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A POSTERIORI ERROR ESTIMATES FOR THE PROBLEM OF

ELECTROSTATICS WITH A DIPOLE SOURCE

A. ALONSO RODRÍGUEZ, J. CAMAÑO, R. RODRÍGUEZ, AND A. VALLI

Abstract. Electroencephalography is a non-invasive technique for detecting
brain activity from the measurement of the electric potential on the head sur-

face. In mathematical terms, it reduces to an inverse problem in which the goal
is to determine the source that has generated the electric field from measure-
ments of boundary values of the electric potential. Since for reasonable models

the time-variation of the electric and magnetic fields can be disregarded, the
mathematical modeling of the corresponding forward problem leads to an elec-
trostatics problem with a current dipole source. This is a singular problem,
since the current dipole model involves first-order derivatives of a Dirac delta

measure. Its solution lies in Lp for 1 ≤ p < 3/2 in three dimensional domains
and 1 ≤ p < 2 in the two dimensional case.

We consider the numerical approximation of the forward problem by means
of standard piecewise linear continuous finite elements. We prove a priori error

estimates in Lp norm. Then, we propose a residual-type a posteriori error
estimator. We prove that it is reliable and efficient; namely, it yields global
upper and local lower bounds for the corresponding norms of the error. Finally,
we use this estimator to guide an adaptive procedure, which is experimentally

shown to lead to an optimal order of convergence.

1. Introduction

Electroencephalography (EEG) is a widely used technique for reconstruction of
brain activity. The task is to estimate the cerebral current sources underlying a
measured distribution of the scalp electric potential. The inverse problem requires
a model for the forward problem, i.e., the computation of the scalp potential given
a neural current source. Since the frequency spectrum for electrophysiological sig-
nal is frequently between 0.1 and 100 Hz, most works on biomedical applications
focus on the static approximation of Maxwell equations. Concerning the source,
the activity measured in EEG is the result of movement of ions that, creating an
electrical potential difference, generates the so-called primary current. Since the
source is localized, it is generally modeled as a current dipole centered at a point
x0 with moment p.

For computing the solution of the forward problem, the finite element method
has become popular because it allows a realistic representation of the geometry and
conductivity of the different tissues. In particular it allows to deal with anisotropic
conductivities. In this case the forward problem is non-standard and it is usually
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solved by the subtraction approach (see [2], [18], [10]). Recently the well-posedness
of the problem was studied in [16] using the duality method. There it is proved that,
in the three dimensional (3D) case, the solution belongs to Lp for 1 ≤ p < 3/2. The
same arguments allow proving that in the two dimensional case (2D) the solution
belongs to Lp for 1 ≤ p < 2. Finite elements have been used in practice for both
approaches: the subtraction method and the direct one. For the former, a sound
mathematical and numerical analysis can be found in [18] under the assumption
that there is a neighborhood of the source position x0 with constant conductivity.
On the other hand, the direct approach is widely used in source reconstruction (see
e.g. [19], [4], [17], [14]) and can be used even for a variable conductivity (smooth in
a neighborhood of x0). However it has not been rigorously analyzed yet. The aim
of this paper is to take advantage of the method in [16] to provide such analysis.

In spite of the fact that the solution is only in Lp, it can be approximated by
standard finite elements. Specifically we use piecewise linear continuous elements
on polyhedral or polygonal domains. Even though the original problem is three
dimensional we present the results in more detail in the 2D framework. Under the
assumption that the computational domain Ω is bounded, convex and polygonal,
we develop a priori and a posteriori error analyses in Lp norm for this problem. In
particular, we prove an a priori error estimate under the assumption that the meshes
are quasiuniform. Since the solution is highly singular at x0, quasiunformity is an
excessively restrictive assumption in practice. This is the reason why we also derive
an a posteriori error analysis which does not need the quasiuniformity assumption.
We introduce a posteriori error indicators and prove their reliability and efficiency.
Subsequently, we briefly discuss the 3D case and present similar results under more
stringent assumptions on the geometry of the domain and the electric conductivity.
We use these error indicators to guide an adaptive scheme, which experimentally
exhibits optimal order of convergence.

The paper is organized as follows. In Section 2 we state the model problem,
a finite element discretization (in 2D and 3D), and give an a priori estimate of
the error in Lp norm for the 2D case. In Section 3, we introduce some generalized
bubble functions and prove some technical lemmas, which will be used in the sequel.
The main result is presented in Section 4, where we perform the a posteriori error
analysis for the 2D case. In Section 5, we briefly analyze the a priori and a posteriori
estimates in 3D. Finally, in Section 6, we report some numerical results illustrating
the performance of the adaptive scheme.

2. Model problem

In this section we introduce the model problem, propose a variational formulation
and recall the existence and uniqueness of solution. Then, we consider a finite
element discretization and give an a priori error estimate.

2.1. Continuous problem. We start introducing the Maxwell equations:
curlH − ϵ

∂E

∂t
= σE + Jp ,

curlE + µ
∂H

∂t
= 0 ,
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where E and H are the electric and magnetic fields, respectively, Jp is the source
current density, ϵ the electric permittivity, µ the magnetic permeability and σ the
electric conductivity.

By disregarding the time variation one obtains the static model:{
curlH = σE + Jp ,
curlE = 0 .

If we consider a simply connected domain D ⊂ R3, then there exists a scalar
potential u such that E = −∇u in D. As a consequence, calculating the divergence
of the first equation, we obtain

div(σ∇u) = div Jp in D .

If Ω is a conductive domain completely included in D and D\Ω is not conductive,
then, due to the properties of the div operator, the equation above is equivalent
to div(σ∇u − Jp)|Ω = 0 in Ω, div(σ∇u − Jp)|D\Ω = 0 and (σ∇u − Jp)|Ω · n =

(σ∇u − Jp)|D\Ω · n on the interface ∂Ω, being n the outer unit normal vector

to ∂Ω. Since σ vanishes outside Ω and Jp is assumed to be supported in Ω, the
electrostatics problem reads{

div(σ∇u) = div Jp in Ω ,
(σ∇u) · n = 0 on ∂Ω .

This is the model more frequently used for the electrical brain activity (see e.g.
[13], [9], [11]).

Let us assume that a small activated region is centered at a point x0 and that
the observation point is far from it. In this case the primary current Jp is typically
modeled as a dipole. So, in the following, we consider the electrostatic problem
with a dipole as source term and homogeneous Neumann boundary condition:

(2.1)

{
div(σ∇u) = div(p δx0) in Ω ,
(σ∇u) · n = 0 on ∂Ω .

Here x0 is an inner point of Ω, and p ̸= 0 is the polarization vector. The conduc-
tivity σ is a matrix with entries in L∞(Ω) and uniformly positive definite, namely,
there exists a positive constant σ0 such that

(2.2)
3∑

i,j=1

ξiσi,j(x)ξj ≥ σ0

3∑
i=1

ξ2i ∀ ξ ∈ R3 , a.e. x ∈ Ω.

Moreover we assume that there exists r0 > 0 such that σi,j ∈ W 1,∞(Br0(x0))
for i, j = 1, 2, 3, where Br0(x0) := {x ∈ R3 : |x − x0| < r0}. This is a technical
assumption used in [16] for the proof of the well-posedness of the problem by means
of a duality argument.

Slightly modifying the arguments presented in [16], we consider the following
weak formulation of (2.1): for 1 < p < 3/2, find u ∈ Lp(Ω) such that

(2.3)


∫
Ω

udiv(σ∇φ) = −p · ∇φ(x0) ∀φ ∈ Xq ,∫
Ω

u = 0 ,

where

Xq := {φ ∈ H1(Ω) : φ ∈ C1(Br∗(x0)), div(σ∇φ) ∈ Lq(Ω), (σ∇φ) · n = 0 on ∂Ω},
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being r∗ a fixed number such that 0 < r∗ < r0. Moreover, here and thereafter
1
p +

1
q = 1.

The second condition of (2.3) filters out additive constants and therefore is suit-
able for assuring uniqueness of the solution u.

The following theorem, which is essentially proved in [16, Remark 3.3], ensures
the existence and uniqueness of solution to (2.3):

Theorem 2.1. For all p with 1 < p < 3/2, there exists a unique solution u ∈ Lp(Ω)
to (2.3), which is the same for all p in this range.

Remark 2.2. The same arguments used for the previous theorem allow us to prove
the well-posedness of the problem in the 2D case; in such a case, we have existence
and uniqueness of a solution u ∈ Lp(Ω) for each p with 1 < p < 2.

2.2. Discrete problem. We assume that Ω is either a Lipschitz polyhedron (3D)
or a Lipschitz polygon (2D).

We consider a regular family of tetrahedral (or triangular) meshes Th of Ω (see,
for instance, [5]). As usual, h denotes the mesh size: h := maxT∈Th

hT , hT being
the diameter of T . We consider the space of Lagrange finite elements of degree one:

Hh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} .
(Pk denotes the set of polynomials with degree not larger than k ∈ N.) Notice that
Hh ⊂ Lp(Ω) for all p ≥ 1.

Let T0 ∈ Th be such that x0 ∈ T0. Usually x0 will be an inner point of an
element of Th, however if x0 belongs to more than one T ∈ Th, any element T0
containing x0 can be chosen.

The finite element approximation of (2.3) reads: find uh ∈ Hh such that

(2.4)


∫
Ω

σ∇uh · ∇vh = p · ∇(vh|T0)(x0) ∀ vh ∈ Hh ,∫
Ω

uh = 0 .

Although some average of the gradients of different elements containing x0 could
also be used, our analysis shows that the simplest minded approach of choosing a
particular arbitrary element works fine.

To find an a priori error estimate in Lp(Ω), with 1 < p < 2 in the 2D case and
1 < p < 3/2 in the 3D case, we will use a duality argument. With this end, we
consider the following auxiliary problem: given ψ ∈ Lq(Ω), find φ ∈ H1(Ω) such
that

(2.5)


div(σ∇φ) = ψ − 1

|Ω|

∫
Ω

ψ in Ω ,

(σ∇φ) · n = 0 on ∂Ω ,∫
Ω

φ = 0 .

This problem is well-posed if q > 1 (2D case) or q > 6/5 (3D case). Since q will be
the dual exponent of p, we will consider this problem for q > 2 (2D case) or q > 3
(3D case).

We will need the solution of this problem to be in W 2,q(Ω). This is true under
suitable assumptions. First of all, we require that σ ∈ [C1(Ω)]2×2 (note that this
not a realistic assumption when modeling the brain conductivity, which presents



A POSTERIORI ERROR ESTIMATES FOR THE PROBLEM OF ELECTROSTATICS 5

discontinuities across the different tissues). Moreover, we assume that Ω is convex.
Then the arguments used to prove [8, Corollary 3.12] allow us to show that φ ∈
W 2,q(Ω) for each q such that 2 < q < q0, for a suitable q0 (for the Laplace operator
in the 2D case, it is known that q0 = 2

2−π/θ , θ being the largest inner angle of Ω).

Moreover

(2.6) ∥φ∥2,q,Ω ≤ C∥ψ∥0,q,Ω .
We do not know if, for a general convex polyhedron, one has q0 > 3. Therefore,

despite the original problem is set in the 3D case, from now on we will present
our results in the 2D framework. In Section 5, we will extend them to the 3D
case, although under additional stringent assumptions. So, in the following we will
consider a convex Lipschitz polygon Ω ⊂ R2.

In what follows we will denote vI ∈ Hh the Lagrange interpolant of v. Notice
that, in particular, φI is well defined because φ ∈ W 2,q(Ω). Let us recall the fol-
lowing 2D interpolation error estimates. For their proof see, e.g., [3, Theorem 4.4.4
and Corollary 4.4.7].

Proposition 2.3. Suppose 1 < q ≤ ∞ and m > 2
q . Then, for 0 ≤ i ≤ m and

v ∈Wm,q(T ), T ∈ Th, we have

(2.7) |v − vI |i,q,T ≤ Chm−i
T |v|m,q,T ,

(2.8) |v − vI |i,∞,T ≤ Ch
m−i−2/q
T |v|m,q,T .

Here and thereafter C, as well as C ′, denote strictly positive constants, not
necessarily the same at each occurrence, but always independent of the mesh size.

Moreover we have the following error estimate for the elliptic projection:

Lemma 2.4. Let Ω be a convex Lipschitz polygon. Let {Th} be a quasiuniform
family of subdivisions of Ω (namely, there exists a positive constant τ , independent
of h, such that τh ≤ hT ≤ h for all T ∈ Th and for all Th). Assume that σ ∈
[C1(Ω)]2×2. Consider a function ξ ∈ W 2,q(Ω) for q > 2 and let ξP ∈ Hh be the
unique solution of

(2.9)


∫
Ω

σ∇vh · ∇ξP =

∫
Ω

σ∇vh · ∇ξ ∀ vh ∈ Hh ,∫
Ω

ξP = 0 .

Then there exists h0 > 0 such that

(2.10) |ξ − ξP |1,∞,T ≤ Ch1−2/q∥ξ∥2,q,Ω ∀T ∈ Th
for 0 < h < h0.

Proof. This is a standard estimate for the elliptic projection; we include a brief
proof for completeness. We consider an arbitrary T ∈ Th. Using (2.8) and an
inverse estimate (see [3, Lemma 4.5.3]) we have

|ξ − ξP |1,∞,T ≤ |ξ − ξI |1,∞,T + |(ξ − ξP )I |1,∞,T

≤ C
(
h
1−2/q
T |ξ|2,q,T + h

−2/q
T ∥(ξ − ξP )I∥1,q,T

)
.

On the other hand,

∥(ξ − ξP )I∥1,q,Ω ≤ ∥ξ − ξI∥1,q,Ω + ∥ξ − ξP ∥1,q,Ω ≤ Ch|ξ|2,q,Ω
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(see, for instance, [3, Theorem 4.4.4 and equation (8.5.4)]), and the desired result
follows by using the quasiuniformity of the meshes. □

Now we are in a position to prove an a priori error estimate for the proposed
finite element scheme.

Theorem 2.5. Let Th be a quasiuniform family of subdivisions of the convex Lip-
schitz polygon Ω and assume that σi,j ∈ C1(Ω) for each i, j = 1, 2. Let u and uh be
the respective solutions to problems (2.3) and (2.4). Then there exists h0 > 0 such
that

∥u− uh∥0,p,Ω ≤ Ch2/p−1

for all 0 < h < h0 and for all p such that q0
q0−1 < p < 2, where q0 is the maximal

regularity exponent in (2.6). Moreover, for 1 ≤ p ≤ q0
q0−1 it holds

∥u− uh∥0,p,Ω ≤ Chs

for all 0 < h < h0 and for all s with 0 < s < 1− 2
q0
.

Proof. Given ψ ∈ Lq(Ω) with 1
p + 1

q = 1, we know that the solution φ of (2.5)

satisfies φ ∈ W 2,q(Ω) for 2 < q < q0. By using (2.3) and integration by parts, we
obtain ∫

Ω

(u− uh)ψ =

∫
Ω

(u− uh)

(
div(σ∇φ) + 1

|Ω|

∫
Ω

ψ

)
(2.11)

=

∫
Ω

u div(σ∇φ)−
∫
Ω

uh div(σ∇φ)

= −p · ∇φ(x0) +

∫
Ω

σ∇uh · ∇φ

= −p · ∇φ(x0) +

∫
Ω

σ∇uh · ∇φP

= −p · ∇φ(x0) + p · ∇(φP |T0)(x0) ,

where φP is the unique solution to problem (2.9) (with φ at the right hand side
instead of ξ). From Lemma 2.4 we have

|∇φ(x0)−∇φP (x0)| ≤ Ch1−2/q∥φ∥2,q,Ω ≤ Ch1−2/q∥ψ∥0,q,Ω ,
where the last inequality follows from (2.6). Therefore we have

∥u− uh∥0,p,Ω = sup
ψ∈Lq(Ω)

∫
Ω

(u− uh)ψ

∥ψ∥0,q,Ω
≤ Ch1−2/q = Ch2/p−1 .

The last assertion follows from the Hölder inequality and the previous estimate,
as

∥u− uh∥0,p,Ω ≤ C∥u− uh∥0,r,Ω ≤ Ch2/r−1

for each r with q0
q0−1 < r < 2. □

The quasiuniformity assumption on the meshes seems unfitting for this problem,
because the strong singularity of the solution at x0 suggests using meshes highly
refined in the vicinity of this point. In what follows we will introduce a posteriori
estimators of the Lp norm of the error which will be proved to be efficient and reli-
able without the need of the quasiuniformity assumption. Later on these estimates
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will be used to devise an adaptive scheme which will lead to an optimal order of
convergence in terms of the number of degrees of freedom.

3. Preliminary results

For the a posteriori analysis, we will have to deal with three kinds of bubble
functions, one associated with triangles, another associated with edges and the
last one associated with the point x0. In this section we introduce these bubble
functions and prove some properties that will be used in the sequel. From now on
n will denote a generic unit vector normal to a curve which will be clear from the
context.

Let bT be the bubble function with support in T defined in Ω by

(3.1) bT (x) :=


(
λT1 λ

T
2 λ

T
3

)2 |x− x0|2

h2T
if x0 ∈ T(

λT1 λ
T
2 λ

T
3

)2
otherwise .

where λTi is the barycentric coordinate of x associated with the triangle T and its
vertex Pi, i = 1, 2, 3. The function bT have the following properties:

Lemma 3.1. Given T ∈ Th, let bT be defined as above. Then

0 ≤ bT ≤ 1 ,(3.2)

bT = 0 on ∂T ,(3.3)

∇bT = 0 on ∂T ,(3.4) ∫
T

bT ≥ C|T | ,(3.5)

∥bT ∥2,q,T ≤ C|T |−1/p .(3.6)

Proof. Equations (3.2), (3.3), and (3.4) are immediate consequences of the defi-
nition of bT . Estimate (3.5) follows from straightforward computations and (3.6)
from standard scaling arguments (see [6, Theorem 15.1]):

∥bT ∥2,q,T ≤ Ch
−4/p
T ∥bT ∥0,p,T ≤ Ch

−2/p
T ≤ C|T |−1/p .

□

Let Eh,i be the set of all the inner edges and Eh,e the set of boundary edges of
the triangulation Th. Given ℓ ∈ Eh := Eh,i ∪ Eh,e we will define a bubble function
with support ωℓ := {T ∈ Th : ℓ ⊂ ∂T} (see Figure 1).

In the case ℓ ∈ Eh,i we define bℓ for x ∈ ωℓ by

(3.7) bℓ(x) :=


(
λT1
2 λT1

3 λT2
2 λT2

3

)2 |x− x0|2

|ℓ|2
if x0 ∈ ωℓ(

λT1
2 λT1

3 λT2
2 λT2

3

)2
if x0 ̸∈ ωℓ ,

where |ℓ| denotes the length of ℓ. Since λ
Tj

i is a linear function in the whole plane,
bℓ is a polynomial in ωℓ.

It remains to define bubble functions bℓ for ℓ ∈ Eh,e, which, in particular, must
satisfy

(σ∇bℓ) · n = ∇bℓ · (σn) = 0 on ℓ for all ℓ ∈ Eh,e .
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P4

T1

T2ℓ

n

P2

P3

P1

ℓ

n
P1

∂Ω
Tℓ

P2

P3

Figure 1. The support ωℓ of bℓ with ℓ ∈ Eh,i and ℓ ∈ Eh,e.

Let Tℓ be the triangle in Th that contains ℓ. For simplicity we assume that x0 /∈ Tℓ.
Let (xi, yi) be the coordinates of the vertices Pi, i = 1, 2, 3, of the triangle Tℓ, as
shown in Figure 2. Let Fℓ : R2 → R2 be defined by

Fℓ

(
x̂
ŷ

)
=

(
x2
y2

)
+Q

(
x̂
ŷ

)
where Q =

(
x3 − x2 −(y3 − y2)
y3 − y2 x3 − x2

)
. Notice that Q = |ℓ|

(
t −n

)
(see Figure 2)

and that QtQ = |ℓ|2I. Hence, denoting T̂ℓ := F−1
ℓ (Tℓ), the triangles T̂ℓ and Tℓ are

similar (in particular, both have the same aspect ratio). Let us set σ̂ := Qt(σ◦Fℓ)Q;

this matrix is symmetric and positive definite for all (x̂, ŷ) ∈ T̂ℓ. It is easy to show
that there exists δ > 0 such that [1/2−δ, 1/2+δ]×(0, 2δ] is contained in the interior

of T̂ℓ (see Figure 3). Since δ only depends on the aspect ratio of the triangle T̂ℓ,
hence of that of Tℓ, it can be bounded from above and from below by two positive
constants, uniformly with respect to h. Now let g1 ∈ D((1/2 − δ, 1/2 + δ)) be
such that g1 ≥ 0 and

∫
R g1 = 1, and let g2 ∈ C∞(R) be such that 0 ≤ g2 ≤ 1,

g2|(−∞,δ) = 1, g2|(2δ,+∞) = 0 and |g′2| ≤ Cδ−1. We first define

b̂(x̂, ŷ) := g1(x̂)− g1(x̂)
σ̂12(x̂, 0)

σ̂22(x̂, 0)
g2(ŷ) ŷ ,

then

(3.8) bℓ := b̂ ◦ F−1
ℓ |Tℓ

.

Notice that σ̂22(x̂, 0) cannot vanish because σ̂ is positive definite. Since ∂b̂
∂x̂ (x̂, 0) =

g′1(x̂) and
∂b̂
∂ŷ (x̂, 0) = −g1(x̂) σ̂12(x̂,0)

σ̂22(x̂,0)
, straightforward computations allow us to show

that (σn)t∇bℓ = |ℓ|−2(σ̂n̂)t∇̂b̂ = 0.
Now it is easy to prove the following result for bℓ:

Lemma 3.2. Given ℓ ∈ Eh, let bℓ and ωℓ be defined as above. Then

bℓ|ℓ∗ = 0 ∀ℓ∗ ∈ Eh, ℓ∗ ̸= ℓ ,(3.9)

(σ∇bℓ) · n = 0 on ∂ωℓ ,(3.10)

C|ℓ| ≤
∫
ℓ

bℓ ≤ C ′|ℓ| ,(3.11)

|bℓ|m,q,ωℓ
≤ C|ℓ|2−m−2/p , m = 0, 1, 2 .(3.12)



A POSTERIORI ERROR ESTIMATES FOR THE PROBLEM OF ELECTROSTATICS 9

ŷ

n

Tℓ

(0,0)
x̂
(1,0)

t̂ℓ̂

Fℓ

ℓ

n̂ P2

P1

t P3

T̂ℓ

Figure 2. The definition of Fℓ.

(1,0)(0,0)
x̂ℓ̂

n̂
t̂

ŷ T̂ℓ

2δ

2δ

Figure 3. The support of bℓ.

Proof. For the case ℓ ∈ Eh,i, the proof runs essentially identical to that of [1,
Lemma 3.1]. For ℓ ∈ Eh,e the first three properties have already been checked. The
last one follows from standard scaling arguments. □

The third kind of bubble function concerns the point x0 and the triangle T0 that
we have chosen such that x0 ∈ T0. We will denote by h0 the diameter of T0. Let
us set

ωT0 := {T ′ ∈ Th : T ′ ∩ T0 ̸= ∅}(3.13)

and d:=dist(x0,∂ωT0) (since x0 is an inner point of Ω then d > 0). Notice that,
because of the regularity of the mesh, there exist two positive constants such that
Ch0 ≤ d ≤ C ′h0. Let χ(x) be the convolution of the characteristic function of the
set {x ∈ Ω : |x − x0| < d/2} with an appropriate mollifier, so that χ(x) = 1 if
|x− x0| ≤ d/4, χ(x) = 0 if |x− x0| ≥ 3d/4 and |∇χ(x)| ≤ Cd−1.

We define the bubble function

(3.14) b0(x) := p · (x− x0)χ(x) .

The support of b0 is contained in ωT0 . Moreover the following results hold true:
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x0

d

T

d

T

x0

Figure 4. Two examples of ωT0 .

Lemma 3.3. Let b0 be defined as above. Then

∇b0(x0) = p ,(3.15)

∇b0 = 0 on ∂ωT0 ,(3.16)

b0(x) = p · (x− x0) ∀x ∈ Ω : |x− x0| ≤
d

4
,(3.17)

b0(x) = 0 ∀x ∈ Ω : |x− x0| ≥
3d

4
,(3.18)

|b0|m,∞,ωT0
≤ Cd1−m , m = 0, 1, 2 .(3.19)

Proof. It follows from straightforward calculations. In particular, (3.19) follows
by combining that |χ|m,∞,ωT0

≤ Cd−m (see [1, equation (3.8)]) with the fact that

p · (x− x0) is linear and continuous. □

Corollary 3.4. Let b0 and ωT0 be defined as above. Then,

|b0|m,q,ωT0
≤ Ch

3−m−2/p
0 , m = 0, 1, 2 ,

and, for all edge ℓ,

∥b0∥0,q,ℓ ≤ C|ℓ|2−1/p .

Proof. Using (3.19) and the fact that h0 ≤ Cd ≤ Ch0, we have

|b0|m,q,ωT0
≤ |b0|m,∞,ωT0

|ωT0
|1/q ≤ Cd1−mh

2/q
0 ≤ Ch

3−m−2/p
0 .

Moreover, using that

∥v∥0,q,∂T ≤ C∥v∥1−1/q
0,q,T ∥v∥1/q1,q,T ∀v ∈W 1,q(T )

(see [3, Theorem 1.6.6]), we have

∥b0∥0,q,ℓ ≤ C∥b0∥1−1/q
0,q,ωT0

∥b0∥1/q1,q,ωT0
≤ C|ℓ|(3−2/p)(1−1/q)|ℓ|(2−2/p)(1/q) = C|ℓ|2−1/p .

□

To end this section, we recall an error estimate for the Lagrange interpolant
vI ∈ Hh of a function v ∈ C(Ω).

Lemma 3.5. Given ℓ ∈ Eh, let ωℓ be defined as above. There holds

∥v − vI∥0,q,ℓ ≤ C|ℓ|1+1/p|v|2,q,ωℓ
∀ v ∈W 2,q(ωℓ) , 1 < q <∞ .

Proof. See, for instance, [1, Lemma 3.4]. □
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4. An a posteriori error estimator

According to Remark 2.2 the solution of problem (2.3) belongs to Lp(Ω) with
1 ≤ p < 2. In this section we will define an a posteriori error estimator in the Lp(Ω)-
norm for the finite element approximation error u−uh. We will prove the reliability
and efficiency of the estimator for a particular range of p. Let us emphasize that this
proof holds for a regular family of meshes and does not need the quasiuniformity
assumption, so that the error estimator can be used to drive an adaptive scheme.

For all T ∈ Th we define

εT,p :=

h2pT ∥div(σ∇uh)∥p0,p,T +
1

2

∑
ℓ∈E(T )∩Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

,

where E(T ) is the set of the edges of T and [[ g ]] denotes the jump of g across an
edge. We define the local a posteriori error indicator ηT,p for all T ∈ Th as follows:

ηT,p :=

{ (
h2−p0 + εpT0,p

)1/p
if T = T0 ,

εT,p otherwise .

Next, we define the global error estimator from these indicators as follows:

ηp :=

(∑
T∈Th

ηpT,p

)1/p

.

4.1. Reliability. To show that this estimator is reliable, we prove the following
theorem which is based on a duality argument as that used for Theorem 2.5.

Theorem 4.1. Let Ω be a convex Lipschitz polygon and let σi,j ∈ C1(Ω) for each
i, j = 1, 2. Let ηp be defined as above with p ∈ ( q0

q0−1 , 2), where q0 > 2 is the

maximal regularity exponent in (2.6). Then, the following estimate holds true:

∥u− uh∥0,p,Ω ≤ Cηp .

Proof. Given ψ ∈ Lq(Ω), let φ ∈ W 2,q(Ω) be the solution of (2.5). Proceeding
as in (2.11), using (2.4) tested with vh = φI (the Lagrange interpolant of φ), and
integrating by parts, we obtain∫

Ω

(u− uh)ψ = −p · ∇φ(x0) +

∫
Ω

σ∇uh · ∇φ(4.1)

= p · (∇φI(x0)−∇φ(x0)) +

∫
Ω

σ∇uh · ∇(φ− φI)

= p · (∇φI(x0)−∇φ(x0))−
∑
T∈Th

∫
T

div(σ∇uh)(φ− φI)

+
∑
ℓ∈Eh,i

∫
ℓ

[[σ∇uh · n ]](φ− φI) +
∑
ℓ∈Eh,e

∫
ℓ

σ∇uh · n(φ− φI) .
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Using Hölder inequality, Proposition 2.3, and Lemma 3.5 we estimate each term
on the right hand side as follows:

|p · ∇(φ− φI)(x0)| ≤ |p||φ− φI |1,∞,T0 ≤ Ch
1−2/q
0 |φ|2,q,T0 ,

∑
T∈Th

∫
T

div(σ∇uh)(φ− φI) ≤
∑
T∈Th

∥div(σ∇uh)∥0,p,T ∥φ− φI∥0,q,T

≤ C
∑
T∈Th

h2T ∥div(σ∇uh)∥0,p,T |φ|2,q,T

≤ C

(∑
T∈Th

h2pT ∥ div(σ∇uh)∥p0,p,T

)1/p

|φ|2,q,Ω ,

∑
ℓ∈Eh,i

∫
ℓ

[[σ∇uh · n ]](φ− φI) ≤
∑
ℓ∈Eh,i

∥[[σ∇uh · n ]]∥0,p,ℓ∥φ− φI∥0,q,ℓ

≤ C
∑
ℓ∈Eh,i

|ℓ|1+1/p∥[[σ∇uh · n ]]∥0,p,ℓ|φ|2,q,ωℓ

≤ C

 ∑
ℓ∈Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

1/p

|φ|2,q,Ω ,

∑
ℓ∈Eh,e

∫
ℓ

σ∇uh · n(φ− φI) ≤
∑
ℓ∈Eh,e

∥σ∇uh · n∥0,p,ℓ∥φ− φI∥0,q,ℓ

≤ C
∑
ℓ∈Eh,e

|ℓ|1+1/p∥σ∇uh · n∥0,p,ℓ|φ|2,q,ωℓ

≤ C

 ∑
ℓ∈Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

|φ|2,q,Ω .

Substituting all these estimates in (4.1) and using (2.6), we obtain

∫
Ω

(u− uh)ψ ≤ C

(
h2−p0 +

∑
T∈Th

h2pT ∥div(σ∇uh)∥p0,p,T

+
∑
ℓ∈Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ +
∑
ℓ∈Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

∥ψ∥0,q,Ω .
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Therefore,

∥u− uh∥0,p,Ω = sup
ψ∈Lq(Ω)

∫
Ω

(u− uh)ψ

∥ψ∥0,q,Ω

≤ C
(
h2−p0 +

∑
T∈Th

h2pT ∥div(σ∇uh)∥p0,p,T +
∑
ℓ∈Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

+
∑
ℓ∈Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ
)1/p

and from this we conclude the theorem. □

4.2. Efficiency. In this subsection we always assume that σi,j ∈ C1(Ω) for each
i, j = 1, 2.

To prove the efficiency estimate, we will use some techniques that appears in [12].
For that, we introduce the matrix σI , whose entries are the Lagrange interpolants
of σi,j :

σI := (σIi,j)1≤i,j≤2.

The following four lemmas provide upper bounds for each term defining ηpT,p.

Here and thereafter div(·) must be understood in the following row-wise sense:

(div(σ))j =
∑
i
∂σi,j

∂xi
.

Lemma 4.2. The following estimate holds true:

h2pT ∥div(σ∇uh)∥p0,p,T ≤ C
(
∥σ∥p1,∞,T ∥u− uh∥p0,p,T + h2pT ∥[div(σ − σI)] · ∇uh∥p0,p,T

)
for all T ∈ Th.

Proof. Let us consider an arbitrary T ∈ Th, the bubble function bT defined in (3.1)
and the function ψT defined in Ω as

ψT := div(σI∇uh) bT in T .

Like bT , this function is supported in T .
The fact that div(σI∇uh)|T ∈ P0, (3.5), (3.3), (3.4), and integration by parts

yield

∥div(σI∇uh)∥20,p,T = |T |2/p−1∥div(σI∇uh)∥20,2,T
≤ C|T |2/p−1∥b1/2T div(σI∇uh)∥20,2,T

= C|T |2/p−1

(∫
T

div(σ∇uh)ψT +

∫
T

div((σI − σ)∇uh)ψT
)

= C|T |2/p−1

(∫
T

uh div(σ∇ψT ) +
∫
T

[div(σI − σ)] · ∇uh ψT
)
.

Next we notice that, since u is solution of (2.3) and ∇bT (x0) = 0, one has∫
T

udiv(σ∇ψT ) = −p · ∇ψT (x0) = 0 .

Therefore, we can write

∥div(σI∇uh)∥20,p,T

≤ C|T |2/p−1

(∫
T

(uh − u) div(σ∇ψT ) +
∫
T

[div(σI − σ)] · ∇uh ψT
)
.
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For the first term we have∣∣∣∣∫
T

(uh − u) div(σ∇ψT )
∣∣∣∣ ≤ 2∥u− uh∥0,p,T ∥σ∥1,∞,T ∥ψT ∥2,q,T

and, using (3.6),

∥ψT ∥2,q,T = |div(σI∇uh)|∥bT ∥2,q,T
≤ C| div(σI∇uh)||T |−1/p ≤ C∥div(σI∇uh)∥0,p,T |T |−2/p .

For the second one,∣∣∣∣∫
T

[div(σI − σ)] · ∇uhψT
∣∣∣∣ ≤ ∥[div(σI − σ)] · ∇uh∥0,p,T ∥ψT ∥0,q,T

and, now using (3.2),

∥ψT ∥0,q,T ≤ C| div(σI∇uh)||T |1/q ≤ C∥div(σI∇uh)∥0,p,T |T |1/q−1/p .

Hence

∥div(σI∇uh)∥0,p,T ≤ C
(
h−2
T ∥σ∥1,∞,T ∥u− uh∥0,p,T + ∥[div(σI − σ)] · ∇uh∥0,p,T

)
from which we easily obtain the desired result. □

Lemma 4.3. The following estimate holds true

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

≤ C

(
∥σ∥p1,∞,ωℓ

∥u− uh∥p0,p,ωℓ
+
∑
T ′⊂ωℓ

h2pT ′∥[div(σI − σ)] · ∇uh∥p0,p,T ′

)
,

for all ℓ ∈ Eh,i.

Proof. We consider an arbitrary ℓ ∈ Eh,i, the bubble function bℓ defined in (3.7)
and

ψℓ := [[∇uh · n ]] bℓ in Ω .

Like bℓ, this function is supported in ωℓ.
We know that the entries of σ belong to L∞(Ω) and, therefore, we have

(4.2) ∥[[σ∇uh · n ]]∥0,p,ℓ ≤ C∥[[∇uh · n ]]∥0,p,ℓ = C∥[[∇uh ]]∥0,p,ℓ ,

because the jump of the tangential component of ∇uh is zero.
On the other hand, from (3.11) and the uniform positivity of σ we obtain

(4.3)

∥[[∇uh ]]ℓ∥20,p,ℓ = |ℓ|2/p−1∥[[∇uh ]]ℓ∥20,2,ℓ
≤ C|ℓ|2/p−1∥b1/2ℓ [[∇uh ]]ℓ∥20,2,ℓ

≤ C|ℓ|2/p−1

∫
ℓ

bℓ [[∇uh ]]tℓσ[[∇uh ]]ℓ

= C|ℓ|2/p−1

∫
ℓ

[[σ∇uh · n ]]ψℓ .
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Taking ψℓ as a test function in (2.3), using that ∇bℓ(x0) = 0, integrating by
parts, and recalling (3.9) and (3.10), we have∫

ωℓ

(u− uh) div(σ∇ψℓ) = −
∑
T ′⊂ωℓ

∫
T ′
uh div(σ∇ψℓ)

= −
∑
T ′⊂ωℓ

∫
T ′

div(σ∇uh)ψℓ +
∫
ℓ

[[σ∇uh · n ]]ψℓ .

Hence

(4.4)

∫
ℓ

[[σ∇uh · n ]]ψℓ =
∑
T ′⊂ωℓ

∫
T ′

div(σ∇uh)ψℓ +
∫
ωℓ

(u− uh) div(σ∇ψℓ)

≤ C (∥div(σ∇ψℓ)∥0,q,ωℓ
∥u− uh∥0,p,ωℓ

+
∑
T ′⊂ωℓ

∥div(σ∇uh)∥0,p,T ′∥ψℓ∥0,q,T ′
)

≤ C (∥σ∥1,∞,ωℓ
∥u− uh∥0,p,ωℓ

∥ψℓ∥2,q,ωℓ

+
∑
T ′⊂ωℓ

∥div(σ∇uh)∥0,p,T ′∥ψℓ∥0,q,T ′
)

From standard scaling arguments and (3.12), we have

(4.5) ∥ψℓ∥0,q,ωℓ
≤ |[[∇uh ]]ℓ|∥bℓ∥0,q,ωℓ

≤ C∥[[∇uh ]]ℓ∥0,p,ℓ|ℓ|2−3/p

and

(4.6) ∥ψℓ∥2,q,ωℓ
≤ C|ℓ|−2∥ψℓ∥0,q,ωℓ

≤ C∥[[∇uh ]]ℓ∥0,p,ℓ|ℓ|−3/p .

Hence, from (4.3) and (4.4), we write

∥[[∇uh ]]ℓ∥0,p,ℓ ≤ C|ℓ|2/p−1
(
|ℓ|−3/p∥σ∥1,∞,ωℓ

∥u− uh∥0,p,ωℓ

+
∑
T ′⊂ωℓ

|ℓ|2−3/p∥ div(σ∇uh)∥0,p,T ′
)

and, from (4.2),

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,ωℓ

∥u− uh∥p0,p,ωℓ

+
∑
T ′⊂ωℓ

h2pT ′∥div(σ∇uh)∥p0,p,T ′

)
.

We conclude the proof by using Lemma 4.2 to bound the last term. □

Lemma 4.4. The following estimate holds true

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ
+ h2pTℓ

∥[div(σI − σ)] · ∇uh∥p0,p,Tℓ

+|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ
)
,

for all ℓ ∈ Eh,e, where σℓ is any constant matrix.

Proof. We consider an arbitrary ℓ ∈ Eh,e, the bubble function bℓ defined in (3.8)
and

ψℓ := σℓ∇uh · n bℓ in Ω.

Like bℓ, this function is supported in Tℓ.
Since σℓ is constant and bℓ satisfies (3.11), it is easy to prove that
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(4.7)

∥σℓ∇uh · n∥20,p,ℓ = |ℓ|2/p−1∥σℓ∇uh · n∥20,2,ℓ

≤ C|ℓ|2/p−1∥b1/2ℓ σℓ∇uh · n∥20,2,ℓ

= |ℓ|2/p−1

(∫
ℓ

(σℓ − σ)∇uh · nψℓ +
∫
ℓ

σ∇uh · nψℓ
)
.

On the other hand, using that ∥ψℓ∥0,q,ℓ ≤ C|ℓ|−1/q∥ψℓ∥0,q,Tℓ
and the arguments

used for proving the previous result, we obtain

∫
ℓ

(σℓ − σ)∇uh · nψℓ ≤ C∥(σℓ − σ)∇uh · n∥0,p,ℓ|ℓ|−1/q∥ψℓ∥0,q,Tℓ

≤ C∥(σℓ − σ)∇uh · n∥0,p,ℓ|ℓ|1−2/p∥σℓ∇uh · n∥0,p,ℓ

and ∫
ℓ

σ∇uh · nψℓ =
∫
Tℓ

(u− uh) div(σ∇ψℓ) +
∫
Tℓ

div(σ∇uh)ψℓ

≤ C(∥σ∥1,∞,Tℓ
∥u− uh∥0,p,Tℓ

|ℓ|−3/p

+ ∥div(σ∇uh)∥0,p,Tℓ
|ℓ|2−3/p)∥σℓ∇uh · n∥0,p,ℓ.

Substituting these expressions in (4.7), we have

∥σℓ∇uh · n∥0,p,ℓ ≤ C|ℓ|2/p−1(|ℓ|−3/p∥σ∥1,∞,Tℓ
∥u− uh∥0,p,Tℓ

+ |ℓ|2−3/p∥div(σ∇uh)∥0,p,Tℓ

+ |ℓ|1−2/p∥(σℓ − σ)∇uh · n∥0,p,ℓ)

and, therefore,

|ℓ|p+1∥σℓ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ
+ h2pTℓ

∥div(σ∇uh)∥p0,p,Tℓ

+ |ℓ|p+1∥(σℓ − σ)∇uh · n∥p0,p,ℓ
)
.

Thus, using this result, Lemma 4.2, and the fact that

∥σ∇uh · n∥0,p,ℓ ≤ ∥(σℓ − σ)∇uh · n∥0,p,ℓ + ∥σℓ∇uh · n∥0,p,ℓ ,

we conclude the proof. □

Lemma 4.5. The following estimate holds true:

h2−p0 ≤ C

∥σ∥p1,∞,ωT0
∥u− uh∥p0,p,ωT0

+
∑

T ′⊂ωT0

h2pT ′∥[div(σ − σI)] · ∇uh∥p0,p,T ′

 .
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Proof. Let E0
h be the set of edges ℓ of triangles T ⊂ ωT0 , such that ℓ ̸⊂ ∂ωT0 .

Testing equation (2.3) with the bubble function b0 defined in (3.14), we obtain

|p|2 = p · ∇b0(x0) = −
∫
Ω

(u− uh) div(σ∇b0)−
∫
Ω

uh div(σ∇b0)

≤ ∥u− uh∥0,p,ωT0
∥div(σ∇b0)∥0,q,ωT0

−
∑

T ′⊂ωT0

∫
T ′

div(σ∇uh) b0+
∑
ℓ∈E0

h

∫
ℓ

[[σ∇uh ]]ℓ b0

≤ C
(
∥u− uh∥0,p,ωT0

∥σ∥1,∞,ωT0
∥b0∥2,q,ωT0

+∥b0∥0,q,ωT0

∑
T ′⊂ωT0

∥ div(σ∇uh)∥0,p,T ′ +
∑
ℓ∈E0

h
∥[[σ∇uh · n ]]∥0,p,ℓ∥b0∥0,q,ℓ

)
,

where we have used (3.15), integration by parts, and Hölder inequality.
We estimate ∥b0∥2,q,ωT0

, ∥b0∥0,q,ωT0
, and ∥b0∥0,q,ℓ by Corollary 3.4. Thus, we

have

|p|2 ≤ Ch
1−2/p
0

∥σ∥1,∞,ωT0
∥u− uh∥0,p,ωT0

+ h20
∑

T ′⊂ωT0

∥ div(σ∇uh)∥0,p,T ′

+
∑
ℓ∈E0

h

|ℓ|1+1/p∥[[σ∇uh · n ]]∥0,p,ℓ

 .

Since h0 ≤ ChT ′ for each T ′ ⊂ ωT0 , this estimate together with Lemmas 4.2 and
4.3 lead to the desired result. □

Now we are in a position to conclude an efficiency estimate by collecting the
previous four lemmas. Notice that these lemmas hold true for any p ∈ (1, 2) (and
not only for p ∈ ( q0

q0−1 , 2) as Theorem 4.1).

Theorem 4.6. Let σi,j ∈ C1(Ω) for each i, j = 1, 2. Let u and uh be the solutions
of (2.3) and (2.4), respectively. Then, for all p ∈ (1, 2) and for all T ∈ Th

ηT,p ≤ C

∥σ∥p1,∞,ωT
∥u− uh∥p0,p,ωT

+
∑

T ′⊂ωT

h2pT ′∥[div(σI − σ)] · ∇uh∥p0,p,T ′

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ

1/p

,

where ωT := {T ′ ∈ Th : T ∩ T ′ ̸= ∅}, and for each ℓ ∈ E(T ) ∩ Eh,e, σℓ is any
constant matrix.

Notice that the last term in the estimate above vanishes for all triangles which
do not intersect ∂Ω.

The above inequalities are actual efficiency estimates if we show that the terms∑
T ′⊂ωT

h2pT ′∥[div(σI − σ)] · ∇uh∥p0,p,T ′ ,
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ

are negligible. In what follows we will show that this holds true under some addi-
tional assumptions; we also note that our final result is true on the whole domain
Ω (and not locally, as it would be preferable).

Regarding the term
∑
ℓ∈E(T )∩Eh,e

|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ, since σℓ is any

arbitrary constant matrix, it clearly vanishes when σ|ℓ is already constant: namely,
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when the tissue on the scalp is piecewise homogeneous, which is a realistic assump-
tion in practice. On the other hand, an alternative proof for Lemma 4.4 also holds
true when the conductivity on ∂Ω is of the form σ = σI, with σ a scalar function;
namely, when the tissue of the scalp is isotropic. In fact, in that case we have the
following result.

Lemma 4.7. We have

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ
+ h2pTℓ

∥[div(σI − σ)] · ∇uh∥p0,p,Tℓ

)
for all ℓ ∈ Eh,e, provided σ|ℓ = σI, with σ : ℓ −→ R a scalar function, belonging to
C1(Tℓ).

Proof. We consider an arbitrary ℓ ∈ Eh,e, the bubble function bℓ defined in (3.8)
and

ψℓ := σ0 ∇uh · n bℓ in Ω ,

with σ0 as in (2.2). Like bℓ, this function is supported in Tℓ.
From (3.11) and (2.2), we have that

∫
ℓ
bℓσ ≥ Cσ0|ℓ|. Using this result, we obtain

∥σ∇uh · n∥20,p,ℓ ≤ ∥σ∥20,∞,ℓ∥∇uh · n∥20,p,ℓ
= ∥σ∥20,∞,ℓ|ℓ|2/p−1|ℓ||∇uh · n|2

≤ C
∥σ∥2

0,∞,ℓ

σ2
0

|ℓ|2/p−1

∫
ℓ

σ∇uh · nψℓ .

The rest of the proof runs almost identically as that of Lemma 4.3, by using that

∥ψℓ∥0,q,Tℓ
≤ ∥bℓ∥0,q,Tℓ

|ℓ|−1/p∥σ∇uh · n∥0,p,ℓ ≤ C|ℓ|2−3/p∥σ∇uh · n∥0,p,ℓ

and

∥ψℓ∥2,q,Tℓ
≤ C|ℓ|−2∥ψℓ∥0,q,Tℓ

≤ C|ℓ|−3/p∥σ∇uh · n∥0,p,ℓ
instead of (4.5) and (4.6), respectively. □

In order to prove that the term
∑
T ′⊂ωT

h2pT ′∥[div(σI−σ)]·∇uh∥p0,p,T ′ in Theorem

4.6 is globally negligible, we proceed as in [12] and make the following additional
non-degeneracy assumption: there exists C > 0 such that

∥u− uh∥0,p,Ω ≥ Ch2.(4.8)

As explained in [12], this assumption looks quite reasonable.
In such a case we conclude with the following result.

Theorem 4.8. Let us assume that for each ℓ ∈ Eh,e, either σ|ℓ is a constant
matrix, or σ|ℓ = σI with σ : ℓ −→ R a scalar function. Moreover, we assume
that σ ∈ [C1(Ω)]2×2 and σ ∈ [W 2,∞(T )]2×2 for all T ∈ Th. Let u and uh be the
solutions of (2.3) and (2.4), respectively. If (4.8) holds true, then

ηp ≤ C∥u− uh∥0,p,Ω

for all p ∈ (1, 2).
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Proof. It is enough to estimate the last term in the inequality of Theorem 4.6:∑
T∈Th

∑
T ′⊂ωT

h2pT ′∥[div(σI − σ)] · ∇uh∥p0,p,T ′

≤
∑
T∈Th

∑
T ′⊂ωT

h2pT ′∥div(σI − σ)∥p0,∞,T ′∥∇uh∥p0,p,T ′

≤ C
∑
T∈Th

∑
T ′⊂ωT

h2pT ′h
p
T ′∥σ∥p2,∞,T ′h

−p
T ′ ∥uh∥p0,p,T ′

≤ Ch2p(maxT∈Th
∥σ∥p2,∞,ωT

)
∑
T∈Th

∥uh∥p0,p,ωT

≤ Ch2p(∥u− uh∥p0,p,Ω + ∥u∥p0,p,Ω)

≤ C∥u− uh∥p0,p,Ω + C∥u− uh∥p0,p,Ω∥u∥
p
0,p,Ω ,

where we have used (4.8) for the last inequality. □

5. Three-dimensional case

In what follows we briefly discuss the results that are preserved in 3D. First, let
us recall that the existence and uniqueness of solution of the model problem (2.3)
was proved in [16] in the 3D case for all p ∈ (1, 3/2).

To obtain a priori and a posteriori error estimates for the numerical solution,
we resort to the auxiliary problem (2.5). The critical point is the regularity of
the solution of this problem. We need that the solution belongs to W 2,q(Ω) for
q > 3 (namely, q such that 1

p + 1
q = 1 with 1 < p < 3/2). In [7, Theorem 2] it is

proved that if Ω is a cubic domain (namely, a parallelepiped with right angles) and
the conductivity σ is a positive constant, (i.e., isotropic homogeneous material),
then the solution of (2.5) belongs to W 2,q(Ω) for all q > 1. Therefore, within this
section we assume that Ω is a cubic domain in R3 and that σ = σI with σ a positive
constant. In such a case we have the following result, that is the analogue in the
3D case of Theorem 2.5.

Theorem 5.1. Let {Th} be a quasiuniform family of subdivisions of the cubic
domain Ω. Let u and uh be the solutions to problems (2.3) and (2.4) respectively.
Then the following estimate holds true

∥u− uh∥0,p,Ω ≤ Ch3/p−2 ,

for all p ∈ (1, 3/2).

Proof. The proof runs as that of Theorem 2.5. □
The a posteriori error analysis also extends to the 3D framework. Let Fh,i be

the set of all the inner faces and Fh,e that of external faces of the mesh Th. Let
Fh := Fh,i ∪ Fh,e. For all T ∈ Th we define

ε̂T,p :=
(

1
2

∑
F∈F(T )∩Fh,i

|F |(p+3)/2|[[∇uh · nF ]]|p

+
∑
F∈F(T )∩Fh,e

|F |(p+3)/2|∇uh · nF |p
)1/p

,

where F(T ) is the set of faces of T and |F | is the area of F .
We define the local a posteriori error indicator η̂T,p for all T ∈ Th by

η̂T,p :=

{ (
h3−2p
0 + ε̂pT0,p

)1/p
if T = T0 ,

ε̂T,p otherwise ,
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where h0 := hT0 , and the global error estimator from these indicators as follows:

η̂p :=

(∑
T∈Th

η̂pT,p

)1/p

.

Note that, as we are assuming that σ is constant, the second and third terms
that appear in Theorem 4.6 vanish in the estimate of η̂T,p. The following results are
obtained by adapting to the 3D framework the proofs of Theorem 4.1, and Lemmas
4.3 and 4.5. We have the following result regarding the reliability of the estimator:

Theorem 5.2. Let u and uh be the solutions of (2.3) and (2.4), respectively. Then,
the following estimate holds true:

∥u− uh∥0,p,Ω ≤ Cη̂p .

The efficiency follows from these two lemmas:

Lemma 5.3. Let us set ωF := {T ∈ Th : F ⊂ ∂T}. The following estimates hold
true:

|F |(p+3)/2|[[∇uh · nF ]]|p ≤ C∥u− uh∥p0,p,ωF
, for all F ∈ Fh,i

and

|F |(p+3)/2|∇uh · nF |p ≤ C∥u− uh∥p0,p,ωF
, for all F ∈ Fh,e.

Lemma 5.4. Let ωT0 be defined as in (3.13). Then,

h3−2p
0 ≤ C∥u− uh∥p0,p,ωT0

.

Notice that no negligible higher order term appears in this case in the efficiency
estimate. Therefore, we have the following version of Theorem 4.8: under the
more stringent assumptions we have required, the result now holds locally on each
triangle T .

Theorem 5.5. Let u and uh be the solutions of (2.3) and (2.4), respectively. Then

η̂T,p ≤ C∥u− uh∥0,p,ωT
,

for all T ∈ Th and p ∈ (1, 3/2).

6. Numerical experiments

In this section we report some numerical experiments in 2D. The adaptive pro-
cedure consists in solving problem (2.4) on a sequence of meshes up to finally
attain a solution with an estimated error within a prescribed tolerance. Each mesh
is a local refinement of the previous one. We compute the local error indicators
ηT,p for all T in the ‘old’ mesh Th, and then we refine those elements T with
ηT,p ≥ θmax{ηT,p : T ∈ Th}, where θ ∈ (0, 1) is a prescribed parameter. In
particular we take θ = 1/2 in all our experiments.

The algorithm is implemented in a Matlab code using the mesh generator Trian-
gle. This generator allows creating successively refined meshes based on a hybrid
Delaunay refinement algorithm (see [15]).
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6.1. Test 1. Isotropic constant conductivity. The first test consists of solv-
ing problem (2.4) in a regular polygon of 16 edges inscribed in a circumference
centered at (0, 0) with radius 1. The dipole is located at x0 = (0.2605,−0.3054),
the polarization is p = (−0.2425, 0.9701) and the conductivity is assumed to be
the identity. Since σ = 1, we can obtain an accurate solution by means of the
subtraction technique. This technique uses a particular function u0 satisfying
div(σ∇u0) = div(pδx0), which is analytically known. Subtracting u0 to the so-
lution of problem (2.4) leads to a non-homogeneous Neumann problem, whose so-
lution is not singular at x0. Therefore, this problem can be accurately solved by
using standard finite elements (see [18] for more details). The solution computed
by this subtraction technique in the finest mesh of the adaptive procedure will be
taken as the reference solution, uref(x).

Figure 5 shows some of the successively refined meshes created in the process
driven by ηT,p with p = 1.25. Parameters “iter” and “d.o.f.” refer to the iteration
number and the total number of vertices of the corresponding mesh.

iter=1, d.o.f.= 54 iter=17, d.o.f.= 569 iter=30, d.o.f.=3.905

Figure 5. Test 1. Meshes obtained with ηT,p; p = 1.25.

iter=30, d.o.f.=3.905

Figure 6. Test 1. Zooms of the mesh for iter=30.

Figure 6 shows two successive zooms around the singularity of the finer mesh in
Figure 5. Each figure is a 200% zoom of the previous one. It can be appreciated
that the mesh is extremely refined in the neighborhood of the singular point. Such
a behavior can be expected from the singularity of the solution at x0, which can
be seen from Figure 7, which shows the computed solution on some of the coarser
meshes. (Notice that the vertical scales are different on each subfigure.)

This extremely singular behavior is the reason why the adaptively created meshes
are so localized. This can be appreciated in Figure 8, which contains two graphs.
The one on the left shows the plot of the discrete solution corresponding to the
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Figure 7. Test 1. Approximate solutions on some coarser meshes.

different meshes on the segment x = x0 + tp, t ∈ [−0.002, 0.002]. The right
subfigure is a zoom of previous the plot.
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Figure 8. Test 1. Approximate solution and exact solution on
the segment x = x0 + tp, t ∈ [−0.002, 0.002].

The behavior of the (absolute) error along the adaptive process can be seen
from Figure 9. We report log-log plots of the estimated error and the “reference
error” versus the number of degrees of freedom. The “reference error” is computed
by comparing the solution of problem (2.4) with the reference solution. The figure
also shows a line of slope −1 which corresponds to the optimal order of convergence
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Degrees of freedom Lp relative error
Adapted mesh 9 141 0.4368 10−1

Adapted mesh 32 5794 0.1152 10−2

Quasiuniform mesh 5780 0.5508 10−1

Table 1. Test 1. The Lp relative error for p = 1.25 in three
different meshes

for the finite elements used. It can be seen that the estimated and the reference
errors both attain this optimal order.
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Figure 9. Test 1. Estimator ηp and reference (absolute) Lp error
curves; p = 1.25.

In Table 1 we compare the reference (relative) error for the solution of problem
(2.4) computed using adapted meshes and a quasiuniform mesh with approximately
the same number of nodes (5780). It can be seen that, to obtain a solution with an
error around 5 %, the number of d.o.f. in the uniform mesh is 40 times the number
of d.o.f. in the adapted mesh. Moreover, with almost the same number of d.o.f.,
the adaptive algorithm yields a computed solution with an error 50 times smaller
than the one obtained with a uniform mesh.

We notice also that, though the error indicator is designed to estimate the Lp-
norm in Ω, when using this adaptive procedure the error on the boundary de-
creases at the optimal rate, too. Thus, this error indicator can be used in the
forward solver when facing the inverse problem of electroencephalography (namely,
the problem aiming at determining the source localization from suitable boundary
measurements). In Figure 10 we present a log-log plot of the averaged relative

error
√∑12

n=1 |(uh − uref)(xn)|2/
∑12
n=1 |uref(xn)|2 in twelve different points of ∂Ω

(twelve consecutive vertexes of the polygon Ω), which can be thought as the local-
ization of the electrodes. Although this error is more noisy, a fated optimal order
(slope −1) can be appreciated.
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Figure 10. Test 1. Averaged relative error at boundary points.

6.2. Test 2. Anisotropic non-constant conductivity. In the second test, Ω
is a square centered at (0, 0) with side-length 2. The dipole is located at x0 =
(−0.25000,−0.08333), and the polarization is p = (0.9015, 0.4327). We consider a
non-constant anisotropic conductivity

σ =

(
4x2 + 1 0

0 2y2 + 1

)
.

The results are very similar to those of the previous example. Figure 11 contains
the meshes corresponding to three different iterations of the adaptive scheme and
Figure 12 shows two successive zooms around the singularity.

iter=1, d.o.f.= 41 iter=18, d.o.f.= 785 iter=28, d.o.f.=3786

Figure 11. Test 2. Meshes obtained with ηT,p; p = 1.25.

We report in Figure 13 a log-log plot of the estimated error versus the number
of degrees of freedom. The slope is close to −1 which confirms the success of
the approach. In this case we have not a reference solution because the subtracting
approach can not be used in this case, since the conductivity is not constant around
the point where the source is located.

6.3. Test 3. Anisotropic constant conductivity. Finally, we consider a strongly

anisotropic conductivity: σ =

(
10 0
0 0.1

)
. The domain Ω is a square centered at
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iter=28, d.o.f.=3786

Figure 12. Test 2. Zooms of the mesh for iter=28.
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Figure 13. Test 2. Estimator ηp curve; p = 1.25.

(0, 0), with side-length 2. The dipole is located at x0 = (0, 0) and the polarization
is p = (1, 1). Since the conductivity is constant, as in the first test we can compute
the reference solution using the subtraction approach.

We show in Figure 14 the meshes corresponding to three different iterations of
the adaptive scheme. Figure 15 shows two successive zooms around the singularity
of the finest mesh considered (iter=45, d.o.f.=4168).

iter=1, d.o.f.= 41 iter=15, d.o.f.= 257 iter=30, d.o.f.= 1124

Figure 14. Test 3. Meshes obtained with ηT,p; p = 1.25.
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iter=45, d.o.f.= 4168

Figure 15. Test 3. Zooms of the mesh around the singular point
for iter=45.

It can be clearly seen that in this case the meshes are not only refined around
the singular point. The reason for this is that, because of the anisotropy of the
conductivity, the solution has an inner layer at x2 = 0. In fact, the fundamental
solution (which is the only source of singularity) reads in this case

u0(x) =
1

2π

x1 + 100x2
x21 + 100x22

.

Therefore, it is easy to check that the slope of the graph in the x2-direction is
approximately 100

x2
1

at x2 = 0. This can be seen from Figure 16, which shows the

plot of the fundamental solution in a uniform mesh with 8321 vertices.
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Figure 16. Test 3. Fundamental solution.

We notice from Figure 17 that the computed order of convergence is not optimal
in this example. In fact, the fitted slope is close to −0.57. Very likely, the reason
for this suboptimal order is that our adaptive scheme only uses regular meshes,
while appropriate anisotropic meshes seem to be necessary around the inner layer.
Nevertheless, the use of our adaptive procedure turns out to be convenient, as
can be seen by comparison with the results obtained with uniform refinement (see
Table 2).
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Figure 17. Test 3. Lp (absolute) error curves for p = 1.25: esti-
mated and reference error on adapted meshes.

Degrees of freedom Lp relative error
Adapted mesh 15 257 0.7217 10−1

Adapted mesh 38 2118 0.3007 10−1

Quasiuniform mesh 2113 0.7417 10−1

Table 2. Test 3. The Lp relative error for p = 1.25 in three
different meshes.
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CI2MA, Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile.

E-mail address: rodolfo@ing-mat.udec.cl

Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo
(Trento), Italy.

E-mail address: valli@science.unitn.it



Centro de Investigación en Ingenieŕıa Matemática (CI
2

MA)

PRE-PUBLICACIONES 2012 - 2013

2012-25 Raimund Bürger, Pep Mulet, Luis M. Villada: A diffusively corrected multi-
class Lighthill-Whitham-Richards traffic model with anticipation lengths and reaction
times
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