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Abstract

An alternative-type version of the Fritz John optimality conditions is estab-

lished, which covers situations where no result appearing elsewhere is applicable.

As a by product, a versatile formulation of this necessary Fritz John optimality

conditions along with a simple proof is provided. This encompasses several versions

appearing in the literature.
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1 Introduction

The Fritz John necessary optimality conditions along with the Karush-Kuhn-Tucker

have proved to be one of the fundamental pieces in the development of nonlinear

optimization. There is not a standard way in the presentation of these results in most

Textbooks devoted to students coming from mathematics departament and even from

engineering, see Bazaraa et al. (2006); Bector et al. (2005). The main goal of this note

is to provide an alternative-type version of the Fritz John optimality condition, whose

proof uses simple separation theorems on convex sets and properties of polar cones.

Our formulation is versatile and requires the notion of contingent cone. Its versatility

is shown by recovering various versions appearing in the common literature, and it is

suitable for expository purposes.
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Chile through FONDECYT 112-0980, BASAL Projects, CMM, Universidad de Chile.

1



2 A Fritz John optimality condition of the alternative-type

Section 2 starts with basic definitions of contingent cone, polar cone, and a new

characterization of a disjunction in term of pointedness. In addition, a Gordan-type

alternative theorem suitable for our purpose is established. The alternative-type version

of the Fritz John optimality conditions is established in Section 3 (see Theorem 3.1).

Particular situations appearing in the literature are dicussed in Section 4.

2 Basic definitions and preliminary results

In what follows given a set A ⊆ Rn, its closure is denoted by A; its convex hull by

co(A) which is the smallest convex set containing A; its topological interior by int A.

We set cone(A)
.
=

⋃
t≥0
tA, cone+(A)

.
=

⋃
t>0

tA and cone(A)
.
=

⋃
t≥0
tA.

Definition 2.1. Let ∅ 6= K ⊆ Rn and x̄ ∈ K, the Contingent cone of K at x̄, denoted

by T (K; x̄), is the set

T (K; x̄)
.
=

{
v ∈ Rn : ∃ tk > 0, ∃xk ∈ K, xk → x̄, tk(xk − x̄)→ v

}
.

When K is convex and x̄ ∈ K, then it is not hard to prove that

T (K; x̄) =
⋃
t≥0

t(K − x̄).

By 〈·, ·〉 we stand for the inner or scalar product in Rn, whose elements in Rn are

considered column vectors. Thus, 〈a, b〉 = a>b for all a, b ∈ Rn.

Given a nonempty set P ⊆ Rn, its polar cone, P ∗, is defined as

P ∗ = {ξ ∈ Rn : 〈ξ, p〉 ≥ 0 ∀ p ∈ P}.

It well known that, whenever P is a closed convex cone, we have (the bipolar theorem)

P = P ∗∗
.
= (P ∗)∗, and in general we have P ∗∗ = co(cone P ).

We say that a (not necessarily convex) cone, P , is pointed if co P ∩ (−co P ) = {0}.

Notice that

cone(A) is pointed ⇐⇒ cone(co A) is pointed. (1)

Given a convex set A ⊆ Rn, the (outward) normal cone (in the sense of convex analysis)

of A at x̄ ∈ A, is the set

N(A; x̄)
.
= {ξ ∈ Rn : 〈ξ, x− x̄〉 ≤ 0, ∀ x ∈ A}.
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Part of the next theorem appears, in a more general framework, in Theorem 3.2 of

[8].

Theorem 2.2. Let P ⊆ Rm be a convex closed cone such that int P 6= ∅, and A ⊆ Rm

be any nonempty set. Then the following assertions are equivalent:

(a) ∃ λ∗ ∈ P ∗ \ {0}, 〈λ∗, a〉 ≥ 0, ∀ a ∈ A;

(b) cone(A+ int P ) is pointed;

(c) co(A) ∩ (−int P ) = ∅.

Proof. (a) =⇒ (b): Suppose that 0 =
∑l

i=1 xi with xi ∈ cone(A + int P ), we shall

prove that xi = 0 for all i. By choice, xi = ti(ai + pi) with ti ≥ 0, ai ∈ A, pi ∈ int P

for i = 1, . . . , l. This implies that
∑l

i=1 tiai ∈ −int P . This yields a contradiction if∑l
i=1 ti > 0 under (a), since the inequality in (a) also holds for all a ∈ co(A), and

int P = {p ∈ P : 〈q, p〉 > 0 ∀ q ∈ P ∗, q 6= 0}.

(b) =⇒ (c): By (1), cone(co A + int P ) is pointed. Assume on the contrary that

co(A)∩(−int P ) 6= ∅. Then, 0 ∈ co A+int P . This implies that cone(co A+int P ) = Rm,

contradicting (b).

(c) =⇒ (a): By applying a standard theorem on separation of convex sets, we get the

existence of p ∈ Rn \ {0} and α ∈ R such that

〈p, z〉 ≥ α, ∀ z ∈ co A, and 〈p, w〉 ≤ α, ∀ w ∈ −int P = −P. (2)

From the first inequality of (2) it follows that 〈p, a〉 ≥ α for all a ∈ A, and from the

second inequality we get α ≥ 0. Hence p ∈ P ∗, proving the desired result.

Remark 2.3. It is not difficult to check that for any set A ⊆ Rm,

A ∩ (−int P ) = ∅ ⇐⇒ A ∩ (−int P ) = ∅ ⇐⇒ (A+ P ) ∩ (−int P ) = ∅

⇐⇒ cone(A+ P ) ∩ (−int P ) = ∅.

We can go further when A is the image of a subset C ⊆ Rn through a linear

transformation F : Rn → Rm. The next proposition can be considered as a Gordan-

type alternative theorem, and it has its origin in Proposition 2.7 of [7].
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Proposition 2.4. Let F be a real matrix of order m × n, and write F> =

(F>1 · · · F>m), where Fi is the i−th row of F . Let C ⊆ Rn be any nonempty set. Then

F(C) ∩ (−int Rm
+ ) = ∅ ⇐⇒ max

1≤i≤m
〈F>i , v〉 ≥ 0 ∀ v ∈ C,

and the following statements are equivalent:

(a) cone(F(C) + int Rm
+ ) is pointed;

(b) F(co(C)) ∩ (−int Rm
+ ) = ∅;

(c) F(co(C)) ∩ (−int Rm
+ ) = ∅;

(d) max
1≤i≤m

〈F>i , v〉 ≥ 0 ∀ v ∈ co(C);

(e) co({F>i : i = 1, . . . ,m}) ∩ C∗ 6= ∅.

Proof. The first part is straightforward. By the previous theorem

cone(F(C) + int Rm
+ ) is pointed ⇐⇒ co(F(C)) ∩ (−int Rm

+ ) = ∅.

It is easy to check that co(F(C)) = F(co(C)) and

F(co(C)) ∩ (−int Rm
+ ) = ∅ ⇐⇒ F(co(C)) ∩ (−int Rm

+ ) = ∅

⇐⇒ F(co(C)) ∩ (−int Rm
+ ) = ∅.

Both relations along with the fact that (a) of Theorem 2.2 amounts to writing

co({F>i : i = 1, . . . ,m}) ∩ (C)∗ 6= ∅,

allow us to conclude with all the remaining equivalences.

3 The Fritz-John optimality condition of the alternative-

type

Let us consider the minimization problem with inequality constraints:
min f(x)

gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

(3)
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where f, gi : Rn → R, i = 1, . . . ,m, are given functions, and X ⊆ Rn is any nonempty

set. Define the feasible set to (3) as

K
.
= {x ∈ X : gi(x) ≤ 0, i = 1, . . . ,m}.

For fixed x̄ ∈ K, we associate its active index set,

I = I(x̄)
.
= {i : gi(x̄) = 0}. (4)

Based on Proposition 2.4 we establish a new version, as an alternative-type result, of

the Fritz John optimality conditions, which is new in the literature.

Theorem 3.1. (Fritz John necessary optimality conditions of alternative-type) Let us

consider problem (3) and x̄ ∈ K, with X ⊆ Rn. Let f, gi, i ∈ I, be differentiable at x̄.

Then, exactly one of the following two assertions hold:

(a) there exists v ∈ Rn such that

〈∇f(x̄), v〉 < 0, v ∈ co[T (X; x̄)];

〈∇gi(x̄), v〉 < 0, i ∈ I,
(5)

(b) there exist λ0 ≥ 0, λi ≥ 0, i ∈ I, not all zero, satisfying

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ [T (X; x̄)]∗, (6)

or equivalently, max
i∈I
{〈∇f(x̄), v〉, 〈∇gi(x̄), v〉} ≥ 0, ∀ v ∈ T (X; x̄).

Furthermore, if each gi is differentiable at x̄, condition (6) can be written as
λ0∇f(x̄) +

m∑
i=1

λi∇gi(x̄) ∈ [T (X; x̄)]∗;

λigi(x̄) = 0, i = 1, . . . ,m.

(7)

Proof. This is a direct application of Proposition 2.4 to

F .
=

 ∇f(x̄)>

∇gI(x̄)>

 ,

where ∇gI(x̄)> is the matrix having as rows ∇gi(x̄)> for i ∈ I.
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We now compare with a result, which in our opinion, is the more general one

concerning the validity of the Fritz John optimality conditions. It appears in the book

by Giorgi, Guerraggio and Therfelder [11, Theorem 3.6.5], but its origin goes back to

[1]. Some recent remarks on Fritz John optimality conditions in the same direction as

in [11] were presented in [9, Theorem 13].

Theorem 3.2. ([11, Theorem 3.6.5], [9, Theorem 13]) Let x̄ ∈ K be a local solution

to problem (3) with X ⊆ Rn. Let f, gi, i ∈ I, be differentiable at x̄. Then, for every

convex subcone T1 of T (X; x̄) there exist λ0 ≥ 0, λi ≥ 0, i ∈ I, not all zero, satisfying

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ [T1]
∗. (8)

Next example shows an instance where our previous theorem is applicable providing

a sharper result, whereas Theorem 3.2 yields less information.

Example 3.3. Let us take f(x1, x2) = x1, g(x1, x2) = x2, and

X = {(x1, x2) : x1x2 = 0, x1 ≥ 0, x2 ≥ 0}, x̄ = (0, 0).

Then, T (X; x̄) = X, which is nonconvex. It follows that [T (X; x̄)]∗ = R2
+ =

co[T (X; x̄)], and x̄ = (0, 0) is a minimum of f on {(x1, x2) ∈ X : g(x1, x2) ≤ 0}.

Easy computations show that the corresponding system (5) has no solution, and there-

fore there exist λ0, λ1 ≥ 0, not both zero, such that

λ0∇f(x̄) + λ1∇g(x̄) ∈ [T (X; x̄)]∗. (9)

In this case, any λ0 ≥ 0 and λ1 ≥ 0 satisfies such conditions.

Being T (X; x̄) nonconvex, the only non-trivial convex subcones are

T1 = {(x1, 0) : x1 ≥ 0}, T2 = {(0, x2) : x2 ≥ 0}.

Any of these cones provide, via (8), less information than (9). Other candidates for T1

are: the Clarke tangent cone of X at x̄, TC(X; x̄), which is always convex, is {(0, 0)}

in our case; the open cone of interior directions to X at x̄, I(X; x̄) ([1, Theorem 3.1]),

which in our example is empty; the open cone of quasi-interior directions to X at x̄,

Q(X; x̄) ([10]), which is also empty here.
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It is well-known that besides differentiability of gi at x̄, for i ∈ I, continuity of gi

at x̄ for i 6∈ I, local minimality of x̄ imply that the system

〈∇f(x̄), v〉 < 0, v ∈ T (X; x̄);

〈∇gi(x̄), v〉 < 0, i ∈ I,
(10)

has no solution (this will be proved in the next corollary by completeness), that is, (a)

of Theorem 3.1 does not hold and therefore (b) is true, provided T (X; x̄) is convex.

This is expressed in the following result, whose formulation is very versatile as we shall

show in Section 4, and it encompasses many recent results appearing in the literature.

Corollary 3.4. (Fritz John necessary optimality conditions) Let us consider problem

(3) and x̄ ∈ K. Let X ⊆ Rn such that T (X; x̄) is convex. Let f, gi, i ∈ I, be differen-

tiable at x̄; gi, i 6∈ I, be continuous at x̄. If x̄ is a local solution to (3), then there exist

λ0 ≥ 0, λi ≥ 0, i ∈ I, not all zero, satisfying

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ [T (X; x̄)]∗. (11)

Proof. We claim that (a) of Theorem 3.1 does not hold, proving that the system (10)

has no solution. The proof even if standard, we shall provide it just for convenience of

the reader. Suppose, on the contrary, that v is a solution to (10) there exist sequences

λk > 0, xk ∈ X, xk → x̄, satisfying λk(xk − x̄)→ v. By differentiability at x̄

f(xk)− f(x̄) = 〈∇f(x̄), xk − x̄〉+ ‖xk − x̄‖o(‖xk − x̄‖)

with o(t)→ 0 as t→ 0. On multiplying this equality by λk, letting k → +∞ and using

the first inequality of (10), we get the existence of k1 such that

f(xk) < f(x̄), ∀ k ≥ k1. (12)

It only remains to check that xk is feasible for all k sufficiently large to reach a con-

tradiction.

Let i ∈ I. We get similarly as for f

gi(xk)− gi(x̄) = 〈∇gi(x̄), xk − x̄〉+ ‖xk − x̄‖o(‖xk − x̄‖)

On multiplying by λk this equality and letting k → +∞, we obtain, for some k2,

gi(xk) < 0, ∀ i ∈ I, ∀ k ≥ k2. (13)
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Since gi is continuous for i 6∈ I, there exists k3 such that

gi(xk) < 0, ∀ i 6∈ I, ∀ k ≥ k3. (14)

On combining (13) and (14), we conclude that xk is feasible for all k sufficiently large.

Hence x̄ cannot be a local solution to (3), showing that (a) of the previous theorem is

not valid, and therefore (b) holds, and the corollary follows.

4 Some particular situations

Let us show some interesting specializations appearing in the literature where T (X; x̄)

is convex.

4.1 The set X is not convex with T (X; x̄) convex

Let us consider the problem with an additional quadratic equality constraint:

min f(x)

gi(x) ≤ 0, i = 1, . . . ,m,

q(x) = 0,

x ∈ Rn,

(15)

where q is any quadratic function of the form

q(x)
.
=

1

2
x>Ax+ a>x+ α,

with A being a (real) symmetric matrix, a ∈ Rn, α ∈ R. Clearly the

X
.
= {x ∈ Rn : q(x) = 0 }

is not necessarily convex even if q is convex. Let x̄ feasible for Problem (15). It is not

difficult to find that (see for instance [6, Theorem 2.1])

T (X; x̄) =
{
v ∈ Rn : (Ax̄+ a)>v = 0

}
if Ax̄+ a 6= 0;

whereas

T (X; x̄) =
{
v ∈ Rn : v>Av = 0

}
if Ax̄+ a = 0.
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This set, en general, is nonconvex. If additionally, q is convex, that is, A is positive

semidefinite, a more precise formulation may be obtained since v>Av ⇐⇒ Av = 0:

T (X; x̄) =

 (Ax̄+ a)⊥ if Ax̄+ a 6= 0;

ker A if Ax̄+ a = 0.
(16)

Thus,

[T (X; x̄)]∗ =

 R(Ax̄+ a) if Ax̄+ a 6= 0;

(ker A)⊥ = A(Rn) if Ax̄+ a = 0.

Hence, the Fritz-John conditions (11) reduces to the existence of λ0, λi, i ∈ I, not all

zero, λ ∈ R, y ∈ Rn, such that

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) =

 λ(Ax̄+ a) if Ax̄+ a 6= 0;

Ay if Ax̄+ a = 0.

4.2 The set X is convex

In this case, T (X; x̄) is convex, and since T (X; x̄) =
⋃
t≥0
t(X − x̄), we get [T (X; x̄)]∗ =

−N(X; x̄), and so (11) can be written as

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ −N(X; x̄).

Thus, Theorem 3.2.2 in Bector et al. (2005) is obtained.

4.3 The set X is open or x̄ ∈ int X

In this situation, T (X; x̄) = Rn, and therefore condition (11) reduces to

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) = 0.

This is nothing else than Theorem 4.2.8 in Bazaraa et al. (2006), and Theorem 3.2.1

in Bector et al. (2005) when X = Rn.

4.4 The set X is an affine subspace

This case deals with X = {x ∈ Rn : Hx = d} = x̄+ ker H, with H being a real p× n

matrix and x̄ ∈ X. Thus, we obtain T (X; x̄) = ker H and [T (X; x̄)]∗ = (ker H)∗ =

(ker H)⊥. Hence (11) is expressed as

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ (ker H)⊥ = H>(Rp),
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that is, there exists yi ∈ R, i = 1, . . . , p, such that

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) +H>y = 0.

4.5 The set X is polyhedral

Let us consider (see for instance Birbil et al., 2007)

min f(x)

gi(x) ≤ 0, i = 1, . . . ,m,

h>j x ≤ dj , j = 1, . . . , p,

x ∈ Rn.

(17)

In this case, we can take X = {x ∈ Rn : Hx ≤ d} with H being a p × n matrix,

and refine (11). More precisely, by denoting h>j to be the rows of H and setting J
.
=

{j : h>j x̄ = d}, the conclusion of Theorem 3.4 reduces to the existence of λ0 ≥ 0,

λi ≥ 0, i ∈ I, not all zero, and uj ≥ 0, j ∈ J , such that

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) +
∑
j∈J

ujhj = 0. (18)

Indeed, by setting C
.
= {v ∈ Rn : h>j v ≤ 0, j ∈ J}, which is a closed convex cone,

one can easily check that T (X; x̄) = C (see Lemma 5.1.4 in Bazaraa et al., 2006) By

applying Proposition 2.4, we get the existence of λ0 ≥ 0, λi ≥ 0, i ∈ I, not all zero,

such that

λ0∇f(x̄) +
∑
i∈I

λi∇gi(x̄) ∈ C∗.

The conclusion follows once we notice that C∗ = {HJu : u ≤ 0}, with HJ is the matrix

with columns hj for j ∈ J . Thus we recovered the Fritz-John conditions as appears in

Birbil et al. (2007).
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