get

(B.7) w ∈ C
1+ρ
2

,1+ρ(Q1,T ) for any 0 < ρ < 1.

Observe that we can write (1.2) in the following form:

(B.8)















































∂tϕ− div
(

(d11

(

∫

Ω1

ϕdx
)

+w)∇ϕ + ϕ∇w
)

= F1(x, ϕ, ψ, χ, c) in Q1,T ,

∂tψ − div
(

(

∫

Ω1

d11

(

∫

Ω1

ϕdx
)

+w)∇ψ + ψ∇w
)

= F2(x, ϕ, ψ, χ, c) in Q1,T ,

∂tχ− div
(

(d11

(

∫

Ω1

ϕdx
)

+w)∇χ+ χ∇w
)

= F3(x, ϕ, ψ, χ, c) in Q1,T ,

∇ϕ · η = ∇ψ · η = ∇χ · η = 0 on ∂Ω1,
ϕ(0, x) = ϕ0(x), ψ(0, x) = ψ0(x) and χ(0, x) = χ0(x). x ∈ Ω1,
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Now we apply the Hölder continuity result to (B.8) (see e.g. Theorem 1.3, p. 43 in [14]), we
deduce

(B.9) ϕ, ψ, χ ∈ C
α
2
,α(Q1,T ) for some 0 < α < 1.

Herein we have used that ϕ, ψ, χ, and ∇ϕ,∇ψ,∇χ are bounded because of (B.3) and (B.7).

Observe that (ϕ̃, ψ̃, χ̃) =

(

(

d11

(

∫

Ω1

ϕdx
)

+w
)

ϕ, (d11

(

∫

Ω1

ϕdx
)

+w
)

ψ, (d11

(

∫

Ω1

ϕdx
)

+w
)

χ

)

satisfies the following system
(B.10)


















































































































∂tϕ̃− (d11

(

∫

Ω1

ϕdx
)

+w)∆ϕ̃ = (d11

(

∫

Ω1

ϕdx
)

+w)F1(x, ϕ, ψ, χ, c)

+ϕ∂t

(

w + d11

(

∫

Ω1

ϕdx
))

in Q1,T ,

∂tψ̃ − (d11

(

∫

Ω1

ϕdx
)

+w)∆ψ̃ = (d11

(

∫

Ω1

ϕdx
)

+w)F2(x, ϕ, ψ, χ, c)

+ψ∂t

(

w + d11

(

∫

Ω1

ϕdx
))

in Q1,T ,

∂tχ̃− (d11

(

∫

Ω1

ϕdx
)

+w)∆χ̃ = (d11

(

∫

Ω1

ϕdx
)

+w)F3(x, ϕ, ψ, χ, c)

+χ∂t

(

w + d11

(

∫

Ω1

ϕdx
))

in Q1,T ,

∇ϕ̃ · η = ∇ψ̃ · η = ∇χ̃ · η = 0 on ∂Ω1,

ϕ̃(0, x) = (d11

(

∫

Ω1

ϕ0 dx
)

+w0(x))ϕ0(x), ψ̃(0, x) = (d11

(

∫

Ω1

ϕ0 dx
)

+w0(x))ψ0(x),

and χ̃(0, x) = (d11

(

∫

Ω1

ϕ0 dx
)

+w0(x))χ0(x), x ∈ Ω1.

Therefore from the definition of w̃
(

recall that w̃ = d11

(

∫

Ω1

ϕdx
)

w + w2
)

, (B.3) and (B.6), we

deduce

(B.11) ‖w‖W 2,1
q (Q1,T ) ≤ C, for all 3 < q < +∞,

for some constant C > 0. In particular, we have ∂tw ∈ Lq(Q1,T ) for all 1 < q < +∞. Using this,

w ∈ C
β
2
,β(Q1,T ),

(

d11

(

∫

Ω1

ϕdx
)

+w
)

F1(x, ϕ, ψ, χ, c) + ϕ∂t

(

w + d11

(

∫

Ω1

ϕdx
))

)

∈ Lq(Q1,T ),

(

d11

(

∫

Ω1

ϕdx
)

+w
)

F2(x, ϕ, ψ, χ, c)+ψ∂t

(

w+d11

(

∫

Ω1

ϕdx
))

)

∈ Lq(Q1,T ),

(

d11

(

∫

Ω1

ϕdx
)

+w
)

F3(x, ϕ, ψ, χ, c) + χ∂t

(

w + d11

(

∫

Ω1

ϕdx
))

)

∈ Lq(Q1,T ) and Lemma B.1, we get

(B.12) ‖ϕ̃‖W 2,1
q (Q1,T ) +

∥

∥

∥ψ̃
∥

∥

∥

W 2,1
q (Q1,T )

+ ‖χ̃‖W 2,1
q (Q1,T ) ≤ C, for all 3 < q < +∞,

for some constant C > 0.

Next we use the definition of ϕ̃, ψ̃, and χ̃ (recall that (ϕ̃, ψ̃, χ̃) =

(

(d11

(

∫

Ω1

ϕdx
)

+w)ϕ, (d11

(

∫

Ω1

ϕdx
)

+w)ψ,

(d11

(

∫

Ω1

ϕdx
)

+w)χ

)

to deduce from (B.3), (B.11), (B.12) and the Sobolev embedding theorem

for parabolic equation (see Lemma 3.3, p. 80 in [21])

(B.13) ϕ, ψ, χ ∈ C
1+ρ
2

,1+ρ(Q1,T ) for any 0 < ρ < 1.
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Exploiting (B.7) and (B.13), and using the Schauder estimate (see Theorem 5.3, p. 320-321 in
[21]) applied to (B.5), we deduce

w̃ ∈ C
2+θ
2

,2+θ(Q1,T ) for some θ ∈ (0, 1).

This implies that (recall that w̃ = d11

(

∫

Ω1

ϕdx
)

w + w2)

w ∈ C
2+θ
2

,2+θ(Q1,T ) and ∂tw ∈ C
θ
2
,θ(Q1,T ).

Then an another application of Schauder estimates to (B.10), we get

(B.14) ϕ̃, ψ̃, χ̃ ∈ C
2+θ
2

,2+θ(Q1,T ).

Finally, we use the definition of (ϕ̃, ψ̃, χ̃) to deduce from (B.14)

(B.15) ϕ, ψ, χ ∈ C
2+θ
2

,2+θ(Q1,T ).

Finally the solution (ϕ, ψ, χ) exists globally in time. Reasoning along the same lines for (ϕ, ψ, χ)
yields:

(u, v, w) ∈ C
2+θ
2

,2+θ([0,+∞)× Ω2, IR
3).

This concludes the proof of Theorem 2.2.
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