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Abstract. Implicit-explicit methods are a suitable choice for the solution of nonlinear convection-
diffusion equations, since the stability restrictions, coming from the explicitly treated convective part,
are much less severe than those that would be deduced from an explicit treatment of the diffusive
term. These schemes usually combine an explicit Runge-Kutta scheme for the time integration of
the convective part with a diagonally implicit one for the diffusive part. The application of these
schemes to multi-species kinematic flow models with strongly degenerate diffusive corrections requires
the solution of highly nonlinear and non-smooth systems of algebraic equations. Since the efficient
solution of these systems by the Newton-Raphson method requires some degree of smoothness, it is
proposed to regularize the diffusion coefficients in the model and to apply suitable techniques to solve
these nonlinear systems in an efficient way. Numerical examples arising from models of polydisperse
sedimentation and multi-class traffic flow confirm the efficiency of the methods proposed.
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1. Introduction.

1.1. Scope. Multi-species kinematic flow models arise in many engineering ap-
plications that involve the flow of one disperse substance through a continuous phase,
and where the disperse substance consists of particles belonging to a number N of
species that can be distinguished by some characteristic property. These species usu-
ally segregate with respect to a distinguished spatial direction (for instance, that
of gravity or another applied body force) and form areas of different composition.
Examples are the settling of particles differing in size or density in a polydisperse
solid-liquid suspension [5] and multi-class traffic models [4, 42]. The term “kine-
matic” means that the velocity vi of species i is an explicit function of the vector
Φ = (φ1, . . . , φN )T ∈ RN of the concentrations (volume fractions) φi of each species.
Thus, standard multi-species kinematic flow models are given by systems of N scalar,
in general nonlinear first-order conservation laws

∂tΦ + ∂xf(Φ) = 0, f(Φ) = (f1(Φ), . . . , fN (Φ))T =
(
φ1v1(Φ), . . . , φNvN (Φ)

)T
,

(1.1)

where t is time and x is the spatial coordinate. In this work we focus on numerical
methods for multi-species flow models in which the velocities also depend on the spa-
tial variation of Φ to account for additional effects such as sediment compressibility
or drivers’ reaction time and anticipation length in traffic flow. These corrections can
be usually posed in such a way that the resulting system of partial differential equa-
tions (PDEs) has an extra, possibly strongly degenerate diffusive term. We therefore
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consider systems of PDEs of the type

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
, (1.2)

where B(Φ) is a given N×N matrix function expressing the diffusive correction. The
system (1.2) is supplied with an initial condition and, depending on the application,
zero-flux or periodic boundary conditions.

Although the available mathematical theory does not allow us to be conclusive
about the existence, uniqueness and well-posedness of the solutions of such strongly
degenerate hyperbolic-parabolic systems, it is plausible to perform simulations with
appropriate numerical methods. Explicit schemes for hyperbolic systems of first-order
conservation laws are widely used in many applications nowadays. Although they can
be rather slow for some steady state computations, due to CFL stability restrictions
on the time step size, their use for unsteady computations is deemed as practical in
many situations. This does not hold when diffusion terms are present. However, one
can resort to an implicit treatment of these terms to overcome the drastic step size
restrictions imposed by the stability of explicit schemes applied to parabolic equations.

It is the purpose of the present work to demonstrate the benefits of using implicit-
explicit (IMEX) schemes for the efficient solution of initial-boundary value problems
for (1.2) under specific assumptions of diffusively corrected kinematic flow models.
These specific properties, which are reflected in the design of the numerical schemes
and in our analysis, include that the number N of species (and therefore of scalar
equations) may be arbitrarily large; that the flux vector f(Φ) is constructed in a
systematic way that makes characteristic-wise schemes applicable (even though the
eigenstructure of the flux Jacobian Jf (Φ) is not available in closed algebraic form);
and that (1.2) is often strongly degenerate, where the location of the type-change inter-
face is unknown beforehand, and B may even be discontinuous as a function of Φ. We
focus on a model of sedimentation of polydisperse suspensions forming compressible
sediment layers, and a diffusively corrected multi-class Lighthill-Whitham-Richards
(LWR) model for vehicular traffic that includes anticipation length and reaction time.

The main novelty of this work is the particular method of solution of the nonlinear
systems that appear with the implicit treatment of the degenerate diffusion term. This
method consists in the Newton-Raphson method applied after regularizing the non-
smooth diffusion coefficient. The final schemes are much more efficient, in term of
error reduction versus CPU time, than the explicit schemes.

1.2. Related work. First-order models of the type (1.1) have been widely stud-
ied in recent years, with an emphasis on polydisperse sedimentation [5, 8, 9, 18, 43]
and multiclass vehicular traffic [4, 16, 32, 42, 45, 46, 47]. Other applications in-
clude the settling and creaming of emulsions and dispersions [19, 37] (these lists of
references are incomplete). Among the polydisperse sedimentation models, one of
the most widely used velocity model is the Masliyah-Lockett-Bassoon (MLB) model
[27, 28]. We refer to [8, 44] for alternate velocity models. On the other hand, the
multi-class extension of the LWR model [25, 35], the MCLWR model, was introduced
by Benzoni-Gavage and Colombo [4] and Wong and Wong [42]. All these models have
in common that although the functions vi are constructed in a systematic manner,
the eigenvectors and eigenvalues of the Jacobian Jf (Φ) = (∂fi(Φ)/∂φj)1≤i,j≤N are
usually not available in closed algebraic form. It is in general difficult to estimate the
subregion of N -dimensional phase space where the model (1.1) is strictly hyperbolic,
i.e., Jf (Φ) has pairwise distinct real eigenvalues, or to solve the Riemann problem for
(1.1) exactly or approximately. However, for some of these models, the functions vi
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depend on a small number of independent scalar functions of Φ only, so that Jf (Φ) is
a low-rank perturbation of a diagonal matrix. In this case, the calculus of the so-called
secular equation, advanced first by Anderson [2], allows one to establish that, under
determined circumstances, the eigenvalues of Jf (Φ) are real and interlace with the
velocities vi [8, 17]. This information provides starting values to determine the exact
eigenvalues by a root finder, and eventually to determine the corresponding eigen-
vectors. This has led to the construction of involved but efficient characteristic-wise
weighted essentially non-oscillatory (WENO) schemes [23, 26, 38, 39] for (1.1) [9, 16].
These schemes are employed herein to discretize the convective part of (1.2).

For models of polydisperse sedimentation, diffusive terms leading to the form (1.2)
were first proposed by Stamatakis and Tien [41]. A theory of sedimentation of poly-
disperse suspensions forming compressible sediments was advanced in [5], where the
system (1.2) was solved by the Kurganov-Tadmor (KT) explicit high-resolution cen-
tral difference scheme [24]. Its application to strongly degenerate convection-diffusion
systems is explicitly proposed in [24, Sect. 4.2]. On the other hand, the multi-class
version of the diffusively corrected LWR model proposed by Nelson [30], which can
also be understood as a diffusively corrected version of the MCLWR traffic model
[4, 42], is newly derived herein. We also mention that in a very recent paper, Abey-
naike et al. [1] propose a model for the sedimentation and creaming of size-distributed
droplets in glycerol/biodiesel dispersions that is equivalent to (1.2).

An IMEX Runge-Kutta scheme consists in applying a Runge-Kutta scheme with
an implicit discretization of the diffusive term and an explicit one for the convective
term. To introduce the main idea, we consider the problem

∂tΦ = C(Φ) +D(Φ), (1.3)

where C(Φ) and D(Φ) are discretizations of the convective and diffusive terms, re-
spectively. The stability restriction on the time step ∆t that explicit schemes impose
when applied to (1.3) is very severe (∆t must be proportional to the square ∆x2 of
the grid spacing), due to the presence of D(Φ). The implicit treatment of both C(Φ)
and D(Φ) would remove any stability restriction on ∆t, but the upwind nonlinear dis-
cretization of C(Φ) that is needed for stability makes its implicit treatment extremely
involved. In fact, after the pioneering work of Crouzeix [11], numerical integrators
that deal implicitly with D(Φ) and explicitly with C(Φ) can be used with a time step
restriction dictated by the convective term alone. These schemes, apart of having
been profusely used in convection-diffusion problems and convection problems with
stiff reaction terms (see [3, 15] and references therein), have been recently used to
deal with stiff terms in hyperbolic systems with relaxation (see [6, 7, 34]).

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we introduce the diffusively corrected multi-species kinematic flow models
chosen for numerical simulation, namely the model of polydisperse suspensions form-
ing compressible sediments (cf. [5]) and the multi-class version of the diffusively cor-
rected LWR traffic model (cf. [30]) (see Section 1.2). The results of the hyperbolicity
analysis (cf. [8, 17]) of the non-diffusive versions (1.1) of both models are summarized,
and the structure of the respective diffusion term is analyzed. The numerical schemes
to solve (1.2) are introduced in Section 3, starting with a semi-discrete formulation
(Section 3.1) in which the spatial derivatives are discretized. The convective terms
are discretized by the spectral WENO schemes for (1.1) introduced in [9, 16]. The
discretization of the zero-flux and periodic boundary conditions (for the polydisperse
sedimentation and multi-class traffic models, respectively) is specified in Section 3.2.
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After briefly commenting on explicit fully-discrete schemes (in Section 3.3), we de-
scribe in Section 3.4 the fully discrete implicit-explicit schemes studied herein. The
time discretization by IMEX-RK schemes is outlined in Section 3.5. The implementa-
tion of these schemes requires the solution of nonlinear systems of algebraic equations
in each time step. The numerical solution of these nonlinear systems is addressed
in Section 4, in which two solvers are described, namely a simple fixed-point (FP)
iteration (Section 4.1) and a Newton-Raphson (NR) method (Section 4.2). The latter
is at the core of this paper, and incorporates a line-search strategy combined with a
regularization Bε(Φ) of the terms coming from the possibly discontinuous behaviour
of B(Φ), where the regularization parameter ε is successively reduced during the NR
method. In Section 5 numerical results are presented for four examples, namely for
the polydisperse sedimentation model with N = 3 and N = 8 (Examples 1 and 2,
Sections 5.1 and 5.2) and for the diffusively corrected MCLWR model with N = 3
(Examples 3 and 4 with different initial densities, see Section 5.3). Numerical re-
sults indicate that IMEX-RK schemes based on formulas with at least two non-trivial
stages are significantly more efficient in reducing numerical error than the explicit
KT scheme, and that whenever B(Φ) is smooth and both the FP and NR nonlinear
solvers are applicable, the latter is more efficient. These and other conclusions are
summarized in Section 6.

2. Diffusively corrected multi-species kinematic flow models.

2.1. Polydisperse sedimentation. We consider a model of sedimentation of a
suspension of equal-density particles, which are assumed to belong to N species with
sizes d1 > d2 > · · · > dN . We let φi denote the local volume fraction of species i
having size di, and define φ := φ1 + · · · + φN . The evolution of Φ = Φ(x, t) as
a function of depth x and time t in a one-dimensional column is then governed by
the combined effects of hindered settling and sediment compressibility. These effects
determine the convective and diffusive parts, respectively, of the following system of
convection-diffusion equations (see [5]):

∂tφi + ∂xfi(Φ) = ∂x
(
ai(Φ, ∂xΦ)

)
, i = 1, . . . , N, 0 < x < K, t > 0, (2.1)

which is supplemented by the initial condition Φ(x, 0) = Φ0(x) for 0 ≤ x ≤ K, where
Φ0 is the given initial concentration distribution, and zero-flux boundary conditions
corresponding to settling in a closed column of height K, i.e.,

φivi = fi(Φ)− ai(Φ, ∂xΦ) = 0 for x = 0 and x = K, t > 0. (2.2)

Here the flux density functions f1, . . . , fN are those of the MLB model given by

fi(Φ) = µ%̄sφiV (φ)(1− φ)(δi − δTΦ), i = 1, . . . , N, (2.3)

where µ > 0 is a viscosity constant, %̄s > 0 is the solid mass density minus the fluid
density, δi := d2

i /d
2
1, δ := (δ1 = 1, δ2, . . . , δN )T, and V (φ) is a hindered settling

function that is assumed to satisfy V (φ) ≥ 0 for all φ, V (0) = 1 and V ′(φ) < 0. A
typical expression due to Richardson and Zaki [36] is given by

V (φ) =

{
(1− φ)nRZ−2 for 0 ≤ φ ≤ φmax,
0 otherwise.

(2.4)

The diffusion functions on the right-hand side of (2.1) are given by

ai(Φ, ∂xΦ) = αi,1(Φ)∂xφ1 + · · ·+ αN,1(Φ)∂xφN , i = 1, . . . , N, (2.5)
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where

αij :=
µV (φ)
gφ

{
(1− φ)φi(δi − δTΦ)σ′e(φ)

−
[
δiδij − δjφi −

φi
φ

(δi − δTΦ)
]
σe(φ)

}
, i, j = 1, . . . , N,

(2.6)

where δij is the standard Kronecker symbol. Here σe denotes the effective solid stress
function, and σ′e is its derivative. This function is assumed to satisfy

σe(φ), σ′e(φ)

{
= 0 for φ ≤ φc,
> 0 for φ > φc,

(2.7)

where φc is a critical concentration at which the particles touch each other. A typical
function σe having these properties is given by

σe(φ) =

{
0 for φ ≤ φc,
σ0

(
(φ/φc)k − 1

)
for φ > φc,

σ0, k > 0. (2.8)

Defining the matrix B(Φ) := (αij)1≤i,j≤N and f(Φ) = (f1(Φ), . . . , fN (Φ)) we can
rewrite (2.1) in the form (1.2).

2.2. Hyperbolicity and parabolicity analysis for the polydisperse sedi-
mentation model. For the flux (2.3), Jf (Φ) is a rank-two perturbation of a diagonal
matrix. This property allows one to analyze hyperbolicity, to localize eigenvalues, and
to eventually calculate the corresponding eigenvectors of Jf (Φ), by using the so-called
secular equation [2], see [8, 17]. Results are summarized in the following theorem. Here
D0
φmax

is the interior of the set Dφmax := {Φ ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0, φ ≤ φmax},
where 0 < φmax ≤ 1 is a maximal solids concentration.

Theorem 2.1. If δ1 > δ2 > · · · > δN and Φ ∈ D0
φmax

, then the system (1.2) with
B(Φ) = 0 and f(Φ) defined by (2.3) is strictly hyperbolic, i.e., Jf (Φ) has N distinct
real eigenvalues λ1, . . . , λN which are the roots of the so-called secular equation

R(λ) := 1 +
N∑
j=1

γj
vj − λ

, (2.9)

where γj can be computed explicitly as γj = −v1(0)(nRZ− 1)(1−φ)nRZ−2φjδj. More-
over, the following so-called interlacing property holds:

vN < λN < vN−1 < λN−1 < · · · < v1 < λ1 < M2 := v1 + γ1 + · · ·+ γN .

With respect to the diffusion matrix B(Φ), in [5] it is proved that its eigenval-
ues are positive and pairwise distinct on D0

φmax
\Dφc by evaluating the characteristic

polynomial in a fashion similar to that used for the eigenvalues of Jf (Φ).
Theorem 2.2. Let G(φ) := φ(1− φ)2σ′e(φ)− σe(φ), W (φ) := µV (φ)/(gφ) and

assume that V (φ) 6= 0 for φ < φmax and V (φ) = 0 otherwise. Then, for all
Φ ∈ D0

φmax
\Dφc the matrix B(Φ) has N distinct positive eigenvalues Λ1, . . . ,ΛN ; i.e.

the system (1.2) is strictly parabolic on Φ ∈ D0
φmax
\Dφc . Moreover, we have the fol-

lowing interlacing properties, where for brevity we write W = W (φ) and σe = σe(φ):
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1. If Φ is chosen such that G(φ) > 0, then these eigenvalues satisfy

0 < WσeδN < ΛN < WσeδN−1 < · · · < Wσeδ1 < ΛN < Wδ1φ(1− φ)2σ′e(φ).

2. At those points Φ where G(φ) < 0, we have

0 < Wσeφ(1− φ)2δN < ΛN < WσeδN−1 < · · · < Wσeδ1 < ΛN < Wδ1σ
′
e(φ).

3. If G(φ) = 0, then the eigenvalues are given by Λi = Wσeδi for i = 1, . . . , N .

2.3. A diffusively corrected MCLWR model. We now derive a multi-class
version of the diffusively corrected kinematic traffic flow model introduced in [30] (see
also [10, 31]) for N = 1. Assume now that φi, i = 1, . . . , N , is the density, measured
in vehicles per mile, of vehicles of class i having the preferential velocity vmax

i , where

vmax
1 > vmax

2 > · · · > vmax
N > 0. (2.10)

According to the MCLWR model [4, 42], the local velocity vi of vehicles of species i is
given by vi = vmax

i V (φ), where vmax
i is the preferential velocity of drivers of species i

on a free highway, as usual, φ = φ1 + · · · + φN , and V is a non-increasing function
satisfying V (0) = 1, V (φmax) = 0, and V ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax. Thus, the
standard MCLWR model (without diffusive correction) is given by (1.1), where

fi(Φ) = φiv
max
i V (φ), i = 1, . . . , N. (2.11)

Let us now assume that the behavior of drivers of species i is associated with
an anticipation distance Li and a reaction time τi, i = 1, . . . , N . Then, following
the reasoning in [10], the reaction of the driver does not depend on the value of φ
seen at the point φ(x, t), but rather on pi(x, t) := φ(x+ Li − vmax

i V τi, t− τi). This
formulation takes into account that vmax

i V τi is the distance travelled by a car of
species i in a time interval of length τi. (Note that notation is ambiguous here, since
we are not specific about the argument of V , cf. [10].) To obtain a usable expression
for the flux fi, we expand V (pi(x, t)) around φ(x, t). Writing φ = φ(x, t) and denoting
τ := max{τ1, . . . , τN}, L := max{L1, . . . , LN}, we obtain

V (pi(x, t)) = V (φ) + V ′(φ)
[
∂xφ

(
Li − vmax

i V (φ)τi
)
− τi∂tφ

]
+O(τ2 + L2). (2.12)

On the other hand, summing the conservation laws ∂tφi + ∂x(vmax
i φiV (φ)) = 0 over

i = 1, . . . , N and defining vmax := (vmax
1 , . . . , vmax

N )T, we get

∂tφ = ∂tφ1 + · · ·+ ∂tφN = −∂x
(
V (φ)(vmax)TΦ

)
.

Inserting this result into (2.12) we get

V (pi(x, t)) = V (φ) + V ′(φ)
[(
Li − τivmax

i V (φ)
)
∂xφ+ τi∂x

(
V (φ)(vmax)TΦ

)]
+O(τ2 + L2).

Neglecting theO(τ2+L2) term and inserting the result into the conservation equations

∂tφi(x, t) + ∂x
(
φi(x, t)vi(x, t)

)
= 0, vi(x, t) = vmax

i V
(
pi(x, t)

)
, i = 1, . . . , N,

we obtain a system of the form (1.2), where the components of the flux vector f(Φ)
are given by (2.11) and the entries of the diffusion matrix B(Φ) are now given by

αij(Φ) = −V ′(φ)
[
Li + τi

(
V ′(φ)(vmax)TΦ +

(
vmax
j − vmax

i

)
V (φ)

)]
φiv

max
i ,

1 ≤ i, j ≤ N.
(2.13)
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For traffic flow models we will use periodic boundary conditions corresponding to a
circular road of length K, namely

Φ(0, t) = Φ(K, t), t > 0. (2.14)

2.4. Hyperbolicity and parabolicity analysis for the diffusively cor-
rected MCLWR model. According to [17], the MCLWR model (1.2) with B ≡ 0
is strictly hyperbolic and the Jacobian Jf (Φ) is a rank-one perturbation of a diagonal
matrix. The eigenstructure of Jf (Φ) can again be computed via the secular equation
[2], as is explained in the following version of Theorem 2.1.

Theorem 2.3. Consider the first-order multiclass kinematic traffic flow model
(1.1), (2.11) (i.e., without diffusive terms) and assume that the velocities vmax

i are
ordered according to (2.10)). If Φ ∈ D0

1, then the Jacobian Jf (Φ) has N distinct
real eigenvalues λ1, . . . , λN which are the roots of the secular equation (2.9) with
γi = vmax

i φiV
′(φ), and the following interlacing property holds:

vmax
N + V ′(φ)(vmax)TΦ < λN < vmax

N < λN−1 < vmax
N−1 < · · · < vmax

2 < λ1 < vmax
1 .

We now wish to state sufficient conditions on the non-negative parameters vmax
i ,

τi and Li under which B(Φ) has eigenvalues with positive real part for all Φ ∈ Dφmax .
The latter property will only hold under restrictions on the parameters Li and τi. In
fact, already in the case N = 1, where B(φ) = −V ′(φ)(L+ τvmaxφV

′(φ))φvmax, and
considering that V ′(φ) ≤ 0, we get that B(φ) ≥ 0 for all 0 ≤ φ ≤ φmax if and only if

φV ′(φ) ≥ − L

τvmax
for all 0 ≤ φ ≤ φmax. (2.15)

Thus, we cannot expect B(Φ) to have non-negative eigenvalues only without further
limitations and structural conditions between the parameters vmax

i , Li and τi.
Lemma 2.4. The eigenvalues µ1, . . . , µN of B(Φ) are given by µi = −V ′(φ)λi,

i = 1, . . . , N , where

λ1 =
C1

2
−
(
C2

1

4
− C2

)1/2

, λ2 =
C1

2
+
(
C2

1

4
− C2

)1/2

, λ3 = · · · = λN = 0,

where we have

C1 =
N∑
k=1

φkv
max
k

(
Lk + τkV

′(φ)(vmax)TΦ
)
,

C2 =
N∑

i,j=1
i<j

φiv
max
i φjv

max
j τiτj

(
Li
τi
− Lj
τj

+ (vmax
j − vmax

i )V (φ)
)

(vmax
j − vmax

i )V (φ).

(2.16)

Proof. We have B(Φ) = −V ′(φ)B̃(Φ), where B̃(Φ) = (α̃ij(Φ))1≤i,j≤N is defined
in an obvious manner via (2.13). (Clearly, since V ′(φ) ≤ 0, B(Φ) has non-negative
eigenvalues on Dφmax if B̃(Φ) has.) Since B̃(Φ) is a rank-2 matrix of size N ×N , we
know that det(λI − B̃(Φ)) = λN−2(λ2 −C1λ+C2), where Ck = Ck(Φ) is the sum of
the k-rowed principal minors of B̃(Φ), that is,

C1 = tr B̃(Φ), C2 =
N∑

i,j=1
i<j

(
α̃iiα̃jj − α̃jiα̃ij

)
. (2.17)
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From (2.13) we get that α̃ij = (Li + τiV
′(φ)(vmax)TΦ + τi(vmax

j − vmax
i )V (Φ))φivmax

i

for i, j = 1, . . . , N . Evaluating (2.17) then yields (2.16).
We recall that the system (1.2) is called parabolic at a state Φ0 if the eigenvalues

of B(Φ0) have non-negative real parts. This is precisely the case if C1(Φ0) ≥ 0 and
C2(Φ0) ≥ 0. Thus, we can expect the system to be well-posed only if

C1(Φ) > 0, C2(Φ) > 0 on D0
φmax

. (2.18)

In view of V ′(φ)(vmax)TΦ ≤ 0, a sufficient condition for C1(Φ) ≥ 0 to hold is that

Lk(φ) + τkv
max
1 φV ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax, k = 1, . . . , N . (2.19)

Note that this condition is the multi-class (N ≥ 1) extension of (2.15). Furthermore,
note that we can write (2.19) as

τk ≤ min
0≤φ≤φmax

− Lk(φ)
φV ′(φ)vmax

1

. (2.20)

If (2.20) is violated, that is, when the reaction time of a driver is not sufficiently
small, then the model is likely to exhibit anti-diffusive phenomena such as formation of
clusters, steep density gradients, stop-and-go waves, and other instability phenomena.
A similar conclusion (though based on a slightly different model) has been drawn, for
example, in [33]. For the diffusively corrected MCLWR model we will expand on this
observation, and more closely analyze instability phenomena, in a separate paper.

In the case N = 1, Nelson [30] (cf. [10, 31]) suggests to employ

L = L(φ) = max
{

(vmaxV (φ))2

2a
, Lmin

}
, (2.21)

where the first argument is the distance required to decelerate to full stop from
speed vmaxV (φ) at deceleration a, and the second is a minimal anticipation distance
Lmin > 0 regardless of how small the velocity is. In the multi-class case we could de-
fine Li, for instance, by (2.21) with vmax replaced by vmax

i . However, in our numerical
experiments, we select Li and τi constant to ensure that (2.18) is always satisfied.

3. Numerical schemes.

3.1. Spatial discretization. For grid points xj := (j− 1
2 )∆x for j = 1, . . . ,M ,

where ∆x := K/M , and tn := n∆t for n ∈ N0, and using the notation ∆−gk =
gk − gk−1 we discretize (1.2) in space as follows:

dΦj(t)
dt

= Lj(Φ) := − 1
∆x

∆−f j+1/2 +
1

∆x
∆−gj+1/2, j = 1, . . . ,M, (3.1)

where Φj(t) ≈ Φ(xj , t) and the convective numerical flux f j+1/2 := f(Φj−2, . . . ,Φj+3)
is calculated by using the characteristic-wise fifth-order WENO-approximation [9] and
the flux corresponding to the parabolic term is given by

B(Φ)∂xΦ|x=xj+1/2
≈ gj+1/2 :=

1
2∆x

(
B(Φj+1) +B(Φj)

)
∆−Φj+1,

which gives a second-order approximation for the diffusive term. Higher order ap-
proximations of these terms could be used to match the order of approximation of the
convective term, but we will not pursue this issue in this paper.
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The operator L := (L1, . . . ,LM )T appearing in the semi-discrete scheme (3.1) for
(1.2) is now given by

Lj(Φ) = − 1
∆x

∆−f j+1/2 +
1

2∆x2
∆−
((
B(Φj+1) +B(Φj)

)
∆−Φj+1

)
for j = 2, . . . ,M − 1, along with appropriate modifications of this formula for j = 1
and j = M to account for boundary conditions. This can be further written as follows:

L(Φ) = − 1
∆x

(∆−f)(Φ) +
1

∆x2
B(Φ)Φ, (3.2)

where B(v) = {Bij(v)}i,j=1,...,M ∈ R(NM)×(NM) is a block tridiagonal matrix formed
by blocks Bij ∈ RN×N generally given by

Bii(v) =
1

2∆x2

(
B(vi+1) + 2B(vi) +B(vi−1)

)
, i = 1, . . . ,M,

Bi,i−1(v) = Bi−1,i(v) = − 1
2∆x2

(
B(vi−1) +B(vi)

)
, i = 2, . . . ,M.

(3.3)

3.2. Boundary conditions. For the polydisperse sedimentation model we dis-
cretize the zero-flux boundary conditions (2.2) by setting f1/2 − g1/2 = 0 and
fM+1/2 − gM+1/2 = 0. This affects L1 and LM , which now read as

L1(Φ) = − 1
∆x

f3/2 +
1

2∆x2

(
B(Φ2) +B(Φ1)

)
∆−Φ2,

LM (Φ) =
1

∆x
fM−1/2 −

1
2∆x2

(
B(ΦM−1) +B(ΦM )

)
∆−ΦM .

This can be written as (3.2) with

B11(v) =
1

2∆x2

(
B(v2) +B(v1)

)
, BMM (v) =

1
2∆x2

(
B(vM−1) +B(vM )

)
.

When we discretize the periodic boundary conditions (2.14), for the discretization
of the flux at x = 0 we formally need values Φ−j for j = 0, 1, 2. By periodicity the
value Φ−j should agree with the value ΦM−j . Similarly, at x = K the value ΦM+j ,
j = 1, 2, 3, should agree with Φj . Therefore, we have the following:

L1(Φ) =− 1
∆x

∆−f3/2 +
1

2∆x2

((
B(Φ2) +B(Φ1)

)
∆−Φ2

−
(
B(Φ1) +B(ΦM )

)
(Φ1 − ΦM )

)
,

LM (Φ) =− 1
∆x

∆−fM+1/2 +
1

2∆x2

((
B(ΦM ) +B(Φ1)

)
(Φ1 − ΦM )

−
(
B(ΦM−1) +B(ΦM )

)
∆−ΦM

)
.

The blocks in the first and last rows of blocks of matrix B in (3.3) that should be
modified with respect to the general definition are:

B11(v) =
1

2∆x2

(
B(v2) + 2B(v1) +B(vM )

)
,

BMM (v) =
1

2∆x2

(
B(v1) + 2B(vM ) +B(vM−1)

)
,

B1,M (v) = − 1
2∆x2

(
B(v1) +B(vM )

)
, BM,1(v) = − 1

2∆x2

(
B(v1) +B(vM )

)
.

Therefore, the block structure of B turns out to be circulant tridiagonal.
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3.3. Explicit schemes. Given an approximation Φn = (Φn1 , . . . ,Φ
n
M )T for t =

tn, we can compute an approximation Φn+1 = (Φn+1
1 , . . . ,Φn+1

M )T for t = tn+1 from
(3.1) by using an ODE solver, such as Euler’s method or third-order TVD Runge-
Kutta method (see [20, 21, 40]). For instance, Euler’s method can be written as

Φn+1 = Φn − ∆t
∆x

(∆f)(Φn) +
∆t

∆x2
B(Φn)Φn. (3.4)

Other explicit schemes, such as the KT scheme [24] that we use in our numerical
experiments, have a similar formulation.

A von Neumann analysis of the stability of these explicit schemes applied to
suitable linearizations about constant states would suggest that

∆t
∆x

max
Φ

ρ(Jf (Φ)) +
∆t

2∆x2
max

Φ
ρ(B(Φ)) ≤ C ≤ 1 (3.5)

is an appropriate CFL stability condition, where ρ(·) is the spectral radius. The
constant C depends on the method and should be empirically adjusted for nonlinear
problems, since (3.5) is deduced for linearized problems and schemes.

3.4. Implicit-explicit schemes. The CFL stability condition (3.5) restricts the
time step size dramatically when B(Φ) 6= 0. This restriction could be overcome by
implicit schemes, but the implicit treatment of the convective term is complicated
due to the highly nonlinear scheme that is used for its discretization. Therefore,
implicit-explicit (IMEX) schemes, which treat the diffusive term implicitly and the
convective term explicitly, could be an attractive alternative in this situation. The
simplest IMEX scheme for the approximation of (3.1) is the following version of (3.4):

Φn+1 = Φn − ∆t
∆x

(∆f)(Φn) +
∆t

∆x2
B(Φn+1)Φn+1. (3.6)

The CFL condition for IMEX schemes is

∆t
∆x

max
Φ

ρ(Jf (Φ)) ≤ C1 ≤ 1,

which is much less restrictive than (3.5). Here, as mentioned above, the constant C1

depends on the method used for the spatial and temporal discretizations.
For the case of zero-flux boundary conditions, the boundary condition at x = 0

for the scheme (3.6) should be fk1/2 − gk1/2 = 0 for k = n or k = n + 1. The use of
different treatments for the convective and diffusive parts does not allow us to impose
this condition in a natural manner as for explicit schemes. However, we impose this
condition to avoid adding ghost cells and changing the structure of the matrices, but
this treatment does generate a loss of precision at the boundary. In this manner we
use for j = 1 the equation

Φn+1
1 = Φn1 −

∆t
∆x

fn3/2 +
∆t

∆x2

(
B(Φn+1

2 ) +B(Φn+1
1 )

)
∆−Φn+1

2 .

The boundary condition at x = K is treated in a similar way. For periodic boundary
conditions (cf. Section 3.2), the equations for j = 1 and j = M in (3.6) are

Φn+1
1 = Φn1 −

∆t
∆x

∆−fn3/2 +
∆t

2∆x2

((
B(Φn+1

2 ) +B(Φn+1
1 )

)
∆−Φn+1

2
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−
(
B(Φn+1

1 ) +B(Φn+1
M )

) (
Φn+1

1 − Φn+1
M

))
,

Φn+1
M = ΦnM −

∆t
∆x

∆−fnM+1/2 +
∆t

2∆x2

((
B(Φn+1

M ) +B(Φn+1
1 )

) (
Φn+1

1 − Φn+1
M

))
−
(
B(Φn+1

M−1) +B(Φn+1
M )

)
∆−Φn+1

M

)
.

3.5. IMEX Runge-Kutta schemes. To introduce IMEX methods for the
initial-boundary value problems of (1.2) at hand, we basically follow the notation
in [3] and rewrite the semi-discrete formulation (3.1) in the form (1.3), where

C(Φ) := − 1
∆x

(∆f)(Φ), D(Φ) :=
1

∆x2
B(Φ)Φ.

For the diffusive part we utilize an implicit s-stage diagonally implicit (DIRK) scheme
with coefficients A ∈ Rs×s, c, b ∈ Rs, in the common Butcher notation, where A =
(aij) with aij = 0 for j > i. For the convective part we employ an s+ 1-stage explicit
scheme with coefficients Â ∈ R(s+1)×(s+1), b̂, ĉ ∈ Rs+1 with c1 = 0 and Â = (âij)
with âij = 0 for j ≥ i. We will denote the corresponding Butcher arrays by

D :=
c A

bT , D̂ :=
ĉ Â

b̂
T .

The computations of an IMEX-RK scheme necessary to advance an approximate
solution Φn from time tn to tn+1 = tn + ∆t are given in the following algorithm.

Algorithm 3.1 (Implicit-explicit Runge-Kutta (IMEX-RK) scheme).
Input: approximate solution vector Φn for t = tn
K̂1 ← C(Φn)
do i = 1, . . . , s

solve for Φ(i) the nonlinear equation

Φ(i) = Φn + ∆t

(
i−1∑
j=1

aijKj + aiiD
(
Φ(i)

)
+

i∑
j=1

âi+1,jK̂j

)
Ki ← D(Φ(i))
K̂i+1 ← C(Φ(i))

enddo

Φn+1 ← Φn + ∆t
s∑
j=1

bjKj + ∆t
s+1∑
j=1

b̂jK̂j

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.
Notice that the (s + 1)-th stage of the explicit Runge-Kutta scheme need not

be performed to compute K̂s+1 if b̂s+1 = 0; in this case, we will define the effective
number of stages σ to be s, otherwise σ = s+ 1.

Algorithm 3.1 requires solving for the vector u = Φ(i) ∈ RMN a nonlinear system
of NM scalar equations of the form

F (u) := u− aii∆tB(u)u− r = 0, (3.7)

where the vector r ∈ RMN is given by

r = Φn + ∆t
i−1∑
j=1

aijB
(
Φ(j)

)
Φ(j) + ∆t

i∑
j=1

âi+1,j(∆f)
(
Φ(j)

)
. (3.8)
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The solution of systems (3.7), (3.8) will be discussed in Section 4.
We identify a particular IMEX-RK scheme with the notationName(s, σ, p), where

this triplet characterizes the number s of stages of the implicit scheme, the number
σ of effective stages of the explicit scheme (σ = s or σ = s + 1) and the order p of
the method. We consider the following three schemes (see [3] for more details): the
scheme IMEX-RK(1,1,1) defined by the pair of Butcher arrays

D =
0 0 0
1 0 1

0 1
, D̂ =

0 0 0
1 1 0

1 0
, (3.9)

the scheme IMEX-RK(2,2,2) defined by

D =
γ γ 0
1 1− γ γ

1− γ γ
, D̂ =

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

,

where γ = 1− 1√
2
, δ = 1− 1

2γ
,

(3.10)

and the scheme IMEX-RK(3,4,3) defined by

D =

γ γ 0 0

1 + γ

2
1− γ

2
γ 0

1 b1 b2 γ
b1 b2 γ

, D̂ =

0 0 0 0 0
γ γ 0 0 0

1 + γ

2
â31 â32 0 0

1 â41 â42 â43 0
0 b1 b2 γ

, (3.11)

where γ is the middle root of 6x3 − 18x2 + 9x− 1 = 0, and

b1 = −3
2
γ2 + 4γ − 1

4
, b2 =

3
2
γ2 − 5γ +

5
4
,

â31 =
(

1− 9
2
γ +

3
2
γ2

)
â42 +

(
11
4
− 21

2
γ +

15
4
γ2

)
â43 −

7
2

+ 13γ − 9
2
γ2,

â32 =
(
−1 +

9
2
γ − 3

2
γ2

)
â42 +

(
−11

4
+

21
2
γ − 15

4
γ2

)
â43 + 4− 25

2
γ +

9
2
γ2,

â41 = 1− â42 − â43.

(3.12)

4. Nonlinear solvers. The previous section shows that IMEX-RK schemes are
applicable to the convection-diffusion equation at hand (1.2) as long as one can effi-
ciently find the solution of the nonlinear system (3.7), whose existence and uniqueness
is guaranteed for small enough ∆t. We now introduce two alternative methods that
can be employed for this purpose.

4.1. Fixed-point (FP) iteration. Due to the structure of the nonlinearity in
(3.7), its solution could be obtained by a lagged diffusivity FP iteration that entails
solving a convection-diffusion equation with a linear diffusion term at each iteration.
For this purpose, and with reference to (3.7), we define the function G(u,v) :=
u− aii∆tB(v)u− r for u,v ∈ RNM , which satisfies G(u,u) = F (u). The algorithm
starts with u(0) = Φn and one solves for u = u(ν+1) the linear system

G(u,u(ν)) = 0, ν = 0, 1, 2, . . . , (4.1)
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where one expects that u(ν) converges to Φn+1. This widely used linearization strat-
egy works in some situations, but, as the following example illustrates, it may not be
convergent when the diffusion coefficient is not sufficiently smooth, as is the case of
equations (2.6)-(2.8) for polydisperse sedimentation and (2.13) for traffic flow models,
due to the non-differentiability of the diffusion coefficients.

Example 4.1. Consider system (3.7) for a scalar unknown (N = 1):

un+1
j − unj

∆t
+
f̂j+1/2 − f̂j−1/2

∆x
=

1
∆x2

(
aj + aj+1

2
∆−un+1

j+1 −
aj−1 + aj

2
∆−un+1

j

)
,

for j = 1, . . . ,M , with aj = a(un+1
j ). For M = 1, ∆x = 1 and Dirichlet boundary

conditions u0 = u2 = 0 we obtain

un+1
1 − un1

∆t
+ f̂3/2 − f̂1/2 =

a1

2
(−un+1

1 )− a1

2
un+1

1 ,

which can be arranged to give un+1
1 (1 + ∆ta(un+1

1 )) = un1 −∆t(f̂3/2 − f̂1/2), which
means that we wish to solve the equation v(1 + ∆ta(v)) = b := un1 −∆t(f̂3/2 − f̂1/2)
for v = un+1

1 . In this case the proposed fixed point method consists in the iteration
v(ν+1)(1 + ∆ta(v(ν))) = b, which gives the fixed-point iteration

v(ν+1) =
b

1 + ∆ta(v(ν))
=: ϕ(v(ν)),

which converges for all starting values v(0) if |ϕ′| < 1. Since

ϕ′(v) =
b∆ta′(v)

(1 + ∆ta(v))2
,

we see that |ϕ′(v)| < 1 holds if and only if |b|∆t|a′(v)| < (1 + ∆ta(v))2, which implies
that if |a′(v)| is sufficiently large, the iteration may not converge.

We therefore require an alternative nonlinear solver, such as the NR method, to
handle the nonlinear systems (3.7) that arise in the present formulation.

4.2. Newton-Raphson (NR) method. To approximately solve the nonlinear
system (3.7) by the NR iterative method it is necessary that the coefficients of the ma-
trix function B, and therefore those of B, be at least twice continuously differentiable.
However, the models of interest here, namely the diffusively corrected polydisperse
sedimentation and MCLWR models, do not naturally satisfy this assumption. We
therefore replace B by a smooth approximation Bε, and denote the corresponding
version of B by Bε, where it is understood that Bε → B and Bε → B as ε→ 0. The
precise algebraic form of this approximation is defined separately for each specific
application in section 5. Note that the purpose of this approximation is to create
smoothness, but not to convert the problem into a uniformly parabolic one.

We denote by F ε(u) the function (3.7), where B(u) has been replaced by Bε(u).
The function F ε is highly nonlinear for small ε, in the sense that the second derivative
of F ε is much larger than its first derivative. Therefore, by Kantorovich’s theorem
(see [13]), the region of guaranteed convergence gets smaller when ε → 0. On the
other hand, the linearity of F ε behaves in the opposite way when increasing ε (in
fact, for the regularization that we use in section 5, F ε(u) → u − r, when ε → ∞),
so the region of guaranteed convergence of the NR method increases. With these
observations, we use a similar strategy as the one used in [12] to efficiently solve
F ε(u) = 0 for a prescribed ε = εmin as follows:
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If uε is a solution of F ε(uε) = 0, then we use uε as an initial datum for approx-
imating the solution of F ε′(u) = 0 for ε′ < ε by the NR method with a line search
strategy (see [13]). We start this process with a sufficiently large value ε0 and we
repeat this process until we obtain a solution F εmin(u) = 0. Based on the previous
discussion on the linearity of F ε, we select ε0 as the smallest power of 10 for which
the NR method succeeds (i.e., converges within a given tolerance and a generously
large maximum number of iterations) solving F ε0(u) = 0 when given u = Φn as the
initial guess.

The decrease of ε can be automated by using that limε→ε′ uε = uε′ enables us to
choose ε′ = κε for some κ ∈ (0, 1) and use uε as the initial iteration to solve F ε′(u),
hoping that this initial guess is close enough to the solution for the NR method to
converge within a given tolerance and a given maximum number of iterations. If the
NR method does not succeed, then we take κ closer to 1 and try again; on the other
hand, if the NR method takes a small number of iterations to converge (less than 3,
say), then we diminish the factor κ.

It is easy to see that the direction obtained from the NR method for the solu-
tion of F ε(u) = 0, namely the vector (−JF ε(u))−1F ε(u), is a direction of descent
for m(u) = ‖F ε(u)‖22. Therefore we can use the following algorithm to ensure the
convergence of the NR method.

Algorithm 4.1 (Newton-Raphson (NR) method with line search strategy).
Input: approximate solution vector Φn at t = tn as a starting value
u(0) ← Φn, ε← ε0, m(u)← ‖F ε(u(0))‖22, ν ← 0
while ε ≥ εmin do

while ν ≤ Niter and m(u(ν)) < tol do
solve for pν the linear system JF ε

(u(ν))pν = −F ε(u(ν))
α0 ← 1
k ← 0
while αk ≥ αmin do

u← u(ν) + αkpν , m(u)← ‖F ε(u)‖22
if m(u) < m(u(ν)) then
u(ν+1) ← u

else
αk+1 ← 0.8αk

endif
k ← k + 1

endwhile
ν ← ν + 1

endwhile
Decrease ε

endwhile
Output: approximate solution u of the nonlinear system F ε(u) = 0.

Since JFε
(u) is a block tridiagonal (and block circulant for periodic boundary

conditions) matrix, we can use an efficient block tridiagonal solver for the linear
systems JFε

(u)z = −Fε(u). We cannot ensure the invertibility of these matrices
(only for sufficiently small ∆t) but have not experienced any invertibility failures in
our tests.

5. Numerical results. For comparison purposes, we compute reference solu-
tions for numerical tests by the KT scheme [24], which is employed in [5] for the
numerical solution of (1.2) for the diffusively corrected polydisperse sedimentation



IMEX METHODS FOR DIFFUSIVELY CORRECTED KINEMATIC FLOWS 15

model (sedimentation with compression). The reference solution is based on a fine
discretization with Mref = 12800 cells and ∆t is selected at each time step following
the formula

∆t = Ccfl1

(maxΦ ρ̃(Jf (Φ))
∆x

+
maxΦ ρ̃(B(Φ))

2∆x2

)−1

(5.1)

with Ccfl1 = 0.25 and with estimates ρ̃ of the spectral radius of the corresponding
matrices obtained from Theorems 2.1 and 2.2 for the polydisperse case and Theorem
2.3 and Lemma 2.4 for the traffic model. This CFL number has been empirically
adjusted to be the largest multiple of 0.05 that yields an oscillation-free reference
solution. The variable time step (5.1) with Ccfl1 = 0.25 has been used for the KT
scheme in all the following tests.

We use the following time steps for the IMEX-RK schemes:

∆t = Ccfl2∆x
(
max

Φ
ρ(Jf (Φ))

)−1
, (5.2)

where ρ(Jf (Φ)) is computed along with the characteristic information needed for
the convective part and Ccfl2 is empirically obtained as the largest multiple of 0.05
that yields oscillation-free simulations with Mref cells. These numbers are Ccfl2 =
0.25 for the scheme IMEX-RK(1,1,1) (3.9) in Examples 1 and 2 and Ccfl2 = 0.1 for
Examples 3 and 4, whereas Ccfl2 = 0.7 for the methods IMEX-RK(2,2,2) (3.10) and
IMEX-RK(3,4,3) (3.11), (3.12) in all examples. We mention that the scheme IMEX-
RK(1,1,1) applied to fifth-order WENO (WENO5) spatial semidiscretizations should
have a stability restriction related to that for the forward Euler method and WENO5.
A modified von Neumann analysis carried out in [29] indicates that the CFL number of
the schemes obtained by using Euler method to integrate semidiscretizations obtained
by WENO5 have a stability restriction proportional to ∆x4. In our experiments we
have not had to use such a small restriction, but we have had to reduce the Courant
number considerably with respect to the other IMEX-RK methods.

5.1. Example 1: settling of a tridisperse suspension. We simulate the
settling of a tridisperse (N = 3) suspension forming a compressible sediment. The
mixture is described by the model functions (2.8), (2.3), (2.4) with φmax = 0.66, nRZ =
4.7, σ0 = 180 Pa, φc = 0.2, k = 2, µf = 10−3 Pa s, d = 1.19×10−5 m, ρs = 1800 kg/m3,
and g = 9.81 m/s2 [5]. The initial concentration is Φ0 = (0.04, 0.04, 0.04)T in a vessel
of height K = 1m with normalized squared particle sizes δ = (1, 0.5, 0.25)T.

For this model, according to (2.6), the coefficients are defined in terms of the func-
tion σe(φ) and its derivative. The regularization mentioned in Section 4 is achieved by
replacing σe(φ) by a regularized smooth function σe(φ; ε) such that σe(φ; ε)→ σe(φ)
for all φ and σ′e(φ; ε) → σ′e(φ) for all φ 6= φc as ε → 0. Specifically, if σe satisfied
(2.7), we choose

σe(φ; ε) = σe(φ) exp
(
−ε/(φ− φc)2

)
, ε > 0. (5.3)

In Figure 5.1 we compare results obtained by schemes KT, IMEX-RK(1,1,1),
IMEX-RK(2,2,2) and IMEX-RK(3,4,3). We observe good approximations for the
IMEX-RK schemes compared with the KT scheme near φc and no oscillations are
observed at this scale. For solving the nonlinear system (3.7) that appears in the
IMEX-RK formulation, we use Algorithm 4.1 where ε varies from ε0 = 10−4 to εmin =
10−7 and tol = 10−8. In Figure 5.2 we display numerical approximations calculating
the diffusion coefficient with (5.3) for different fixed values of ε. Note that for ε =
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Table 5.1
Examples 1 and 4: maximum number of iterations νmax required by the NR method for solving

(3.7), maximum number of reductions kmax of α in Algorithm 4.1, global average number of itera-
tions ν̄, and global average number of reductions k̄ of α required for two different discretizations (a)
by IMEX-RK(2,2,2) for Example 1, (b) by IMEX-RK(3,4,3) for Example 4.

(a) (b)

M νmax kmax ν̄ k̄
200 4 0 2.1 0
800 6 2 2.45 0.01

M νmax kmax ν̄ k̄
400 6 5 3.8 0.4
1600 9 7 4.4 0.5

Table 5.2
Example 1: total approximate L1 errors etot(T ) (“error”), multiplied by 10−5; convergence

rates (cr), and CPU times (cpu), at two simulated times T for the schemes KT and IMEX-RK(1,1,1)
with Ccfl1 = Ccfl2 = 0.25, and the schemes IMEX-RK(2,2,2) and IMEX-RK(3,4,3) with Ccfl2 = 0.7.

KT IMEX-RK(1,1,1) IMEX-RK(2,2,2) IMEX-RK(3,4,3)
T [s] M error cr cpu error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 150.4 — 0.6 131.8 — 0.2 148.8 — 0.2 149.1 — 0.3
200 75.7 0.99 4.7 62.7 1.07 0.9 73.4 1.02 0.7 74.0 0.98 1.2

4000 400 38.4 0.98 26.6 31.1 1.01 3.7 37.0 0.98 2.6 37.1 0.61 4.6
800 20.8 0.88 289.1 18.1 0.78 14.6 20.0 0.89 9.9 19.9 1.04 19.2
1600 11.3 0.88 2349.0 9.1 0.98 65.4 10.1 0.97 44.7 10.1 0.86 81.8
100 141.1 — 2.4 139.5 — 0.6 140.5 — 0.5 139.5 — 0.8
200 75.6 0.89 18.1 69.3 1.01 2.6 70.8 0.98 1.9 70.9 0.97 3.2

10000 400 40.2 0.91 101.6 44.9 6.24 10.0 46.9 0.61 6.9 47.2 0.61 12.4
800 21.6 0.89 1103.0 21.4 1.07 40.1 22.7 1.04 27.1 22.1 1.09 49.7
1600 12.6 0.78 9058.6 12.2 0.81 175.3 12.4 0.96 116.3 12.4 0.84 218.3

10−5, we obtain a good approximation with respect to the reference solution and it is
remarkable that for fixed ε ≤ 10−6, the NR method did not converge. On the other
hand, the strategy of reduction of ε in Algorithm 4.1 succeeds for smaller εmin.

In Table 5.1 (a) we describe some details of the convergence history of the NR
method to obtain a numerical approximation at simulated time T = 10000s using
the IMEX-RK(2,2,2) scheme with M = 200 and M = 800 cells. Observe that for
M = 800, for each fixed value of ε, the NR method required at most 6 iterations,
but in general, only 2 or 3 iterations iterations were necessary. With respect to α,
Algorithm 4.1 reduced this parameter twice, which means that the line search strategy
was used at some point, but in general it was not necessary. It is worth pointing out
that the FP iterative procedure (4.1) did not converge for ε < 10−2.

Table 5.2 and Figure 5.3 show approximate L1 total errors, convergence rates
(cr) and CPU times (cpu) for Example 1. These approximate errors are computed
as follows: Let us denote by (φMj,i(t))

M
j=1 and (φref

l,i (t))Mref
l=1 the numerical solution for

the i-th component at time t calculated with M and Mref cells, respectively. We use
cubic interpolation from the reference grid to the M cells grid to compute φ̃ref

j,i (t) for
j = 1, . . . ,M . We then calculate the approximate L1 error in species i by

ei(t) :=
1
M

M∑
j=1

∣∣φ̃ref
j,i (t)− φMj,i(t)

∣∣, i = 1, . . . , N.

We define the total approximate L1 error at time t as etot(t) := e1(t) + · · ·+ eN (t).
As can be deduced from Table 5.2, the most efficient scheme is IMEX-RK(2,2,2):

for the same resolution M the IMEX-RK(1,1,1) scheme has the smallest error, closely
followed by the IMEX-RK(2,2,2), IMEX-RK(3,4,3) and KT schemes, in increasing
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Fig. 5.1. Example 1: (a) reference solution (KT scheme, M = 12800) at simulated time
T = 4000 s, (b, c) enlarged view of solution by KT and IMEX-RK schemes with M = 200 at
T = 4000 s, (d) reference solution at T = 10000 s, (e) enlarged view of solution by KT and IMEX-
RK schemes with M = 200 at T = 10000 s, (f) reference solution at T = 50000 s.

order with respect to error size; on the other hand, the CPU time of IMEX-RK(2,2,2)
is the lowest, basically due to the increased CFL number with respect to the IMEX-
RK(1,1,1) scheme and the smaller number of implicit stages with respect to the IMEX-
RK(3,4,3) scheme. One can also deduce from Table 5.2 that the CPU time scales as
O(M2) for the IMEX schemes, whereas it scales as O(M3) for the KT scheme. This
implies a nearly fixed cost of the solution of nonlinear systems per time step and that
the gap in CPU time increases with M . For instance, IMEX-RK(2,2,2) is about 60
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Fig. 5.3. Example 1: total approximate L1 errors versus CPU time for KT and IMEX-RK
schemes at simulated times (a) T = 4000 s, (b) T = 10000 s. Here and in Figures 5.5, 5.8 and 5.10,
for each scheme the interpolated symbols correspond to different values of M .

times faster than the KT scheme for a resolution of M = 1600 cells.
We note that a careful observation of CPU times of the same scheme and reso-

lution at different simulated times yields that the CPU time is not proportional to
the simulated time. This is due the variable time stepping in formulas (5.1) and (5.2)
and to the fact that the spectral radius of the Jacobian of the fluxes and the diffusion
matrix is smaller at the early stages of the simulation (in fact, the diffusion matrix
may be null in a noticeable period of time) so the time steps may be larger at the
beginning of the simulation.

5.2. Example 2. We now simulate the settling of a polydisperse suspension
of N = 8 species forming a compressible sediment with a sufficiently smooth dif-
fusion coefficient, thus allowing us to use directly the FP (4.1) and NR nonlinear
solvers without resorting to Algorithm 4.1, since, in this case, there is no need to
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Fig. 5.4. Example 2: numerical solution obtained by scheme IMEX-RK(3,4,3)-N with M =
1600 cells at simulated times (a) T = 2000 s (including enlarged view of spreading suspension-
supernate transition zone), (b) T = 6000 s, (c) T = 21000 s and (d) T = 120000 s.

Table 5.3
Example 2: Initial conditions φ0

i , normalized squared particle sizes δi.

i 1 2 3 4 5 6 7 8
φ0

i [10−2] 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
δi 1.00 0.70 0.50 0.42 0.36 0.26 0.18 0.10

regularize the diffusion coefficients. We denote by IMEX-RK-NR and IMEX-RK-FP
the corresponding IMEX-RK schemes with the NR method and the FP algorithm,
respectively. Figure 5.4 shows the numerical solution obtained with IMEX-RK(3,4,3)-
NR with M = 1600 cells at several times. In Table 5.4 and Figure 5.5, we display
total approximate L1 errors and CPU times for the different schemes at different dis-
cretizations. In both cases we observe that the IMEX-RK scheme is faster than the
KT scheme, and that the NR version of each scheme is faster than the correspond-
ing FP version, even when the number of equations N is large. A solution for the
nonlinear system (3.7) at each time step is obtained when ‖u(ν+1) − u(ν)‖ < 10−8.

With respect to efficiency, Table 5.4 leads to conclusions similar those drawn in
Example 1. Here the errors obtained with the IMEX schemes are roughly half those
obtained with the KT scheme, whereas the CPU time speedup reaches a factor of
about 60 if we compare, for instance, the CPU times of KT and IMEX-RK(1,1,1)-NR
for M = 1600 and T = 6000 s.
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Table 5.4
Example 2: total approximate L1 errors (in short, “error”), multiplied by 10−5; convergence

rates (cr), and CPU times (in seconds), at times T = 6000 s and T = 21000 s for KT and
IMEX-RK(1,1,1) schemes with CFL condition Ccfl1 = Ccfl2 = 0.25, IMEX-RK(2,2,2) and IMEX-
RK(3,4,3) with CFL condition Ccfl2 = 0.7. The nonlinear system (3.7) is solved either by the NR
or the FP method (versions “-NR” and “-FP”).

KT IMEX-RK(1,1,1)-NR IMEX-RK(2,2,2)-NR IMEX-RK(3,4,3)-NR
T [s] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu

100 444.4 — 1.4 257.2 — 0.7 280.4 — 0.8 281.4 — 1.0
200 257.5 0.80 12.0 144.7 0.82 3.0 159.2 0.81 3.3 169.2 0.73 4.1

6000 400 118.2 1.12 96.0 57.7 1.32 11.8 65.4 1.22 13.5 70.4 1.26 16.5
800 54.7 1.11 836.1 27.1 1.09 52.4 30.7 1.08 54.2 31.7 1.14 71.2
1600 29.3 0.90 6327.7 15.3 0.81 211.4 15.8 0.95 218.0 16.8 0.91 300.8

IMEX-RK(1,1,1)-FP IMEX-RK(2,2,2)-FP IMEX-RK(3,4,3)-FP
T [s] M error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 257.1 — 2.0 280.4 — 1.3 280.8 — 2.4
200 144.7 0.82 8.5 159.2 0.81 5.5 159.3 0.82 10.1

6000 400 57.7 1.32 33.7 65.4 1.28 22.5 65.3 1.28 43.1
800 27.1 1.09 138.8 30.7 1.09 95.3 30.8 1.08 169.7
1600 15.3 0.81 594.2 16.8 0.86 413.3 16.8 0.88 741.1

KT IMEX-RK(1,1,1)-NR IMEX-RK(2,2,2)-NR IMEX-RK(3,4,3)-NR
T [s] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 431.8 — 10.3 224.8 — 2.8 229.7 — 2.9 229.9 — 3.4
200 230.2 0.90 90.4 118.6 0.92 11.0 121.2 0.92 11.7 121.2 0.92 13.3

21000 400 125.6 0.87 721.6 64.3 0.88 44.0 65.7 0.88 46.7 65.7 0.88 52.7
800 67.9 0.88 5885.5 40.4 0.66 189.3 41.1 0.68 198.7 41.1 0.67 211.1
1600 37.6 0.84 36809.6 21.4 0.91 682.0 21.7 0.92 756.3 21.7 0.91 894.3

IMEX-RK(1,1,1)-FP IMEX-RK(2,2,2)-FP IMEX-RK(3,4,3)-FP
T [s] M error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 224.8 — 7.1 229.7 — 4.3 229.9 — 7.7
200 118.6 0.92 29.3 121.2 0.92 17.8 121.2 0.92 32.3

21000 400 64.4 0.88 125.6 65.7 0.88 73.5 65.7 0.88 133.0
800 40.6 0.66 481.4 41.1 0.67 310.0 41.1 0.67 553.3
1600 22.7 0.83 1946.4 23.3 0.81 1331.4 21.7 0.91 2403.1

A comparison of the entries corresponding to the NR versions of the IMEX-RK
schemes with those of the FP versions in Table 5.4 indicates the superior efficiency
of the NR method compared with the FP iterative solver. This is basically explained
by a lower convergence rate of the latter with respect to the former, which yields an
increased number of iterations with a similar computational cost per iteration.

5.3. Examples 3 and 4: diffusively corrected kinematic traffic model.
We consider a circular road and a number N of driver classes associated with velocities
vmax
i > vmax

j for i < j. If ρi denotes the number of cars of species i per mile, and ρmax

is the maximal “bumper-to-bumper” number of cars per mile, we define φi := ρi/ρmax.
To make results comparable with those of [10], we employ the Dick-Greenberg model
[14, 22] V (φ) = VDG(φ) = min{1,−C lnφ}, and choose (as in [10, 30, 31]) C = e/7 ≈
0.38833 so that{

V (φ) = 1, V ′(φ) = 0 for 0 ≤ φ ≤ φc = exp(−1/C) ≈ 0.076142,
V (φ) = −C lnφ, V ′(φ) = −C/φ for φc < φ < 1.

(5.4)

We equip class 1 with exactly the same properties as the vehicles considered in [10],
and therefore set τ = 2 s = 0.0005̄ h. We choose all anticipation lengths Li = L =
0.05 mi and all reaction times τi = τ , i = 1, . . . , N in such a way that (2.20) holds
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Fig. 5.5. Example 2: total approximate L1 errors versus CPU time for KT, IMEX-RK-N and
IMEX-RK-Fp schemes at simulated times (a) T = 6000 s, (b) T = 21000 s.

with φmax = 1, i.e.,

τ ≤ min
0≤φ≤1

(
− L(φ)
φV ′(φ)vmax

1

)
=

L

Cvmax
1

=
7 · 0.05 mi
e · 70mi/h

≈ 0.00184 h = 6.622 s.

We easily see that in this case

C2 = τ2(V (φ))2
N∑

i,j=1
i<j

φiv
max
i φjv

max
j (vmax

j − vmax
i )2 ≥ 0.

For this model, according to (2.13), the coefficients depend on V (φ) and its deriva-
tive. The regularization mentioned in Section 4 is achieved by replacing V (φ) by

V (φ; ε) = 1 + (V (φ)− 1) exp
(
−ε/(φ− φc)2

)
, ε > 0. (5.5)

To be definite, we study N = 3 vehicle classes with vmax
1 = 70 mi/h, vmax

2 =
50 mi/h and vmax

3 = 30 mi/h on a circular roadway with length K = 4mi, i.e., we use
periodic boundary conditions. The initial density distribution is given by an isolated
platoon of maximum global density ρ0, Φ0(x, 0) = p(x− 1)ρ0(0.25, 0.4, 0.35)T, where

p(x) =

{
10x for 0 < x ≤ 0.1,
1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,
0 otherwise,

and we choose ρ0 = 0.45 and ρ0 = 0.25 in Examples 3 and 4, respectively.
Figure 5.6 shows the time evolution with IMEX-RK(3,4,3) and M = 1600 cells

of the initial density platoon for Example 3. The average density exceeds φc, i.e.,
the traffic is relatively dense. We observe that the numerical solution evolves to a
stationary solution, which must lie in the parabolic region. In this test the velocity
function (5.4) is regularized by (5.5) as in Example 1. Algorithm 4.1 was used with
ε varying from ε0 = 10−3 to εmin = 10−6 and tol = 10−8. Previous numerical tests
indicated that εmin = 10−6 was sufficient to obtain good approximations.

In Figure 5.7 we compare the results obtained by the KT and IMEX-RK schemes.
Plotted areas correspond to regions where the diffusive term acts. We observe that the
IMEX-RK schemes approximate adequately the reference solution. In Table 5.5 and
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Fig. 5.6. Example 3: numerical solution obtained with scheme IMEX-RK(3,4,3) with M = 1600
at simulated times (a) T = 0.0 h (initial datum), (b) T = 0.01 h, (c) T = 0.05 h, (d) T = 0.1 h, (e)
T = 0.5 h and (f) T = 5.0 h.

Figure 5.8 we display the history of total approximate L1 errors and CPU times for
Example 3. From Figure 5.8 we infer that IMEX-RK(2,2,2) and IMEX-RK(3,4,3) are
always more efficient than the KT scheme, with speedup factors above 10. However,
for small resolutions, the IMEX-RK(1,1,1) is penalized by the CFL reduction and, for
instance, it is less efficient than the KT scheme for M = 200.

In Table 5.1 (b) we describe some details of the convergence history of the NR
method to obtain numerical approximations at simulated time T = 0.2h using IMEX-
RK(3,4,3) scheme with M = 400 and M = 1600 subintervals. Observe that for
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Fig. 5.7. Example 3: (a) reference solution (scheme KT, Mref = 12800), (b, c, d) enlarged
views of reference solution and numerical solutions for individual species for KT and IMEX-RK
schemes with M = 400, at simulated time T = 0.2 h.

Table 5.5
Example 3: total approximate L1 errors multiplied by 10−5, convergence rates and CPU times

at time T for scheme KT with Ccfl1 = 0.25, scheme IMEX-RK(1,1,1) with Ccfl2 = 0.1, and schemes
IMEX-RK(2,2,2) and IMEX-RK(3,4,3) with Ccfl2 = 0.7.

KT IMEX-RK(1,1,1) IMEX-RK(2,2,2) IMEX-RK(3,4,3)
T [h] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

200 305.7 — 1.4 302.1 — 2.4 321.3 — 0.6 305.8 — 1.1
400 172.4 0.82 10.4 170.1 0.82 9.6 183.5 0.80 2.7 170.6 0.84 4.8

0.05 800 88.4 0.96 78.6 88.6 0.94 42.2 97.2 0.91 12.5 83.7 1.02 22.4
1600 42.8 1.04 592.5 44.2 1.00 181.8 49.9 0.96 58.9 38.9 1.10 102.1
3200 22.8 0.90 4704.5 25.5 0.80 797.2 25.5 0.96 263.9 20.0 0.96 475.6
200 343.2 — 5.3 279.8 — 15.5 188.7 — 4.2 167.6 — 6.8
400 165.7 1.04 40.9 145.9 0.93 73.3 91.2 1.04 16.8 82.6 1.02 28.2

0.25 800 74.5 1.15 324.1 78.0 0.90 270.3 38.2 1.25 76.0 31.4 1.39 136.0
1600 37.2 0.99 2022.1 36.9 1.07 1016.8 19.6 0.95 326.2 15.8 0.98 549.9
3200 19.4 0.94 14965.5 20.5 0.84 4155.6 10.3 0.92 1376.8 7.7 1.02 2482.9

M = 1600 and each fixed value of ε, the NR method required at most 9 iterations,
but in average, only 4 or 5 iterations were necessary. With respect to α, at some point
Algorithm 4.1 reduced it seven times but, in general, no more that one reduction was
necessary.

In Example 4 we choose ρ0 = 0.25 so that the average density is below φc. This
case does not evolve into a stationary solution. In Figure 5.9 we compare results ob-
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Fig. 5.8. Example 3: total approximate L1 errors versus CPU time for KT and IMEX-RK
schemes at simulated times (a) T = 0.05 h, (b) T = 0.25 h.

tained by the KT, IMEX-RK(1,1,1), IMEX-RK(2,2,2) and IMEX-RK(3,4,3) schemes
at simulated time T = 0.2h with respect to the reference solution. Numerical approx-
imations are computed with IMEX-RK(3,4,3) and M = 1600 cells. We observe that
the IMEX-RK schemes approximate adequately the reference solution.

In Table 5.6 and Figure 5.10, we display total approximate L1 errors and CPU
times for Example 4. We infer that IMEX-RK(2,2,2) and IMEX-RK(3,4,3) are always
more efficient than the KT scheme. We observe the same trends as those mentioned
for the previous setup.

Table 5.6
Example 4: total approximate L1 total errors, multiplied by 10−5, convergence rates and CPU

times for KT scheme with Ccfl1 = 0.25, scheme IMEX-RK(1,1,1) with Ccfl2 = 0.1, and schemes
IMEX-RK(2,2,2) and IMEX-RK(3,4,3) with Ccfl2 = 0.7.

KT IMEX-RK(1,1,1) IMEX-RK(2,2,2) IMEX-RK(3,4,3)
T [h] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

200 283.8 — 0.8 294.8 — 2.5 291.8 — 0.7 261.7 — 1.2
400 170.9 0.71 6.8 150.4 0.97 10.1 180.9 0.69 2.9 167.7 0.65 4.9

0.06 800 96.9 0.81 56.9 82.9 0.85 41.8 98.9 0.87 12.6 88.5 0.92 21.3
1600 48.4 1.01 307.9 45.5 0.86 166.5 49.4 1.01 53.5 45.3 0.96 85.4
3200 25.1 0.94 2660.1 26.2 0.79 874.4 25.1 0.97 215.1 24.1 0.90 326.2
200 186.0 — 3.0 183.3 — 8.8 190.9 — 2.4 155.5 — 3.9
400 93.6 0.99 20.5 95.2 0.94 34.9 97.2 0.97 9.6 73.6 1.07 16.1

0.20 800 49.3 0.92 157.4 50.1 0.92 138.3 49.3 0.98 41.2 34.6 1.08 69.0
1600 25.0 0.97 1367.8 27.3 0.87 546.3 22.0 1.16 175.3 15.2 1.18 302.7
3200 13.3 0.90 10261.1 14.4 0.92 2309.2 11.3 0.95 714.3 7.25 1.06 1246.1

6. Conclusions. Some kinematic models can be enriched with nonlinear, non-
smooth and strongly degenerate diffusive terms to account for certain additional fea-
tures. Their long term fine simulations with explicit schemes is limited by the typical
parabolic time step restriction, but implicit-explicit Runge-Kutta schemes can over-
come this burden. We have shown why lagged diffusivity solvers for the nonlinear
systems that appear in this IMEX formulation do not work for vanishing smoothness
regularizations of the diffusion coefficients whereas a smart solving strategy based
on the Newton-Raphson’s method can be efficiently applied for this purpose. The
speedup of these IMEX methods with respect to the Kurganov-Tadmor (explicit)
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Fig. 5.9. Example 4: (a) reference solution (scheme KT, Mref = 12800), (b, c, d) enlarged
views of reference solution and numerical solutions for individual species for KT and IMEX-RK
schemes with M = 800, at simulated time T = 0.2 h.

scheme is computed for some selected tests and shown to be at least an order of
magnitude for moderate spatial resolutions.

The limitations of this approach stem from the fact that a regularization of the
diffusion coefficients has to be selected and there is a tradeoff between the fidelity
to the original coefficients and computational time. Nevertheless, we stress that the
proposed regularizations do not change the strong degeneracy of the diffusion.

In this work we have considered constant reaction times and anticipation lengths
for all driver classes. We plan to investigate plausible conditions on those parameters
to ensure the stability of the solutions of the models.
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