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Abstract

In this paper we introduce and analyze an augmented mixed finite element method for the cou-
pling of quasi-Newtonian fluids and porous media. The flows are governed by a class of nonlinear
Stokes and linear Darcy equations, respectively, and the transmission conditions are given by mass
conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We apply dual-mixed
formulations in both domains, and, in order to handle the nonlinearity involved in the Stokes re-
gion, we set the strain and vorticity tensors as auxiliary unknowns. In turn, since the transmission
conditions become essential, they are imposed weakly, which yields the introduction of the traces of
the porous media pressure and the fluid velocity as the associated Lagrange multipliers. Moreover,
in order to facilitate the analysis, we augment the formulation in the fluid by incorporating a redun-
dant Galerkin-type term arising from the quasi-Newtonian constitutive law multiplied by a suitable
stabilization parameter. In this way, under a suitable and explicit choice of this parameter, a ge-
neralization of the Babuska-Brezzi theory is utilized to show the well-posedness of the continuous
and discrete formulations and to derive the corresponding a-priori error estimate. In particular, the
feasible finite element subspaces include PEERS and Arnold-Falk-Winther elements for the stress,
velocity and vorticity in the fluid, Raviart-Thomas elements and piecewise constants for the velo-
city and pressure in the porous medium, together with piecewise constant Stokes strain tensor and
continuous piecewise linear elements for the traces. Next, we employ classical approaches, which
include linearization techniques, Clément’s interpolator and Helmholtz’s decomposition, together
with known efficiency estimates, to derive a reliable and efficient residual-based a posteriori error
estimator for the coupled problem. Finally, several numerical results confirming the good perfor-
mance of the method and the properties of the a posteriori error estimator, and illustrating the
capability of the corresponding adaptive algorithm to identify the singular regions of the solution,
are reported.

1 Introduction

The devising of suitable numerical methods for solving the Stokes-Darcy and related coupled problems,
including porous media with cracks, the incorporation of the Brinkman equation in the model, and
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linear as well as nonlinear behaviors, has become a very active research area during the last decade
(see, e.g. [6], [10], [11], [12], [13], [14], [24], [30], [32], [37], [40], [42] and the references therein).
In particular, a mixed finite element method for a nonlinear Stokes-Darcy flow problem arising in
industrial filtering application and involving a non-Newtonian fluid, is introduced and analized in [12].
Actually, up to the authors’ knowledge, this is the first work dealing with the fully-coupled problem
for non-Newtonian Stokes and Darcy flows. In fact, the fluid is modeled there by the generalized
nonlinear Stokes equation in the free flow region and by the generalized nonlinear Darcy equation
in the porous medium. In addition, the approach in [12] employs the primal method in the Stokes
domain and the dual-mixed method in the Darcy region, which means that only the original velocity
and pressure unknowns are considered in the fluid, whereas a further unknown (velocity) is added in
the porous medium. The corresponding interface conditions are given by mass conservation, balance
of normal forces, and the Beavers-Joseph-Saffman law, and since one of them becomes essential, the
trace of the Darcy pressure on the interface needs also to be incorporated as an additional Lagrange
multiplier. More recently, the model from [12] is recasted in [13] as a reduced matching problem on the
interface by using a mortar space approach. As a consequence, a parallel algorithm for the problems
in both regions is derived, which allows to solve the coupled problem utilizing existing codes for Stokes
and Darcy simulations.

On the other hand, the a priori and a posteriori error analyses of a new fully-mixed finite element
method for the 2D Stokes-Darcy coupled problem, in which dual-mixed formulations are employed in
both domains, were developed in [25] and [26]. This approach allows, on the one hand, the introduction
of further unknowns of physical interest, and on the other hand, the utilization of the same family of
finite element subspaces in both media, without requiring any stabilization term. The results from [25]
and [26] were then extended in [27] to the case of a two-dimensional nonlinear Stokes-Darcy coupled
problem. More precisely, the model here refers to the coupling of fluid flow with nonlinear porous
media flow, where the nonlinearity in the latter region is given by the corresponding permeability.
The utilization of dual-mixed formulations in both regions yields the pseudostress and the velocity in
the fluid, together with the velocity, the pressure and its gradient in the porous medium, as the main
unknowns. In addition, since the approach in [27] leads to essential transmission conditions, these are
imposed weakly and hence the traces of the porous medium pressure and the fluid velocity become the
corresponding Lagrange multipliers. Similarly as in [25], the remaining unknowns of physical interest
can then be computed through very simple postprocessing formulae that, at the discrete level, make
no use of any numerical differentiation procedure. Since the resulting variational formulation can
be written as a nonlinear twofold saddle point operator equation, the generalization of the Babuška-
Brezzi theory developed in [17] is applied to prove the well-posedness of the continuous and discrete
schemes. Finally, a reliable and efficient residual-based a posteriori error estimator is also derived in
[27]. In spite of the many contributions available in the literature on the a posteriori error analysis
for variational formulations with saddle point structure, the first results concerning nonlinear twofold
saddle point problems have been obtained in [27] and [15] by properly adapting and extending some
related techniques from [22] and [26]. In particular, the analysis in [15] provides an abstract error
estimate that can be applied to a large class of nonlinear variational formulations showing a twofold
saddle point structure.

The purpose of the present paper is to extend the analysis and results from [25] and [27] to the
model problem from [12], that is to the coupling of quasi-Newtonian fluids and porous media. In other
words, we now develop the a priori and a posteriori error analyses of a fully-mixed formulation for
a class of nonlinear Stokes models coupled with the usual linear Darcy equation, and assuming the
usual transmission conditions, that is mass conservation, balance of normal forces, and the Beavers-
Joseph-Saffman law. To this end, and differently from [12] where a primal approach is employed
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in the fluid, we apply dual-mixed formulations in both regions (exactly as in [25] and [27]), and
handle the nonlinearity in the fluid by introducing the strain and vorticity tensors as additional
unknowns. In addition, since the transmission conditions become again essential, they are imposed
weakly, which yields the traces of the porous media pressure and the fluid velocity on the interface
as the associated Lagrange multipliers. Furthermore, we follow the same approach from [22] and [23],
and enrich the equations in the fluid with a redundant Galerkin-type term arising from the quasi-
Newtonian constitutive law multiplied by a suitable stabilization parameter. As a consequence, the
resulting augmented variational formulation shows a twofold saddle point structure that matches a
slight modification of the generalized Babuška-Brezzi theory derived in [17] (see also [16]). In this
way, a suitable and explicit choice of the stabilization parameter allows to prove the well-posedness of
the corresponding continuous and discrete schemes. Then, following the approach from [27] and [15],
we derive a reliable and efficient residual-based a posteriori error estimator for our nonliner coupled
problem. As in [27], the proof of reliability makes use of a global inf-sup condition for a linearized
version of the problem, Helmholtz decompositions in both media, and local approximation properties
of the Clément interpolant and Raviart-Thomas operator. In turn, inverse inequalities, the localization
technique based on element-bubble and edge-bubble functions, and known results from previous works,
are the main tools for proving the efficiency of the estimator.

The rest of this work is organized as follows. In Section 2 we introduce the model problem
and derive the augmented fully-mixed variational formulation, which is shown to have a twofold
saddle point structure. A slight modification of the generalized Babuška-Brezzi theory developed
in [17] is described in Section 3. This abstract framework is then applied in Section 4 to prove
the well posedness of the continuous problem. Next, in Section 5 we define the Galerkin scheme
and, employing the corresponding analysis from Section 3, we derive general hypotheses on the finite
element subspaces ensuring that the discrete scheme becomes well posed. A specific choice of finite
element subspaces satisfying these assumptions is also described here. In Section 6 we derive the
residual-based a posteriori error estimator and prove its reliability and efficiency. Finally, several
numerical results illustrating the performance of the method, confirming the reliability and efficiency
of the a posteriori estimator, and showing the good behavior of the associated adaptive algorithm, are
reported in Section 7.

2 The continuous problem

2.1 Preliminary notations

We begin this section with several notations to be used throughout the paper. In what follows, given
n ∈ {2, 3}, Rn×n is the space of square matrices of orden n with real entries, I := (δij) is the identity
matrix of Rn×n, and for any τ := (τij), ζ := (ζij) in Rn×n, we write as usual

τ t := (τji) , tr τ :=
n∑
i=1

τii , τ d := τ − 1

n
tr (τ ) I , and τ : ζ :=

n∑
i,j=1

τij ζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator of a tensor τ , and to the
tensorial product between τ and ζ. In turn, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O is a domain, S is an open or closed Lipschitz curve
(resp. surface in R3), and r ∈ R, we define

Hr(O) := [Hr(O)]n , Hr(O) := [Hr(O)]n×n , and Hr(S) := [Hr(S)]n .
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However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and
H0(S), respectively. The corresponding norms are denoted by ‖ ·‖r,O (for Hr(O), Hr(O), and Hr(O))
and ‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to
denote [H]n and [H]n×n, respectively. In addition, 〈·, ·〉S stands for the usual duality pairings between
H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S). Note, however, that when S is an open
Lipschitz curve (resp. surface in R3), 〈·, ·〉S is also employed below to denote the duality pairings

between H
−1/2
00 (S) and H

1/2
00 (S), and between H

−1/2
00 (S) and H

1/2
00 (S) (see Section 2.3 for details).

Furthermore, with div denoting the usual divergence operator, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [7], [28]). The space of matrix valued functions whose
rows belong to H(div;O) will be denoted H(div;O), where div stands for the action of div along each
row of a tensor. The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖ ·‖div;O and ‖ ·‖div;O,
respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O).

Finally, we employ 0 to denote a generic null vector (including the null functional and opera-
tor), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2.2 The model problem

In order to describe the corresponding geometry, we let ΩS and ΩD be bounded and simply connected
polyhedral domains in Rn, n ∈ {2, 3}, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ 6= ∅. Then, we
let ΓS := ∂ΩS\Σ̄, ΓD := ∂ΩD\Σ̄, and denote by n the unit normal vector on the boundaries, which
is chosen pointing outward from ΩS ∪Σ ∪ΩD and ΩS (and hence inward to ΩD when seen on Σ). On
Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 (see Figure 2.1 below)
and by {t1, t2} when n = 3. The model problem we are interested in consists of the movement of an
incompressible quasi-Newtonian viscous fluid that occupies ΩS and that flows towards and from ΩD

through Σ, where ΩD is saturated with the same fluid. More precisely, the governing equations in ΩS

Figure 2.1: The 2D geometry of our Stokes–Darcy model

are those of the nonlinear Stokes problem written in the following stress-velocity-pressure formulation:

σS = µ (|e(uS)|) e(uS) − pS I in ΩS, div uS = 0 in ΩS ,

divσS = − fS in ΩS, uS = 0 on ΓS ,
(2.1)
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where σS is the stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is the nonlinear

kinematic viscosity, e(uS) := 1
2

{
∇uS +

(
∇uS

)t}
is the strain tensor (or symmetric part of the

velocity gradient), | · | is the euclidean norm of Rn×n, and fS ∈ L2(ΩS) is a known volume force. Note
here that σS is symmetric. In turn, in ΩD we consider the linearized Darcy model with Neumann
boundary condition on ΓD:

uD = −K∇pD in ΩD , div uD = fD in ΩD , uD · n = 0 on ΓD , (2.2)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source term
satisfying

∫
ΩD

fD = 0, and K is a symmetric and positive definite tensor with entries in L∞(ΩD),
which describes the permeability of ΩD divided by a constant approximation of the viscosity. Finally,
the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σS n +
n−1∑
`=1

κ−1
` (uS · t`) t` = −pD n on Σ ,

(2.3)

where {κ1, ..., κn−1} is a set of positive frictional constants that can be determined experimentally.

At this point we remark that the kind of nonlinear Stokes problem given by (2.1) appears in
the modeling of a large class of non-Newtonian fluids (see, e.g. [5], [31], [34], [39]). In particular,
the Ladyzhenskaya law for fluids with large stresses (see [31]), also known as power law, is given by
µ(t) := µ0 + µ1t

β−2 ∀ t ∈ R+, with µ0 ≥ 0, µ1 > 0, and β > 1, and the Carreau law for viscoplastic
flows (see, e.g. [34], [39]) reads µ(t) := µ0 + µ1 (1 + t2)(β−2)/2 ∀ t ∈ R+, with µ0 ≥ 0, µ1 > 0, and
β ≥ 1.

In what follows we let µij : Rn×n → R be the mapping given by µij(r) := µ(|r|) rij for all
r := (rij) ∈ Rn×n, for all i, j ∈ {1, ..., n}. Then, throughout this paper we assume that µ is of class
C1 and that there exist γ0, α0 > 0 such that for all r := (rij), s := (sij) ∈ Rn×n, there holds

|µij(r) | ≤ γ0 |r| ,
∣∣∣∣ ∂

∂rkl
µij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, ..., n} , (2.4)

and
n∑

i,j,k,l= 1

∂

∂rkl
µij(r) sij skl ≥ α0 |s|2 . (2.5)

It is easy to check that the Carreau law satisfies (2.4) and (2.5) for all µ0 > 0, and for all β ∈ [1, 2].
In particular, with β = 2 we recover the usual linear Stokes model.

2.3 Further notations

In order to derive the weak formulation of the coupled problem given by (2.1), (2.2), and (2.3), we need
to introduce other notations and definitions. In fact, given ? ∈ {S,D}, u, v ∈ L2(Ω?), u, v ∈ L2(Ω?),
and σ, τ ∈ L2(Ω?), we denote

(u, v)? :=

∫
Ω?

u v, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .

In addition, we let L2
(ΩS) and L2(ΩS) be the subspaces of symmetric and skew-symmetric tensors of

L2(ΩS), respectively, that is

L2
(ΩS) :=

{
rS ∈ L2(ΩS) : rtS = rS

}
5



and
L2(ΩS) :=

{
ηS ∈ L2(ΩS) : ηtS = −ηS

}
.

Furthermore, we also need the space H
1/2
00 (Σ) := H

1/2
00 (Σ)×H1/2

00 (Σ), where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1(ΩS) , v = 0 on ΓS

}
.

Equivalently, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ
0 on ΓS

∀ψ ∈ H1/2(Σ) ,

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. In turn, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the

vector version of E0,S, we have that ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
∀ψ ∈ H

1/2
00 (Σ). The dual space

of H
1/2
00 (Σ) (resp. H

1/2
00 (Σ)) is H

−1/2
00 (Σ) (resp. H

−1/2
00 (Σ)) and the corresponding duality pairing is

denoted in each case by 〈·, ·〉Σ. In particular, note that given η ∈ H−1/2(∂ΩS), its restriction to Σ

defined by 〈η|Σ,ψ〉Σ := 〈η,E0,S(ψ)〉∂ΩS
∀ψ ∈ H

1/2
00 (Σ), is an element of H

−1/2
00 (Σ).

2.4 The augmented fully-mixed variational formulation

We now proceed with the announced weak formulation. We begin by observing, as in [21] and [22],
that, thanks to the fact that tr e(uS) = div uS, the first two equations from (2.1), that is

σS = µ (|e(uS)|) e(uS) − pS I and div uS = 0 in ΩS ,

are equivalent to

σS = µ (|e(uS)|) e(uS) − pS I and pS = − 1

n
trσS in ΩS ,

and hence, eliminating the pressure pS, the Stokes problem (2.1) can be rewritten as

σd
S = µ (|e(uS)|) e(uS) in ΩS , divσS = − fS in ΩS , uS = 0 on ΓS . (2.6)

Moreover, in order to handle the nonlinearity defining σS, we adopt the approach from [22] (see also
[23]) and introduce the additional unknowns

tS := e(uS) and γS :=
1

2

{
∇uS −

(
∇uS

)t}
in ΩS , (2.7)

where γS is the vorticity (or skew-symmetric part of the velocity gradient), so that (2.6) reduces to

tS = ∇uS − γS in ΩS , σd
S = µ (|tS|) tS in ΩS ,

divσS = − fS in ΩS , uS = 0 on ΓS ,
(2.8)

with both tS and σS symmetric tensors, and such that tr tS = 0 in ΩS. Then, multiplying the first
equation of (2.8) by τ S ∈ H(div; ΩS), integrating by parts the expression (∇uS, τ S)S, introducing the
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Dirichlet boundary condition uS = 0 on ΓS, and using that (tS, τ S)S = (tS, τ
d
S)S (which follows from

the fact that tS : I = tr tS = 0), we arrive at

(tS, τ
d
S)S + (div τ S,uS)S + 〈τ S n,ϕ〉Σ + (τ S,γS)S = 0 ∀ τ S ∈ H(div; ΩS) , (2.9)

with unknowns

tS ∈ L2
0(ΩS) , uS ∈ L2(ΩS) , ϕ := −uS|Σ ∈ H

1/2
00 (Σ) , and γS ∈ L2(ΩS) , (2.10)

where
L2

0(ΩS) =
{

rS ∈ L2
(ΩS) : tr rS = 0

}
.

Next, multiplying the second and third equations of (2.8) by rS ∈ L2
0(ΩS) and vS ∈ L2(ΩS), respec-

tively, and imposing the symmetry of σS in a weak sense, we obtain

(µ(|tS|) tS, rS)S − (rS,σ
d
S)S = 0 ∀ rS ∈ L2

0(ΩS) (2.11)

(divσS,vS)S = − (fS,vS)S ∀vS ∈ L2(ΩS) , (2.12)

and
(σS,ηS)S = 0 ∀ηS ∈ L2(ΩS) , (2.13)

where the unknown σS is sought in H(div; ΩS). Note that the decomposition L2
(ΩS) = L2

0(ΩS) ⊕ R I
and the fact that both tS and σd

S belong to L2
0(ΩS) guarantee that (2.11) is equivalent to requiring it

for all rS ∈ L2
(ΩS).

On the other hand, we now consider the first equation of (2.2) in the form K−1 uD = −∇pD in
ΩD, and, as suggested by the Neumann boundary condition on ΓD, introduce the space

H0(div; ΩD) :=
{

vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
.

Then, multiplying by vD ∈ H0(div; ΩD), integrating by parts the expression (∇pD,vD)D, and recalling
that the normal vector n on Σ points inwards ΩD, we get

(K−1 uD,vD)D − (div vD, pD)D − 〈vD · n, λ〉Σ = 0 ∀vD ∈ H0(div; ΩD) , (2.14)

with unknowns

uD ∈ H0(div; ΩD) , pD ∈ L2(ΩD) , and λ := pD|Σ ∈ H1/2(Σ) . (2.15)

In turn, multiplying by qD ∈ L2(ΩD) the second equation of (2.2) and integrating on ΩD, we obtain

(div uD, qD)D = (fD, qD)D ∀ qD ∈ L2(ΩD) . (2.16)

Finally, since the transmission conditions given by (2.3) become essential (which follows from the
fact that dual-mixed approaches are employed in both domains), we impose them weakly and obtain
the equations

−〈ϕ · n, ξ〉Σ − 〈uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) ,

〈σS n,ψ〉Σ −
n−1∑
`=1

κ−1
` 〈ϕ · t`,ψ · t`〉Σ + 〈ψ · n, λ〉Σ = 0 ∀ψ ∈ H

1/2
00 (Σ) ,

(2.17)
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where we have replaced uS|Σ and pD|Σ by −ϕ and λ, respectively. At this point we remark that, in
principle, the spaces for the unknowns uS and pD (cf. (2.10) and (2.15)) do not allow enough regularity

for the pair of traces (ϕ, λ) to live in H
1/2
00 (Σ) ×H1/2(Σ). However, it is easy to see from (2.8) and

(2.2) that uS and pD belong to H1(ΩS) and H1(ΩD), respectively, which confirms the indicated space
for (ϕ, λ).

According to the whole above analysis, we find that our resulting weak formulation reduces to a
nonlinear system of eight unknowns, namely

tS ∈ L2
0(ΩS) , uS ∈ L2(ΩS) , ϕ ∈ H

1/2
00 (Σ) , γS ∈ L2(ΩS) ,

σS ∈ H(div; ΩS) , uD ∈ H0(div; ΩD) , pD ∈ L2(ΩD) , and λ ∈ H1/2(Σ) ,
(2.18)

and the eight equations given by (2.9), (2.11), (2.12), (2.13), (2.14), (2.16), and (2.17). Howe-
ver, it is not difficult to show that this system is not uniquely solvable since, given any solution
(tS,uS,ϕ,γS,σS,uD, pD, λ) in the indicated spaces, and given any constant c ∈ R, the vector de-
fined by (tS,uS,ϕ,γS,σS − c I,uD, pD + c, λ + c) also becomes a solution. In order to avoid this
non-uniqueness from now on we require that the Darcy pressure pD belongs to L2

0(ΩD), where

L2
0(ΩD) :=

{
qD ∈ L2(ΩD) :

∫
ΩD

qD = 0

}
.

Note that the decomposition L2(ΩD) = L2
0(ΩD) ⊕ R, the boundary conditions uD · n = 0 on ΓD and

uS = 0 on ΓS, the first transmission condition in (2.3), and the fact that
∫

ΩD
fD = 0, guarantee that

(2.16) is equivalent to requiring it for all qD ∈ L2
0(ΩD).

Now, it is quite clear that there are many different ways of ordering the equations forming the
resulting nonlinear system. Throughout the rest of the paper, and for convenience of the analysis, we
adopt one leading to a twofold saddle point structure. More precisely, by considering subsequently
(2.11), (2.14), (2.9), (2.17), (2.16), (2.12), and (2.13), and denoting throughout the rest of the paper

〈ϕ,ψ〉t,Σ :=
n−1∑
`=1

κ−1
` 〈ϕ · t`,ψ · t`〉Σ , (2.19)

we arrive at the matrix operator represented as follows, where the unknowns and corresponding test
functions are displayed along columns and rows, respectively,

tS uD σS (ϕ, λ) pD uS γS

rS (µ(|tS|) tS, rS)S − (rS,σ
d
S)S

vD (K−1uD,vD)D −〈vD · n, λ〉Σ − (divvD, pD)D

τS (tS, τ
d
S)S 〈τS n,ϕ〉Σ (div τS,uS)S (τS,γS)S

(ψ, ξ) −〈uD · n, ξ〉Σ 〈σS n,ψ〉Σ
−〈ϕ · n, ξ〉Σ
+ 〈ψ · n, λ〉Σ
−〈ϕ,ψ〉t,Σ

qD − (divuD, qD)D

vS (divσS,vS)S

ηS (σS,ηS)S


.

Furthermore, in order to facilitate the forthcoming analysis, and particularly, to be able to apply a
generalization of the Babuška-Brezzi theory for twofold saddle point problems (see Section 3 below),
we enrich the above formulation by adding the consistent equation given by

ρ (σd
S − µ(|tS|) tS, τ

d
S)S = 0 ∀ τ S ∈ H(div; ΩS) , (2.20)
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where ρ is a positive stabilization parameter to be choosen later. Note that (2.20), which is included
from now on into the left-upper block, arises from the quasi-Newtonian constitutive law given by the
second equation of (2.8). Additionally, we consider the decomposition

H(div; ΩS) = H0(div; ΩS) ⊕ R I , (2.21)

where

H0(div; ΩS) :=

{
τ ∈ H(div; ΩS) :

∫
ΩS

tr (τ ) = 0

}
, (2.22)

and redefine σS and τ S as σS + ` I and τ S +  I, respectively, with

σS, τ S ∈ H0(div; ΩS) and `,  ∈ R . (2.23)

Consequently, denoting µ̃(|tS|) := 1− ρµ(|tS|), the matrix operator of our variational formulation
is represented now by

(µ(|tS|) tS, rS)S − (rS,σ
d
S)S

(K−1uD,vD)D −〈vD · n, λ〉Σ − (divvD, pD)D(
µ̃(|tS|) tS, τ

d
S

)
S

ρ(σd
S, τ

d
S)S 〈τS n,ϕ〉Σ (div τS,uS)S (τS,γS)S

−〈uD · n, ξ〉Σ 〈σS n,ψ〉Σ
−〈ϕ · n, ξ〉Σ
+ 〈ψ · n, λ〉Σ
−〈ϕ,ψ〉t,Σ

`〈n,ψ〉Σ

− (divuD, qD)D

(divσS,vS)S

(σS,ηS)S

〈n,ϕ〉Σ


with unknowns

tS ∈ L2
0(ΩS) , uD ∈ H0(div; ΩD) , σS ∈ H0(div; ΩS) , (ϕ, λ) ∈ H

1/2
00 (Σ)×H1/2(Σ) ,

pD ∈ L2
0(ΩD) , uS ∈ L2(ΩS) , γS ∈ L2(ΩS) , and ` ∈ R ,

(2.24)

and corresponding test functions

rS ∈ L2
0(ΩS) , vD ∈ H0(div; ΩD) , τ S ∈ H0(div; ΩS) , (ψ, ξ) ∈ H

1/2
00 (Σ)×H1/2(Σ) ,

qD ∈ L2
0(ΩD) , vS ∈ L2(ΩS) , ηS ∈ L2(ΩS) , and  ∈ R .

(2.25)

The above structure suggests the introduction of the spaces

X1 := L2
0(ΩS)×H0(div; ΩD)×H0(div; ΩS) , M1 := H

1/2
00 (Σ)×H1/2(Σ) ,

M := L2
0(ΩD)× L2(ΩS)× L2(ΩS)× R , and X := X1 ×M1 ,

(2.26)

endowed with the associated product norms, and the operators A1 : X1 → X′1, B1 : X1 → M′
1,

S : M1 →M′
1, A : X→ X′, and B : X→M′, given, respectively, by

[A1(t), r] := (µ(|tS|) tS, rS)S + (K−1uD,vD)D − (rS,σ
d
S)S

+ (tS, τ
d
S)S + ρ (σd

S − µ(|tS|) tS, τ
d
S)S ,

(2.27)

[B1(r),ψ] := −〈vD · n, ξ〉Σ + 〈τ S n,ψ〉Σ , (2.28)

[S(ϕ),ψ] := 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ + 〈ϕ,ψ〉t,Σ , (2.29)

[A(t,ϕ), (r,ψ)] := [A1(t), r] + [B1(t),ψ] + [B1(r),ϕ] − [S(ϕ),ψ] , (2.30)
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and
[B(r,ψ), q] := − (div vD, qD)D + (div τ S,vS)S + (τ S,ηS)S +  〈n,ψ〉Σ , (2.31)

for all t := (tS,uD,σS) ∈ X1, r := (rS,vD, τ S) ∈ X1, ϕ := (ϕ, λ) ∈ M1, ψ := (ψ, ξ) ∈ M1,
and q := (qD,vS,ηS, ) ∈ M, where [·, ·] denotes the duality pairing induced by the corresponding
operators. In addition, we let B′1 : M1 → X′1 and B′ : M → X′ be the adjoints of B1 and B,
respectively, which satisfy [B′1(ψ), r] = [B1(r),ψ] and [B′(q), (r,ψ)] = [B(r,ψ), q] for all r ∈ X1,
ψ ∈M1, and q ∈M. Then, it is clear that A can also be defined as the matrix operator

A(r,ψ) :=

[
A1 B′1
B1 −S

] [
r
ψ

]
∈ X′ ∀ (r,ψ) ∈ X . (2.32)

Next, we let F ∈ X′ and G ∈M′ be the functionals defined by

[F, (r,ψ)] := 0 ∀ (r,ψ) ∈ X and [G, q] := − (fS,vS)S − (fD, qD)D ∀ q ∈ M , (2.33)

and observe that, denoting p := (pD,uS,γS, `) ∈ M, our augmented fully-mixed variational formu-
lation reduces to the twofold saddle point operator equation: Find ((t,ϕ), p) ∈ X×M such that

[A(t,ϕ), (r,ψ)] + [B(r,ψ), p] = [F, (r,ψ)] ∀ (r,ψ) ∈ X ,
[B(t,ϕ), q] = [G, q] ∀ q ∈ M ,

(2.34)

or, equivalently, such that [
A B′
B O

] [
(t,ϕ)

p

]
=

[
F
G

]
. (2.35)

Certainly, (2.32) and (2.35) explain here the use of the “twofold saddle point” concept.

In the following section we adapt the approach from [17, Sections 2 and 3] to derive the necessary
abstract theory for analyzing the kind of variational problems characterized by (2.35) and (2.32).

3 A modified abstract theory for twofold saddle point problems

3.1 The continuous setting

Let X1, M1 and M be Hilbert spaces, set X := X1×M1, and denote their duals by X ′1, M ′1, M ′, and
X ′ := X ′1 ×M ′1, respectively. Next, given a nonlinear operator A1 : X1 → X ′1, and linear bounded
operators S : M1 →M ′1, B1 : X1 →M ′1, and B : X →M ′, we let B′1 : M1 → X ′1 and B′ : M → X ′ be
the corresponding adjoints, and define the nonlinear operator A : X → X ′ as follows

A(r,ψ) :=

[
A1 B′1
B1 −S

] [
r
ψ

]
∈ X ′ := X ′1 ×M ′1 ∀ (r,ψ) ∈ X . (3.1)

Then we are interested in the following nonlinear variational problem: Given (F,G) ∈ X ′ ×M ′, find
((t,ϕ), p) ∈ X ×M such that [

A B′

B O

] [
(t,ϕ)
p

]
=

[
F
G

]
(3.2)

or, equivalently, such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ X ,

[B(t,ϕ), q] = [G, q] ∀ q ∈M .
(3.3)

In order to prove the main theorem for the solvability of the continuous formulation (3.2), we need
to recall the following auxiliary result from [17].
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Lemma 3.1 Let X̂1 and M̂1 be Hilbert spaces, and let Â1 : X̂1 → X̂ ′1 be a nonlinear operator. In

addition, let B̂1 : X̂1 → M̂ ′1 and Ŝ : M̂1 → M̂ ′1 be linear and bounded operators, and let B̂′1 : M̂1 → X̂ ′1
be the adjoint of B̂1. Assume that

i) Â1 : X̂1 → X̂ ′1 is Lipschitz continuous and strongly monotone, that is, there exist constants
γ̂, α̂ > 0 such that

‖Â1(s) − Â1(r)‖
X̂′1
≤ γ̂ ‖s− r‖

X̂1
∀ s, r ∈ X̂1

and
[Â1(s) − Â1(r), s− r] ≥ α̂ ‖s− r‖2

X̂1
∀ s, r ∈ X̂1 .

ii) Ŝ is positive semi-definite on M̂1, that is,

[Ŝ(ψ),ψ] ≥ 0 ∀ψ ∈ M̂1 .

iii) B̂1 satisfies an inf-sup condition on X̂1 × M̂1, that is, there exists β̂ > 0 such that

sup
r∈X̂1
r 6=0

[B̂1(r),ψ]

‖r‖
X̂1

≥ β̂ ‖ψ‖
M̂1

∀ψ ∈ M̂1 .

Then, given (F̂ , Ĝ) ∈ X̂ ′1 × M̂ ′1, there exists a unique (t,ϕ) ∈ X̂1 × M̂1 such that[
Â1 B̂′1
B̂1 −Ŝ

] [
t
ϕ

]
=

[
F̂

Ĝ

]
.

In addition, there exists Ĉ > 0, depending only on γ̂, α̂, β̂ and ‖B̂1‖, such that

‖(t,ϕ)‖
X̂1×M̂1

≤ Ĉ
{
‖F̂‖

X̂′1
+ ‖Ĝ‖

M̂ ′1
+ ‖Â1(0)‖

X̂′1

}
. (3.4)

Proof. See [17, Lemma 2.1].
�

We now go back to the analysis of problem (3.2). To this end, we let V be the kernel of B, that is

V :=
{

(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀ q ∈M
}
,

and denote by X̃1 and M̃1 the subspaces of X1 and M1, respectively, such that V = X̃1 × M̃1. Note
that the boundedness of B implies that both X̃1 and M̃1 are closed. Then, the following theorem
provides sufficient conditions for the well-posedness of (3.2).

Theorem 3.1 Assume that

i) A1|X̃1
: X̃1 → X̃ ′1 is Lipschitz continuous and strongly monotone, that is, there exist constants

γ, α > 0 such that
‖A1(s) − A1(r)‖

X̃′1
≤ γ ‖s− r‖X1 ∀ s, r ∈ X̃1

and
[A1(s) − A1(r), s− r] ≥ α ‖s− r‖2X1

∀ s, r ∈ X̃1 .

11



ii) For each pair (r, r⊥) ∈ X̃1 × X̃⊥1 there holds the pseudolinear property

A1(r + r⊥) = A1(r) + A1(r⊥) . (3.5)

iii) S is positive semi-definite on M̃1, that is,

[S(ψ),ψ] ≥ 0 ∀ψ ∈ M̃1 .

iv) B1 satisfies an inf-sup condition on X̃1 × M̃1, that is, there exists β1 > 0 such that

sup
r∈X̃1
r6=0

[B1(r),ψ]

‖r‖X1

≥ β1 ‖ψ‖M1 ∀ψ ∈ M̃1 .

v) B satisfies an inf-sup condition on X ×M , that is, there exists β > 0 such that

sup
(r,ψ)∈X
(r,ψ)6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β ‖q‖M ∀ q ∈M .

Then, there exists a unique ((t,ϕ), p) ∈ X ×M solution of (3.2). Moreover, there exists C > 0,
depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M ′

}
. (3.6)

Proof. We adapt the proof of [17, Theorem 2.1] to the present situation. We begin by recalling from
[28, Chapter I, Lemma 4.1] that the inf-sup condition satisfied by B (cf. v)) implies that B : V ⊥ →M ′

and B′ : M → V o are isomorphisms and that

‖B−1‖, ‖(B′)−1‖ ≤ 1

β
. (3.7)

As usual, V o stands here for the set of functionals in X ′ that vanish on V . Hence, we now let
(t⊥,ϕ⊥) := B−1(G) ∈ V ⊥, and observe, thanks to (3.7), that

‖(t⊥,ϕ⊥)‖X ≤
1

β
‖G‖M ′ . (3.8)

Next, we let F1 ∈ X ′1 and G1 ∈M ′1 be such that F = (F1, G1), and introduce the functionals

F̂1 := F1 − A1(t⊥) − B′1(ϕ⊥) ∈ X ′1 and Ĝ1 := G1 − B1(t⊥) + S(ϕ⊥) ∈M ′1 . (3.9)

Then, having in mind hypotheses i), iii), and iv), a straightforward application of Lemma 3.1 yields

the existence of a unique (t̃, ϕ̃) ∈ V := X̃1 × M̃1 such that

[A1(t̃), r] + [B′1(ϕ̃), r] = [F̂1, r] ∀ r ∈ X̃1 ,

[B1(t̃),ψ] − [S(ϕ̃),ψ] = [Ĝ1,ψ] ∀ψ ∈ M̃1 ,
(3.10)

and there exists C̃ > 0, depending only on γ, α, β1 and ‖B1‖, such that

‖(t̃, ϕ̃)‖X1×M1 ≤ C̃
{
‖F̂1‖X̃′1 + ‖Ĝ1‖M̃ ′1

}
. (3.11)
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Note that we have also used here, which is a consequence of ii), that A1(0) = 0. It follows from (3.10)

that the pair of functionals (F̂1 − A1(t̃) − B′1(ϕ̃), Ĝ1 − B1(t̃) + S(ϕ̃)) belongs to X̃o
1 × M̃o

1 =: V o,
and hence, according to the above mentioned property of B′ and the bound (3.7) again, there exists
a unique p ∈M such that

B′(p) = (F̂1 −A1(t̃)−B′1(ϕ̃), Ĝ1 −B1(t̃) + S(ϕ̃)) , (3.12)

and

‖p‖M ≤
1

β

{
‖F̂1 −A1(t̃)−B′1(ϕ̃)‖X′1 + ‖Ĝ1 −B1(t̃) + S(ϕ̃)‖M ′1

}
. (3.13)

Next, replacing F̂1 and Ĝ1 from (3.9) into (3.12), and using the pseudolinear property (3.5) and the
linearity of B′1, B1, and S, we find that

B′(p) = (F1 −A1(t⊥ + t̃)−B′1(ϕ⊥ + ϕ̃), G1 −B1(t⊥ + t̃) + S(ϕ⊥ + ϕ̃)) ,

which, in terms of the operator A (cf. (3.1)) and the functional F = (F1, G1), can be rewritten as

A(t⊥ + t̃,ϕ⊥ + ϕ̃) + B′(p) = F . (3.14)

In turn, since B(t⊥,ϕ⊥) = G and (t̃, ϕ̃) belongs to V , we easily see that

B(t⊥ + t̃,ϕ⊥ + ϕ̃) = G , (3.15)

and therefore, it becomes clear from (3.14) and (3.15) that the pair ((t⊥ + t̃,ϕ⊥ + ϕ̃), p) ∈ X ×M
constitutes a solution of (3.2). The corresponding bound (3.6) follows from (3.8), (3.9), (3.11), and
(3.13), by employing also the properties of the operators involved. We omit details.

For the uniqueness, let ((t,ϕ), p̄) ∈ X ×M be another solution of (3.2), that is

A(t,ϕ) + B′(p̄) = F and B(t,ϕ) = G .

It follows that (t,ϕ)− (t⊥,ϕ⊥) ∈ V , and hence, using again the pseudolinear property (3.5), we find
that A1(t) = A1(t− t⊥) + A1(t⊥). As a consequence, there holds

A(t,ϕ) = A
(
(t,ϕ)− (t⊥,ϕ⊥)

)
+ A(t⊥,ϕ⊥) ,

which, combined with the fact that A(t,ϕ)− F belongs to V o, yields

[A
(
(t,ϕ)− (t⊥,ϕ⊥)

)
, (r,ψ)] = [F −A(t⊥,ϕ⊥), (r,ψ)] ∀ (r,ψ) ∈ V ,

that is

[A1(t− t⊥), r] + [B′1(ϕ−ϕ⊥), r] = [F̂1, r] ∀ r ∈ X̃1 ,

[B1(t− t⊥),ψ] − [S(ϕ−ϕ⊥),ψ] = [Ĝ1,ψ] ∀ψ ∈ M̃1 .

This shows that (t− t⊥,ϕ−ϕ⊥) is a solution of (3.10), and hence, because of the unique solvability
of that problem, we deduce that (t− t⊥,ϕ−ϕ⊥) = (t̃, ϕ̃), that is (t,ϕ) = (t̃ + t⊥, ϕ̃+ϕ⊥). Finally,
since B′(p) = B′(p̄) = F − A(t,ϕ) ∈ V o and B′ : M → V o is an isomorphism, we conclude that
p = p̄, which finishes the proof.

�

Before going on with the analysis, we now describe a particular case providing sufficient conditions
for the pseudolinear property (3.5). More precisely, let us assume that X1 can be decomposed as the
product space X`

1 ×Xr
1 in such a way that
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i) B does not depend on the variables from X`
1.

ii) A1 is linear in
{
0
}
×Xr

1 , where 0 denotes the null vector of X`
1.

iii) for each t := (t`, tr) ∈ X`
1 ×Xr

1 =: X1 there holds

A1(t) = A1(t`,0) + A1(0, tr) ,

where 0 denotes, respectively, the null vectors of Xr
1 and X`

1.

Then, recalling that V = X̃1×M̃1, we deduce from i) that X̃1 = X`
1×X̃r

1 , where X̃r
1 is a subspace

of Xr
1 . In addition, it follows from the above that X̃⊥1 =

{
0
}
×
(
X̃r

1

)⊥ ⊆ {0}×Xr
1 , where 0 denotes

again the null vector of X`
1. Consequently, given t := (t`, tr) ∈ X̃1 and t⊥ := (0, t⊥,r) ∈ X̃⊥1 , we use

ii) and iii) to find that

A1(t) + A1(t⊥) = A1(t`,0) + A1(0, tr) + A1(0, t⊥,r) = A1(t`,0) + A1(0, tr + t⊥,r)

= A1(t`, tr + t⊥,r) = A1(t + t⊥) ,

which shows that (3.5) holds. In particular, we prove below in Section 4 that our formulation from
Section 2 does satisfy the assumptions i), ii), and iii).

On the other hand, if A1 is linear, Theorem 3.1 reduces to the following.

Theorem 3.2 Assume that

i) A1 : X̃1 → X̃ ′1 is linear, bounded and X̃1-elliptic, that is, there exist γ, α > 0 such that

‖A1(r)‖
X̃′1
≤ γ ‖r‖X1 ∀ r ∈ X̃1 ,

and
[A1(r), r] ≥ α ‖r‖2X1

∀ r ∈ X̃1 .

ii) The conditions iii) - v) from Theorem 3.1 are satisfied.

Then, there exists a unique ((t,ϕ), p) ∈ X ×M solution of (3.2). Moreover, there exists C > 0,
depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M ′

}
. (3.16)

Proof. It suffices to observe that the linearity, boundedness and ellipticity of A1 imply that this
operator is Lipschitz continuous and strongly monotone in X̃1. In addition, it is clear that A1 satisfies
(3.5). Thus, the proof follows from a straightforward application of Theorem 3.1.

�

It is important to remark at this point that (3.16) is equivalent to the global inf-sup condition

‖((s,φ), ρ)‖X×M ≤ C sup
((r,ψ),q)∈X×M

((r,ψ),q) 6= 0

[A(s,φ), (r,ψ)] + [B′(ρ), (r,ψ)] + [B(s,φ), q]

‖((r,ψ), q)‖X×M
(3.17)

for all ((s,φ), ρ) ∈ X ×M .
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3.2 The discrete setting

We now turn our attention to the Galerkin scheme of problem (3.2). To this end, we let X1,h, M1,h,
and Mh be finite-dimensional subspaces of X1, M1, and M , respectively. Here, the subindex h, which
identifies the finite dimensional subspaces, is taken in a numerable family I := {hj}j∈N such that
hj ≥ hj+1 for all j ∈ N. Then, defining Xh := X1,h ×M1,h, the Galerkin scheme reduces to: Find
((th,ϕh), ph) ∈ Xh ×Mh such that

[A(th,ϕh), (r,ψ)] + [B′(ph), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ Xh ,

[B(th,ϕh), q] = [G, q] ∀ q ∈Mh .
(3.18)

Next, we let Vh be the discrete kernel of B, that is,

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh), q] = 0 ∀ q ∈Mh

}
,

and let X̃1,h and M̃1,h be subspaces of X1,h and M1,h, respectively, such that Vh = X̃1,h × M̃1,h.

The following theorem establishes the well posedness of (3.18).

Theorem 3.3 Assume that

i) A1|X̃1,h
: X̃1,h → X̃ ′1,h is Lipschitz continuous and strongly monotone, that is, there exist constants

γh, αh > 0 such that

‖A1(sh) − A1(rh)‖
X̃′1,h

≤ γh ‖sh − rh‖X1 ∀ sh, rh ∈ X̃1,h

and
[A1(sh) − A1(rh), sh − rh] ≥ αh ‖sh − rh‖2X1

∀ sh, rh ∈ X̃1,h .

ii) For each pair (rh, r
⊥
h ) ∈ X̃1,h × X̃⊥1,h there holds the discrete pseudolinear property

[A1(rh + r⊥h ), sh] = [A1(rh), sh] + [A1(r⊥h ), sh] ∀ sh ∈ X1,h , (3.19)

where X̃⊥1,h is the orthogonal of X̃1,h within X1,h.

iii) S is positive semi-definite on M̃1,h, that is,

[S(ψh),ψh] ≥ 0 ∀ψh ∈ M̃1,h .

iv) B1 satisfies an inf-sup condition on X̃1,h × M̃1,h, that is, there exists β1,h > 0 such that

sup
rh∈X̃1,h

rh 6=0

[B1(rh),ψh]

‖rh‖X1

≥ β1,h ‖ψh‖M1 ∀ψh ∈ M̃1,h .

v) B satisfies an inf-sup condition on Xh ×Mh, that is, there exists βh > 0 such that

sup
(rh,ψh)∈Xh
(rh,ψh)6=0

[B(rh,ψh), qh]

‖(rh,ψh)‖X
≥ βh ‖qh‖M ∀ qh ∈Mh .
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Then, there exists a unique ((th,ϕh), ph) ∈ Xh×Mh solution of (3.18). Moreover, there exists Ch > 0,
depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch

{
‖F |Xh

‖X′h + ‖G|Mh
‖M ′h

}
. (3.20)

Proof. It follows analogously to the proof of Theorem 3.1 by adapting now the proof of [17, Theorem
3.1]. In particular, the discrete inf-sup condition satisfied by B (cf. v)) and [28, Chapter I, Lemma 4.1]
imply that the discrete counterparts of B and B′, namely Bh : V ⊥h ∩Xh →M ′h and B′h : Mh → V o

h ∩X ′h,
respectively, are isomorphisms with

‖B−1
h ‖ , ‖(B

′
h)−1‖ ≤ 1

βh
. (3.21)

The rest of the proof makes use also of the discrete version of Lemma 3.1. We omit further details.
�

It is interesting to observe at this point that the same sufficient conditions introduced above for
the pseudolinear property (3.5) yield now the verification of (3.19). In fact, decomposing the space
X1,h = X`

1,h × Xr
1,h, with X`

1,h ⊆ X`
1 and Xr

1,h ⊆ Xr
1 , and assuming i), ii), and iii), we easily see

that B does not depend on the variables from X`
1,h, A1|X1,h

is linear in
{
0
}
×Xr

1,h, and for each th :=

(t`h, t
r
h) ∈ X`

1,h×Xr
1,h =: X1,h there holds [A1(th), sh] = [A1(t`h,0), sh] + [A1(0, trh), sh] ∀ sh ∈ X1,h.

Consequently, we find that X̃1,h = X`
1,h × X̃r

1,h, where X̃r
1,h is a subspace of Xr

1,h, and also that

X̃⊥1,h ⊆
{
0
}
×Xr

1,h, whence the discrete pseudolinear property (3.19) follows similarly to the proof of
(3.5) from the assumptions indicated. Further details are omitted.

On the other hand, the linear version of Theorem 3.3 is established as follows.

Theorem 3.4 Assume that

i) A1|X1,h
: X1,h → X ′1,h is linear, bounded and X̃1,h-elliptic, that is, there exist γh, αh > 0 such that

‖A1(rh)‖X′1,h ≤ γh ‖rh‖X1 ∀ rh ∈ X̃1,h ,

and
[A1(rh), rh] ≥ αh ‖rh‖2X1

∀ rh ∈ X̃1,h .

ii) The conditions iii) - v) from Theorem 3.3 are satisfied.

Then, there exists a unique ((th,ϕh), ph) ∈ Xh×Mh solution of (3.18). Moreover, there exists Ch > 0,
depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch

{
‖F |Xh

‖X′h + ‖G|Mh
‖M ′h

}
. (3.22)

Proof. It reduces to verify the hypotheses of Theorem 3.3. We omit details.
�

As for the continuous case, we notice here that (3.22) is equivalent to the global inf-sup condition

‖((sh,φh), ρh)‖X×M ≤ Ch sup
((r,ψ),q)∈Xh×Mh

((r,ψ),q) 6= 0

[A(sh,φh), (r,ψ)] + [B′(ρh), (r,ψ)] + [B(sh,φh), q]

‖((r,ψ), q)‖X×M
(3.23)

for all ((sh,φh), ρh) ∈ Xh ×Mh.
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It is important to remark now that, from the point of view of the stability of the Galerkin schemes,
one actually should require that in Theorems 3.3 and 3.4 all the constants αh, γh, β1,h, and βh, and
hence Ch in (3.20) and (3.22), be independent of h. Indeed, these theorems are usually stated by
assuming the existence of uniform lower bounds for αh, β1,h, and βh, and a uniform upper bound for
γh. Needless to say, the derivation of these uniform bounds (equivalently, the obtention of constants
not depending on the meshsize h) becomes precisely the core issue of the numerical analysis of any
particular Galerkin scheme of the form (3.18).

We now aim to provide the error estimates for the abstract Galerkin scheme (3.18). For this
purpose, and in order to simplify the corresponding analysis, we proceed as in [17] and introduce a
differentiability hypothesis on the nonlinear operator A1. In addition, we suppose that A1 is Lipschitz-
continuous in the whole space X1, and adopt slightly more general strong monotonicity properties
involving separately the continuous and discrete spaces. More precisely, throughout the rest of the
section we assume the following hypotheses:

(A.1) there exist constants γ, α > 0, independent of h, such that

‖A1(s) − A1(r)‖X′1 ≤ γ ‖s− r‖X1 ∀ s, r ∈ X1 , (3.24)

[A1(t + s) − A1(t + r), s− r] ≥ α ‖s− r‖2X1
∀ t ∈ X1, ∀ s, r ∈ X̃1 , (3.25)

and

[A1(th + sh) − A1(th + rh), sh − rh] ≥ α ‖sh − rh‖2X1
∀ th ∈ X1,h, ∀ sh, rh ∈ X̃1,h . (3.26)

(A.2) A1 : X1 → X ′1 has a hemi-continuous first order Gâteaux derivative DA1 : X1 → L(X1, X
′
1),

which means that for any s, r ∈ X1, the mapping R 3 µ→ DA1(s+µ r)(r)(·) ∈ X ′1 is continuous.

Note here that the discrete strong monotonicity condition (3.26) does not follow in general from the
continuous one (3.25) since the component X̃1,h of the discrete kernel Vh is not necessarily contained

in the corresponding component X̃1 of V . This is the reason why we have to impose them separately.
Then, we have the following result.

Lemma 3.2 For any s ∈ X1, the Gâteaux derivative DA1(s) constitutes a bounded bilinear form on
X1×X1 that becomes elliptic on X̃1 ∪ X̃1,h, with boundedness and ellipticity constants given by γ and
α, respectively.

Proof. Given s ∈ X1, the Gâteaux derivative DA1(s) is the operator in L(X1, X
′
1) (equivalently, the

bilinear form on X1 ×X1) defined by

DA1(s)(r, r̂) := lim
ε→0

[A1(s + ε r), r̂] − [A1(s), r̂]

ε
∀ r, r̂ ∈ X1 .

The rest of the proof follows as in [17, Lemma 3.1] by employing the assumptions (A.1) and (A.2)
in the above definition. We omit further details and refer the reader to [17].

�

Our next goal is to provide the Cea estimate for the Galerkin scheme (3.18). To this end, we now
let P : X×M → (X×M)′ := X ′×M ′ be the nonlinear operator obtained after adding the equations
on the left hand side of (3.3), that is

[P (~t),~r] := [A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] + [B(t,ϕ), q]
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for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X ×M , or, equivalently, using (3.1),

[P (~t),~r] := [A1(t), r] + [B′1(ϕ), r] + [B1(t),ψ] − [S(ϕ),ψ] + [B′(p), (r,ψ)] + [B(t,ϕ), q] (3.27)

for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X ×M . Then, it is easy to see that, given ~s := ((s,φ), ρ) ∈
X ×M , the Gâteaux derivative of P at ~s is obtained by replacing [A1(t), r] in (3.27) by DA1(s)(t, r).
In this way we arrive at

DP (~s)(~t,~r) := DA1(s)(t, r) + [B′1(ϕ), r] + [B1(t),ψ] − [S(ϕ),ψ] + [B′(p), (r,ψ)] + [B(t,ϕ), q]
(3.28)

for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X ×M , which, according to Lemma 3.2, becomes a bounded
bilinear form on

(
X ×M

)
×
(
X ×M

)
. Moreover, assuming for a moment the conditions iii) - v)

of Theorem 3.3 with constants independent of h, and having in mind Lemma 3.2 again, we deduce
that DP (~s)(·, ·) satisfies the hypotheses of the linear version given by Theorem 3.4 with constants
independent of h and ~s as well. It follows, in virtue of (3.22) (equivalently (3.23)), that there exists
C̃ > 0, independent of h, such that

‖~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

DP (~s)(~sh,~rh)

‖~rh‖X×M
∀~sh ∈ Xh ×Mh . (3.29)

We are now in a position to establish the announced a priori error estimate.

Theorem 3.5 Assume that the hypotheses of Theorems 3.1 and 3.3 hold, and let ~t := ((t,ϕ), p) ∈
X ×M and ~th := ((th,ϕh), ph) ∈ Xh ×Mh be the unique solutions of (3.2) and (3.18), respectively.
Then, there exists C > 0, independent of h, such that

‖~t − ~th‖X×M ≤ C inf
~sh∈Xh×Mh

‖~t − ~sh‖X×M . (3.30)

Proof. We proceed as in the proof of [17, Theorem 3.3]. Hence, given ~s ∈ X ×M and ~sh ∈ Xh ×Mh,
we apply (3.29) to ~th − ~sh and obtain

‖~th −~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

DP (~s)(~th −~sh,~rh)

‖~rh‖X×M
. (3.31)

In turn, since the hemi-continuity of DA1 (cf. (A.2)) implies the same property for DP , we deduce
the existence of µ0 ∈ (0, 1) such that

[P (~th),~rh] − [P (~sh),~rh] =

∫ 1

0
DP (µ~th + (1− µ)~sh)(~th −~sh,~rh) dµ

= DP (µ0~th + (1− µ0)~sh)(~th −~sh,~rh) ,

(3.32)

and hence, using in particular ~s = µ0~th + (1− µ0)~sh in (3.31), we find that

‖~th −~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

[P (~th),~rh] − [P (~sh),~rh]

‖~rh‖X×M
. (3.33)

Next, since (3.2) and (3.18) yield [P (~t),~rh] = [P (~th),~rh] ∀~rh ∈ Xh ×Mh, and since (A.1) implies
that P is also Lipschitz-continuous, say with a constant γ̃, we obtain from (3.33) that

‖~th −~sh‖X×M ≤ C̃ γ̃ ‖~t−~sh‖X×M ∀~sh ∈ Xh ×Mh . (3.34)

Finally, it is easy to see that (3.34) and the triangle inequality give (3.30) and complete the proof.
�
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4 Analysis of the continuous problem

We now go back to the augmented fully mixed variational formulation introduced in Section 2.4 and
apply Theorem 3.1 to prove the well posedness of (2.34). In fact, we begin by observing from the
definition of B (cf. (2.31)) that the kernel of this operator reduces to

V :=
{

(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀ q ∈M
}

= X̃1 × M̃1 ,

where
X̃1 = L2

0(ΩS)× H̃0(div; ΩD)× H̃0(div; ΩS) and M̃1 = H̃
1/2
00 (Σ)×H1/2(Σ) ,

with

H̃0(div; ΩD) :=
{

vD ∈ H0(div; ΩD) : div(vD) ∈ P0(ΩD)
}
,

H̃0(div; ΩS) =
{
τ S ∈ H0(div; ΩS) : τ S = τ tS and div τ S = 0 in ΩS

}
,

and

H̃
1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : 〈n,ψ〉Σ = 0

}
.

The following lemma shows that A1 verifies the assumptions (3.24) and (3.25) (cf. (A.1)), which
imply, in particular, that A1 satisfies the hypothesis i) in Theorem 3.1.

Lemma 4.1 Let A1 : X1 → X′1 be the nonlinear operator defined by (2.27). Then there exists a
constant γ > 0 such that

‖A1(r)−A1(s)‖X′1 ≤ γ‖r− s‖X1 ∀ r, s ∈ X1 . (4.1)

Furthermore, assume that the parameter ρ lies in

(
0,
α0

γ2
0

)
, where α0 and γ0 are the positive constants

from (2.4) and (2.5). Then, there exists a constant α > 0 such that

[A1(t + r)−A1(t + r̄), r− r̄] ≥ α ‖r− r̄‖2X1
∀ t ∈ X1 , ∀ r, r̄ ∈ X̃1 . (4.2)

Proof. We begin by observing from (2.27) that A1 : X1 → X′1 can be decomposed as

[A1(r), r̄] = [A1S(rS, τ S), (r̄S, τ̄ S)] + [A1D(vD), v̄D)] ∀ r = (rS,vD, τ S), r̄ = (r̄S, v̄D, τ̄ S) ∈ X1,

where A1S : L2
0(ΩS) × H0(div; ΩS) → L2

0(ΩS)′ × H0(div; ΩS)′ and A1D : H(div; ΩD) → H(div; ΩD)′

are the nonlinear and linear operators, respectively, given by

[A1S(rS, τ S), (r̄S, τ̄ S)] := (µ(|rS|) rS, r̄S)S − (r̄S, τ
d
S)S + (rS, τ̄

d
S)S + ρ (τ dS − µ(|rS|) rS, τ̄

d
S)S (4.3)

and

[A1D(vD), v̄D)] := (K−1vD, v̄D)D . (4.4)

Next, we recall from [22, Lemma 3.1] that there exists γ̄ > 0 such that

‖A1S(rS, τ S)−A1S(r̄S, τ̄ S)‖L2
0(ΩS)′×H0(div;ΩS)′

≤ γ̄ ‖(rS, τ S)− (r̄S, τ̄ S)‖L2
0(ΩS)×H0(div;ΩS)
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for all (rS, τ S), (r̄S, τ̄ S) ∈ L2
0(ΩS)×H0(div; ΩS), and hence, thanks also to the boundedness of A1D, we

conclude (4.1), that is the Lipschitz continuity of A1. On the other hand, it was proved in [22, Lemma
3.2] that, under the present assumption on ρ and having in mind that div τ S = 0 ∀ τ S ∈ H̃0(div; ΩS),
there exists ᾱ > 0 such that

[A1S((r̃S , τ̃S) + (rS, τ S))−A1S((r̃S , τ̃S) + (r̄S, τ̄ S)), (rS, τ S)− (r̄S, τ̄ S)]

≥ ᾱ ‖(rS, τ S)− (r̄S, τ̄ S)‖2
L2

0(ΩS)×H0(div;ΩS)
,

(4.5)

for all (r̃S , τ̃S) ∈ L2
0(ΩS)×H0(div; ΩS) and for all (rS, τ S), (r̄S, τ̄ S) ∈ L2

0(ΩS)× H̃0(div; ΩS). At this
point we remark that both [22, Lemma 3.1] and [22, Lemma 3.2] follow from [22, Lemma 2.1], which
is actually the key result making use of the Gâteaux derivative of A1S. In turn, it was established in
[25, Lemma 3.2] that there exists c > 0 such that

‖vD‖0,ΩD
≥ c ‖vD‖div;ΩD

∀vD ∈ H̃0(div; ΩD) , (4.6)

which, together with the fact that K is positive definite, imply the strong coerciveness property for
A1D : H̃0(div; ΩD)→ H̃0(div; ΩD)′. In this way, (4.5) and (4.6) yield (4.2) and complete the proof.

�

As previously announced, note that the assumption i) required by Theorem 3.1 follows from (4.1),
using that ‖A1(r)−A1(s)‖

X̃′1
≤ ‖A1(r)−A1(s)‖X′1 ≤ γ ‖r− s‖X1 , and from (4.2) (with t = 0).

We continue the analysis with the inf-sup conditions for B1 and B (cf. iv) and v) in Theorem 3.1).

Lemma 4.2 There exists a constant β1 > 0 such that

sup
r∈X̃1
r 6=0

[B1(r),ψ]

‖r‖X1

≥ β1 ‖ψ‖M1 ∀ψ ∈ M̃1 . (4.7)

Proof. These results are very similar to the ones provided in [25, Lemma 3.8]. Indeed, because of
the diagonal character of B1 (cf. (2.28)), one first realizes that (4.7) is equivalent to finding positive
constants β̃S and β̃D such that

sup
τS ∈ H̃0(div;ΩS)\0

〈τ S n,ψ〉Σ
‖τ S‖div;ΩS

≥ β̃S ‖ψ‖1/2,Σ ∀ψ ∈ H̃
1/2
00 (Σ) , (4.8)

and

sup
vD ∈ H̃(div;ΩD)\0

〈vD · n, ξ〉Σ
‖vD‖div;ΩD

≥ β̃D ‖ξ‖1/2,Σ ∀ ξ ∈ H1/2(Σ) . (4.9)

The proof of (4.9) can be found in [27, Lemma 3.3] (see also [25, Lemma 3.8]), whereas for (4.8) we

need to slightly modify the corresponding arguments given there. In fact, given χ ∈ H
−1/2
00 (Σ) we let

τ be the H0(div; ΩS)–component of e(z) ∈ H(div; ΩS), where z ∈ H1(ΩS) is the unique solution of
the boundary value problem:

div e(z) = 0 in ΩS , z = 0 on ΓS , e(z) n = χ on Σ . (4.10)

In other words, τ := e(z) − c I, where c :=
1

n |ΩS|

∫
ΩS

tr e(z) (cf. (2.21)), which implies that τ ∈

H̃0(div; ΩS) and τ n = χ − cn on Σ. It follows that 〈τ n,ψ〉Σ = 〈χ,ψ〉Σ for each ψ ∈ H̃
1/2
00 (Σ),

which proves the surjectivity of the operator τ → τ n from H̃0(div; ΩS) to
(
H̃

1/2
00 (Σ)

)′
, that is (4.8).

�
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Lemma 4.3 There exists a constant β > 0 such that

sup
(r,ψ)∈X
(r,ψ) 6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β ‖q‖M ∀ q ∈M . (4.11)

Proof. Analogously to the proof of Lemma 4.2, and because of the structure of B (cf. (2.31)), we find
that (4.11) is equivalent to the following three independent inequalities

sup
τS ∈H0(div;ΩS)\0

(div τ S,vS)S + (τ S,ηS)S

‖τ S‖div;ΩS

≥ βS ‖(vS,ηS)‖ ∀ (vS,ηS) ∈ L2(ΩS)× L2(ΩS) ,

(4.12)

sup
vD ∈H0(div;ΩD)\0

(div vD, qD)D

‖vD‖div;ΩD

≥ βD ‖qD‖0,ΩD
∀ qD ∈ L2

0(ΩD) , (4.13)

and

sup
ψ ∈H1/2

00 (Σ)\0

 〈n,ψ〉Σ
‖ψ‖1/2,Σ

≥ βΣ || ∀  ∈ R , (4.14)

with βS, βD, βΣ > 0. Actually, except for the term (τ S,ηS)S appearing in (4.12), the statement of
the present lemma coincides with the one provided in [25, Lemma 3.6]. Hence, for the derivation of
(4.13) and (4.14) we simply refer to the proof of that result, whereas the proof of (4.12), being a slight
modification of [25, eq. (3.4)], can be found in several places (see, e.g. [20, Lemma 3.4]). In particular,
we recall that the proof of (4.14) relies on the existence of a fixed element ψ0 ∈ H1/2(Σ) such that
〈n,ψ0〉Σ 6= 0 (see [25, Section 3.2] for details).

�

We now check that the assumptions i), ii) and iii) specified in Section 3 are satisfied by our
variational formulation (2.34). For this purpose we decompose X1 (cf. (2.26)) as X`

1 × Xr
1, where

X`
1 := L2

0(ΩS) and Xr
1 := H0(div; ΩD) × H0(div; ΩS). Then, it is easy to see from (2.28) that

B1 does not depend on the variable from X`
1. In addition, it is clear from (2.27) that for each

t := (0,uD,σS), r := (rS,vD, τ S) ∈ X1 there holds

[A1(t), r] := (K−1uD,vD)D − (rS,σ
d
S)S + ρ (σd

S, τ
d
S)S ,

which shows that A1 is linear in
{
0
}
×Xr

1. Similarly, from the definition of A1 we also find that for
each t := (t`, tr) := (tS, (uD,σS)) ∈ X1 := X`

1 × Xr
1 and for each r := (rS,vD, τ S) ∈ X1 there

holds

[A1(t`,0), r] + [A1(0, tr), r] = (µ(|tS|) tS, rS)S + (tS, τ
d
S)S − ρ (µ(|tS|) tS, τ

d
S)S

+ (K−1uD,vD)D − (rS,σ
d
S)S + ρ (σd

S, τ
d
S)S = [A1(t), r] ,

which proves that A1(t) = A1(t`,0) + A1(0, tr). It follows from the previous analysis that A1 satisfies
the pseudolinear property (3.5), which confirms the verification of the hypothesis ii) of Theorem 3.1.

On the other hand, it is quite straightforward from (2.19) and (2.29) that for each ψ := (ψ, ξ) ∈
M1 there holds

[S(ψ),ψ] =

n−1∑
`=1

κ−1
` ‖ψ · t`‖

2
0,Σ ≥ 0 , (4.15)

which shows the positive definiteness of S, thus verifying the hypothesis iii) of Theorem 3.1.

We are now ready to establish the main result concerning the existence and uniqueness of solution
of the problem (2.34).
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Theorem 4.1 Assume that the parameter ρ appearing in the definition of the non linear operator A1

(cf. (2.27)) lies in
(

0,
α0

γ2
0

)
, where γ0 and α0 are the positive constants from (2.4) and (2.5). Then,

there exists a unique ((t,ϕ), p) ∈ X×M solution of (2.34). Moreover, there exists C > 0, depending
only on α, γ, β1, β, ‖S‖, and ‖B1‖, such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M′

}
. (4.16)

Proof. Thanks to the analysis developed in this section, the proof follows from a direct application of
Theorem 3.1.

�

We end this section with the converse of the derivation of the variational formulation (2.34).

Theorem 4.2 Let ((t,ϕ), p) ∈ X×M be the unique solution of the variational formulation (2.34) with

F and G given by (2.33), and define pS := − 1
2tr (σS). Then uS ∈ H1(ΩS), pD ∈ H1(ΩD), ϕ = −uS

on Σ, λ = pD on Σ, and we have a solution of the system (2.8), (2.2), and (2.3).

Proof. It basically follows by applying integration by parts backwardly in (2.34), and using suitable
test functions. We omit further details.

�

5 The mixed finite element scheme

In this section we introduce the Galerkin scheme of problem (2.34) and analyze its well-posedness by
establishing suitable assumptions on the finite element subspaces involved. Then, we provide specific
examples of these subspaces satisfying the required hypotheses.

5.1 Preliminaries

We begin by selecting a set of arbitrary discrete spaces, namely

Hh(ΩS) ⊆ H(div; ΩS), L2
h(ΩS) ⊆ L2(ΩS), Lh(ΩS) ⊆ L2(ΩS), ΛS

h(Σ) ⊆ H1/2
00 (Σ) ,

Hh(ΩD) ⊆ H(div; ΩD), Lh(ΩD) ⊆ L2(ΩD), and ΛD
h (Σ) ⊆ H1/2(Σ) .

(5.1)

Then, we define the subspaces

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : c tτ ∈ Hh(ΩS) ∀c ∈ Rn

}
,

H0,h(ΩS) := Hh(ΩS) ∩H0(div; ΩS) ,

H0,h(ΩD) := Hh(ΩD) ∩H0(div; ΩD) ,

Lh(ΩS) := [Lh(ΩS)]n ,

Lh(ΩS) := [Lh(ΩS)]n×n ,

L0,h(ΩS) := Lh(ΩS) ∩ L2
0(ΩS) , and

ΛS
h(Σ) := [ΛS

h(Σ)]n .

(5.2)
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In addition, in order to deal with the mean value condition for the Darcy pressure pD, we define

L0,h(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) . (5.3)

Then, the global unknowns and corresponding finite element subspaces are as follows:

th := (tS,h,uD,h,σS,h) ∈ X1,h := L0,h(ΩS)×H0,h(ΩD)×H0,h(ΩS) ,

ϕ
h

:= (ϕh, λh) ∈ M1,h := ΛS
h(Σ)× ΛD

h (Σ) ,

p
h

:= (pD,h,uS,h,γS,h, `h) ∈ Mh := L0,h(ΩD)× Lh(ΩS)× L2
h(ΩS)× R .

(5.4)

In this way, setting Xh := X1,h×M1,h, the Galerkin scheme for (2.34) reduces to: Find ((th,ϕh), p
h
) ∈

Xh ×Mh such that

[A(th,ϕh), (rh,ψh)] + [B(rh,ψh), p
h
] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh ,

[B(th,ϕh), q
h
] = [G, q

h
] ∀ q

h
∈Mh .

(5.5)

5.2 The main results

We now adapt the analysis from Section 4 to the discrete case and follow very closely the approach
from [25, Section 4.1] to establish general hypotheses on the finite element subspaces (5.1) ensuring,
by means of the abstract theory developed in Section 3.2, the well-posedness of (5.5). We begin by
observing that in order to have meaningful spaces H0,h(ΩS) and L0,h(ΩD) (cf. (5.2) and (5.3)), we need
to be able to eliminate multiples of the identity matrix I from Hh(ΩS) and the constant polynomials
from Lh(ΩD). This request is certainly satisfied if we assume the following:

(H.0) [P0(ΩS)]2 ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD),

where P0(ΩS) and P0(ΩD) are the spaces of constant polynomials on ΩS and ΩD, respectively. In
particular, it follows that I ∈ Hh(ΩS) for all h, and hence there holds the decomposition:

Hh(ΩS) = H0,h(ΩS)⊕ P0(ΩS)I . (5.6)

Next, according to the same diagonal argument utilized in the proof of Lemma 4.3 (see also [25,
Lemma 3.6]) we deduce that B satisfies the discrete inf-sup condition uniformly on Xh ×Mh if and
only if there exist β̃S, β̃D, β̃Σ > 0, independent of h, such that

sup
τS,h∈H0,h(ΩS)

τS,h 6=0

(div τ S,h,vS,h)S + (τ S,h,ηS,h)S

‖τ S,h‖div,ΩS

≥ β̃S ‖(vS,h,ηS,h)‖ ∀ (vS,h,ηS,h) ∈ Lh(ΩS)× L2
h(ΩS) ,

(5.7)

sup
vD,h∈H0,h(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div;ΩD

≥ β̃D ‖qD,h‖0,ΩD
∀ qD,h ∈ L0,h(ΩD) , (5.8)

sup
ψh∈ΛS

h(Σ)

ψh 6=0

 〈n,ψh〉Σ
‖ψh‖1/2,Σ

≥ β̃Σ || ∀  ∈ R . (5.9)

However, since divHh(ΩS) = divH0,h(ΩS) (cf. (5.6)) and (I,ηS,h)S = 0 (because of the symmetry
of I and the skew-symmetry of ηS,h), we find that the supremum in (5.7) remains the same if taken

23



on Hh(ΩS) instead of H0,h(ΩS). Notice also that a sufficient condition for (5.9) is the existence of

ψ0 ∈ H
1/2
00 (Σ) such that ψ0 ∈ ΛS

h(Σ) for all h and 〈n,ψ0〉Σ 6= 0. Consequently, we now introduce the
following hypotheses summarizing the above analysis:

(H.1) There exist β̃S, β̃D > 0, independent of h, and there exists ψ0 ∈ H
1/2
00 (Σ), such that

sup
τS,h∈Hh(ΩS)

τS,h 6=0

(div τ S,h,vS,h)S + (τ S,h,ηS,h)S

‖τ S,h‖div,ΩS

≥ β̃S ‖(vS,h,ηS,h)‖ ∀ (vS,h,ηS,h) ∈ Lh(ΩS)× L2
h(ΩS) ,

(5.10)

sup
vD,h∈H0,h(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div;ΩD

≥ β̃D ‖qD,h‖0,ΩD
∀ qD,h ∈ L0,h(ΩD) , (5.11)

ψ0 ∈ ΛS
h(Σ) ∀h and 〈n,ψ0〉Σ 6= 0 . (5.12)

On the other hand, we now look at the discrete kernel of B, which is defined by

Vh :=
{

(rh,ψh) ∈ Xh : B((rh,ψh), q
h
) = 0 ∀q

h
∈Mh

}
.

In addition, in order to have a more explicit definition of Vh we introduce the following assumption:

(H.2) div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).

It follows from the definition of B (cf. (2.31)) and (H.2) that Vh := X̃1,h × M̃1,h, where

X̃1,h := L0,h(ΩS)× H̃0,h(ΩD)× H̃0,h(ΩS) and M̃1,h := ΛS
0,h(Σ)× ΛD

h (Σ) ,

with

H̃0,h(ΩD) :=
{

vD,h ∈ H0,h(ΩD) : div vD,h ∈ P0(ΩD)
}
,

H̃0,h(ΩS) :=
{
τ S,h ∈ H0,h(ΩS) : (τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2

h(ΩS) and div τ S,h = 0 in ΩS

}
,

and

ΛS
0,h(Σ) :=

{
ψh ∈ ΛS

h(Σ) : 〈n,ψh〉Σ = 0
}
.

Then, applying the same diagonal argument employed in the proof of Lemma 4.2 (see also [25,

Lemma 3.8]), we find that B1 satisfies the discrete inf-sup condition uniformly on X̃1,h × M̃1,h if and

only if there exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈H̃0,h(ΩS)

τS,h 6=0

〈τ S,h n,ψh〉Σ
‖τ S,h‖div,ΩS

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ), (5.13)

sup
vD,h∈H̃0,h(ΩD)

vD.h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖div;ΩD

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (5.14)
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In addition, the characterization of the elements of ΛS
0,h(Σ) yields the supremum in (5.13) to remain

unchanged if, instead of H̃0,h(ΩS), it is taken on

H̃h(ΩS) :=
{
τ S,h ∈ Hh(ΩS) : (τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2

h(ΩS) and div τ S,h = 0 in ΩS

}
.

(5.15)
In this way, we now add the following hypothesis:

(H.3) There exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈H̃h(ΩS)

τS,h 6=0

〈τ S,h n,ψh〉Σ
‖τ S,h‖div;ΩS

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ), (5.16)

sup
vD,h∈H̃0,h(ΩD)

vD.h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖div;ΩD

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (5.17)

From now on we assume that the arbitrary finite element subspaces introduced in (5.1) satisfy the
above derived hypotheses (H.0), (H.1), (H.2) and (H.3). Hence, we are in a position to prove that
the assumptions required by Theorem 3.3 are satisfied. We begin with the following lemma which
yields the hypothesis i) of that theorem and the assumption (3.26) (cf. (A.1)) as well.

Lemma 5.1 Let γ > 0 be the same constant provided by Lemma 4.1. Then

‖A1(rh)−A1(sh)‖
X̃′1,h
≤ γ ‖rh − sh‖X1 ∀ rh, sh ∈ X̃1,h . (5.18)

Furthermore, assume that the parameter ρ lies in

(
0,
α0

γ2
0

)
, where α0 and γ0 are the positive constants

from (2.4) and (2.5), and let α > 0 be the same constant provided by Lemma 4.1. Then

[A1(th + rh)−A1(th + sh), rh − sh] ≥ α ‖rh − sh‖2X1
∀ th ∈ X1,h , ∀ rh, sh ∈ X̃1,h . (5.19)

Proof. It is clear that (5.18) follows straightforwardly from (4.1) by noting that

‖A1(rh)−A1(sh)‖
X̃′1,h

≤ ‖A1(rh)−A1(sh)‖X′1 .

In turn, similarly as for the continuous case, the discrete strong monotonicity (5.19) follows from
the corresponding property of the operator A1S|L0,h(ΩS)×H̃0,h(ΩS)

: L0,h(ΩS)× H̃0,h(ΩS)→ L0,h(ΩS)′ ×
H̃0,h(ΩS)′, which makes use now of the fact that div τ S,h = 0 ∀ τ S,h ∈ H̃0,h(ΩS), and also from the

strong coercivenes of A1D|H̃0,h(ΩD)
: H̃0,h(ΩD)→ H̃0,h(ΩD)′. We omit further details and refer to the

proofs of Lemma 4.1 and [22, Lemmas 3.1 and 3.2].
�

As stated in advance, we note here that the hypothesis i) in Theorem 3.3 is given by (5.18) and
(5.19) (with th = 0), whereas (5.19) is precisely (3.26) (cf. (A.1)). We observe next, according to
(4.15), that for each ψ

h
:= (ψh, ξh) ∈M1,h ⊆M1 there holds

[S(ψ
h
),ψ

h
] =

n−1∑
`=1

κ−1
` ‖ψh · t`‖

2
0,Σ ≥ 0 , (5.20)

which yields the hypothesis iii) of Theorem 3.3. The analysis is continued with the discrete inf-sup
conditions for B1 and B (cf. iv) and v) in Theorem 3.3).
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Lemma 5.2 There exists a constant β̂1 > 0, independent of h, such that

sup
rh∈X̃1
rh 6=0

[B1(rh),ψ
h
]

‖rh‖X1

≥ β̂1 ‖ψh‖M1 ∀ψ
h
∈ M̃1,h .

Proof. It follows directly from (H.3).
�

Lemma 5.3 There exists a constant β̂ > 0, independent of h, such that

sup
(rhψh

)∈Xh
(rhψh

) 6=0

[B(rhψh), q
h
]

‖(rh,ψh)‖X
≥ β̂ ‖q

h
‖M ∀ q

h
∈Mh .

Proof. It follows directly from (H.1).
�

The following theorem establishes the well posedness of (5.5).

Theorem 5.1 Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3) hold, and that ρ lives in(
0, α0

γ2
0

)
. Then, the Galerkin scheme (5.5) has a unique solution ((th,ϕh), p

h
) ∈ Xh ×Mh, and there

exists C > 0, depending only on α, γ, β̂1, β̂, ‖S‖ and ‖B1‖, such that

‖((th,ϕh), p
h
)‖X×M ≤ C

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
. (5.21)

Proof. According to the previous analysis, the proof follows from a direct application of Theorem 3.3.
�

We end this section with the corresponding Cea a priori error estimate. To this end, we first recall
from Section 2.2 that µ is assumed to be of class C1, which yields the assumption (A.2), that is
the hemi-continuity of the Gâteaux derivative DA1 : X1 → L(X1, X

′
1). Consequently, we have the

following result.

Theorem 5.2 Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3) hold, and that ρ lives in(
0, α0

γ2
0

)
. Let ((t,ϕ), p) ∈ X×M and ((th,ϕh), p

h
) ∈ Xh×Mh be the unique solutions of the continuous

and discrete formulations (2.34) and (5.5), respectively. Then, there exists C > 0, independent of h,
such that

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M (5.22)

Proof. It is a straightforward application of Theorem 3.5. �

5.3 Particular choices of finite element subspaces

We now specify concrete examples of finite element subspaces in 2D and 3D satisfying the hypotheses
introduced in the previous section. To this end, we let T S

h and T D
h be respective triangulations of the

domains ΩS and ΩD formed by shape-regular triangles (in R2) or tetrahedra (in R3), and assume that
they match in Σ so that T S

h ∪T D
h is a triangulation of ΩS ∪Σ∪ΩD. We also let Σh be the partition of

Σ inherited from T S
h (or T D

h ). Furthermore, given an integer k ≥ 0 and a subset S of Rn, we denote
by Pk(S) the space of polynomials defined on S of total degree at most k. Note that, according to
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the notation described in Section 1, Pk(S) and Pk(S) stand for [Pk(S)]n and [Pk(S)]n×n, respectively.
In addition, we let bT be the element-bubble function defined as the unique polynomial in Pn+1(T )
vanishing on ∂T with

∫
T bT = 1, and denote by x := (x1, x2, · · · , xn) a generic vector of Rn. Then,

we define for each T ∈ T S
h ∪ T D

h the local Raviart-Thomas and bubble spaces of order 0, respectively,
by (see, e.g. [7], [38])

RT0(T ) := P0(T )⊕ P0(T ) x ,

and

B0(T ) :=

 P0(T )
(
∂bT
∂x2

, −∂bT
∂x1

)
in R2 ,

∇ ×
(
bT P0(T )

)
in R3 .

5.3.1 PEERS + Raviart-Thomas in 2D

We specify the discrete spaces in (5.1) as follows:

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ RT0(T )⊕B0(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η :=

(
0 η
−η 0

)
: η ∈ C(Ω̄S) , η|T ∈ P1(T ) ∀T ∈ T S

h

}
.

(5.23)

Note here that the product space Hh(ΩS)×Lh(ΩS)×L2
h(ΩS), with Hh(ΩS) and Lh(ΩS) defined accor-

ding to (5.2), constitutes the classical PEERS originally introduced in [1] for a mixed finite element
aproximation of the linear elasticity problem with Dirichlet boundary conditions (see also [33]). In
turn, Hh(ΩD)×Lh(ΩD) is the Raviart-Thomas stable element of lowest order for the mixed formulation
of the Poisson problem (see, e.g. [7], [36]). These facts are particularly important for the rest of the
analysis since, as we will make it clear below, all the discrete inf-sup conditions that are required in
the hypotheses indicated in Section 5.2, either are already available in the literature or can be derived
from related results provided there.

Next, in order to define the spaces on the interface Σ, thus completing the list in (5.1), we follow
the simplest approach suggested in [25] and [35]. To this end, we assume, without loss of generality,
that the number of edges e of Σh is even. Then, we let Σ2h be the partition of Σ arising by joining
pairs of adjacent edges of Σh, and denote the resulting edges still by e. Since Σh is inherited from
the interior triangulations, it is automatically of bounded variation (that is, the ratio of lengths of
adjacent edges is bounded) and, therefore, so is Σ2h. Certainly, if the number of edges of Σh were odd,
we simply reduce it to the even case by joining any pair of two adjacent elements, and then construct
Σ2h from this partition. Hence, denoting by x0 and x1 the extreme points of Σ, we define

ΛS
h(Σ) :=

{
ψ ∈ C(Σ) : ψ|e ∈ P1(e) ∀ e ∈ Σ2h , ψ(x0) = ψ(x1) = 0

}
, and

ΛD
h (Σ) =

{
ξ ∈ C(Σ) : ξ|e ∈ P1(e) ∀ e ∈ Σ2h

}
.

(5.24)

Our analysis below will also utilize the finite element subspaces of H
−1/2
00 (Σ) and H

−1/2
00 (Σ) given by

Φh(Σ) :=
{
φh ∈ L2(Σ) : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
, and
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Φh(Σ) :=
{
φh ∈ L2(Σ) : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
.

In what follows we establish from (5.23), (5.24), and the accompanying definitions (5.2) and (5.4),
that the hypotheses (H.0) - (H.3) are satisfied. In fact, the verification of (H.0) and (H.2) is quite
straightforward from the definitions given in (5.23). Now, the discrete inf-sup conditions (5.10) and
(5.11) are proved in [33, Theorem 4.5] and [7, Chapter IV, Section IV.1.2], respectively. Alternatively,
one can also look at [1, Lemma 4.4] and [36, Chapter 7, Section 7.2.2]. In turn, the existence of

ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) follows as in [25, Section 3.2] (see also [27, Section 3.2]). In fact, we

pick one interior corner point of Σ and define a function v that is continuous, linear on each side of Σ,
equal to one in the chosen vertex, and zero on all other ones. If n1 and n2 are the normal vectors on
the two sides of Σ that meet at the corner point, then ψ0 := v (n1 +n2) satisfies that property. If the
interface Σ were a line segment (without interior corners), we pick v as the continuous linear function
on Σ, equal to one in any interior point and zero in the extreme points, and define ψ0 := v n. We
have thus verified the assumptions required by (H.1).

On the other hand, concerning the discrete inf-sup conditions yielding (H.3), we first recall from
the analyses in [25] and [35], that the existence of a stable discrete lifting of the normal traces of
H̃0,h(ΩD) implies that a sufficient condition for (5.17) is the existence of β̂D > 0, independent of h,
such that

sup
φh∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ) . (5.25)

In fact, a detailed proof of (5.17), whose main ingredients were the explicit construction of such a
lifting and then the demonstration of (5.25), was first provided in [25, Lemmas 4.2, 5.1 and 5.2] under
the assumption of quasi-uniformity around the interface Σ. This result was improved recently in [35,
Sections 4 and 5] where it was shown for the 2D case without any requirement on the meshes. In turn,
in order to proceed similarly with (5.16), we need to introduce suitable changes into the arguments
from [25] and [35]. The reason for it is rather technical and has to do with the fact that the tensors
τ S,h ∈ H̃h(ΩS) (cf. (5.15)), space where the supremum in (5.16) is taken, must also satisfy the discrete
symmetry condition (τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2

h(ΩS). More precisely, since the Raviart-Thomas
or related projection operators do not preserve any kind of symmetry, the way in which the lifting
was built in [25] is not applicable to construct a stable discrete lifting of the normal traces of H̃h(ΩS).
Instead of it, we now proceed a bit differently and still show, using results from [20], [25], and [35], that
a sufficient condition for (5.16) is the analogue of (5.25), that is the existence of β̂S > 0, independent
of h, such that

sup
φh∈Φh(Σ)

φh 6=0

〈φh,ψh〉Σ
‖φh‖−1/2,Σ

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ) . (5.26)

In fact, given φh ∈ Φh(Σ), we let
(
σ̃h, (ũh, γ̃h, ϕ̃h)

)
∈ Hh(ΩS)×

(
Lh(ΩS)× L2

h(ΩS)×ΛS
h(Σ)

)
be the

unique solution of the Galerkin scheme:

(σ̃h, τ h)S + (div τ h,uh)S + (τ h, γ̃h)S + 〈τ h n, ϕ̃h〉Σ = 0 ,

(div σ̃h,vh)S + (σ̃h,ηh)S + 〈σ̃h n,ψh〉Σ = 〈φh,ψh〉Σ ,
(5.27)

for all
(
τ h, (vh,ηh,ψh)

)
∈ Hh(ΩS)×

(
Lh(ΩS)×L2

h(ΩS)×ΛS
h(Σ)

)
. Note that (5.27) actually corresponds

to the PEERS-based mixed finite element approximation of a particular linear elasticity problem in
ΩS (see, e.g. (4.10)) with homogeneous Dirichlet boundary condition on ΓS and Neumann boundary
condition given by φh on Σ. Moreover, the well-posedness of (5.27) is proved, modulus minor changes,
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by combining [20, Section 4.3] with [35, Theorem 5.1] and [25, Lemma 5.2]. In particular, the associated
stability result insures the existence of C̃ > 0, independent of h, such that

‖
(
σ̃h, (ũh, γ̃h, ϕ̃h)

)
‖ ≤ C̃ ‖φh‖−1/2,Σ . (5.28)

Therefore, since the second equation in (5.27) establishes that σ̃h belongs to H̃h(ΩS) and that
〈σ̃h n,ψh〉Σ = 〈φh,ψh〉Σ ∀ψh ∈ ΛS

h(Σ), we deduce, using also (5.28), that

| 〈φh,ψh〉Σ |
‖φh‖−1/2,Σ

=
| 〈σ̃h n,ψh〉Σ |
‖φh‖−1/2,Σ

≤ 1

C̃

| 〈σ̃h n,ψh〉Σ |
‖σ̃h‖div;ΩS

,

which implies that

sup
φh∈Φh(Σ)

φh 6=0

〈φh,ψh〉Σ
‖φh‖−1/2,Σ

≤ 1

C̃
sup

τh∈H̃h(ΩS)

τh 6=0

〈τ h n,ψh〉Σ
‖τ h‖div;ΩS

∀ψh ∈ ΛS
h(Σ) . (5.29)

Thus, it is quite clear from (5.29) that the discrete inf-sup condition (5.16) is a straightforward
consequence of (5.26). Moreover, since the latter has already been proved in [25, Lemma 5.2], we
conclude in this way the full verification of the hypothesis (H.3).

Thanks to the previous results and analyses, we can establish the following theorems.

Theorem 5.3 Assume that the stabilization parameter ρ lives in
(

0, α0

γ2
0

)
, and let ((t,ϕ), p) ∈ X×M

be the unique solution of the continuous formulation (2.34). In addition, let Xh := X1,h ×M1,h and
Mh be the finite element subspaces defined by (5.4) in terms of the specific discrete spaces given by
(5.23) and (5.24). Then, the Galerkin scheme (5.5) has a unique solution ((th,ϕh), p

h
) ∈ Xh ×Mh

and there exist C1, C2 > 0, independent of h, such that

‖((th,ϕh), p
h
)‖X×M ≤ C1

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
, (5.30)

and

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C2 inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M . (5.31)

Proof. Having verified the hypotheses (H.0), (H.1), (H.2) and (H.3), the proof is a straightforward
application of Theorems 5.1 and 5.2.

�

The following theorem provides the theoretical rate of convergence of the Galerkin scheme (5.5),
under suitable regularity assumptions on the exact solution.

Theorem 5.4 Let ((t,ϕ), p) ∈ X ×M and ((th,ϕh), p
h
) ∈ Xh ×Mh be the unique solutions of the

continuous and discrete formulations (2.34) and (5.5), respectively. Assume that there exists δ ∈ (0, 1]
such that tS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), div uD ∈ Hδ(ΩD), σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), and
γS ∈ Hδ(ΩS). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ), λ ∈ H1/2+δ(Σ), and there
exists C > 0, independent of h and the continuous and discrete solutions, such that

‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M ≤ C hδ

{
‖tS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖γS‖δ,ΩS
+ ‖uS‖1+δ,ΩS

+ ‖pD‖1+δ,ΩD

}
.

(5.32)
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Proof. We first recall from Theorem 4.2 that ∇uS = tS +γS and ∇pD = −K−1uD, which implies that
uS ∈ H1+δ(ΩS), and pD ∈ H1+δ(ΩD), whence ϕ = −uS|Σ ∈ H1/2+δ(Σ) and λ = pD|Σ ∈ H1/2+δ(Σ).
The rest of the proof follows from the Cea estimate (5.31), the approximation properties of the
subspaces involved (see, e.g. [4], [7] and [29]), and the fact that, thanks to the trace theorems in ΩS

and ΩD, respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩD
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

�

5.3.2 PEERS + Raviart-Thomas in 3D

We now introduce the 3D version of the spaces defined in Section 5.3.1 (cf. (5.23)). More precisely,
we set

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ RT0(T )⊕B0(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η ∈ L2(ΩS) : η ∈ C(Ω̄S) , η|T ∈ P1(T ) ∀T ∈ T S

h

}
.

(5.33)

Actually, except for the fact that the vectors and tensors live now in R3 and R3×3, respectively, the
above definitions look pretty much as those in (5.23).

Next, in order to complete the list of spaces in (5.1), we need to define those living on the interface
Σ. To this end, and for reasons that will become clear below, we introduce an independent triangulation
Σ
ĥ

of the interface Σ by triangles K of diameter ĥK and define ĥΣ := max{ĥK : K ∈ Σ
ĥ
}. The

above is certainly in addition to Σh, the usual partition of Σ inherited from T S
h (or T D

h ), also formed
by triangles K of diameter hK , and for which we set hΣ := max{hK : K ∈ Σh}. Hence, denoting
by ∂Σ the polygonal boundary of Σ, we define

ΛS
ĥ
(Σ) :=

{
ψ ∈ C(Σ) : ψ|K ∈ P1(K) ∀K ∈ Σ

ĥ
, ψ = 0 on ∂Σ

}
,

ΛD
ĥ

(Σ) =
{
ξ ∈ C(Σ) : ξ|K ∈ P1(K) ∀K ∈ Σ

ĥ

}
, and

ΛS
ĥ
(Σ) := [ΛS

ĥ
(Σ)]3 ,

(5.34)

which, from now on, replace the spaces ΛS
h(Σ), ΛD

h (Σ), and ΛS
h(Σ) specified in (5.1) and (5.2).

In what follows we show that the hypotheses (H.0) - (H.3) are satisfied. Indeed, as in the 2D
case, the verification of (H.0) and (H.2) is also quite straightforward from the definitions given in
(5.38). Furthermore, the proofs of the discrete inf-sup conditions (5.10) and (5.11) can also be found
in [33, Theorem 4.5] and [7, Chapter IV, Section IV.1.2], respectively. In addition, the existence of

ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) is derived similarly to the procedure described in Section 5.3.1. The

assumptions required by (H.1) are then satisfied.

Now, concerning the discrete inf-sup conditions (5.17) and (5.16), we first remark that the same
approaches yielding the corresponding sufficiency of (5.25) and (5.26) in the 2D case, which are based
on the results from [25], [35], and [20], can also be applied to the present three-dimensional situation.
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In this case, however, the 3D analogue of [35, Theorem 5.1], being still an open problem, can not be
employed. Therefore, in order to construct the stable discrete lifting of the normal traces of H̃0,h(ΩD)
and prove the well-posedness of the Galerkin scheme (5.27), we need to employ some inverse inequalities
on Σ, which requires quasi-uniform meshes in a neighborhood of this interface. Furthermore, it can
be proved (see, e.g. the second part of the proof of [19, Lemma 7.5]) that there exists C0 ∈ ]0, 1[ such
that for each pair (hΣ, ĥΣ) verifying hΣ ≤ C0 ĥΣ, the 3D versions of (5.25) and (5.26) are satisfied.
Note that this restriction on the meshsizes explains the need of having introduced the independent
partition Σ

ĥ
of Σ. We have thus confirmed the hypotheses from (H.3).

We are now in a position to state the following main results. Their proofs, being basically the
same of Theorems 5.3 and 5.4, are omitted.

Theorem 5.5 Assume that the stabilization parameter ρ lives in
(

0, α0

γ2
0

)
, and that the meshes T S

h

and T D
h are quasi-uniform around the interface Σ. In addition, let ((t,ϕ), p) ∈ X ×M be the unique

solution of the continuous formulation (2.34), and let Xh := X1,h×M1,h and Mh be the finite element
subspaces defined by (5.4) in terms of the specific discrete spaces given by (5.33) and (5.34). Then,
whenever the pair (hΣ, ĥΣ) verifies hΣ ≤ C0 ĥΣ, the Galerkin scheme (5.5) has a unique solution
((th,ϕh), p

h
) ∈ Xh ×Mh and there exist C1, C2 > 0, independent of h, hΣ, and ĥΣ, such that

‖((th,ϕh), p
h
)‖X×M ≤ C1

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
, (5.35)

and

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C2 inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M . (5.36)

Theorem 5.6 Let ((t,ϕ), p) ∈ X ×M and ((th,ϕh), p
h
) ∈ Xh ×Mh be the unique solutions of the

continuous and discrete formulations (2.34) and (5.5), respectively. Assume that there exists δ ∈ (0, 1]
such that tS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), div uD ∈ Hδ(ΩD), σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), and
γS ∈ Hδ(ΩS). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ), λ ∈ H1/2+δ(Σ), and there
exists C > 0, independent of h, hΣ, ĥΣ, and the continuous and discrete solutions, such that whenever
the pair (hΣ, ĥΣ) verifies hΣ ≤ C0 ĥΣ, there holds

‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M ≤ C hδ

{
‖tS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖γS‖δ,ΩS
+ ‖uS‖1+δ,ΩS

+ ‖pD‖1+δ,ΩD

}
.

(5.37)

5.3.3 AFW + BDM in 3D

Alternatively, for the 3D case we can also introduce the following discrete spaces in (5.1):

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ P1(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ P1(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η ∈ L2(ΩS) : η|T ∈ P0(T ) ∀T ∈ T S

h

}
.

(5.38)
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We remark, according to the complementary definitions given in (5.2), that the product space
Hh(ΩS) × Lh(ΩS) × L2

h(ΩS) constitutes now the lowest order mixed finite element approximation
of the linear elasticity problem introduced recently by Arnold Falk and Winther (AFW) (see [2],
[3]). In turn, Hh(ΩD) × Lh(ΩD) is the BDM space of lowest order for the mixed formulation of the
corresponding Poisson problem (see, e.g. [7], [36]).

In what follows we refer to the verification of the hypotheses (H.0) - (H.3). Indeed, as in the
previous 2D and 3D cases, (H.0) and (H.2) follow straightforwardly from the definitions given in
(5.38). Furthermore, the proofs of the discrete inf-sup conditions (5.10) and (5.11) can be found
now in [2, Section 11.7, Theorem 11.9] and again in [7, Chapter IV, Section IV.1.2], respectively. In

addition, the existence of ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) is derived similarly to the procedure described

in Section 5.3.1. The assumptions required by (H.1) are then satisfied. Next, concerning the discrete
inf-sup conditions (5.17) and (5.16), we just remark that the corresponding proofs follow as in Section
5.3.2 by introducing again the independent partition Σ

ĥ
and then defining the spaces given by (5.34).

The rest of the analysis is as in the previous section and the main results are basically the same as
those provided by Theorems 5.5 and 5.6, but now with the specific discrete spaces given by (5.38) and
(5.34) . We omit further details.

6 The a-posteriori error analysis

In this section we restrict ourselves to the two-dimensional case and derive a reliable and efficient
residual-based a-posteriori error estimate for our mixed finite element scheme (5.5) with the discrete
spaces introduced in Section 5.3.1. The extension to 3D should be quite straightforward. Most of
the analysis employed in the proofs makes extensive use of the estimates derived in [22] and [26]. We
begin with some notations. For each T ∈ T S

h ∪ T D
h we let E(T ) be the set of edges of T , and we denote

by Eh the set of all edges of T S
h ∪ T D

h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ) ,

where Eh(ΓS) := { e ∈ Eh : e ⊆ ΓS }, Eh(Ω?) := { e ∈ Eh : e ⊆ Ω? } for each ? ∈ {S,D},
and Eh(Σ) := { e ∈ Eh : e ⊆ Σ }. Note that Eh(Σ) is the set of edges defining the partition Σh.
Analogously, we let E2h(Σ) be the set of double edges defining the partition Σ2h. In what follows, he
stands for the diameter of a given edge e ∈ Eh ∪ E2h(Σ). Now, let ? ∈ {S,D} and let q ∈ [L2(Ω?)]

m,
with m ∈ {1, 2}, such that q|T ∈ [C(T )]m for each T ∈ T ?h . Then, given e ∈ Eh(Ω?), we denote by
[q] the jump of q across e, that is [q] := (q|T ′)|e − (q|T ′′)|e, where T ′ and T ′′ are the triangles of T ?h
having e as an edge. Also, we fix a unit normal vector ne := (n1, n2)t to the edge e (its particular
orientation is not relevant) and let te := (−n2, n1)t be the corresponding fixed unit tangential vector
along e. Hence, given v ∈ L2(Ω?) and τ ∈ L2(Ω?) such that v|T ∈ [C(T )]2 and τ |T ∈ [C(T )]2×2,
respectively, for each T ∈ T ?h , we let [v · te] and [τ te] be the tangential jumps of v and τ , across e,
that is [v · te] := {(v|T ′)|e − (v|T ′′)|e} · te and [τ te] := {(τ |T ′)|e − (τ |T ′′)|e} te, respectively. From
now on, when no confusion arises, we will simply write t and n instead of te and ne, respectively.
Finally, for sufficiently smooth scalar, vector and tensors fields q, v := (v1, v2)t and τ := (τij)2×2,
respectively, we let

curl v :=


∂v1

∂x2
−∂v1

∂x1

∂v2

∂x2
−∂v2

∂x1

 , curl q :=

(
∂q

∂x2
,− ∂q

∂x1

)t

,

rot v :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)t

.
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In what follows, ((t,ϕ), p) = ((tS,uD,σS), (ϕ, λ)), (pD,uS,γS, `)) ∈ X ×M and ((th,ϕh), p
h
) =

((tS,h,uD,h,σS,h), (ϕh, λh)), (pD,h,uS,h,γS,h, `h)) ∈ Xh ×Mh denote the solutions of (2.34) and (5.5),
respectively. Also, we let κ = κ1 the only constant appearing in the second transmission condition in
(2.3). Then, we introduce the global a posteriori error estimator:

Θ :=

∑
T∈T S

h

Θ2
S,T +

∑
T∈T D

h

Θ2
D,T


1/2

, (6.1)

where, for each T ∈ T S
h :

Θ2
S,T := ‖fS + divσS,h‖20,T + h2

T ‖rot (tS,h + γS,h)‖20,T + h2
T ‖tS,h + γS,h‖20,T

+ ‖σd
S,h − µ(|tS,h|) tS,h‖20,T + ‖σS,h − σt

S,h‖20,T +
∑

e∈E(T )∩Eh(ΩS)

he ‖[
(
tS,h + γS,h

)
t]‖20,e

+
∑

e∈E(T )∩Eh(Σ)

he ‖
(
σS,h + `h I

)
n + λhn − κ−1(ϕh · t) t‖20,e +

∑
e∈E(T )∩Eh(ΓS)

he ‖
(
tS,h + γS,h

)
t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

+ he ‖uS,h +ϕh‖20,e

}
,

(6.2)
and for each T ∈ T D

h :

Θ2
D,T := ‖fD − div uD,h‖20,T + h2

T ‖rot (K−1uD,h)‖20,T + h2
T ‖K−1uD,h‖20,T

+
∑

e∈E(T )∩Eh(ΩD)

he ‖[K−1uD,h · t]‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖uD,h · n +ϕh · n‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥K−1uD,h · t +
dλh
dt

∥∥∥∥2

0,e

+ he ‖pD,h − λh‖20,e

}
.

(6.3)

6.1 Reliability of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 6.1 There exists Crel > 0, independent of h, such that

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ Crel Θ . (6.4)

We follow the general approach from [15] (see also [22] and [27]). Indeed, we begin by recalling,
thanks to the hypothesis on µ (cf. (2.4) and (2.5)), and Lemmas 4.1 and 5.1, that A1 satisfies the
assumptions (A.1) and (A.2). Hence, a straightforward application of Lemma 3.2 implies that the
Gâteaux derivative of A1 at any r ∈ X1, say DA1(r), is a uniformly bounded and uniformly elliptic
bilinear form on X1 ×X1. Therefore, as a consequence of the continuous dependence result provided
by Theorem 3.2 (cf. (3.16)), we find that the linear operator obtained by adding the two equations
of the left hand side of (2.34), after replacing A1 by DA1(r), satisfies a global inf-sup condition.
Furthermore, thanks to the mean value theorem applied to the continuous operator A1, there exists
a convex combination of t and th, say s̃ ∈ X1, such that

[DA1(s̃)(t− th), r] = [A1(t)−A1(th), r] ∀r ∈ X1. (6.5)
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Then, applying the above mentioned inf-sup estimate (with r = s̃) to the error ((t−th,ϕ−ϕh), p−p
h
),

we find that

‖((t− th,ϕ−ϕh), p− p
h
)‖X×M ≤ C sup

((r,ψ),q)∈X×M
((r,ψ),q) 6=0

|[R, ((r,ψ), q)]|
‖((r,ψ), q)‖X×M

, (6.6)

where, acording to (6.5) and (2.34), the residual operator R : X×M→ R is given by

[R, ((r,ψ), q)] := [R1, (τ S, j)] + [R2,vD] + [R3,ψ] + [R4, ξ]

+ [R5,vS] + [R6, qD] + [R7, rS] + [R8,ηS] ,
(6.7)

for each r := (rS,vD, τ S) ∈ X1, ψ := (ψ, ξ) ∈M1, q := (qD,vS,ηS, j) ∈M, with

[R1, (τ S, j)] := − (tS,h, τ
d
S)S − (div τ S,uS,h)S − ρ (σd

S,h − µ(|tS,h|) tS,h, τ
d
S)S

− (τ S,γS,h)S − 〈τ S n,ϕh〉Σ − j 〈n,ϕh〉Σ ,

[R2,vD] := −(K−1uD,h,vD)D + (div vD, pD,h)D + 〈vD · n, λh〉Σ ,

[R3,ψ] := − 〈σS,h n,ψ〉Σ − `h 〈n,ψ〉Σ + κ−1〈ϕh · t,ψ · t〉Σ − 〈ψ · n, λh〉Σ ,

[R4, ξ] := 〈ϕh · n, ξ〉Σ + 〈uD,h · n, ξ〉Σ ,

[R5,vS] := − (fS + divσS,h,vS)S ,

[R6, qD] := − (fD − div uD,h, qD)D ,

[R7, rS] := − (µ(|tS,h|) tS,h − σd
S,h, rS)S ,

[R8,ηS] := − (σS,h,ηS)S .

Hence, the supremum in (6.6) can be bounded in terms of Ri, with i ∈ {1, . . . , 8}, which yields

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C

{
‖R1‖(H0(div;ΩS)×R)′ + ‖R2‖H0(div;ΩD)′ + ‖R3‖H−1/2

00 (Σ)

+ ‖R4‖H−1/2(Σ) + ‖R5‖L2(ΩS)′ + ‖R6‖L2
0(ΩD)′ + ‖R7‖L2

0(ΩS)′
+ ‖R8‖L2(ΩS)′

}
.

(6.8)

Throughout the rest of the section we provide suitable upper bounds for each one of the terms on
the right hand side of (6.8). We begin with R1 by observing from its definition, and having in mind
that (tS,h, I)S = tr tS,h = 0, (I,γS,h)S = 0, and div I = 0, that

[R1, (τ S, j)] = [R̃1, τ S + j I] − ρ (σd
S,h − µ(|tS,h|) tS,h, τ

d
S)S ,

where R̃1 : H(div; ΩS)→ R is given by

[R̃1, τ̃S] := − (tS,h + γS,h, τ̃S)S − (div τ̃S,uS,h)S − 〈τ̃S n,ϕh〉Σ ∀ τ̃S ∈ H(div; ΩS) .

It follows, using the triangle and Cauchy Schwarz inequalities, that

‖R1‖(H0(div;ΩS)×R)′ ≤ ‖R̃1‖H(div;ΩS)′ + ρ ‖σd
S,h − µ(|tS,h|) tS,h‖0,ΩS

, (6.9)
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and hence it just remains to bound ‖R̃1‖H(div;ΩS)′ . Moreover, since the functionals R̃1 and R2 share the
same “structure” with K−1uD,h and tS,h+γS,h playing parallel roles, the upper bounds of their norms
are derived by following the same approach. More precisely, one proceeds as in [26] by using integration
by parts on each element of the triangulations, by employing continuous and discrete Helmholtz
decompositions of H(div; ΩS) and H0(div; ΩD), and by applying the approximation properties of the
Clément and Raviart-Thomas interpolation operators in both domains (cf. [9], [38]). In this way,
and as a consequence of the analysis developed in [26], we deduce that the estimate for ‖R̃1‖H(div;ΩS)′

is obtained from [26, Lemma 3.8] after replacing σd
S,h there by tS,h + γS,h, whereas the estimate for

‖R2‖H0(div;ΩD)′ is exactly the one given by [26, Lemma 3.9]. The corresponding results are stated as
follows.

Lemma 6.1 There exists C1 > 0, independent of h, such that

‖R̃1‖H(div;ΩS)′ ≤ C1

∑
T∈T S

h

Θ̃2
S,T


1/2

, (6.10)

where, for each T ∈ T S
h :

Θ̃2
S,T := h2

T ‖rot (tS,h + γS,h)‖20,T + h2
T ‖tS,h + γS,h‖20,T

+
∑

e∈E(T )∩Eh(ΩS)

he ‖[(tS,h + γS,h) t]‖20,e +
∑

e∈E(T )∩Eh(ΓS)

he ‖(tS,h + γS,h) t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥(tS,h + γS,h) t +
dϕh
d t

∥∥∥∥2

0,e

+ he ‖uS,h +ϕh‖20,e

}
.

(6.11)

Lemma 6.2 There exists C2 > 0, independent of h, such that

‖R2‖H0(div;ΩD)′ ≤ C2

 ∑
T∈T D

h

Θ̂2
D,T


1/2

, (6.12)

where, for each T ∈ T D
h :

Θ̂2
D,T := h2

T ‖rot (K−1uD,h)‖20,T + h2
T ‖K−1uD,h‖20,T +

∑
e∈E(T )∩Eh(ΩD)

he ‖[K−1uD,h · t]‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥K−1uD,h · t +
dλh
d t

∥∥∥∥2

0,e

+ he ‖pD,h − λh‖20,e

}
.

(6.13)

Next, we observe that the upper bounds of ‖R3‖H−1/2
00 (Σ)

and ‖R4‖H−1/2(Σ) are also derived in [26].

In fact, noting first that R3 can be re-written as

[R3,ψ] := −〈
(
σS,h + `h I

)
n,ψ〉Σ + κ−1〈ϕh · t,ψ · t〉Σ − 〈ψ · n, λh〉Σ ∀ψ ∈ H

1/2
00 (Σ) ,

we can establish the estimates provided by the following lemma, which are based on the technical
result given by [8, Theorem 2] and the fact that both Σh and Σ2h are of bounded variation.
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Lemma 6.3 There exist C3, C4 > 0, independent of h, such that

‖R3‖H−1/2
00 (Σ)

≤ C3

 ∑
e∈Eh(Σ)

he ‖
(
σS,hn + `h I) + λhn − κ−1 (ϕh · t)‖20,e


1/2

(6.14)

and

‖R4‖H−1/2(Σ) ≤ C4

 ∑
e∈Eh(Σ)

he ‖uD,h · n +ϕh · n‖20,e


1/2

. (6.15)

Proof. See [26, Lemma 3.2] for details.
�

Finally, for estimating the rest of the norms appearing on the right hand side of (6.8), we simply
use Cauchy-Schwarz’s inequality and the fact that R8 can be redefined as

[R8,ηS] := − 1

2
(σS,h − σt

S,h,ηS)S ∀ηS ∈ L2(ΩS) .

In this way, we arrive at the following lemma.

Lemma 6.4 There hold
‖R5‖L2(ΩS)′ ≤ ‖fS + divσS,h‖0,ΩS

, (6.16)

‖R6‖L2
0(ΩD)′ ≤ ‖fD − div uD,h‖0,ΩD

, (6.17)

‖R7‖L2
0(ΩS)′

≤ ‖σd
S,h − µ(|tS,h|) tS,h‖0,ΩS

, (6.18)

and

‖R8‖L2(ΩS)′ ≤
1

2
‖σS,h − σt

S,h‖0,ΩS
. (6.19)

We end this section by observing that the reliability estimate (6.4) (cf. Theorem 6.1) is a direct
consequence of (6.8), (6.9), and Lemmas 6.1, 6.2, 6.3 and 6.4, by using when it corresponds the obvious

identities

∫
ΩS

=
∑
T∈T S

h

∫
T

and

∫
ΩD

=
∑
T∈T D

h

∫
T

.

6.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 6.2 There exists Ceff > 0, independent of h, such that

Ceff Θ + h.o.t. ≤ ‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M , (6.20)

where h.o.t. stands, eventually, for one or several terms of higher order.

In what follows we prove Theorem 6.2 by providing suitable upper bounds depending of local
errors for each one of the 17 terms defining Θ2

S,T (cf. (6.2)) and Θ2
D,T (cf. (6.3)). To this respect, it is

important to remark that most of the required efficiency estimates in this case are already available
in the literature, and that the main tools employed in their proofs include Helmholtz decompositions,
inverse inequalities, and the localization technique based on element-bubble and edge-bubble functions
(cf. [15], [18], [22], [26]).

We begin with the zero order terms appearing in the definition of Θ2
S,T and Θ2

D,T .
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Lemma 6.5 There hold

‖fS + divσS,h‖0,T ≤ ‖σS − σS,h‖div,T ∀T ∈ T S
h ,

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div;T ∀T ∈ T D
h ,

and
‖σS,h − σt

S,h‖0,ΩS
≤ 2 ‖σS − σS,h‖0,ΩS

Proof. It suffices to recall, as established by Theorem 4.2, that fS = −divσS in ΩS, fD = div uD in
ΩD, and σS = σt

S in ΩS.
�

We now bound the component of Θ2
S,T involving the nonlinear operator.

Lemma 6.6 There exists C > 0, independent of h, such that

‖σd
S,h − µ(|tS,h|) tS,h‖20,T ≤ C

{
‖σS − σS,h‖20,T + ‖tS − tS,h‖20,T

}
Proof. We know from [22, Lemma 2.1] that there exists γ̄0 > 0, independent of h, such that

‖µ(|tS|) tS − µ(|tS,h|) tS,h‖0,T ≤ γ̄0 ‖tS − tS,h|‖0,T ∀T ∈ T S
h .

Hence, adding and substracting σd
S = µ(|tS|) tS in ΩS (cf. Theorem 4.2), we find that

‖σd
S,h − µ(|tS,h|) tS,h‖0,T ≤

{
‖(σS − σS,h)d‖0,T + ‖µ(|tS|) tS − µ(|tS,h|) tS,h‖0,T

}
≤

{
‖σS − σS,h‖0,T + γ̄0 ‖tS − tS,h|‖0,T

}
,

which yields the result.
�

We continue with the terms involving only tS,h + γS,h in the definition of ΘS,T .

Lemma 6.7 There exist C1, C2, C3, C4 > 0, independent of h, such that

h2
T ‖rot (tS,h + γS,h)‖20,T ≤C1

{
‖tS − tS,h‖20,T + ‖γS − γS,h‖20,T

}
∀T ∈ T S

h ,

h2
T ‖tS,h + γS,h‖20,T ≤C2

{
‖uS − uS,h‖20,T + h2

T ‖tS − tS,h‖20,T + h2
T ‖γS − γS,h‖20,T

}
∀T ∈ T S

h ,

he ‖[
(
tS,h + γS,h

)
t]‖20,e ≤C3

{
‖tS − tS,h‖20,we

+ ‖γS − γS,h‖20,we

}
∀ e ∈ Eh(ΩS) ,

he ‖
(
tS,h + γS,h

)
t‖20,e ≤C4

{
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te

}
∀ e ∈ Eh(ΓS) ,

where we := ∪
{
T ∈ T S

h : e ∈ E(T )
}

for all e ∈ Eh(ΩS), and Te is the triangle of T S
h having e as an

edge for all e ∈ Eh(ΓS).

Proof. See [15, Lemmas 5.6 and 5.7] for details.
�

The following four lemmas provide upper bounds for the remaining terms defining ΘS,T .
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Lemma 6.8 There exists C > 0, independent of h, such that for each e ∈ E(Σ) there holds

he ‖
(
σS,h + `h I

)
n + λhn − κ−1(ϕh · t) t‖20,e ≤ C

{
‖σS − σS,h‖20,T + |`− `h|

+ h2
T ‖div

(
σS − σS,h

)
‖20,T + he ‖λ− λh‖20,e + he ‖ϕ−ϕh‖20,e

}
,

where T is the triangle of T S
h having e as an edge.

Proof. It suffices to apply [26, Lemma 3.16] by replacing there σS and σS,h by (σS + ` I) and
(σS,h + `h I), respectively.

�

Lemma 6.9 There exists C > 0, independent of h, such that

∑
e∈Eh(Σ)

he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Σ)

(
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te

)
+ ‖ϕ−ϕh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the triangle of T S
h having e as an edge.

Proof. It follows from the proof of [18, Lemma 20] by replacing there C−1 σ and C−1 σh by tS and
tS,h, respectively.

�

Note that the estimate given by the previous lemma is of a nonlocal character. Actually, it will be
the only one with this property in the efficiency analysis of the terms defining ΘS,T . However, under
an additional regularity assumption on ϕ, one can obtain the following local bound.

Lemma 6.10 Assume that ϕ|e ∈ H1(e) for each e ∈ Eh(Σ). Then, there exists C > 0, independent
of h, such that for each e ∈ Eh(Σ) there holds

he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

≤ C

{
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te +

∥∥∥∥ ddt(ϕ−ϕh)
∥∥∥∥2

0,e

}
,

where Te is the triangle of T S
h having e as an edge.

Proof. See [18, Lemma 21] for details.
�

Lemma 6.11 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he ‖uS,h +ϕh‖20,e ≤ C
{
‖uS − uS,h‖20,T + h2

T ‖tS − tS,h‖20,T + h2
T ‖γS − γS,h‖20,T + he ‖ϕ−ϕh‖20,e

}
,

where T is the triangle of T S
h having e as an edge.
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Proof. Similarly to Lemma 6.9, it follows from the proof of [18, Lemma 22] by replacing there C−1 σ
and C−1 σh by tS and tS,h, respectively.

�

The estimates for the remaining terms defining ΘD,T are given by the following four lemmas.

Lemma 6.12 Assume that K−1 is piecewise polynomial on T D
h . Then, there exist C1, C2, C3, C4 > 0,

independent of h, such that

h2
T ‖rot (K−1 uD,h)‖20,T ≤ C1 ‖uD − uD,h‖20,T ∀T ∈ T D

h ,

h2
T ‖K−1 uD,h‖20,T ≤ C2

{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖20,T
}

∀T ∈ T D
h ,

he |[K−1 uD,h · t]|20,e ≤ C3 ‖uD − uD,h‖20,we
∀ e ∈ Eh(ΩD) ,

he ‖pD,h − −λh‖20,e ≤ C4

{
‖pD − pD,h‖20,Te + h2

T ‖uD − uD,h‖20,Te + he ‖λ− λh‖20,e
}
∀ e ∈ Eh(Σ) ,

where we := ∪
{
T ∈ T D

h : e ∈ E(T )
}

for all e ∈ Eh(ΩD), and Te is the triangle of T D
h having e as an

edge for all e ∈ Eh(Σ).

Proof. See [26, Lemma 3.13] for details.
�

Lemma 6.13 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he ‖uD,h · n + ϕh · n‖20,e ≤ C
{
‖uD − uD,h‖20,T + h2

T ‖div(uD − uD,h)‖20,T + he ‖ϕ−ϕh‖20,e
}
,

where T is the triangle of T D
h having e as an edge.

Proof. See [26, Lemma 3.15] for details.
�

We end the efficiency analysis of ΘD,T with the analogue of Lemmas 6.9 and 6.10

Lemma 6.14 Assume that K−1 is piecewise polynomial on T D
h . Then, there exists C > 0, independent

of h, such that

∑
e∈Eh(Σ)

he

∥∥∥∥K−1 uD,h · t +
dλh
dt

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Σ)

‖uD − uD,h‖20,Te + ‖λ − λh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the triangle of T D
h having e as an edge.

Proof. See [26, Lemma 3.13] for details.
�

Similarly to Lemma 6.10, we now assume an additional regularity assumption on λ to derive,
instead of the previous estimate, a local upper bound.

Lemma 6.15 Assume that K−1 is piecewise polynomial on T D
h , and that λ|e ∈ H1(e) for each e ∈

Eh(Σ). Then, there exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he

∥∥∥∥K−1 uD,h · t +
dλh
dt

∥∥∥∥2

0,e

≤ C

{
‖uD − uD,h‖20,Te + he

∥∥∥∥ ddt (λ− λh)

∥∥∥∥2

0,e

}
,

where Te is the triangle of T D
h having e as an edge.
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Proof. See [26, Lemma 3.14] for details. Actually, as stated there, it follows by adapting the “elasticity
version” given by [18, Lemma 21] to the present case.

�

We remark that if K−1 were not piecewise polynomial then higher order terms arising from suitable
local polynomial approximations would appear in the corresponding efficiency estimates from the
previous lemmas. This fact explains the expression “h.o.t.” in (6.20).

Consequently, the global efficiency estimate of Θ, that is the proof of Theorem 6.2, follows straight-
forwardly from Lemmas 6.5 up to 6.15.

7 Numerical results

We begin this section by observing that, while the decomposition (2.21) was necessary for the analysis
of the continuous and discrete formulations, the actual implementation of the latter can abstain from
it. In fact, it is easy to see that redefining σS,h + `h I, with σS,h ∈ H0,h(ΩS) and `h ∈ R, as simply
σS,h ∈ Hh(ΩS), and proceeding analogously with the test tensor τ S,h ∈ Hh(ΩS), the Galerkin scheme
(5.4) - (5.5) can be stated, equivalently, as finding

th := (tS,h,uD,h,σS,h) ∈ X1,h := L0,h(ΩS)×H0,h(ΩD)×Hh(ΩS) ,

ϕ
h

:= (ϕh, λh) ∈ M1,h := ΛS
h(Σ)× ΛD

h (Σ) ,

p
h

:= (pD,h,uS,h,γS,h) ∈ Mh := L0,h(ΩD)× Lh(ΩS)× L2
h(ΩS) ,

(7.1)

such that

[A(th,ϕh), (rh,ψh)] + [B(rh,ψh), p
h
] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh := X1,h ×M1,h ,

[B(th,ϕh), q
h
] = [G, q

h
] ∀ q

h
∈Mh .

(7.2)

In addition, the mean value condition required by the elements in L0,h(ΩD) can be certainly imposed
through a suitable discrete Lagrange multiplier.

Throughout the rest of the section we present numerical examples illustrating the performance
of the discrete system (7.1) - (7.2), confirming the reliability and efficiency of the a posteriori error
estimator Θ derived in Section 6, and showing the behavior of the associated adaptive algorithm. We
consider the specific finite element subspaces defined in Sections 5.3.1 and 5.3.2. In addition, all the
nonlinear algebraic systems arising from (7.2) are solved by the Newton method with a tolerance of
1E-6 and taking as initial iteration the solution of the associated linear problem with µ ≡ 1.

In what follows, N stands for the number of degrees of freedom defining Xh ×Mh. Furthermore,
the individual and total errors are defined by:

e(tS) := ‖tS − tS,h‖0,ΩS
, e(uD) := ‖uD − uD,h‖div;ΩD

, e(σS) := ‖σS − σS,h‖div;ΩS
,

e(ϕ) := ‖ϕ−ϕh‖1/2,Σ , e(λ) := ‖λ− λh‖1/2,Σ , e(pD) := ‖pD − pD,h‖0,ΩD
,

e(uS) := ‖uS − uS,h‖0,ΩS
, e(γS) := ‖γS − γS,h‖0,ΩS

, e(t) :=
{
e(tS)2 + e(uD)2 + e(σS)2

}1/2
,

e(ϕ) :=
{
e(ϕ)2 + e(λ)2

}1/2
, e(p) :=

{
e(pD)2 + e(uS)2 + e(γS)2

}1/2
,

and

e(t,ϕ, p) :=
{
e(t)2 + e(ϕ)2 + e(p)2

}1/2
.
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In turn, the effectivity index with respect to Θ is defined by

eff(Θ) := e(t,ϕ, p)/Θ ,

and the individual and global experimental rates of convergence are given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
tS,uD,σS,ϕ, λ, pD,uS,γS, t,ϕ, p

}
,

and

r(t,ϕ, p) :=
log(e(t,ϕ, p)/e′(t,ϕ, p))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′. However, when the adaptive
algorithm is applied (see details below), the expression log(h/h′) appearing in the computation of
the above rates is replaced by − 1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of
freedom of each triangulation.

The examples to be considered here are described below. Examples 1 (in 2D) and 2 (in 3D)
are employed to illustrate the performance of the Galerkin scheme and to confirm the reliability
and efficiency of the a posteriori error estimator Θ (in the case of Example 1) when a sequence of
quasi-uniform meshes is considered. Then, Example 3 (in 2D) is utilized to show the behavior of the
associated adaptive algorithm, which applies the following procedure from [41]:

1) Start with a coarse mesh Th := T D
h ∪ T S

h .

2) Solve the discrete problem (7.2) for the current mesh Th.

3) Compute ΘT := Θ?,T for each triangle T ∈ T ?h , ? ∈ {D,S}.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥
1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define resulting meshes as current meshes T D
h and T S

h , and go to step 2.

For each example we consider the parameters κ1 = · · · = κn−1 = 1, K = I, and the nonlinear
function µ : R+ → R+ given by the Carreau law for viscoplastic flows, that is

µ(t) := µ0 + µ1 (1 + t2)(β−2)/2 ∀ t ∈ R+ ,

with µ0 = µ1 = 0.5 and β = 1.5. It is easy to check in this case that the assumptions (2.4) and
(2.5) are satisfied with

γ0 = µ0 + µ1

{
|β − 2|

2
+ 1

}
and α0 = µ0 .

Hence, for the implementation of our augmented scheme (7.2) we use the parameter ρ = α0

2 γ2
0
, which

certainly satisfies the required hypothesis ρ ∈
(

0, α0

γ2
0

)
.
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In Example 1 we consider the regions ΩS := (0, 1)×(0.5, 1) and ΩD := (0, 1)×(0, 0.5), and choose
the data fS and fD so that the exact solution is given by the smooth functions

uS(x) =

(
uS,1(x)
uS,2(x)

)
∀x := (x1, x2) ∈ ΩS ,

with
uS,1(x) := −x1 sin(2πx1) (x1 − 1) (x2 − 1) exp(x1x2) (2− x1 + x1x2) ,

uS,2(x) := (x2 − 1)2 exp(x1x2)
(

2x1 sin(2πx1) − sin(2πx1) − 2πx1 cos(2πx1)

+ 2πx2
1 cos(2πx1) − x1x2 sin(2πx1) + x2x

2
1 sin(2πx1)

)
,

pS(x) = −π cos(πx1/2)
(
x2 + 0.5 − 2 cos(π (x2 + 0.5)/2)2

)
/4 ∀x := (x1, x2) ∈ ΩS ,

and
pD(x) = x1 x2 (1− x1) sin(2πx1) sin(πx2) ∀x := (x1, x2) ∈ ΩD .

In Example 2 we consider the regions ΩS := (0, 1)2 × (0.5, 1) and ΩD := (0, 1)2 × (0, 0.5), and
choose the data fS and fD so that the exact solution is given by the smooth functions

uS(x) = ∇ ×

 x2
1 (1− x1)2 x2

2 (1− x2)2 (1− x3)2 sin(π x1)

x2
1 (1− x1)2 x2

2 (1− x2)2 (1− x3)2 sin(π x2)

x2
1 (1− x1)2 x2

2 (1− x2)2 (1− x3)2 sin(π x3)

 ∀x := (x1, x2, x3) ∈ ΩS ,

pS(x) = (x3
1 + x3

2) exp(x3) ∀x := (x1, x2, x3) ∈ ΩS ,

and

pD(x) = x1 x2 x3 (1− x1) (1− x2) sin(2πx1) sin(2πx2) sin(πx3) ∀x := (x1, x2, x3) ∈ ΩD .

Finally, in Example 3 we consider ΩD := (−1, 0)2 and let ΩS be the L-shaped domain given by
(−1, 1)2 \ Ω̄D, which yields a porous medium partially surrounded by a fluid. Then we choose the data
fS and fD so that the exact solution is given by

uS(x) = curl
(

3 (x2
1 + x2

2)4/3 (x2
1 − 1)2 (x2

2 − 1)2
)
∀x := (x1, x2) ∈ ΩS ,

pS(x) =
1

100 (x2
1 + x2

2) + 0.1
∀x := (x1, x2) ∈ ΩS ,

and

pD(x) =

(
x1 + 1

10

)2

sin3(2π (x2 + 0.5)) ∀x := (x1, x2) ∈ ΩD .

Note that the partial derivatives of uS are singular at the origin and that pS has high gradients around
that point.

The numerical results shown below were obtained using a MATLAB code. In Tables 7.1, 7.2,
7.3 and 7.4 we summarize the convergence history of our augmented fully-mixed scheme (7.1) - (7.2)
as applied to Examples 1 and 2, for sequences of quasi-uniform triangulations of the domains. The
number of Newton iterations required in Example 1, for the tolerance given, ranges between 9 and
12. We observe there, looking at the corresponding experimental rates of convergence, that the O(h)
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Table 7.1: Example 1, quasi-uniform scheme

h N e(tS) r(tS) e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)
1/8 s 897 3.995E−01 − 4.961E−01 − 1.186E−00 − 5.183E−01 − 6.928E−02 −
1/10 1380 3.039E−01 1.227 3.979E−01 0.988 9.426E−01 1.029 3.513E−01 1.743 4.796E−02 1.648
1/12 1967 2.470E−01 1.137 3.322E−01 0.991 7.843E−01 1.008 2.570E−01 1.714 3.486E−02 1.750
1/14 2658 2.083E−01 1.104 2.851E−01 0.993 6.730E−01 0.993 1.980E−01 1.693 2.671E−02 1.727
1/16 3453 1.805E−01 1.075 2.496E−01 0.994 5.891E−01 0.997 1.585E−01 1.663 2.133E−02 1.687
1/18 4352 1.593E−01 1.057 2.220E−01 0.995 5.236E−01 1.000 1.307E−01 1.639 1.755E−02 1.652
1/20 5355 1.427E−01 1.043 2.000E−01 0.996 4.713E−01 0.999 1.103E−01 1.616 1.479E−02 1.624
1/22 6462 1.293E−01 1.035 1.818E−01 0.997 4.285E−01 0.998 9.468E−02 1.598 1.270E−02 1.603
1/24 7673 1.183E−01 1.028 1.667E−01 0.997 3.929E−01 0.999 8.248E−02 1.585 1.106E−02 1.587
1/26 8988 1.090E−01 1.023 1.539E−01 0.998 3.627E−01 0.999 7.272E−02 1.574 9.751E−03 1.574
1/28 10407 1.010E−01 1.020 1.429E−01 0.998 3.368E−01 0.999 6.475E−02 1.565 8.684E−03 1.563
1/30 11930 9.420E−02 1.017 1.334E−01 0.998 3.144E−01 0.999 5.815E−02 1.558 7.801E−03 1.555
1/32 13557 8.823E−02 1.015 1.251E−01 0.998 2.947E−01 0.999 5.261E−02 1.552 7.059E−03 1.548
1/34 15288 8.297E−02 1.013 1.177E−01 0.999 2.774E−01 0.999 4.790E−02 1.547 6.429E−03 1.542
1/36 17123 7.832E−02 1.011 1.112E−01 0.999 2.620E−01 0.999 4.389E−02 1.532 5.889E−03 1.535
1/40 21105 7.041E−02 1.010 1.001E−01 0.999 2.358E−01 0.999 3.733E−02 1.536 5.012E−03 1.531
1/48 30317 5.860E−02 1.007 8.342E−01 0.999 1.965E−01 1.000 2.825E−02 1.529 3.797E−03 1.522
1/56 41193 5.019E−02 1.005 7.151E−02 0.999 1.685E−01 1.000 2.234E−02 1.521 3.006E−03 1.515
1/64 53733 4.389E−02 1.004 6.257E−02 1.000 1.474E−01 1.000 1.825E−02 1.516 2.457E−03 1.510
1/80 83805 3.508E−02 1.003 5.006E−02 1.000 1.179E−01 1.000 1.295E−02 1.536 1.753E−03 1.512
1/96 120533 2.923E−02 1.002 4.172E−02 1.000 9.828E−02 1.000 9.821E−03 1.519 1.332E−03 1.506
1/112 163917 2.504E−02 1.002 3.576E−02 1.000 8.424E−02 1.000 7.771E−03 1.519 1.057E−03 1.504
1/128 213957 2.191E−02 1.001 3.129E−02 1.000 7.371E−02 1.000 6.343E−03 1.521 8.644E−04 1.503
1/144 270653 1.947E−02 1.000 2.782E−02 1.000 6.552E−02 1.000 5.511E−03 1.193 7.344E−04 1.384
1/160 334005 1.753E−02 1.001 2.503E−02 1.000 5.897E−02 1.000 4.739E−03 1.432 6.298E−04 1.458
1/250 853893 1.095E−02 1.054 1.565E−02 1.053 3.686E−02 1.053 2.515E−03 1.420 3.280E−04 1.462

predicted by Theorems 5.4 and 5.6 with δ = 1 is attained in all the unknowns for both examples. In
addition, we notice from Table 7.2 that the effectivity index eff(Θ) for Example 1 remains always in
a neighborhood of 0.58, which illustrates the reliability and efficiency of Θ in the case of a regular
solution. Some components of the approximate (left) and exact (right) solutions for Example 1, which
illustrate the accurateness of the mixed finite element scheme, are displayed in Figures 7.1 and 7.2.

Then, in Tables 7.5, 7.6, 7.7, and 7.8 we provide the convergence history of the quasi-uniform
and adaptive schemes, as applied to Example 3. The number of Newton iterations required in this
case for the tolerance given, ranges between 14 and 16. We notice that the errors of the adaptive
procedure decrease faster than those obtained by the quasi-uniform one, which is confirmed by the
global experimental rates of convergence provided there. This fact, which is clearly emphasized from
about N = 10000 on, is also illustrated by Figure 7.3 where we display the total errors e(t,ϕ, p)
vs. the number of degrees of freedom N for both refinements. Moreover, as shown by the values of
r(t,ϕ, p), the adaptive method is able to keep the quasi-optimal rate of convergence O(h) for the total
error. Furthermore, the effectivity indexes remain bounded from above and below, which confirms
the reliability and efficiency of Θ in this case of non-smooth solution. Intermediate meshes obtained
with the adaptive refinement are displayed in Figure 7.4. We remark from there that the method is
able to recognize the origin as a singularity of the solution of this example. Moreover, the additional
refinement around the points (x1, x2) = (±1, 0) and (x1, x2) = (0,±1) indicates the presence of large
errors in those neighborhoods as well. Finally, some components of the approximate (left) and exact
(right) solutions for Example 3 are displayed in Figures 7.5 and 7.6.
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Table 7.2: Example 1, quasi-uniform scheme (... cont)

N e(pD) r(pD) e(uS) r(uS) e(γS) r(γS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

897 5.951E−03 − 3.695E−02 − 3.111E−01 − 1.478E−00 − 0.6134
1380 4.603E−03 1.152 2.752E−02 1.321 2.236E−01 1.479 1.147E−00 1.135 0.5962
1967 3.807E−03 1.042 2.238E−02 1.133 1.742E−01 1.369 9.405E−01 1.089 0.5880
2658 3.256E−03 1.013 1.900E−02 1.062 1.421E−01 1.321 7.987E−01 1.060 0.5850
3453 2.847E−03 1.004 1.655E−02 1.034 1.200E−01 1.265 6.944E−01 1.048 0.5830
4352 2.531E−03 1.001 1.468E−02 1.021 1.039E−01 1.226 6.142E−01 1.041 0.5815
5355 2.277E−03 1.000 1.319E−02 1.014 9.162E−02 1.193 5.508E−01 1.034 0.5804
6462 2.070E−03 1.000 1.198E−02 1.010 8.195E−02 1.171 4.994E−01 1.028 0.5795
7673 1.898E−03 1.000 1.098E−02 1.007 7.412E−02 1.153 4.568E−01 1.025 0.5788
8988 1.752E−03 1.000 1.013E−02 1.005 6.766E−02 1.140 4.209E−01 1.022 0.5783
10407 1.627E−03 1.000 9.401E−03 1.004 6.223E−02 1.129 3.903E−01 1.020 0.5778
11930 1.519E−03 1.000 8.772E−03 1.004 5.760E−02 1.120 3.638E−01 1.018 0.5774
13557 1.424E−03 1.000 8.222E−03 1.003 5.361E−02 1.112 3.407E−01 1.017 0.5771
15288 1.340E−03 1.000 7.738E−03 1.003 5.014E−02 1.105 3.203E−01 1.016 0.5768
17123 1.266E−03 1.000 7.307E−03 1.002 4.708E−02 1.100 3.023E−01 1.014 0.5766
21105 1.139E−03 1.000 6.575E−03 1.002 4.197E−02 1.091 2.717E−01 1.013 0.5762
30317 9.492E−04 1.000 5.478E−03 1.001 3.447E−02 1.079 2.260E−01 1.011 0.5757
41193 8.136E−04 1.000 4.695E−03 1.001 2.925E−02 1.067 1.934E−01 1.009 0.5753
53733 7.119E−04 1.000 4.107E−03 1.001 2.539E−02 1.058 1.690E−01 1.008 0.5750
83805 5.695E−04 1.000 3.286E−03 1.000 2.010E−02 1.048 1.350E−01 1.007 0.5747
120533 4.746E−04 1.000 2.738E−03 1.000 1.663E−02 1.040 1.124E−01 1.005 0.5745
163917 4.068E−04 1.000 2.347E−03 1.000 1.418E−02 1.033 9.629E−02 1.005 0.5743
213957 3.560E−04 1.000 2.053E−03 1.000 1.236E−02 1.029 8.421E−02 1.004 0.5742
270653 3.164E−04 1.000 1.825E−03 1.000 1.095E−02 1.032 7.484E−02 1.002 0.5742
334005 2.848E−04 1.000 1.643E−03 1.000 9.826E−03 1.024 6.733E−02 1.003 0.5742
853893 1.780E−04 1.053 1.027E−03 1.072 6.089E−03 1.053 4.204E−02 1.055 0.5742

Figure 7.1: Example 1, pS and σS,12 for N = 120533

Table 7.3: Example 2, quasi-uniform scheme

h N e(tS) r(tS) e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)
1/4 6086 1.368E−01 − 2.242E−01 − 5.213E−01 − 1.970E−02 − 1.048E−02 −
1/8 46884 7.737E−02 0.822 1.167E−01 0.942 2.617E−01 0.994 1.037E−02 0.926 1.552E−02 −
1/12 156386 5.338E−02 0.915 7.864E−02 0.974 1.738E−01 1.009 5.613E−03 1.514 8.433E−03 1.504
1/16 368576 4.065E−02 0.947 5.919E−02 0.988 1.299E−01 1.012 3.583E−03 1.560 4.867E−03 1.911
1/20 717438 3.278E−02 0.964 4.743E−02 0.993 1.037E−01 1.011 2.526E−03 1.567 3.200E−03 1.879
1/24 1236956 2.745E−02 0.974 3.956E−02 0.995 8.622E−02 1.010 1.898E−03 1.569 2.305E−03 1.800
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Figure 7.2: Example 1, uD,1 and ϕ for N = 120533

Table 7.4: Example 2, quasi-uniform scheme (... cont)

N e(pD) r(pD) e(uS) r(uS) e(γS) r(γS) e(t,ϕ, p) r(t,ϕ, p)

6086 1.930E−03 − 8.682E−03 − 5.638E−02 − 5.870E−01 −
46884 9.663E−04 0.998 2.849E−03 1.607 2.100E−02 1.425 2.981E−01 1.135
156386 5.849E−04 1.238 1.403E−03 1.747 1.154E−02 1.476 1.987E−01 1.089
368576 4.287E−04 1.080 8.348E−04 1.804 7.470E−03 1.513 1.487E−01 1.060
717438 3.414E−04 1.021 5.536E−04 1.841 5.304E−03 1.535 1.188E−01 1.048
1236956 2.840E−04 1.008 3.942E−04 1.862 4.000E−03 1.548 9.888E−02 1.041

Table 7.5: Example 3, quasi-uniform scheme

h N e(tS) e(uD) e(σS) e(ϕ) e(λ)
1 93 5.864E−00 8.654E−01 2.699E+01 2.837E−00 1.252E−00

1/3 1094 5.295E−00 3.403E−01 1.647E+01 2.349E−00 2.221E−01
1/5 2929 3.793E−00 1.989E−01 1.306E+01 1.462E−00 1.074E−01
1/7 5797 2.700E−00 1.400E−01 1.235E+01 1.050E−00 5.071E−02
1/9 9115 2.175E−00 1.061E−01 1.125E+01 7.521E−01 4.127E−02
1/11 13958 1.774E−00 8.698E−02 9.682E−00 8.081E−01 3.203E−02
1/13 19752 1.445E−00 7.681E−02 7.542E−00 5.152E−01 2.219E−02
1/15 26116 1.264E−00 6.488E−02 6.206E−00 4.463E−01 1.674E−02
1/17 33265 1.096E−00 5.634E−02 6.407E−00 3.857E−01 1.440E−02
1/19 41839 9.756E−01 5.103E−02 5.001E−00 3.486E−01 1.094E−02
1/21 51029 9.057E−01 4.628E−02 4.528E−00 2.929E−01 9.071E−03
1/25 74062 7.374E−01 3.777E−02 4.019E−00 2.228E−01 6.148E−03
1/35 142283 5.262E−01 2.780E−02 3.502E−00 1.453E−01 4.032E−03
1/45 237444 4.022E−01 2.093E−02 2.848E−00 1.035E−01 2.481E−03
1/55 355451 3.271E−01 1.725E−02 2.563E−00 7.612E−02 1.774E−03
1/65 496414 2.746E−01 1.464E−02 2.202E−00 5.915E−02 1.365E−03
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Table 7.6: Example 3, quasi-uniform scheme (... cont)

N e(pD) e(uS) e(γS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

93 1.429E−01 1.658E−00 3.794E−00 2.811E+01 − 0.8954
1094 4.436E−02 6.076E−01 4.110E−00 1.796E+01 0.408 0.7313
2929 2.109E−02 3.951E−01 3.125E−00 1.403E+01 0.482 0.6901
5797 8.068E−03 2.837E−01 2.273E−00 1.289E+01 0.252 0.7602
9115 5.318E−03 2.283E−01 1.892E−00 1.164E+01 0.405 0.7796
13958 3.245E−03 1.839E−01 1.544E−00 9.999E−00 0.758 0.7862
19752 2.790E−03 1.543E−01 1.267E−00 7.802E−00 1.485 0.7651
26116 1.879E−03 1.345E−01 1.100E−00 6.445E−00 1.335 0.7398
33265 1.713E−03 1.173E−01 9.702E−01 6.584E−00 -0.171 0.7856
41839 1.003E−03 1.055E−01 8.605E−01 5.180E−00 2.157 0.7459
51029 9.881E−04 9.693E−02 7.996E−01 4.697E−00 0.979 0.7340
74062 6.138E−04 7.974E−02 6.569E−01 4.145E−00 0.716 0.7539
142283 4.032E−04 5.707E−02 4.734E−01 3.577E−00 0.438 0.8041
237444 2.385E−04 4.396E−02 3.622E−01 2.901E−00 0.833 0.8146
355451 1.686E−04 3.593E−02 2.954E−01 2.602E−00 0.543 0.8386
496414 1.220E−04 3.024E−02 2.490E−01 2.234E−00 0.913 0.8423

Table 7.7: Example 3, adaptive scheme

N e(tS) e(uD) e(σS) e(ϕ) e(λ)
93 5.864E−00 8.654E−01 2.699E+01 2.837E−00 1.252E−00
270 6.406E−00 5.470E−01 2.793E+01 2.563E−00 9.664E−01
953 5.613E−00 3.342E−01 1.784E+01 2.367E−00 2.584E−01
2535 3.583E−00 3.613E−01 1.204E+01 2.834E−00 4.107E−01
4083 2.840E−00 2.882E−01 1.110E+01 1.729E−00 1.446E−01
6004 2.327E−00 2.560E−01 1.200E+01 1.647E−00 9.231E−02
9051 1.962E−00 2.208E−01 8.152E−00 1.293E−00 5.260E−02
11558 1.741E−00 2.169E−01 6.718E−00 9.672E−01 5.639E−02
24615 1.040E−00 1.662E−01 4.289E−00 4.600E−01 1.991E−02
43104 8.326E−01 1.247E−01 3.364E−00 2.463E−01 1.204E−02
80989 5.661E−01 1.244E−01 2.377E−00 1.855E−01 8.597E−03
126407 4.640E−01 1.157E−01 1.891E−00 9.514E−02 4.911E−03
280099 3.025E−01 1.013E−01 1.297E−00 6.864E−02 3.212E−03
468314 2.374E−01 7.989E−02 9.729E−01 3.606E−02 1.880E−03

Table 7.8: Example 3, adaptive scheme (... cont)

N e(pD) e(uS) e(γS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

93 1.429E−01 1.658E−00 3.794E−00 2.811E+01 − 0.8954
270 8.918E−02 1.337E−00 5.003E−00 2.925E+01 -0.075 0.8519
953 5.446E−02 8.060E−01 4.181E−00 1.933E+01 0.657 0.6708
2535 4.477E−02 5.839E−01 3.033E−00 1.325E+01 0.772 0.6491
4083 2.040E−02 4.184E−01 2.446E−00 1.186E+01 0.467 0.7015
6004 1.399E−02 3.653E−01 1.997E−00 1.250E+01 -0.275 0.7789
9051 9.291E−03 2.506E−01 1.663E−00 8.652E−00 1.794 0.6887
11558 9.665E−03 2.398E−01 1.560E−00 7.187E−00 1.518 0.6671
24615 3.348E−03 1.528E−01 9.590E−01 4.545E−00 1.212 0.6450
43104 1.889E−03 1.162E−01 7.695E−01 3.562E−00 0.870 0.6311
80989 1.100E−03 8.508E−02 5.202E−01 2.509E−00 1.111 0.6343
126407 7.986E−04 6.563E−02 4.251E−01 2.000E−00 1.020 0.6179
280099 5.810E−04 4.468E−02 2.773E−01 1.367E−00 0.957 0.6303
468314 4.024E−04 3.327E−02 2.188E−01 1.029E−00 1.103 0.6098
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Figure 7.3: Example 3, e(t,ϕ, p) vs. N for the quasi-uniform and adaptive schemes

Figure 7.4: Example 3, adapted meshes with 4083, 9051, 24615 and 80989 degrees of freedom
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Figure 7.5: Example 3, tS,21 and σS,22 for adaptive scheme with N = 280099

Figure 7.6: Example 3, pD and uD,2 for adaptive scheme with N = 280099
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


