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Abstract

We propose and analyze a mixed finite element method with exactly divergence-free
velocities for the numerical simulation of a generalized Boussinesq problem, describing the
motion of a non-isothermal incompressible fluid subject to a heat source. The method is
based on using divergence-conforming elements of order k for the velocities, discontinuous
elements of order k − 1 for the pressure, and standard continuous elements of order k for
the discretization of the temperature. The H1-conformity of the velocities is enforced by a
discontinuous Galerkin approach. The resulting numerical scheme yields exactly divergence-
free velocity approximations; thus, it is provably energy-stable without the need to modify the
underlying differential equations. We prove the existence and stability of discrete solutions,
and derive optimal error estimates in the mesh size for small and smooth solutions.

Key words: Generalized Boussinesq equations, non-isothermal incompressible flow problems,
divergence-conforming elements, discontinuous Galerkin methods
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1 Introduction

The numerical simulation of incompressible non-isothermal fluid flow problems has become in-
creasingly important for the design and analysis of devices in many branches of engineering.
Relevant industrial applications include heat pipes, heat exchangers, chemical reactors, or cool-
ing processes. Temperature-dependent flows have also become of great interest in geophysical
or oceanographic flows with applications to weather and climate predictions.

The last decade has seen a significant interest in the development and analysis of efficient
finite element methods for such problems. We mention here only [3, 4, 5, 10, 12, 19, 20, 21] and
the references therein. In particular, in [20] a conforming method is presented and analyzed for

∗Departamento de Matemática, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, CI2MA, Universidad
de Concepción, Casilla 160-C, Concepción, Chile, email: royarzua@ubiobio.cl. Supported in part by the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC), BECAS CHILE para postdoctorado en el
extranjero (convocatoria 2011) and FONDECYT project 11121347.
†Mathematics Department, University of British Columbia, Vancouver, BC, Canada, V6T 1Z2, email:

schoetzau@math.ubc.ca. Supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

1



approximating non-isothermal incompressible fluid flow problems. However, the analysis there
hinges on technical assumptions which may be difficult to verify in practice. The work [21]
studies a finite element method for time-dependent non-isothermal incompressible fluid flow
problems. Here, the governing equations are discretized by the backward Euler method in time
and conforming finite elements in space.

In this paper, we propose an alternative approach for the numerical approximation (in space)
of a non-isothermal flow problem. As a model problem, we consider the generalized Boussinesq
model analyzed theoretically in [17]: it couples the stationary incompressible Navier-Stokes
equations for the fluid variables (velocity and pressure) with a convection-diffusion equation for
the temperature variable. The coupling is non-linear through a temperature-dependent viscosity,
and through a buoyancy term acting in direction opposite to gravity.

Following [9], we employ divergence-conforming Brezzi-Douglas-Marini (BDM) elements of
order k for the approximation of the velocity, discontinuous elements of order k − 1 for the
pressure, and continuous elements of order k for the temperature. To enforce H1-continuity of
the velocities, we use an interior penalty discontinuous Galerkin (DG) technique. The result-
ing mixed finite element method has the distinct property that it yields exactly divergence-free
velocity approximations. Thus, it exactly preserves an essential constraint of the governing equa-
tions. In addition, the method is provably energy-stable without the need for symmetrization
of the convective discretization; confer also the discussion in [8, 9].

We show the existence and stability of discrete solutions by mimicking the fixed point ar-
guments presented in [17] for the continuous problem. A crucial aspect of this argument is
the construction of a suitable lifting of the temperature boundary data into the computational
domain. To deal with this difficulty on the discrete level, we shall use a slightly more restrictive
small data assumption. We then derive optimal error estimates for problems with small and
sufficiently smooth solutions. In particular, we show that the velocity errors in the DG energy
norm, the pressure errors in the L2-norm, and the temperature errors in the H1-norm converge
of order O(hk) in the mesh size h.

The rest of the paper is structured as follows. In Section 2, we introduce a generalized
Boussinesq model problem, and review the results from [17] regarding existence and uniqueness
of solutions. In Section 3, we present our finite element discretization, and review the stability
properties of the discrete formulation. In Section 4, we establish the existence and stability of
approximate solutions under a small data assumption. In Section 5, we state and prove our
a-priori error estimates. We end the paper with concluding remarks in Section 6.

We end this section by fixing some notation. To that end, let O be a domain in Rd, d = 2, 3,
with Lipschitz boundary ∂O. For r ≥ 0 and p ∈ [1,∞], we denote by Lp(O) and W r,p(O) the
usual Lebesgue and Sobolev spaces endowed with the norms ‖·‖Lp(O) and ‖·‖W r,p(O), respectively.
Note that W 0,p(O) = Lp(O). If p = 2, we write Hr(O) in place of W r,2(O), and denote the
corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O and ‖ · ‖r,O, respectively. For r ≥ 0, we
write | · |r,O for the Hr-seminorm. The space H1

0 (O) is the space of functions in H1(O) with
vanishing trace on Γ, and L2

0(O) is the space of L2-functions with vanishing mean value over O.
Spaces of vector-valued functions are denoted in bold face. For example, Hr(O) = [Hr(O)]d

for r ≥ 0. For simplicity, we also write ‖ · ‖r,O and | · |r,O for the corresponding norms and
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seminorms on these spaces. Furthermore, we will use the vector-valued Hilbert spaces

H(div ;O) =
{

w ∈ L2(O) : div w ∈ L2(O)
}
,

H0(div ;O) =
{

w ∈ H(div ;O) : w · n∂O = 0 on ∂O
}
,

H0(div 0;O) =
{

w ∈ H0(div ;O) : div w ≡ 0 in Ω
}
,

(1.1)

with nO denoting the unit outward normal on ∂O. These spaces are endowed with the norm

‖w‖2div,O = ‖w‖20,O + ‖div w‖20,O.

In the subsequent analysis, we denote by C∞ > 0 the embedding constant such that

‖u‖1,O ≤ C∞‖u‖W1,∞(O), ‖θ‖1,O ≤ C∞‖θ‖W 1,∞(O), (1.2)

for all u ∈W1,∞(O) and θ ∈ W 1,∞(O). Finally, we shall frequently use the notation C and c,
with or without subscripts, bars, tildes or hats, to denote generic positive constants independent
of the discretization parameters.

2 Weak formulation of a generalized Boussinesq problem

In this section, we introduce a model problem, cast it into weak form, discuss the stability
properties of the forms involved, and review some theoretical properties regarding existence and
uniqueness of solutions.

2.1 Model problem

We consider the stationary generalized Boussinesq problem analyzed theoretically in [17]. The
governing partial differential equations then are given by

−div(ν(θ)∇u) + (u · ∇)u + ∇ p − g θ = 0 in Ω, (2.1)

div u = 0 in Ω, (2.2)

−div (κ(θ)∇θ) + u · ∇θ = 0 in Ω, (2.3)

u = 0 on Γ, (2.4)

θ = θD on Γ. (2.5)

Here, Ω is a polygon or polyhedron in Rd, d = 2, 3 with Lipschitz boundary Γ = ∂Ω. The
unknowns are the fluid velocity u, the pressure p, and the temperature θ. The given data are
the non-vanishing boundary temperature θD ∈ H1/2(Γ), and the external force per unit mass
g ∈ L2(Ω), usually acting in direction opposite to gravity.

The functions ν(·) and κ(·) are the fluid viscosity and the thermal conductivity, respectively.
We assume that ν and κ are Lipschitz continuous and satisfy

|ν(θ1)− ν(θ2)| ≤ νlip|θ1 − θ2|, |κ(θ1)− κ(θ2)| ≤ κlip|θ1 − θ2|, (2.6)
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for all values of θ1, θ2, with Lipschitz constants νlip, κlip > 0. Moreover, we suppose that ν and κ
are bounded from above and from below, that is, there are positive constants such that

0 < ν1 ≤ ν(θ) ≤ ν2, 0 < κ1 ≤ κ(θ) ≤ κ2, (2.7)

for all values of θ.
The variational formulation of problem (2.1)–(2.5) amounts to finding (u, p, θ) ∈ H1

0(Ω) ×
L2

0(Ω)×H1(Ω) such that θ|Γ = θD and

AS(θ; u,v) + OS(u; u,v) − B(v, p)−D(θ,v) = 0,

B(u, q) = 0,

AT(θ; θ, ψ) + OT(u; θ, ψ) = 0,

(2.8)

for all (v, q, ψ) ∈ H1
0(Ω)× L2

0(Ω)×H1
0 (Ω). Here, the forms are given by

AS(ψ; u,v) =

∫
Ω
ν(ψ)∇u : ∇v, OS(w; u,v) =

∫
Ω

((w · ∇)u) · v, (2.9)

AT(ϕ; θ, ψ) =

∫
Ω
κ(ϕ)∇θ · ∇ψ, OT(v; θ, ψ) =

∫
Ω

(v · ∇θ)ψ, (2.10)

B(v, q) =

∫
Ω
q div v, D(θ,v) =

∫
Ω
θg · v. (2.11)

2.2 Stability

Next, let us discuss the stability properties of the forms appearing in (2.8).
We start by discussing boundedness of the forms. Due to the bounds (2.7), the following

continuity properties hold:

|AS(·; u,v)| ≤ ν2‖u‖1,Ω‖v‖1,Ω, u,v ∈ H1(Ω), (2.12)

|AT(·; θ, ψ)| ≤ κ2‖θ‖1,Ω‖ψ‖1,Ω, θ, ψ ∈ H1(Ω), (2.13)

|B(v, q)| ≤ CB‖v‖1,Ω‖q‖0,Ω, v ∈ H1(Ω), q ∈ L2(Ω). (2.14)

Moreover, from the Lipschitz continuity of ν and κ in (2.6) and Hölder’s inequality it readily
follows that, for θ1, θ2 ∈ H1(Ω), u ∈W1,∞(Ω), θ ∈W 1,∞(Ω),

|AS(θ1; u,v)−AS(θ2; u,v)| ≤ νlip‖u‖W1,∞(Ω)‖θ1 − θ2‖1,Ω‖v‖1,Ω, v ∈ H1(Ω), (2.15)

|AT(θ1; θ, ψ)−AT(θ2; θ, ψ)| ≤ κlip‖θ‖W 1,∞(Ω)‖θ1 − θ2‖1,Ω‖ψ‖1,Ω, ψ ∈ H1(Ω). (2.16)

The forms OS and OT are linear in each argument. Hölder’s inequality and standard Sobolev
embeddings then give the following bounds:

|OS(w; u,v)| ≤ CS‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, w,u,v ∈ H1(Ω), (2.17)

|OT(w; θ, ψ)| ≤ CT‖w‖1,Ω‖θ‖1,Ω‖ψ‖1,Ω, w ∈ H1(Ω), θ, ψ ∈ H1(Ω). (2.18)

4



Similarly, we have

|D(θ,v)| ≤ CD‖g‖0,Ω‖θ‖1,Ω‖v‖1,Ω, θ ∈ H1(Ω), v ∈ H1(Ω). (2.19)

Next, we review the positivity properties of the forms in (2.9) and (2.10). By the Poincaré
inequality and the bounds (2.7), the elliptic forms AS and AT are coercive:

|AS(·; v,v)| ≥ αS‖v‖21,Ω, v ∈ H1
0(Ω), (2.20)

|AT(·;ψ,ψ)| ≥ αT‖ψ‖21,Ω, ψ ∈ H1
0 (Ω). (2.21)

To discuss the convective form OS and OT, we introduce the kernel

X =
{

v ∈ H1
0(Ω) : B(v, q) = 0 ∀ q ∈ L2

0(Ω)
}

=
{

v ∈ H1
0(Ω) : div v ≡ 0 in Ω

}
. (2.22)

Clearly, X ⊂ H0(div 0; Ω). Then, integration by parts shows that,

OS(w; v,v) = 0, w ∈ X, v ∈ H1(Ω), (2.23)

OT(w;ψ,ψ) = 0, w ∈ X, ψ ∈ H1(Ω). (2.24)

Finally, the bilinear form B satisfies the continuous inf-sup condition

sup
v∈H1

0(Ω)\{0}

B(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω, ∀ q ∈ L2

0(Ω), (2.25)

with an inf-sup constant β > 0 only depending on Ω; see [13], for instance.

2.3 Results concerning existence and uniqueness

In this section, we review some results regarding the existence and uniqueness of solutions
of (2.8). To that end, it is enough to study the reduced problem of (2.8) on the kernel X.
in (2.22). It consists in finding (u, θ) ∈ X×H1(Ω) such that θ|Γ = θD and

AS(θ; u,v) + OS(u; u,v) − D(θ,v) = 0,

AT(θ; θ, ψ) + OT(u; θ, ψ) = 0,
(2.26)

for all (v, ψ) ∈ X×H1
0 (Ω).

The following equivalence property is standard; see [13].

Lemma 2.1 If (u, p, θ) ∈ H1
0(Ω)×L2

0(Ω)×H1(Ω) is a solution of (2.8), then u ∈ X and (u, p)
is also a solution of (2.26). Conversely, if (u, θ) ∈ X×H1(Ω) is a solution of (2.26), then there
exists a unique pressure p ∈ L2

0(Ω) such that (u, p, θ) is a solution of (2.8).

The following existence result for the reduced problem (2.26) is proved in [17, Theorem 2.1].
To state it, we write the temperature θ as

θ = θ0 + θ1, (2.27)

where θ0 ∈ H1
0 (Ω) and θ1 is such that

θ1 ∈ H1(Ω), θ1|Γ = θD. (2.28)

5



Theorem 2.2 Assume (2.6) and (2.7). Then, for any g ∈ L2(Ω), there is a lifting θ1 ∈ H1(Ω)
of θD ∈ H1/2(Γ) satisfying (2.28) such that the reduced problem (2.26) has a solution (u, θ =
θ0 + θ1) ∈ H1

0(Ω) × H1(Ω). Furthermore, there exist constants Cu and Cθ only depending on
‖g‖0,Ω, and the stability constants in Section 2.2, such that

‖u‖1,Ω ≤ Cu‖θ1‖1,Ω, ‖θ‖1,Ω ≤ Cθ‖θ1‖1,Ω. (2.29)

The work [17, Section 7] also establishes the uniqueness of small solutions to problem (2.26),
albeit under additional smoothness assumptions on the domain. Here, we restrict ourselves to
proving the following (more straightforward) uniqueness result, whose proof is motivated by a
similar argument in [10] for Stokes-Oldroyd problems.

Theorem 2.3 Let (u, θ) ∈
[
X ∩W1,∞(Ω)

]
× W 1,∞(Ω) be a solution to problem (2.26), and

assume that there exists a sufficiently small constant M > 0 such that

max{‖g‖0,Ω , ‖u‖W1,∞(Ω), ‖θ‖W 1,∞(Ω)} ≤M. (2.30)

Then, the solution is unique. (A precise condition on M can be found in (2.42).)

Proof. Let (u, θ) and (u?, θ?) be two solutions of problem (2.26), both satisfying assump-
tion (2.30). By subtracting the two corresponding variational formulations from each other, it
follows that

[AS(θ; u,v)−AS(θ?; u?,v)] + [OS(u; u,v)−OS(u?; u?,v)]−D(θ − θ?,v) = 0, (2.31)

and
[AT(θ; θ, ψ)−AT(θ?; θ?, ψ)] + [OT(u; θ, ψ)−OT(u?; θ?, ψ)] = 0, (2.32)

for all v ∈ X and ψ ∈ H1
0 (Ω).

In (2.31), we write

[AS(θ; u,v)−AS(θ?; u?,v)] = AS(θ; u− u?,v) + [AS(θ; u?,v)−AS(θ?; u?,v)],

[OS(u; u,v)−OS(u?; u?,v)] = OS(u; u− u?,v) +OS(u− u?; u?,v).
(2.33)

Similarly, in (2.32),

[AT(θ; θ, ψ)−AT(θ?; θ?, ψ)] = AT(θ; θ − θ?, ψ) + [AT(θ; θ?, ψ)−AT(θ?; θ?, ψ)],

[OT(u; θ, ψ)−OT(u?; θ?, ψ)] = OT(u; θ − θ?, ψ) +OT(u− u?; θ?, ψ).
(2.34)

Then, by choosing the test function v = u−u? ∈ X in (2.31), and using (2.33), the coercivity
property (2.20), and the fact that OS(u; u− u?,u− u?) = 0, see (2.23), we obtain

αS‖u− u?‖21,Ω ≤ |AS(θ; u?,u− u?)−AS(θ?; u?,u− u?)|

+ |OS(u− u?; u?,u− u?)|+ |D(θ − θ?,u− u?)|.
(2.35)

Analogously, by taking ψ = θ − θ? ∈ H1
0 (Ω) in (2.32), and using (2.34), the coercivity (2.21)

for AT , and the fact that OT(u; θ − θ?, θ − θ?) = 0, cf. (2.24), we find that

αT‖θ − θ?‖21,Ω ≤ |AT(θ; θ?, θ − θ?)−AT(θ?; θ?, θ − θ?)|+ |OT(u− u?; θ?, θ − θ?)|. (2.36)
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From (2.15) and (2.16) and since ‖u?‖W1,∞(Ω) ≤ M and ‖θ?‖W 1,∞(Ω) ≤ M by assump-
tion (2.30), the right-hand sides in (2.35) and (2.36) can be bounded by

|AS(θ; u?,u− u?)−AS(θ?; u?,u− u?)| ≤ νlipM‖θ − θ?‖1,Ω‖u− u?‖1,Ω, (2.37)

and
|AT(θ; θ?, θ − θ?)−AT(θ?; θ?, θ − θ?)| ≤ κlipM‖θ − θ?‖21,Ω,

respectively. Hence, by using these inequalities in (2.35) and (2.36), respectively, and the conti-
nuity of OS, OT, D, we find that

αS‖u− u?‖21,Ω ≤νlipM‖θ − θ?‖1,Ω‖u− u?‖1,Ω + CS‖u?‖1,Ω‖u− u?‖21,Ω
+ CD‖g‖0,Ω‖θ − θ?‖1,Ω‖u− u?‖1,Ω,

(2.38)

as well as

αT‖θ − θ?‖21,Ω ≤ κlipM‖θ − θ?‖21,Ω + CT‖u− u?‖1,Ω‖θ?‖1,Ω‖θ − θ?‖1,Ω. (2.39)

We continue bounding the right-hand sides of (2.38) and (2.39) by applying the embedding

estimate (1.2), assumption (2.30), and the inequality |ab| ≤ a2

2 + b2

2 . This results in

αS‖u− u?‖21,Ω ≤M(CD + νlip)‖θ − θ?‖1,Ω‖u− u?‖1,Ω + CSC∞M‖u− u?‖21,Ω

≤M(CSC∞ +
CD
2

+
νlip

2
)‖u− u?‖21,Ω +

M

2
(CD + νlip)‖θ − θ?‖21,Ω,

(2.40)

respectively,

αT‖θ − θ?‖21,Ω ≤κlipM‖θ − θ?‖21,Ω + CTC∞M‖u− u?‖1,Ω‖θ − θ?‖1,Ω

≤M
(
κlip +

CTC∞
2

)
‖θ − θ?‖21,Ω +

M

2
CTC∞‖u− u?‖21,Ω.

(2.41)

Finally, adding up (2.40) and (2.41), and bringing all the terms to the left-hand side of the
resulting inequality, we conclude that(

αS −M(CSC∞ +K)
)
‖u− u?‖21,Ω +

(
αT −M(κlip +K)

)
‖θ − θ?‖21,Ω ≤ 0,

with K := (CTC∞ + CD + νlip)/2. Thus, if M satisfies

M < min
{ αS

CSC∞ +K
,

αT

κlip +K

}
, (2.42)

then θ = θ? and u = u?. This completes the proof. �

3 Finite element discretization

In this section, we introduce our finite element method for approximating problem (2.1)–(2.5),
review the discrete stability properties of the forms involved, and discuss the reduced version of
the discrete variational problem.
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3.1 Preliminaries

We consider a family of regular and shape-regular triangulations Th of mesh size h that partition
the domain Ω into simplices {K} (i.e., triangles for d = 2 and tetrahedra for d = 3). For each K
we denote by nK the unit outward normal vector on the boundary ∂K, and by hK the elemental
diameter. As usual, we define the mesh size by h = maxK∈Th hK . We denote by EI(Th) the set
of all interior edges (faces) of Th, by EB(Th) the set of all boundary edges (faces), and define
Eh(Th) = EI(Th)∪EB(Th). The (d−1)-dimensional diameter of an edge (face) e is denoted by he.

We will use standard average and jump operators. To define them, let K+ and K− be two
adjacent elements of Th, and e = ∂K+ ∩ ∂K− ∈ EI(Th). Let u and τ be a piecewise smooth
vector-valued, respectively matrix-valued function, and let us denote by u±, τ± the traces of u,
τ on e, taken from within the interior of K±. Then, we define the jump of u, respectively the
mean value of τ at x ∈ e by

JuK = u+ ⊗ nK+ + u− ⊗ nK− , {{τ}} =
1

2
(τ+ + τ−), (3.1)

where for u = (u1, ..., ud) and n = (n1, ..., nd), we denote by u ⊗ n the tensor product matrix
[u⊗ n]i,j = uinj , 1 ≤ i, j ≤ d. For a boundary edge (face) e = ∂K+ ∩ Γ, we set JuK = u+ ⊗ n,
with n denoting the unit outward normal vector on Γ, and {{τ}} = τ+.

3.2 Exactly divergence-free finite element approximation

For an approximation order k ≥ 1 and a mesh Th on Ω, we consider the discrete spaces

Vh =
{

v ∈ H0(div ; Ω) : v|K ∈ [Pk(K)]d, K ∈ Th
}
,

Qh =
{
q ∈ L2

0(Ω) : q|K ∈ Pk−1(K), K ∈ Th
}
,

Ψh =
{
ψ ∈ C(Ω) : ψ|K ∈ Pk(K), K ∈ Th

}
,

Ψh,0 = Ψh ∩H1
0 (Ω).

(3.2)

Here, the space Pk(K) denotes the usual space of polynomials of total degree less or equal than k
on element K. The space Vh is non-conforming in H1

0(Ω), while Qh and Ψh are conforming
in L2

0(Ω) and H1(Ω), respectively. In fact, the space Vh is the space of divergence-conforming
Brezzi-Douglas-Marini (BDM) elements; see [7].

Consistent with our choice (3.2) for the discrete spaces, we need to introduce discontinuous
versions of AS and OS, respectively. For the discrete vector Laplacian, we take the interior
penalty form [1, 2] given by

AhS(ψ; u,v) =

∫
Ω
ν(ψ)∇hu : ∇hv −

∑
e∈Eh(Th)

∫
e
{{ν(ψ)∇hu}} : JvK

−
∑

e∈Eh(Th)

∫
e
{{ν(ψ)∇hv}} : JuK +

∑
e∈Eh(Th)

a0

he

∫
e
ν(ψ)JuK : JvK.

(3.3)
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Here, a0 > 0 is the interior penalty parameter, and we denote by ∇h the broken gradient
operator. As discussed in [9], other choices for AhS are equally feasible (such as LDG or BR
methods), provided that the stability properties in Section 3.3 below hold.

For the convection term, we take the standard upwind form [16] defined by

OhS(w; u,v) =

∫
Ω

(w · ∇h)u · v +
∑
K∈Th

∫
∂K\Γ

1

2
(w · nK − |w · nK |)(ue − u) · v, (3.4)

where ue is the trace of u taken from within the exterior of K. The remaining forms are the
same as in the continuous case.

Next, we introduce an approximation θD,h to the boundary datum θD, which belongs to the
trace space

θD,h ∈ Λh = { ξ ∈ C(Γ) : ξ|e ∈ Pk(e), e ∈ EB(Th) }. (3.5)

Then the discrete formulation for problem (2.1)–(2.5) is to find (uh, ph, θh) ∈ Vh×Qh×Ψh

such that θh|Γ = θD,h and

AhS(θh; uh,v) +OhS(uh; uh,v)−B(v, ph)−D(θ,v) = 0,

B(uh, q) = 0,

AT(θh; θh, ψ) +OT(uh; θh, ψ) = 0,

(3.6)

for all (v, q, ψ) ∈ Vh ×Qh ×Ψh,0.
A key feature of the method (3.6) is that the discrete velocity uh is exactly divergence-free.

To discuss this property, we introduce the discrete kernel of B

Xh = {v ∈ Vh : B(v, q) = 0 ∀ q ∈ Qh } . (3.7)

Since Vh ⊂ H0(div ; Ω) and div Vh ⊆ Qh, it can be readily seen that

Xh = {v ∈ Vh : div v ≡ 0 in Ω } ;

we refer to [9] for details. Hence, Xh ⊂ H0(div 0; Ω). In particular, the following result holds.

Lemma 3.1 An approximate velocity uh ∈ Vh obtained by (3.6) is exactly divergence-free, i.e.,
it satisfies div uh ≡ 0 in Ω.

An important consequence of Lemma 3.1 is the provable energy-stability of the numerical
scheme (3.6), without the need for symmetrization or other modifications of the convective
terms; see also the discusssion in [8, 9]. These stability properties are established in the next
subsection.

3.3 Discrete stability properties

3.3.1 Broken spaces and norms

We introduce the broken space

Hr(Th) = {v ∈ L2(Ω) : v|K ∈ Hr(K), K ∈ Th }, r ≥ 0. (3.8)
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We shall mostly work with r = 1 and r = 2; in these cases we use the broken norms

‖v‖21,Th =
∑
K∈Th

‖∇hv‖20,K +
∑
e∈Eh

a0h
−1
e ‖JvK‖20,e, v ∈ H1(Th), (3.9)

‖v‖22,Th = ‖v‖21,Th +
∑
K∈Th

h2
K |v|22,K , v ∈ H2(Th). (3.10)

By the inverse estimate |p|2,K ≤ Ch−1
K |p|1,K for all K ∈ Th, p ∈ Pk(K), we see that

‖v‖2,Th ≤ C‖v‖1,Th , v ∈ Vh. (3.11)

We recall the following broken version of the usual Sobolev embeddings: for d = 2, 3, and
any p ∈ I(d) ⊂ R there exists a constant C > 0 such that

‖v‖Lp(Ω) ≤ C‖v‖1,Th , v ∈ H1(Th), (3.12)

where I(2) = [1,∞) and I?(3) = [1, 6]. For d = 2, this has been proved in [14, Lemma 6.2]. In
the case d = 3, the proof follows along the lines of to [22, Lemma 5.15, Theorem 5.16]. In the
following, we shall explicitly write Cemb for the embedding constant in the case p = 3.

Moreover, we introduce the broken C1-space given by

C1(Th) =
{

u ∈ H1(Th) : u|K ∈ C1(K), K ∈ Th
}
, (3.13)

equipped with the broken W 1,∞-norm

‖u‖W1,∞(Th) = max
K∈Th

‖u‖W1,∞(K). (3.14)

We shall also make use of the augmented H1-norm

‖ψ‖21,Eh = ‖ψ‖21,Ω +
∑

e∈Eh(Th)

h−1
e ‖ψ‖20,e, ψ ∈ H1(Ω). (3.15)

3.3.2 Continuity

First, we establish continuity properties of the elliptic forms AhS and AT, respectively. To that
end, we recall that by (2.13), the form AT is a bounded bilinear form over H1(Ω)×H1(Ω). To
bound DG form AhS, we proceed in a standard way; see [2], for instance. Indeed, by using the
standard trace inequalities

‖v‖0,∂K ≤ C
(
h
−1/2
K ‖v‖0,K + h

1/2
K |v|1,K

)
, v ∈ H1(K), (3.16)

‖p‖0,∂K ≤ Ch
−1/2
K ‖p‖0,K , p ∈ Pk(K), (3.17)

and the inverse inequality in (3.11), we obtain the following result.

Lemma 3.2 There holds

|AhS(·; u,v)| ≤ C‖u‖2,Th‖v‖1,Th , u ∈ H2(Th), v ∈ Vh, (3.18)

|AhS(·; u,v)| ≤ C̃A‖u‖1,Th‖v‖1,Th , u,v ∈ Vh. (3.19)
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Moreover, the elliptic forms are Lipschitz continuons with respect to the first argument. For
the conforming form AT, this follows from (2.16). The following result holds for the DG form AhS.

Lemma 3.3 Let ψ1, ψ2 ∈ H1(Ω), u ∈ C1(Th), and v ∈ Vh. Then there holds∣∣∣AhS(ψ1; u,v)−AhS(ψ2; u,v)
∣∣∣ ≤ C̃lipνlip ‖ψ1 − ψ2‖1,Eh ‖u‖W1,∞(Th)‖v‖1,Th . (3.20)

In addition, if u ∈ H1
0(Ω), then∣∣∣AhS(ψ1; u,v)−AhS(ψ2; u,v)

∣∣∣ ≤ C̃lipνlip ‖ψ1 − ψ2‖1,Ω ‖u‖W1,∞(Th)‖v‖1,Th . (3.21)

The constant C̃lip > 0 is independent of the mesh size.

Proof. As before, we note that∣∣∣AhS(ψ1; u,v)−AhS(ψ2; u,v)
∣∣∣ ≤ |T1|+ |T2|+ |T3|+ |T4|,

with

T1 =

∫
Ω

(ν(ψ1)− ν(ψ2))∇hu : ∇hv, T2 =
∑

e∈Eh(Th)

∫
e
(ν(ψ1)− ν(ψ2)){{∇u}} : JvK,

T3 =
∑

e∈Eh(Th)

∫
e
(ν(ψ1)− ν(ψ2)){{∇v}} : JuK, T4 =

∑
e∈Eh(Th)

a0

he

∫
e
(ν(ψ1)− ν(ψ2))JuK : JvK.

For T1, the Lipschitz continuity of ν in (2.6) readily yields the bound

|T1| ≤ νlip‖ψ1 − ψ2‖0,Ω‖u‖W1,∞(Th)‖∇hv‖0,Ω.

To estimate T2, we notice that, since u ∈ C1(Th), we have ‖{{∇hu}}e‖L∞(e) ≤ ‖u‖W1,∞(Th)

for all e ∈ Eh(Th). Hence, from the Lipschitz continuity of ν it follows that

|T2| ≤ νlip‖u‖W1,∞(Th)

∑
e∈Eh(Th)

‖ψ1 − ψ2‖0,e ‖JvK‖0,e.

By applying the discrete Cauchy-Schwarz inequality, the shape-regularity of the meshes, and
the trace inequality (3.16), the sum over the edges (faces) can be bounded by∑

e∈Eh(Th)

‖ψ1 − ψ2‖0,e ‖JvK‖0,e ≤
( ∑
e∈Eh(Th)

he‖ψ1 − ψ2‖20,e
)1/2 ( ∑

e∈Eh(Th)

h−1
e ‖JvK‖20,e

)1/2
≤ C

( ∑
K∈Th

hK‖ψ1 − ψ2‖20,∂K
)1/2‖v‖1,Th

≤ C‖ψ1 − ψ2‖1,Ω‖v‖1,Th .

This yields
|T2| ≤ Cνlip‖u‖W1,∞(Th)‖ψ1 − ψ2‖1,Ω‖v‖1,Th .
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For the term T3, we have ‖JuK‖L∞(e) ≤ 2‖u‖L∞(Ω) ≤ 2‖u‖W1,∞(Th) for any e ∈ Eh(Th).
Hence, the Lipschitz continuity of ν, the Cauchy-Schwarz inequality the shape-regularity of the
meshes, and the polynomial trace inequality (3.17),

|T3| ≤ Cνlip‖u‖W1,∞(Th)

∑
e∈Eh(Th)

‖ψ1 − ψ2‖0,e‖{{∇v}}‖0,e

≤ Cνlip‖u‖W1,∞(Th)

( ∑
e∈Eh(Th)

h−1
e ‖ψ1 − ψ2‖20,e

)1/2( ∑
K∈Th

hK‖∇v‖20,∂K
)1/2

≤ Cνlip‖u‖W1,∞(Th)‖ψ1 − ψ2‖1,Eh‖∇hv‖0,Ω.

Similarly, T4 can be bounded by:

|T4| ≤ Cνlip‖u‖W1,∞(Th)‖ψ1 − ψ2‖1,Eh‖v‖1,Th .

Gathering the above bounds for T1 through T4 implies the estimate (3.20).
If u ∈ H1

0(Ω), then T3 = T4 = 0, and the second bound (3.21) follows from the estimates
for T1 and T2. �

Second, we notice that the forms B and D are bounded by

|B(v, q)| ≤ C̃B‖v‖1,Th‖q‖0,Ω, v ∈ H1(Th), q ∈ L2
0(Ω), (3.22)

|D(ψ,v)| ≤ C̃D‖g‖0,Ω‖ψ‖1,Ω‖v‖1,Th , v ∈ H1(Th), ψ ∈ H1(Ω). (3.23)

The estimate for B is straightforward, and the one for D follows from the embedding (3.12)
with p = 4 and Hölder’s inequality.

Third, we discuss the convective forms OhS and OT, respectively. In contrast to OS and due
to the upwind terms, the discrete form OhS is not linear in the first argument. However, as
established in the following lemma, it is Lipschitz continuous.

Lemma 3.4 There exists a constant C̃S > 0, independent of the mesh size, such that

|OhS(w1; u,v)−OhS(w2; u,v)| ≤ C̃S‖w1 −w2‖1,Th‖u‖1,Th‖v‖1,Th , (3.24)

for any w1,w2,u ∈ H2(Th) and v ∈ Vh.

Proof. The proof of this property in the case d = 2 can be found in [8], and makes use of the
embedding (3.12) with p = 4. In the case d = 3, we proceed similarly: to conclude, we use the
shape-regularity of the meshes, Hölder’s inequality, the embedding (3.12) with p = 4, and the

trace estimate h
1/4
K ‖z‖L4(∂K) ≤ C

(
‖z‖L4(K) + ‖∇z‖L2(K)

)
, z ∈ W 1,4(K), from [18, Section 7].

We omit further details. �
The conforming temperature form OT is still trilinear, and there holds

|OT(w;ϕ,ψ)| ≤ C̃T ‖w‖1,Th‖ϕ‖1,Ω‖ψ‖1,Ω, w ∈ H1(Th), ψ, ϕ ∈ H1(Ω). (3.25)

This follows similarly from Hölder’s inequality and the embedding (3.12). We use the following
variant of (3.25).
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Lemma 3.5 There is a constant C̃T,2 > 0 such that

|OT(w; θ, ψ)| ≤ C̃T,2‖θ‖L3(Ω)‖w‖1,Th‖ψ‖1,Ω, w ∈ H0(div 0; Ω), θ, ψ ∈ H1(Ω). (3.26)

Proof. Integration by parts yields and using that div w ≡ 0 in Ω, w · n = 0 on Γ yield

OT(w; θ, ψ) =

∫
Ω

(w · ∇θ)ψ = −
∫

Ω
θ(w · ∇ψ).

From Hölder’s inequality we obtain

|OT(w; θ, ψ)| ≤ C‖θ‖L3(Ω)‖∇ψ‖0,Ω‖w‖L6(Ω).

Hence, the embeddings in (3.12) with p = 3, p = 6 yield the assertion. �

3.3.3 Coercivity and inf-sup condition

First, we point out that coercivity of AT over the discrete spaces is implied by (2.21). Due to
the bounds of ν in (2.7) the DG form AhS is also elliptic, and we have

AhS(·,v,v) ≥ α̃S‖v‖21,Th , v ∈ Vh, (3.27)

provided that a0 > 0 is sufficiently large independently of the mesh size; cf. [2].
To state the positivity of OhS and OT , let w ∈ H0(div 0; Ω). Then we have

OhS(w; u,u) =
1

2

∑
e∈EI(Th)

∫
e
|w · n||Ju⊗ nK|2 ds ≥ 0, u ∈ Vh. (3.28)

Here, in the integrals over edges (faces) e, the vector n denotes any unit vector normal to e.
This is a standard property of the upwind form OS, see, e.g., [16, 8]. Moreover, integration by
parts readily implies that

OT(w; θ, θ) = 0, θ ∈ H1(Ω). (3.29)

Finally, we recall the discrete inf-sup condition for B:

sup
vh∈Vh\{0}

B(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω ∀ qh ∈ Qh, (3.30)

with β̃ > 0 independent of the mesh size. The proof of (3.30) follows along the lines of [15] from
the surjectivity of div : H1

0(Ω) → L2
0(Ω) and the properties of the BDM projection. We omit

further details.

3.4 The reduced problem

The reduced version of (3.6) consists in finding (uh, θh) ∈ Xh ×Ψh such that θh|Γ = θD,h and

AhS(θh; uh,v) + OS(uh; uh,v) − D(θh,v) = 0,

AT(θh; θh, ψ) + OT(uh; θh, ψ) = 0,
(3.31)

for all (v, ψ) ∈ Xh ×Ψh,0.

Due to the discrete stability properties of Section 3.3, the discrete analog of Lemma 2.1 hold.
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Lemma 3.6 If (uh, ph, θh) ∈ Vh×Qh×Ψh is a solution of (3.6), then uh ∈ Xh and (uh, θh) is
also a solution of (3.31). Conversely, if (uh, θh) ∈ Xh × Ψh is a solution of (3.31), then there
exists a unique pressure ph ∈ Qh such that (uh, ph, θh) is a solution of (3.6).

In what follows, we shall discuss the existence for the reduced problem (3.31). We notice
that the uniqueness of discrete solutions remains an open problem. The main difficulty for
adapting Theorem 2.3 to the discrete case is to control the augmented norm (3.15) appearing
in the discrete counterpart of (2.37) .

4 Existence of discrete solutions

In this section, we establish the existence of discrete solutions of (3.31) following the continuous
arguments proposed in [17] and based on Brouwer’s fixed point theorem. Then we adjust this
result to a particular choice of the discrete boundary datum θD,h.

4.1 Stability and existence

We start by proving the following stability property of the discrete solutions under a small data
assumption. As in the continuous case, we write the discrete temperature θh as θh = θh,0 + θh,1,
with θh,0 ∈ Ψh,0 and

θh,1 ∈ Ψh, θh,1|Γ = θD,h. (4.1)

(A specific choice of the discrete lifting θ1,h will be made in Section 4.2 below.)

Lemma 4.1 Let (uh, θh) be a solution of (3.31) with θh = θh,0 + θh,1 as in (4.1). Assume that

C̃dep‖g‖0,Ω‖θh,1‖L3(Ω) ≤
1

2
, (4.2)

with

C̃dep =
C̃DC̃T,2
α̃SαT

, (4.3)

then there exist constants C̃u and C̃θ only depending on ‖g‖0,Ω and the stability constants in
Section 3.3, such that

‖uh‖1,Th ≤ C̃u‖θh,1‖1,Ω, ‖θh‖1,Ω ≤ C̃θ‖θh,1‖1,Ω. (4.4)

(Explicit expressions for C̃u and C̃θ can be found in (4.8) and (4.9), respectively.)

Proof. We choose the test function (v, ψ) = (uh, θh,0) in (3.31), and use (3.29) to obtain the two
equations

AhS(θh; uh,uh) +OhS(uh; uh,uh) = D(θh,0,uh) +D(θh,1,uh),

AT(θh; θh,0, θh,0) = −AT(θh; θh,1, θh,0) − OT(uh; θh,1, θh,0).
(4.5)
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In the first identity of (4.5), the coercivity of AhS in (3.27), the positivity of OhS in (3.28), and
the boundedness of D in (3.23) imply

‖u‖1,Th ≤ α̃
−1
S C̃D‖g‖0,Ω‖θh,0‖1,Ω + α̃−1

S C̃D‖g‖0,Ω‖θh,1‖1,Ω. (4.6)

In the second equation of (4.5), we employ the coercivity and boundedness of AT in (2.21)
and (2.13), respectively, along with the bound for OT in Lemma 3.5. We conclude that

‖θh,0‖1,Ω ≤ α−1
T κ2‖θh,1‖1,Ω + α−1

T C̃T,2‖θh,1‖L3(Ω)‖uh‖1,Th . (4.7)

Then, using the bound (4.7) in (4.6) yields

‖uh‖1,Th ≤ α̃
−1
S α−1

T C̃DC̃T,2‖g‖0,Ω‖θh,1‖L3(Ω)‖uh‖1,Th + α̃−1
S α−1

T C̃D‖g‖0,Ω
(
αT + κ2

)
‖θh,1‖1,Ω.

Hence, referring to assumption (4.2), we obtain

‖uh‖1,Th ≤ C̃u‖θh,1‖1,Ω with C̃u = 2α̃−1
S α−1

T C̃D‖g‖0,Ω
(
αT + κ2

)
. (4.8)

Moreover, by using the triangle inequality, estimate (4.8), the definition of C̃dep and assump-
tion (4.2) we find that

‖θh‖1,Ω ≤ ‖θh,0‖1,Ω + ‖θh,1‖1,Ω

≤ (α−1
T κ2 + 1)‖θh,1‖1,Ω + α−1

T C̃T,2‖θh,1‖L3(Ω)‖uh‖1,Th
≤ (α−1

T κ2 + 1)‖θh,1‖1,Ω + 2α−1
T C̃dep‖g‖0,Ω‖θh,1‖L3(Ω)(αT + κ2)‖θh,1‖1,Ω

≤ (α−1
T κ2 + 1)‖θh,1‖1,Ω + α−1

T (αT + κ2)‖θh,1‖1,Ω.

Hence,

‖θh‖1,Ω ≤ C̃θ‖θh,1‖1,Ω with C̃θ = 2(1 + α−1
T κ2). (4.9)

This completes the proof. �

We are now ready to state our main existence result.

Theorem 4.2 Let θh,1 be a discrete lifting satisfying (4.2). Then there exists a discrete solution
(uh, θh) ∈ Xh ×Ψh to the reduced problem (3.31) satisfying the stability bound (4.4).

The proof of Theorem 4.2 is carried out in detail in Section 4.3.

4.2 Discrete boundary datum

A natural choice for θD,h ∈ Λh is the nodal interpolant of θD. In this section, we adapt the
existence result in Theorem 4.2 to this particular choice.

In what follows, we shall thus always assume that

θD ∈ C(Γ). (4.10)
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We denote by I : C(Ω) → Ψh the classical nodal interpolation operator with respect to an
unisolvent set of Lagrange interpolation nodes for Ψ. Its restriction to the boundary nodes is
denoted by IΓ : C(Γ)→ Λh. A natural choice of the discrete boundary datum θD,h ∈ Λh is the
nodal interpoland of θD. That is, we take

θD,h = IΓθD. (4.11)

The following result holds.

Lemma 4.3 Assume (4.10) and (4.11). Then there is a lifting θh,1 ∈ Ψh such that θh,1|Γ = θD,h
and

‖θh,1‖1,Ω ≤ Clift ‖θD,h‖H1/2(Γ),

with a constant Clift > 0 independent of the mesh size.

Proof. From the definition of the H1/2(Γ)-norm, we infer the existence of a constant K > 1 and
a function θ ∈ H1(Ω) such that θ|Γ = θD,h and

‖θ‖1,Ω ≤ K‖θD,h‖H1/2(Γ).

Set θh,1 = SZhθ ∈ Ψh, where SZh is the Scott-Zhang interpolation constructed in [11, Sec-
tion 1.6.2]. By its definition and due to assumption (4.10), it coincides with the Lagrange
interpolation operator on Γ, i.e., we have

(SZhθ)|Γ = IΓ(θ|Γ) = θD,h.

Moreover, the stability result in [11, Lemma 1.130] yields

‖θh,1‖1,Ω ≤ C‖θ‖1,Ω,

with a constant C > 0 independent of the mesh size. This implies the desired result with
Clift = CK. �

We also have the following approximation result.

Lemma 4.4 Assume (4.10) and (4.11). Let θ ∈ C(Ω) be such that θ|Γ = θD. Then we have

‖θD − θD,h‖H1/2(Γ) ≤ ‖θ − Iθ‖1,Ω.

Proof. By construction, (θ − Iθ)|Γ = θD − θD,h. Hence, the definition of the H1/2(Γ)-norm
implies the assertion. �

We shall now establish the following alternate existence and stability results for the specific
choice of θD,h in (4.11). They hold under a natural small data assumption involving the H1/2(Γ)-
norm of the discrete datum θD,h, which is slightly more restrictive than the one in (4.2).

Corollary 4.5 Assume (4.10), (4.11), and let θh,1 ∈ Ψh be the lifting constructed in Lemma 4.3.
Assume further that

C̃depCembClift||g||0,Ω||θD,h||1/2,Γ ≤ 1/2, (4.12)
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with C̃dep defined in (4.3), Cemb > 0 the embedding constant in (3.12) for p = 3, and Clift the
constant in Lemma 4.3, Then, there is a solution (uh, θh) to (3.31) with θh = θh,0 + θh,1 as
in (4.1) and satisfying the stability bounds

‖uh‖1,Th ≤ C̃uClift‖θD,h‖1/2,Γ, ‖θh‖1,Ω ≤ C̃θClift‖θD,h‖1/2,Γ, (4.13)

where C̃u and C̃θ are the constants in (4.4).

Proof. We apply Theorem 4.2. To that end, let us verify that (4.12) implies (4.2). Indeed, there
holds

C̃dep‖g‖0,Ω‖θh,1‖L3(Ω) ≤ C̃depCemb‖g‖0,Ω‖‖θh,1‖1,Ω

≤ C̃depCembClift‖g‖0,Ω‖‖θD,h‖H1/2(Γ) ≤
1

2
,

where we have used the embedding (3.12) with p = 3, and the bound in Lemma 4.3.
Hence, Theorem 4.2 implies the existence of a solution (uh, θh) satisfying the bound (4.4).

Employing Lemma 4.3 once more shows that (4.13) holds true. �

Remark 4.6 If we assume the exact temperature θ of (2.1)– (2.5) to belong to H2(Ω). Then, by
the triangle inequality, Lemma 4.4 and standard approximation results for the nodal interpolant
I, we have

‖θD,h‖H1/2(Γ) ≤ ‖θD − θD,h‖H1/2(Γ) + ‖θD‖H1/2(Γ) ≤ Ch‖θ‖2,Ω + ‖θD‖H1/2(Γ).

Hence, ‖θD,h‖H1/2(Γ) is bounded as h→ 0. This property is crucial in the stability bounds (4.13)
and will be used in the subsequent error analysis.

4.3 Proof of Theorem 4.2

To prove Theorem 4.2, we shall now make use of Brouwer’s fixed point theorem in the following
form [6]: Let K be a non-empty compact convex subset of a finite dimensional normed space,
and let L be a continuous mapping of K into itself. Then L has a fixed point in K. We proceed
in several steps.

Step 1: We introduce the finite dimensional set

K =

{
(uh, θh) ∈ Xh ×Ψh : ‖uh‖1,Th ≤ C̃u‖θh,1‖1,Ω, ‖θh‖1,Ω ≤ C̃θ‖θh,1‖1,Ω

and θh = θh,0 + θh,1

}
, (4.14)

with C̃u and C̃θ the constants defined in (4.8) and (4.9), respectively. It is convex and compact.
We then define the mapping

L : (zh, ϕh) ∈ Xh ×Ψh 7→ (uh, θh := θh,0 + θh,1) ∈ Xh ×Ψh

as the solution to the following linearized version of problem (3.31): find (uh, θh) ∈ Xh × Ψh

such that

AhS(ϕh; uh,v) +OhS(zh; uh,v)−D(ϕh,v) = 0,

AT(ϕh; θh,0, ψ) +OT(zh; θh,0, ψ) = −AT(ϕh; θh,1, ψ)−OT(zh; θh,1, ψ)
(4.15)
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for all v ∈ Xh and ψ ∈ Ψh,0. With the stability properties in Section 3.3, it is not difficult to
see that problem (4.15) is uniquely solvable, and hence the operator L is well defined.

Step 2: Let us prove that L maps from K into K. To that end, let (zh, ϕh) ∈ K be given,
and denote by (uh, θh) ∈ Vh ×Ψh the solution to the problem (4.15). Then, as in the proof of
Lemma 4.1, we take the test function (v, ψ) = (uh, θh,0). In the first of the two resulting equa-
tions, we use the coercivity of AhS in (3.27), the positivity of OhT in (3.28), and the boundedness
of D in (3.23). This results in

‖uh‖21,Th ≤ α̃
−1
S |D(ϕh,uh)| ≤ α̃−1

S C̃D‖g‖0,Ω‖ϕh‖1,Ω‖uh‖1,Th .

Division by ‖u‖1,Th and the bound ‖ϕh‖1,Ω ≤ C̃θ‖θh,1‖1,Ω then give

‖uh‖1,Th ≤ α̃
−1
S C̃DC̃θ‖g‖0,Ω‖θh,1‖1,Ω = C̃u‖θh,1‖1,Ω,

where we have also used the identity

C̃u = α̃−1
S C̃D‖g‖0,ΩC̃θ. (4.16)

In the second of the two resulting equations, we use the coercivity ofAT in (2.21), property (3.29),
the boundedness of AT and OT in (2.13) and Lemma 3.5, respectively, the bound ‖zh‖1,Th ≤
C̃u‖θh,1‖1,Ω, and division by ‖θh,0‖1,Ω, to find that

‖θh,0‖1,Ω ≤ α−1
T κ2‖θh,1‖1,Ω + α−1

T C̃T,2C̃u‖θh,1‖1,Ω‖θh,1‖L3(Ω).

Then, from the identity (4.16) and assumption (4.2),

‖θh,0‖1,Ω ≤ α−1
T κ2‖θh,1‖1,Ω + α̃−1

S α−1
T C̃DC̃T,2‖g‖0,ΩC̃θ‖θh,1‖1,Ω‖θh,1‖L3(Ω)

≤ α−1
T κ2‖θh,1‖1,Ω +

C̃θ
2
‖θh,1‖1,Ω.

Then, the triangle inequality and the definition Cθ = 2(1 + α−1
T κ2) in (4.9) imply

‖θh‖1,Ω ≤ ‖θh,0‖1,Ω + ‖θh,1‖1,Ω

≤ (1 + α−1
T κ2)‖θh,1‖1,Ω +

C̃θ
2
‖θh,1‖1,Ω ≤ Cθ‖θh,1‖1,Ω.

Hence, we have (uh, θh) ∈ K. It is now clear that the existence of a fixed point of L : K → K is
equivalent to the solvability of (3.31) as stated in the assertion.

Step 3: To apply Brouwer’s fixed point theorem, it remains to show that L is a continuous
operator. To do so, assume we are given (z, ϕ) ∈ K and a sequence {(zm, ϕm)}m∈N ⊂ K, such
that

‖zm − z‖1,Th
m→∞−→ 0 and ‖ϕm − ϕ‖1,Ω

m→∞−→ 0.

We note that by the trace inequality (3.16) and for a fixed mesh size, there also holds lim
m→∞

‖ϕm−
ϕ‖1,Eh = 0. Thus, setting (u, θ) = L(z, ϕ) and (um, θm) = L(zm, ϕm), m ∈ N, we need to prove
that

‖um − u‖1,Th
m→∞−→ 0 and ‖θm − θ‖1,Ω

m→∞−→ 0. (4.17)
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From the definition of L in (4.15) we see that there hold

AhS(ϕm; um,v) +OhS(zm; um,v)−D(ϕm,v) = 0,

AT(ϕm; θm, ψ) +OT(zm; θm, ψ) = 0,

and

AhS(ϕ; u,v) +OhS(z; u,v)−D(ϕ,v) = 0,

AT(ϕ; θ, ψ) +OT(z; θ, ψ) = 0,

for all v ∈ Xh, ψ ∈ Ψh,0 and m ∈ N. Subtracting the two systems from each other yields the
equations

AhS(ϕm; um,v) − AhS(ϕ; u,v) +OhS(zm; um,v)−OhS(z; u,v)−D(ϕm − ϕ,v) = 0, (4.18)

for all v ∈ Xh, and

AT(ϕm; θm, ψ) − AT(ϕ; θ, ψ) +OT(zm; θm, ψ)−OT(z; θ, ψ) = 0, (4.19)

for all ψ ∈ Ψh,0.
We first consider (4.18). Elementary manipulations then yield

AhS(ϕm; u− um,v) + OhS(zm; u− um,v) = − [AhS(ϕ; u,v)−AhS(ϕm; u,v)]

− [OhS(z; u,v)−OhS(zm; u,v)] +D(ϕm − ϕ,v).

We take v = u−um, use the ellipticity property of AhS and OhS in (3.27) and (3.28), respectively,
as well as the continuity of OhS and CD, to get

α̃S‖u− um‖21,Th ≤
∣∣AhS(ϕ; u,u− um)−AhS(ϕm; u,u− um)

∣∣
+ C̃S ‖z− zm‖1,Th‖u‖1,Th‖u− um‖1,Th + C̃D‖g‖0,Ω‖ϕ− ϕm‖1,Ω‖u− um‖1,Th .

With the continuity property (3.20) for AhS and division by ‖u− um‖1,Th , it follows that

‖u− um‖1,Th ≤ C
(
‖ϕ− ϕm‖1,Eh‖u‖W1,∞(Th) + ‖z− zm‖1,Th‖u‖1,Th + ‖ϕ− ϕm‖1,Ω

)
.

Hence, we find that
lim
m→∞

‖u− um‖1,Th = 0. (4.20)

Next, we consider equation (4.19). By proceeding as before, we rewrite it as

AT(ϕm; θ − θm, ψ) +OT(zm; θ − θm, ψ) =− [AT(ϕ; θ, ψ)−AT(ϕm; θ, ψ)]

− [OT(z; θ, ψ)−OT(zm; θ, ψ)].

Then, we take ψ = θ − θm ∈ Ψh,0, note that OT(zm; θ − θm, θ − θm) = 0, by (3.29), and apply
the continuity property (2.16), the ellipticity (2.21), and the bound (3.25) for OT . Dividing the
resulting inequality by ‖θ − θm‖1,Ω results in

‖θ − θm‖1,Ω ≤ C
(
‖ϕ− ϕm‖1,Ω‖θ‖W 1,∞(Ω) + ‖z− zm‖1,Th‖θ‖1,Ω

)
.

Therefore,
lim
m→∞

‖θ − θm‖1,Ω = 0. (4.21)

Referring to (4.20) and (4.21) shows the claim in (4.17), which completes the proof.
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5 Error analysis

In this section, we carry out the error analysis of the finite element approximation in (3.6). We
start by stating our error bounds. Then, we present the details of the proofs in several steps.

5.1 Error estimates

We shall prove the following error estimates.

Theorem 5.1 Assume (4.10), (4.11), and the small data assumption (4.12). Let (u, p, θ) be a
solution of (2.8), and let (uh, ph, θh) be an approximate solution to (3.6) satisfying the stability
bounds (4.13) in Corollary 4.5. Assume further that

max
{
‖g‖0,Ω, ‖u‖W1,∞(Ω), ‖θ‖W 1,∞(Ω)

}
≤ min{M,M̃}, (5.1)

with M and M̃ sufficiently small, as specified in (2.42) and (5.18) below. We further suppose
that, for k = 1,

u ∈ C1(Ω) ∩H2(Ω) ∩X, p ∈ H1(Ω), θ ∈W 1,∞(Ω) ∩H2(Ω), (5.2)

and, for k ≥ 2,
u ∈ Hk+1(Ω) ∩X, p ∈ Hk(Ω), θ ∈ Hk+1(Ω). (5.3)

Then there exist two constants C > 0 independent of the mesh size such that

‖u− uh‖2,Th + ‖θ − θh‖1,Ω ≤ Chk( ‖u‖k+1,Ω + ‖θ‖k+1,Ω ), (5.4)

and
‖p− ph‖0,Ω ≤ Chk( ‖p‖k,Ω + ‖u‖k+1,Ω + ‖θ‖k+1,Ω ). (5.5)

The proof of Theorem 5.1 is presented in Section 5.2.

Remark 5.2 In our analysis, we shall need the base regularity (u, θ) ∈ C1(Ω) ×W 1,∞(Ω) as
assumed in the lowest-order case k = 1 in (5.2); cf. Lemma 3.3 and (2.16). Notice that for k ≥ 2,
the regularity assumption (u, θ) ∈ Hk+1(Ω)×Hk+1(Ω) in (5.3) implies (u, θ) ∈ C1(Ω)×C1(Ω).

Remark 5.3 Observe that under the small solution assumption (5.1), the exact solution to (2.8)
is unique, in agreement to Theorem 2.2. On the other hand and as mentioned above, an analo-
gous uniqueness result for the discrete solution remains an open question.

5.2 Proof of Theorem 5.1

We present the proof of Theorem 5.1 in several steps.
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5.2.1 Preliminaries

Let (u, p, θ) be a solution of problem (2.8), and (uh, phθh) a finite element approximation
obtained by its discrete counterpart (3.6). To simplify the subsequent analysis, we write
eu = u− uh, eθ = θ − θh and ep = p− ph. As usual, we shall then decompose these errors into

eu = ξu + χu = (u− ṽh) + (ṽh − uh),

eθ = ξθ + χθ = (θ − ψ̃h) + (ψ̃h − θh),

ep = ξp + χp = (p− q̃h) + (q̃h − ph),

(5.6)

where we take ṽh as the BDM projection of u, ψ̃h = Iθ ∈ Ψh is the nodal projection of θ, as
introduced in Section 4.2, and q̃h is the L2-projection of p into Qh.

We recall that for u ∈ X, we have ṽh ∈ Xh; see, e.g., [7]. Then, we also have χu ∈ Xh. The
following approximation properties are standard:

‖ξu‖2,Th ≤ Ch
k‖u‖k+1,Ω, ‖ξθ‖1,Ω ≤ Chk‖θ‖k+1,Ω, ‖ξp‖0,Ω ≤ Chk‖p‖k,Ω. (5.7)

Then, according to the triangle inequality and the inverse inequality (3.11), we see that

‖eu‖2,Th ≤‖ξu‖2,Th + ‖χu‖2,Th ≤ C h
k‖u‖k+1,Ω + C‖χu‖1,Th ,

‖eθ‖1,Ω ≤‖ξθ‖1,Ω + ‖χθ‖1,Ω ≤ C hk‖θ‖k+1,Ω + ‖χθ‖1,Ω,

‖ep‖0,Ω ≤‖ξp‖0,Ω + ‖χp‖0,Ω ≤ C hk‖p‖k,Ω + ‖χp‖0,Ω.

(5.8)

Hence, to prove the error estimate (5.1), we need to show the optimal convergence of ‖χu‖1,Th ,
‖χθ‖1,Ω, and ‖χp‖0,Ω.

To do so, we shall employ the following Galerkin orthogonality property.

Lemma 5.4 Assume that u ∈ H2(Ω) ∩X. Then we have[
AhS(θ; u,v)−AhS(θh; uh,v)

]
+
[
OhS(u; u,v)−OhS(uh; uh,v)

]
−B(v, ep)−D(eθ,v) = 0,

B(eu, q) = 0,[
AT(θ; θ, ψ)−AT(θh; θh, ψ)

]
+
[
OT(u; θ, ψ)−OT(uh; θh, ψ)

]
= 0,

for all (v, q, ψ) ∈ Vh ×Qh ×Ψh,0.

Proof. As we assume H2(Ω)-regularity for the velocity field u, it can be readily seen by integra-
tion by parts that the exact solution (u, p, θ) satisfies

AhS(θ; u,v) +OhS(u; u,v)−B(v, p)−D(θ,v) = 0,

for all v ∈ Vh; see also [2]. This implies the first equation. The second and third equations are
readily verified. �
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5.2.2 Error estimates in the velocity and temperature

We now start by analyzing the convergence of ‖χu‖1,Th and ‖χθ‖1,Ω.

Lemma 5.5 There exists a constant C1 > 0 independent of the mesh size such that

(α̃S − C̃SC∞M̃)‖χu‖21,Th ≤C1

(
‖ξu‖2,Th + ‖ξθ‖1,Ω

)
‖χu‖1,Th

+ M̃(C̃lipνlip + C̃D)‖χu‖1,Th‖χθ‖1,Ω.

Proof. First, note that χu ∈ Xh. From the ellipticity of AhS in (3.27) and elementary calculations,
it is not difficult to see that

α̃S‖χu‖21,Th ≤ A
h
S(θh;χu,χu) = A1

S +A2
S +A3

S +A4
S, (5.9)

with the terms A1
S through A4

S given by

A1
S = AhS(θh; u,χu)−AhS(ψ̃h; u,χu),

A2
S = AhS(ψ̃h; u,χu)−AhS(θ; u,χu),

A3
S = AhS(θ; u,χu)−AhS(θh; uh,χu),

A4
S = −AhS(θh; ξu,χu).

Similarly, thanks to the positivity of OhS in (3.28), we obtain

0 ≤ OhS(uh;χu,χu) = O1
S +O2

S +O3
S +O4

S, (5.10)

with O1
S through O4

S given by

O1
S = OhS(uh; u,χu)−OhS(ṽh; u,χu),

O2
S = OhS(ṽh; u,χu)−OhS(u; u,χu),

O3
S = OhS(u; u,χu)−OhS(uh; uh,χu),

O4
S = −OhS(uh; ξu,χu).

From the first error equation in Lemma 5.4, it further follows that

A3
S +O3

S = D(eθ,χu) = D(ξθ,χu) +D(χθ,χu), (5.11)

where we have used the fact that B(χu, ep) = 0 since χu ∈ Xh is exactly divergence-free.
Next, we bound each of the terms on the right hand sides of (5.9), (5.10) and (5.11), respec-

tively. We start by estimating those in (5.9). To that end, we use bound (3.21), the continuity
of AhS in (3.18), and the fact that ‖u‖W1,∞(Th) = ‖u‖W1,∞(Ω) ≤ M̃ (since u ∈ C1(Ω)). We find
that

|A1
S| ≤ C̃lipνlip‖θh − ψ̃h‖1,Ω‖u‖W1,∞(Th)‖χu‖1,Th ≤ M̃C̃lipνlip‖χθ‖1,Ω‖χu‖1,Th ,

|A2
S| ≤ C̃lipνlip‖θ − ψ̃h‖1,Ω‖u‖W1,∞(Th)‖χu‖1,Th ≤ M̃C̃lipνlip‖ξθ‖1,Ω‖χu‖1,Th ,

|A4
S| ≤ C‖ξu‖2,Th‖χu‖1,Th .

(5.12)
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We proceed similarly for the terms in (5.10). We use the continuity of OhS , cf. (3.24), the
continuous dependence of uh in (4.13), and note that ‖u‖1,Ω ≤ C∞‖u‖W1,∞(Ω) ≤ C∞M̃ by (1.2).
This results in

|O1
S| ≤ C̃S‖u‖1,Ω‖χu‖21,Th ≤ C̃SC∞M̃‖χu‖21,Th ,

|O2
S| ≤ C̃S‖ξu‖1,Th‖u‖1,Ω‖χu‖1,Th ≤ C̃SC∞M̃‖ξu‖2,Th‖χu‖1,Th ,

|O4
S| ≤ C̃S‖uh‖1,Th‖ξu‖1,Th‖χu‖1,Th ≤ C̃SC̃uClift‖θD,h‖H1/2(Γ)‖ξu‖2,Th‖χu‖1,Th .

(5.13)

In the bound for |O4
S|, we emphasize that ‖θD,h‖H1/2(Γ) is bounded independently of the mesh

size, in agreement to Remark 4.6.
Finally, to estimate the terms in (5.11) we employ the continuity of D and the hypothesis

that ‖g‖0,Ω ≤ M̃ . We conclude that

|D(ξθ,χu)| ≤ M̃C̃D‖ξθ‖1,Ω‖χu‖1,Th ,

|D(χθ,χu)| ≤ M̃C̃D‖χθ‖1,Ω‖χu‖1,Th .
(5.14)

Hence, from (5.9), (5.10) and (5.11), and the upper bounds (5.12), (5.13) and (5.14) the
assertion follows. �

A corresponding upper bound for ‖χθ‖1,Ω is established in a similar fashion.

Lemma 5.6 There exists a constant C2 > 0 independent of the mesh size such that

(αT − κlipM̃)‖χθ‖21,Ω ≤ C2

(
‖ξu‖2,Th + ‖ξθ‖1,Ω

)
‖χθ‖1,Ω + C̃TC∞M̃‖χu‖1,Th‖χθ‖1,Ω.

Proof. We proceed similarly to the proof of Lemma 5.5. Indeed, by adding and subtracting
suitable terms and noting that χθ ∈ H1

0 (Ω), the ellipticity (2.21) of AT and property (3.29)
for OT imply that

αT‖χθ‖21,Ω ≤ AT(θh;χθ, χθ) +OT(uh;χθ, χθ)

= A1
T +A2

T +A3
T +A4

T +O1
T +O2

T +O3
T +O4

T,
(5.15)

with

A1
T = AT(θh; θ, χθ)−AT(ψ̃h; θ, χθ), A2

T = AT(ψ̃h; θ, χθ)−AT(θ; θ, χθ),

A3
T = AT(θ; θ, χθ)−AT(θh; θh, χθ), A4

T = −AT(θh; ξθ, χθ),

and

O1
T = −OT(χu; θ, χθ), O2

T = −OT(ξu; θ, χθ),

O3
T = OT(u; θ, χθ)−OT(uh; θh, χθ), O4

T = −OT(uh; ξθ, χθ).

As before, the third error equation in Lemma 5.4 yields

A3
T +O3

T = 0.
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Now, by the continuity properties of AT in (2.13), (2.16), and since ‖θ‖W 1,∞(Ω) ≤ M̃ , we see
that

|A1
T| ≤ κlip‖θ‖W 1,∞(Ω)‖θh − ψ̃h‖1,Ω‖χθ‖1,Ω ≤ κlipM̃‖χθ‖21,Ω,

|A2
T| ≤ κlip‖θ − ψ̃h‖1,Ω‖θ‖W 1,∞(Ω)‖χθ‖1,Ω ≤ κlipM̃‖ξθ‖1,Ω‖χθ‖1,Ω,

|A4
T| ≤ κ2‖ξθ‖1,Ω‖χθ‖1,Ω.

(5.16)

On the other hand, by employing the bound ‖θ‖1,Ω ≤ C∞‖θ‖W 1,∞(Ω) ≤ C∞M̃ , the inequal-
ity (2.13), and the continuous dependence in (4.13), we obtain

|O1
T| ≤ C̃T‖χu‖1,Th‖θ‖1,Ω‖χθ‖1,Ω ≤ C̃TC∞M̃‖χu‖1,Th‖χθ‖1,Ω,

|O2
T| ≤ C̃T‖ξu‖1,Th‖θ‖1,Ω‖χθ‖1,Ω ≤ C̃TC∞CTM̃‖ξu‖2,Th‖χθ‖1,Ω,

|O4
T| ≤ C̃T‖uh‖1,Th‖ξθ‖1,Ω‖χθ‖1,Ω ≤ C̃TC̃uClift‖θD,h‖H1/2(Γ)‖ξθ‖1,Ω‖1,Ω‖χθ‖1,Ω.

(5.17)

The desired result follows from (5.15) and the estimates in (5.16) and (5.17), noting again
that ‖θD,h‖H1/2(Γ) is bounded independently of the mesh size; cf. Remark 4.6. �

We are now ready to prove the error bound (5.4) of Theorem 5.1.

Lemma 5.7 There is a constant C > 0 independent of the mesh size such that

‖u− uh‖2,Th + ‖θ − θh‖1,Ω ≤ Chk(‖u‖k+1,Ω + ‖θ‖k+1,Ω).

Proof. Starting from (5.8), it is enough to bound ‖χu‖1,Th and ‖χθ‖1,Ω. To this end, we set

L(u, θ) = ‖ξu‖2,Th + ‖ξθ‖1,Ω.

Adding the two bounds in Lemma 5.5 and Lemma 5.6 results in

(α̃S − C̃SC∞M̃)‖χu‖21,Th + (αT − κlipM̃)‖χθ‖21,Ω ≤ CL(u, θ)
[
‖χu‖1,Th + ‖χθ‖1,Ω

]
+ M̃(C̃lipνlip + C̃D)‖χu‖1,Th‖χθ‖1,Ω

+ C̃TC∞M̃‖χu‖1,Th‖χθ‖1,Ω.

An application of the inequality |ab| ≤ a2

2 + b2

2 allows us to bring the last two terms above to

the right-hand side. By setting K̃ =
(
(C̃lipνlip) + C̃D + C̃TC∞

)
/2, we obtain

(α̃S − (C̃SC∞ + K̃)M̃)‖χu‖21,Th+(αT − (κlip + K̃)M̃)‖χθ‖21,Ω
≤ CL(u, θ)

[
‖χu‖1,Th + ‖χθ‖1,Ω

]
.

Hence, if we choose M̃ such that

M̃ < inf
{ α̃S

C̃SC∞ + K̃
,

αT

κlip + K̃

}
, (5.18)

we readily obtain
‖χu‖1,Th + ‖χθ‖1,Ω ≤ C L(u, θ). (5.19)

From the approximation properties in (5.7), we conclude that

L(u, θ) ≤ C hk
(
‖u‖k+1,Ω + ‖θ‖k+1,Ω

)
,

which implies the desired estimate (5.4). �
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5.2.3 Error in the pressure

Next, we bound the error in the pressure.

Lemma 5.8 There is a constant C > 0 independent of the mesh size such that

‖ep‖0,Ω ≤ Chk
(
‖u‖k+1,Ω + ‖θ‖k+1,Ω + ‖p‖k,Ω

)
.

Proof. From (5.8), it remains to bound ‖χp‖0,Ω. To that end, we invoke the discrete inf-sup
condition (3.30) and the boundedness of B in (3.22) to find that

‖χp‖0,Ω ≤β̃−1 sup
v∈Vh\{0}

B(v, χp)

‖v‖1,Th

≤β̃−1 sup
v∈Vh\{0}

B(v, ep)

‖v‖1,Th
+ β̃−1 sup

v∈Vh\{0}

B(v,−ξp)
‖v‖1,Th

≤β̃−1 sup
v∈Vh\{0}

B(v, ep)

‖v‖1,Th
+ β̃−1C̃B‖ξp‖0,Ω.

(5.20)

Then, from the first error equation in Lemma 5.4, we find that, for any v ∈ Vh,

B(v, ep) ≤ |D(eθ,v)|+ |T1|+ |T2|+ |T3|+ |T4|, (5.21)

with

T1 = [AhS(θ; u,v)−AhS(θh; u,v)], T2 = AhS(θh; eu,v),

T3 = [OhS(u; u,v)−OhS(uh; u,v)], T4 = OhS(uh; eu,v).

Next, we bound the terms T1 through T4 appearing on the right hand side of (5.21).
For T1, we use the triangle inequality, the continuity bound in Lemma 3.3, and the assump-
tion ‖u‖W1,∞(Th) = ‖u‖W1,∞(Ω) ≤ M̃ . We obtain

|T1| ≤ C̃lipνlip‖eθ‖1,Ω‖u‖W1,∞(Th)‖v‖1,Th ≤ C̃lipνlipM̃‖eθ‖1,Ω‖v‖1,Th .

Furthermore, from the bound (3.18),

|T2| ≤ C‖eu‖2,Th‖v‖1,Th .

From the Lipschitz continuity of OhS in (3.24), the stability bound (4.13), and the inequality
‖u‖1,Ω ≤ C∞M̃ , we have the estimates

|T3| ≤C̃S‖eu‖1,Th‖u‖1,Th‖v‖1,Th ≤ C̃SC∞M̃‖eu‖2,Th‖v‖1,Th ,

|T4| ≤C̃S‖uh‖1,Th‖eu‖1,Th‖v‖1,Th ≤ C̃SC̃uClift‖θD,h‖H1/2(Γ)‖eu‖2,Th‖v‖1,Th .

Finally, note that, by (3.23) and assumption (5.1),

|D(eθ,v)| ≤ C̃D‖g‖0,Ω‖eθ‖1,Ω‖v‖1,Th ≤ C̃DM̃‖eθ‖1,Ω‖v‖1,Th .

The above estimates imply

|B(v, ep)| ≤ C3

(
‖eθ‖1,Ω + ‖eu‖2,Th

)
‖v‖1,Th . (5.22)

Hence, the desired estimate (5.5) follows from the inequalities in (5.20), (5.21), and (5.22). �
This completes the proof of Theorem 5.1.
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6 Conclusions

We have introduced a new mixed finite element method for the numerical simulation of a general-
ized Boussinesq problem with exactly divergence-free BDM elements of order k for the velocities,
discontinuous elements of order k − 1 for the pressure, and standard continuous elements of or-
der k for the discretization of the temperature. The resulting method yields exactly divergence-
free velocity approximations, and thus it is energy-stable without additional modifications of
the convection terms. Under suitable hypotheses on the data, we have shown the existence and
stability of discrete solutions. Moreover, we have shown optimal a-priori error estimates with
respect to the mesh size h for problems with smooth and sufficiently small solutions. More
precisely, the broken H1-norm errors in the velocity, the H1-norm errors in the temperature,
and the L2-norm errors in the pressure are proved to converge with order O(hk).

The uniqueness of (small) discrete solutions remains an open issue: one of the the difficulties
in adapting Theorem 2.3 to the discrete level is the appearance of the augmented norm (3.15)
in the continuity estimate (3.20). Ongoing research is concerned with finding ways to overcome
this problem.

Finally, we emphasize that using conforming elements for the temperature unknown makes
the analysis simpler, but may not yield robust approximations in highly convection-dominated
problems. In this regime, discontinuous discretizations may be more appropriate for the tem-
perature equation as well. This is also the subject of ongoing work.
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