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This paper deals with an axisymmetric transient eddy current problem in conductive

nonlinear magnetic media. This means that the relation between the magnetic field and
the magnetic induction, the so-called H-B curve, is nonlinear. The source of the problem
is the magnetic flux across a meridian section of the device, which leads to a parabolic
nonlinear problem with nonlocal boundary conditions. First, by applying some abstract

results, we prove the existence and uniqueness of the solution to a weak formulation
written in terms of the magnetic field. Then, we compute the numerical solution of
the problem by using a finite element method combined with a backward Euler time
discretization. We derive error estimates in appropriate norms for both the semidiscrete

(in space) and the fully discrete problems. Finally, we show numerical results which allow
us to confirm the theoretical estimates and to assess the performance of the proposed
scheme.
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1. Introduction

An important challenge to bear in mind in the analysis and design of electrical

machines is the accurate computation of the power losses in the ferromagnetic

components of the core. These losses determine the efficiency of the device and

have a significant influence on its operating cost.

At the macroscopic level, two main type of losses can be distinguished: hysteresis

losses, which are related to the intrinsic nature of magnetic materials, and eddy
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current losses, due to the Joule effect.6

There are numerous publications devoted to obtain analytical simplified expres-

sions to approximate the different losses, which are only valid under assumptions

that often do not hold in practice (see, for instance, Refs. 6 and 7). Numerical mod-

eling is an interesting alternative to overcome these limitations and, thus, we can

find several works focused on the computation of hysteresis and eddy current losses

(see Refs. 10, 15, 23 and references therein).

A first step in the computation of this kind of loses is the numerical solution

of the underlying electromagnetic problem. This requires solving the quasi-static

Maxwell’s partial differential equations, a well established subject, even in the three-

dimensional (3D) case where edge finite elements are very useful.1 This issue was

studied in Refs. 18 and 19 in terms of the magnetic field and in absence of hysteresis

effects. In these references the 3D problem is posed on a bounded conducting domain

and homogeneous Dirichlet boundary conditions are assumed. Moreover current

sources are not taken into account, the only source term being the initial condition.

A time semi-discretization scheme is proposed and analyzed to approximate this

problem.

However, major difficulties arise from the fact that cores are laminated to re-

duce the eddy current losses. Thus, to account for the detailed geometry, extremely

fine meshes should be needed, which becomes unaffordable. To overcome this diffi-

culty, one can find different strategies based on the use of the so-called equivalent

conductivity4,11,13,15 or on homogenization techniques.9 In this paper, we are inter-

ested in an alternative approach proposed by Van Keer et al.,22,23 which consists

in computing the electromagnetic field in a cross-section of the laminated device,

orthogonal to the direction of the enforced flux. The models introduced in Cartesian

and cylindrical coordinates in Refs. 22 and 23 include also hysteresis effects and

lead to parabolic nonlinear problems which, to the authors’ knowledge, have not

yet been analyzed from the mathematical or numerical points of view.

We will address these issues in the axisymmetric case without including hystere-

sis effects. The behavior of the material is defined by an anhysteretic H-B curve.

We prove that a weak formulation of this problem in terms of the magnetic field

has a unique solution. Then, we propose a numerical scheme to approximate the

solution of this problem for which we obtain error estimates.

The paper is organized as follows. In Section 2, we describe the transient ax-

isymmetric eddy current model and introduce the nonlinear parabolic partial dif-

ferential equation to be solved. Next, in Section 3, we obtain a weak formulation

of the problem. The existence of solution is proved by applying results for abstract

nonlinear parabolic equations. Section 4 is devoted to numerical methods. A space

semi-discretization by finite elements is introduced and, then, a backward Euler

scheme is applied for time discretization. Error estimates for both schemes are ob-

tained. Finally, numerical results that confirm the theoretical estimates are shown

in Section 5.
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2. The transient nonlinear eddy current model

The eddy current model is an approximation of the full Maxwell system of equations

obtained by neglecting the displacement currents in Ampère’s law. This simplified

model is suitable for most electrical engineering applications (the so-called low-

frequency regime), for instance, in the numerical simulation of electrical machines

working at power frequencies. The eddy current model reads

curlH = J, (2.1)

∂B

∂t
+ curlE = 0, (2.2)

divB = 0, (2.3)

where we have used standard notation in electromagnetism: H is the magnetic field,

J the current density, B the magnetic induction and E the electric field. In order

to obtain a closed system we need to add constitutive laws. Assuming that the

materials are electrically linear but magnetically nonlinear, we have

J = σE, (2.4)

B = B(H). (2.5)

Equation (2.4) is Ohm’s law, where σ denotes the electrical conductivity of the

medium. In the magnetic constitutive relation (2.5), B is in general a nonlinear

mapping. Two extreme cases are the following: linear isotropic materials, for which

this mapping reduces to B(H) = µH with µ being the constant magnetic permeabil-

ity, and ferromagnetic materials where hysteresis phenomena may occur, in which

case the H-B relation exhibits a history-dependent behavior. Our analysis allows

for a nonlinear magnetic material, that will be represented through an anhysteretic

H-B curve, which could have a very steep slope. This choice is a simplification fre-

quently used for soft magnetic materials by electrical engineers (see, for instance,

Ref. 21).

Equations (2.1), (2.2) and (2.4), lead to the following vector partial differential

equation in conductors:

∂B

∂t
+ curl

(
1

σ
curlH

)
= 0. (2.6)

Our aim is to solve this together with the nonlinear constitutive equation (2.5).

2.1. Axisymmetric eddy current model with enforced magnetic flux

Let us consider a cylindrical coordinate system (r, θ, z) and denote by er, eθ and ez

the corresponding unit vectors of the local orthonormal basis as sketched in Fig. 1

(left). We suppose that the computational domain Ω̃ has cylindrical symmetry and

that the current sources are independent of the azimuth θ and do not have azimuthal

component, so that on each meridian section these currents lie on this section. In



4 Bermúdez, Gómez, Rodŕıguez, Salgado and Venegas

x

y

q

Ze

e
q

re

z

W

W
~

H

r

z

W

Fig. 1. Cylindrical coordinate system (left) and sketch of the domain (right).

such a case, none of the electromagnetic fields depend on θ and, furthermore, from

Faraday’s law (2.2), B has to be of the form,

B(r, z, t) = B(r, z, t)eθ. (2.7)

Since we are assuming that the material is isotropic, the magnetic field H must be

of the same form as B, namely,

H(r, z, t) = H(r, z, t)eθ, (2.8)

and the H-B relation reads

B(r, z, t) = B(r, z,H(r, z, t)), (2.9)

with B(r, z, ·) being a nonlinear mapping in R for each (r, z). Dependence of B

in coordinates (r, z) is permitted to allow for computational domains including

different materials. We notice that any field of the form (2.7) is divergence-free, so

that (2.3) is automatically satisfied. Moreover, since

curlH(r, z, t) = −
∂H

∂z
(r, z, t) er +

1

r

∂

∂r
(rH)(r, z, t) ez , (2.10)

equation (2.6) leads to

∂B

∂t
−

∂

∂r

(
1

σr

∂(rH)

∂r

)
−

∂

∂z

(
1

σ

∂H

∂z

)
= 0. (2.11)

This equation holds in any meridian section Ω of the domain Ω̃ for all time t ∈ [0, T ]

(T > 0 fixed). To have a well-posed nonlinear parabolic problem we must add to

equations (2.11) and (2.9) an initial condition

B(r, z, 0) = B0(r, z) in Ω, (2.12)
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and suitable boundary conditions on the boundary Γ := ∂Ω.

The application that has motivated this paper is the computation of eddy current

losses in laminated media. Thus, following the work of Van Keer et al.,22 we will

impose the magnetic flux b(t) flowing through the meridian section Ω of the domain

(see Fig. 1, (right)). This leads to the nonlocal source condition
∫

Ω

B(r, z, t) dr dz = b(t). (2.13)

Moreover, we have also to impose that there is no current flux through the boundary

of Ω; namely, curlH · n = J · n = 0 on Γ, where n is the unit normal to Γ. Hence,

from (2.10), it is straightforward to obtain that the tangential derivative of (rH)

has to vanish on Γ. Therefore, provided Γ is connected, for each t ∈ [0, T ] (rH(t))

has to be a constant (which depends on t) on the whole Γ. Consequently, there

exists an (unknown) function ψ(t) which varies in time but is space independent on

Γ such that

rH(r, z, t) = ψ(t) on Γ. (2.14)

All together, the resulting axisymmetric problem reads:

Problem 2.1. Find H(r, z, t) and B(r, z, t) such that

∂B

∂t
−

∂

∂r

(
1

σr

∂(rH)

∂r

)
−

∂

∂z

(
1

σ

∂H

∂z

)
= f in Ω× (0, T ), (2.15)

B(r, z, t) = B(r, z,H(r, z, t)) in Ω× (0, T ), (2.16)

rH(r, z, t) = ψ(t) on Γ× (0, T ), (2.17)
∫

Ω

B(r, z, t) dr dz = b(t) in (0, T ), (2.18)

B(r, z, 0) = B0(r, z) in Ω, (2.19)

where σ(r, z, t), f(r, z, t), b(t) and B0(r, z) are given data and ψ(t) is unknown.

Remark 2.1. We include in (2.15) a right-hand side f to consider a more general

parabolic problem, although in the case of the eddy current model f is zero. More-

over, we consider a space and time dependent electrical conductivity σ because in

practical applications it is a function of temperature which, in its turn, is a time

dependent field.

Problem 2.1 has been proposed and numerically solved in Ref. 22 in a more

general setting including hysteresis. The goal of the present paper is to study the

well-posedness and the numerical approximation of this problem.

3. Mathematical analysis

In this section, we derive a weak formulation for Problem 2.1 and prove that it is

well posed.
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3.1. Functional spaces and preliminary results

We recall some weighted Sobolev spaces typical in axisymmetric problems. We refer

to Refs. 14 and 5 for more details. For the sake of simplicity, partial derivatives will

be also denoted by ∂r, ∂z and so on.

Let Ω ⊂ {(r, z) ∈ R
2 : r > 0} be a Lipschitz bounded simply connected open

set. Let Lp
r(Ω) denote the weighted Lebesgue space of all measurable functions u

defined in Ω for which

‖u‖
p
Lp
r(Ω) :=

∫

Ω

|u|
p
r dr dz <∞ 1 ≤ p <∞.

The weighted Sobolev space Hk
r (Ω) consists of all functions in L2

r(Ω) whose deriva-

tives up to order k are also in L2
r(Ω). We define the norms and semi-norms in the

standard way; for instance,

|u|
2
H1

r(Ω) :=

∫

Ω

(
|∂ru|

2
+ |∂zu|

2
)
r dr dz.

Let L2
1/r(Ω) denote the set of all measurable functions u defined in Ω for which

‖u‖
2
L2
1/r

(Ω) :=

∫

Ω

|u|
2

r
dr dz <∞.

We also define Hk
1/r(Ω) as before.

Finally, we introduce the function space Ĥ1
r(Ω) defined by

Ĥ1
r(Ω) = {u ∈ L2

r(Ω) : ∂r(ru) ∈ L2
1/r(Ω), ∂zu ∈ L2

r(Ω)},

which is a Hilbert space with the norm

‖u‖Ĥ1
r(Ω) :=

(
‖u‖

2
L2
r(Ω) + ‖∂r(ru)‖

2
L2
1/r

(Ω) + ‖∂zu‖
2
L2
r(Ω)

)1/2
.

Remark 3.1. For Ω being the meridian section of a 3D axisymmetric domain Ω̃,

the space Ĥ1
r(Ω) can be considered as an axisymmetric version of the 3D space

H(curl, Ω̃). More precisely, from the expression of the curl operator in cylindrical

coordinates it is immediate to see that G(r, z) ∈ Ĥ1
r(Ω) if and only if G(r, z, θ) =

G(r, z)eθ(θ) ∈ H(curl, Ω̃).

3.2. Weak formulation

Before stating a weak formulation of Problem 2.1, we notice that if the bound-

ary of Ω intersect the symmetry axis (r = 0), then ψ(t) should be identically

zero because r vanishes there. In such a case, (2.17) would become a homogeneous

Dirichlet boundary condition. However, this does not happen in the application

that motivates this problem in which the domain is well separated from the sym-

metry axis (see Ref. 22). This is the reason why, from now on, we will assume that

inf{r > 0 : (r, z) ∈ Ω} > 0 and, hence, L2
r(Ω) and L2

1/r(Ω) are both identical to

L2(Ω). Similarly, Ĥ1
r(Ω) is identical to H1(Ω).
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Let us introduce the following closed subspace of Ĥ1
r(Ω):

W := {G ∈ Ĥ1
r(Ω) : (rG)|Γ is constant}. (3.1)

Since Ĥ1
r(Ω) is densely and compactly included in L2

r(Ω), the same is true for W

(the density because W ⊃ D(Ω)). Thus, if we identify L2
r(Ω) with its topological

dual, we have that W ⊂ L2
r(Ω) ⊂ W ′. We denote by 〈·, ·〉W,W′ the corresponding

duality paring.

In order to obtain a weak formulation, first we integrate (2.15) in Ω and use

Gauss theorem to write

d

dt

∫

Ω

B(r, z, t) dr dz −

∫

Γ

1

σr

(
∂(rH)

∂r
nr +

∂(rH)

∂z
nz

)
dΓ =

∫

Ω

f dr dz,

where n = nrer + nzez is the outward unit normal vector to Γ. Hence, by using

(2.18) we deduce that
∫

Γ

1

σr

(
∂(rH)

∂r
nr +

∂(rH)

∂z
nz

)
dΓ = b′(t)−

∫

Ω

f dr dz. (3.2)

Next, we multiply (2.15) by (rG), G being any test function in W, integrate in Ω

and use a Green’s formula. From the resulting expression and (3.2), we easily obtain

the following weak formulation for Problem 2.1:

Problem 3.1. Given b ∈ H1(0, T ), f ∈ L2(0, T ;W ′) and B0 ∈ L2
r(Ω), find H ∈

L2(0, T ;W) and B ∈ H1(0, T ;W ′) such that

〈∂B
∂t
,G
〉
W,W′

+

∫

Ω

1

σr

(
∂(rH)

∂r

∂(rG)

∂r
+
∂(rH)

∂z

∂(rG)

∂z

)
dr dz

= 〈f,G〉W,W′ +
(
b′(t)− 〈f, r−1〉W,W′

)
(rG)|Γ ∀G ∈ W , a.e. t ∈ (0, T ),

B(r, z, t) = B(r, z,H(r, z, t)) a.e. in Ω× (0, T ),

B(r, z, 0) = B0(r, z) a.e. in Ω.

Notice that 〈f, r−1〉W,W′ is well defined because r−1 ∈ W.

3.3. Existence of solution

We introduce the following hypotheses and notations that will be used to prove the

existence of a solution to the above problem.

H.1: B(r, z, u) is the derivative with respect to u of a (differentiable) normal

convex integrand α defined in Ω× R (see, for instance, Ref. 3); i.e.,

B(r, z, u) := ∂uα(r, z, u) ∀u ∈ R, ∀(r, z) ∈ Ω. (3.3)

Moreover, we assume that α satisfies the following conditions:
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• there exist β1 ∈ L2
r(Ω) and β2 ∈ L1

r(Ω) such that

α(r, z, u) ≥ β1(r, z)u+ β2(r, z) ∀u ∈ R, ∀(r, z) ∈ Ω;

• for each w ∈ L2
r(Ω), α(·, ·, w(·, ·)) ∈ L1

r(Ω).

H.2: There exist two positive constants N1 and N2 such that

|B(r, z, u)| ≤ N1|u|+N2 ∀u ∈ R, ∀(r, z) ∈ Ω.

H.3: B(r, z, u) is strongly monotone with respect to u uniformly in Ω; i.e., there

exists a strictly positive constant ω such that

(B(r, z, u)− B(r, z, v))(u− v) ≥ ω|u− v|2 ∀u, v ∈ R, ∀(r, z) ∈ Ω.

H.4: σ : (0, T ) −→ L∞(Ω) is measurable and there exist constants σ∗ and σ∗

such that

0 < σ∗ ≤ σ(r, z, t) ≤ σ∗ ∀(r, z) ∈ Ω, a.e. t ∈ (0, T ).

H.5: There exists H0 ∈ W such that B0(r, z) = B(r, z,H0(r, z)) a.e. in Ω.

Note that, as a consequence of H.5 and H.2, B0 ∈ L2
r(Ω).

Let us introduce the function ϕ : L2
r(Ω) → R defined by

ϕ(H) :=

∫

Ω

α(r, z,H(r, z)) r dr dz, H ∈ L2
r(Ω), (3.4)

which is well defined because of the last property in H.1. Then, from the assumptions

on α, ϕ is a differentiable convex function in L2
r(Ω) (see Ref. 2 ) and its differential,

which we denote ∂ϕ, satisfies

∂ϕ(H)(r, z) = ∂uα(r, z,H(r, z)) = B(r, z,H(r, z)) (r, z) ∈ Ω, ∀H ∈ L2
r(Ω), (3.5)

the last equality because of (3.3).

On the other hand, for each t ∈ [0, T ], let us denote by at(·, ·) the bilinear form

defined by

at(H,G) :=

∫

Ω

1

σ(·, t)

(
1

r

∂(rH)

∂r

1

r

∂(rG)

∂r
+
∂H

∂z

∂G

∂z

)
r dr dz H,G ∈ Ĥ1

r(Ω).

(3.6)

From H.4, we have the following result whose proof is straightforward.

Lemma 3.1. The bilinear forms at : Ĥ
1
r(Ω)×Ĥ1

r(Ω) → R, t ∈ [0, T ], are continuous

uniformly in t. Moreover, they satisfy the G̊arding’s inequality

at(G,G) + λ‖G‖2L2
r(Ω) ≥ γ‖G‖2

Ĥ1
r(Ω)

∀G ∈ Ĥ1
r(Ω), (3.7)

with λ = γ = 1/σ∗.

Let us introduce R ∈ L2(0, T ;W ′) defined by

〈R(t), G〉W,W′ := 〈f(t), G〉W,W′ +
(
b′(t)− 〈f(t), r−1〉W,W′

)
(rG)|Γ,

for all G ∈ W, a.e. t ∈ (0, T ).
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Now we are in position to prove that Problem 3.1 has a solution.

Theorem 3.1. Let us assume hypotheses H.1 to H.5. Then, Problem 3.1 has a

solution.

Proof. We will derive this result as a consequence of Theorem 2 from Ref. 12.

With this aim, first we rewrite Problem 3.1 as follows:

Find H ∈ L2(0, T ;W) and B ∈ H1(0, T ;W ′) such that

∂B

∂t
(t) +A(t)H(t) = R(t), a.e. t ∈ (0, T ), (3.8)

B(t) = ∂ϕ(H(t)), a.e. t ∈ (0, T ), (3.9)

B(0) = B0, (3.10)

where, for a.e. t ∈ (0, T ), A(t) : W → W ′ is the linear operator induced by at(·, ·);

namely,

〈A(t)H,G〉W′,W := at(H,G) ∀H,G ∈ W.

Notice that from H.5 and (3.5) we have B0 = ∂ϕ(H0). In order to apply Theorem

2 from Ref. 12 to Problem (3.8)–(3.10), we must check all the hypotheses of this

theorem. Some of them are void (C.1 to C.4), or automatically satisfied (A.2, A.6)

or consequence of the other hypotheses in our case (A.3, A.4), mainly because ϕ

is time independent (cf. Remark 1 from Ref. 12). In what follows we check the

remaining ones:

A.1: As stated above, in our case ϕ is differentiable and convex.

A.5: From H.3 and (3.5), ∂ϕ is strongly monotone; namely,

(∂ϕ(H1)− ∂ϕ(H2), H1 −H2)L2
r(Ω) ≥ ω‖H1 −H2‖

2
L2
r(Ω) ∀H1, H2 ∈ L2

r(Ω).

A.7: From H.2 and (3.5),

‖∂ϕ(H)‖L2
r(Ω) ≤ N1 ‖H‖L2

r(Ω) +N2 ∀H ∈ L2
r(Ω).

B.1: A(t) is maximal monotone in W, because it is a linear bounded operator

and at(G,G) ≥ 0 for all G ∈ W (see, for instance, Ref. 2 ). Moreover, we

also have from the definition of A(t) that

‖A(t)H‖W′ ≤
1

σ∗
‖H‖Ĥ1

r(Ω) ∀H ∈ W, a.e. t ∈ (0, T ).

B.2: It follows from the assumption that σ : (0, T ) → L∞(Ω) is measurable

(cf. H.4) and the fact that A(t) is a linear bounded operator.

B.3: It is a consequence of G̊arding’s inequality from Lemma 3.1.

Thus, all the hypothesis of Theorem 2 from Ref. 12 are fulfilled and we are

allowed to apply it to Problem (3.8)–(3.10) to conclude the proof.
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Remark 3.2. As a consequence of H.2, the solution of Problem 3.1 also satisfies

B ∈ L2(0, T ; L2
r(Ω)).

Remark 3.3. The above existence result is independent of the slope of the H-B

curve; even an infinite slope is allowed.

Remark 3.4. The previous theorem yields the existence of solution to Problem 3.1.

If the electrical conductivity σ does not depend on time, we can also conclude the

uniqueness. Indeed, let H1 and H2 be two solutions to Problem 3.1; then, for a.e.

t ∈ (0, T ),

〈∂B(H1(t))

∂t
−
∂B(H2(t))

∂t
,G
〉
W,W′

+ a(H1(t)−H2(t), G) = 0 ∀G ∈ W,

where a(·, ·) denotes the bilinear form defined in (3.6) for σ independent of t. By

integrating this equation with respect to time, choosing G = H1(t)−H2(t) as test

function and using the monotonicity of B, we obtain

ω‖H1(t)−H2(t)‖
2
L2
r(Ω) + a

(∫ t

0

(H1 −H2)(s) ds,H1(t)−H2(t)

)
≤ 0.

Thus, by integrating in (0, T ), using the equality

2

∫ T

0

a

(∫ t

0

(H1 −H2)(s) ds,H1(t)−H2(t)

)
dt

= a

(∫ T

0

(H1 −H2)(t) dt,

∫ T

0

(H1 −H2)(t) dt

)
(3.11)

and taking into account that a(·, ·) is positive semi-definite, we conclude that H1 =

H2.

4. Numerical analysis

In this section we propose a numerical method to approximate the solution to

Problem 3.1. In order to obtain error estimates for this numerical method, from

now on we consider the following additional assumptions:

H.6 σ is time independent.

H.7 B(r, z, u) is uniformly Lipschitz continuous with respect to u, namely: there

exists a positive constant L such that

|B(r, z, u)− B(r, z, v)| ≤ L|u− v| ∀u, v ∈ R, ∀(r, z) ∈ Ω.

Notice that H.2 immediately follows from H.7.

To impose the constraint of (rH) being constant on Γ (cf. (2.14)) we proceed

as in Ref. 22: we make a change of unknown and write the equations in terms of

H̃ := rH and B̃ := rB.
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With this end, we introduce some additional notation. First notice that G ∈

Ĥ1
r(Ω) if and only if G̃ := rG ∈ H1

1/r(Ω). Hence, G ∈ W is and only if G̃ belongs to

the following space:

Y :=
{
Y ∈ H1

1/r(Ω) : Y |Γ is constant
}
,

which we endow with the H1
1/r(Ω)-norm. Since, H1

1/r(Ω) is densely included in

L2
1/r(Ω), if we identify L2

1/r(Ω) with its dual space, we have

Y ⊂ L2
1/r(Ω) ⊂ Y ′.

We denote by 〈·, ·〉 the duality pairing between Y ′ and Y.

From now on, we fix the data of Problem 3.1: b ∈ H1(0, T ), f ∈ L2(0, T ;W ′)

and B0 ∈ L2
r(Ω), and define R̃ ∈ L2(0, T ;Y ′) and B̃0 ∈ L2

1/r(Ω) by

〈R̃(t), G̃〉 := 〈f(t), r−1G̃〉W,W′ +
(
b′(t)− 〈f(t), r−1〉W,W′

)
(G̃|Γ) G̃ ∈ Y , a.e. t ∈ [0, T ],

and

B̃0(r, z) := rB0(r, z) (r, z) ∈ Ω.

Moreover, let

B̃(r, z, u) := rB(r, z, r−1u) (r, z) ∈ Ω , u ∈ R.

It is easy to check that B̃ is also strongly monotone and Lipschitz continuous,

namely: there exists positive constants ω and L (the same as in H.3 and H.7) such

that

(B̃(r, z, u)− B̃(r, z, v))(u− v) ≥ ω|u− v|2 ∀u, v ∈ R, ∀(r, z) ∈ Ω (4.1)

and

|B̃(r, z, u)− B̃(r, z, v)| ≤ L|u− v| ∀u, v ∈ R , ∀(r, z) ∈ Ω. (4.2)

Finally, let us introduce the bilinear form ã(·, ·) : H1
1/r(Ω)×H1

1/r(Ω) → R defined

by

ã(G̃1, G̃2) := at(r
−1G̃1, r

−1G̃2) =

∫

Ω

1

σr

(
∂G̃1

∂r

∂G̃2

∂r
+
∂G̃1

∂z

∂G̃2

∂r

)
dr dz

for G̃1, G̃2 ∈ H1
1/r(Ω). Notice that now, because of H.6, at actually does not depend

on t. As a consequence of Lemma 3.1 we have the following result.

Lemma 4.1. The bilinear form ã is continuous and satisfies the G̊arding’s inequal-

ity

ã(G̃, G̃) + λ‖G̃‖2L2
1/r

(Ω) ≥ γ‖G̃‖2H1
1/r

(Ω) ∀ G̃ ∈ H1
1/r(Ω),

with λ = γ = 1/σ∗.
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Under assumptions H.1 to H.5 we have shown that Problem 3.1 has a solution.

Moreover, under the same assumptions and H.6, it is easy to prove that (H,B) is the

unique solution to Problem 3.1 if and only if (H̃, B̃) is a solution to the following:

Problem 4.1. Find H̃ ∈ L2(0, T ;Y) and B̃ ∈ H1(0, T ;Y ′) such that

〈∂B̃
∂t
, G̃
〉
+ ã(H̃, G̃) = 〈R̃, G̃〉 ∀G̃ ∈ Y, a.e. t ∈ (0, T ),

B̃(r, z, t) = B̃(r, z, H̃(r, z, t)) a.e. in Ω× (0, T ),

B̃(r, z, 0) = B̃0(r, z) a.e. in Ω.

4.1. Space discretization

We introduce in this section a space semi-discretization of Problem 4.1 and obtain an

optimal order error estimate in the L2(0, T,L2
1/r(Ω))-norm. The following analysis

is inspired in Ref. 19 and on the classical numerical analysis of linear parabolic

equations (see, for instance, Ref. 20).

To begin with, from now on we assume Ω is a convex polygon. We associate a

family of partitions {Th}h>0 of Ω into triangles, where h denotes the mesh size (i.e.,

the maximal length of the sides of the triangulation). Let Yh := Vh ∩ Y, where Vh

denotes the space of continuous piecewise linear finite elements. By using this finite

element space, we are led to the following discretization of Problem 4.1.

Problem 4.2. Find H̃h ∈ L2(0, T ;Yh) and B̃h ∈ H1(0, T ;Y ′), satisfying

〈∂B̃h

∂t
, G̃h

〉
+ ã(H̃h, G̃h) = 〈R̃, G̃h〉 ∀G̃h ∈ Yh , a.e. t ∈ (0, T ),

B̃h(r, z, t) = B̃(r, z, H̃h(r, z, t)) a.e. in Ω× (0, T ),

B̃h(r, z, 0) = B̃0h(r, z) a.e. in Ω,

where we assume that there exists H̃0h ∈ Yh such that

B̃0h(r, z) = B̃(r, z, H̃0h(r, z)) a.e. in Ω. (4.3)

A convenient H̃0h has to be used for the solution of Problem 4.2 to approximate

that of Problem 4.1. A possible (theoretical) choice is the Scott-Zhang interpolant

of H̃0 := rH0 (see Ref. 17) which preserves its constant values on Γ.

The existence of solution to the above problem is given by the following lemma:

Lemma 4.2. There exists a unique solution to Problem 4.2
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Proof. Let {ϕ̃i}
K
i=1 be a basis of Yh, then for all t ∈ [0, T ], a solution H̃h to

Problem 4.2, can be written as follows:

H̃h(r, z, t) =
K∑

i=1

αi(t)ϕ̃i(r, z) (r, z) ∈ Ω. (4.4)

Similarly, we write

H̃0h(r, z) =
K∑

i=1

α0
i ϕ̃i(r, z) (r, z) ∈ Ω.

We set α(t) := (αi(t))1≤i≤K , t ∈ [0, T ], and α0 := (α0
i )1≤i≤K . By choosing

G̃h = ϕ̃j , j = 1, . . . ,K, in Problem 4.2, we obtain the following nonlinear system of

differential equations:

d

dt
C (α(t)) +Dα(t) = R(t) a.e. t ∈ [0, T ], (4.5)

α(0) = α0, (4.6)

where the nonlinear function C : RK → R
K , the matrix D := (Di,j)1≤i,j≤K and

the vector R(t) := (Ri(t))1≤i≤K are defined by

C (α)i :=

∫

Ω

1

r
B̃


r, z,

K∑

j=1

ϕ̃j(r, z)αj


 ϕ̃i(r, z) dr dz,

Di,j := ã (ϕ̃i, ϕ̃j) and Ri(t) :=
〈
R̃(t), ϕ̃i

〉
.

In order to prove the existence of solution to (4.5)-(4.6), we make a change of

variable: we define ψi(t) :=
∫ t

0
αi(s) ds, so that αi = dψi/dt. Then, integrating in

time (4.5), we obtain

C

(
dψ

dt
(t)

)
+Dψ(t) =

∫ t

0

R(s) ds−C (α0) a.e. t ∈ [0, T ],

ψ(0) = 0,

were ψ := (ψi)1≤i≤K .

Since B̃ is strongly monotone and Lipschitz continuous (cf. (4.1) and (4.2)), it is

straightforward to show that C is strongly monotone and Lipschitz continuous, too.

Therefore, C is invertible and C−1 is also Lipschitz continuous. Hence, the system

above has a unique solution ψ ∈ C1(0, T ;RK) (see, for instance, Ref. 8), α = dψ/dt

is the unique solution to (4.5)-(4.6) and H̃h given by (4.4) that to Problem 4.2.

In what follows we will prove error estimates for this semi-discrete problem.

With this aim, let us introduce the so-called elliptic projector Ph : Y ∩ H1
0(Ω) →

Yh ∩H1
0(Ω), defined for u ∈ H1

0(Ω) by

ã(Phu,wh) = ã(u,wh) ∀wh ∈ Yh ∩H1
0(Ω).
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The following lemma yields an error estimate for Phu. Its proof, based on Galerkin

orthogonality and a duality argument, is standard. From now on, we suppose that

C is a strictly positive constant independent of h and ∆t (the time step that will

be introduced below).

Lemma 4.3. There exists C > 0 such that, for all u ∈ H2
1/r(Ω) ∩H1

0(Ω),

‖Phu− u‖L2
1/r

(Ω) + h‖Phu− u‖H1
1/r

(Ω) ≤ Ch2‖u‖H2
1/r

(Ω).

Next, we define the operator P̃h : Y → Yh by

P̃hv := Ph(v − (v|Γ)) + (v|Γ) ∀v ∈ Y.

It is easy to show that

ã(P̃hv, vh) = ã(v, vh) ∀vh ∈ Yh. (4.7)

Moreover, from Lemma 4.3 we have the following result.

Lemma 4.4. There exists C > 0 such that, for all u ∈ H2
1/r(Ω) ∩ Y,

‖P̃hu− u‖L2
1/r

(Ω) + h‖P̃hu− u‖H1
1/r

(Ω) ≤ C h2 ‖u‖H2
1/r

(Ω) .

Now we are in position to obtain an error estimate for the above semi-discrete

problem.

Theorem 4.1. Let H̃ and H̃h be the solutions to Problems 4.1 and 4.2, respectively.

If H̃ ∈ L2(0, T ; H2
1/r(Ω)), then there exists C > 0 such that

‖H̃h − H̃‖L2(0,T ;L2
1/r

(Ω)) ≤ C
{
h2‖H̃‖L2(0,T ;H2

1/r
(Ω)) + ‖H̃0 − H̃0h‖L2

1/r
(Ω)

}
. (4.8)

Proof. We proceed by means of a classical technique for parabolic equations. Let

us write

H̃(t)− H̃h(t) =
(
H̃(t)− P̃hH̃(t)

)
+
(
P̃hH̃(t)− H̃h(t)

)
. (4.9)

Notice that the term H̃(t)− P̃hH̃(t) can be bounded as in Lemma 4.4. To estimate

the other one, we test Problem 4.1 with G̃h ∈ Yh, subtract from Problem 4.2 and

integrate in time. Thus we obtain, for t ∈ (0, T ]
∫

Ω

1

r
(B̃ − B̃h)(t)G̃h dr dz + ã

(∫ t

0

(H̃ − H̃h)(s) ds, G̃h

)
=

∫

Ω

1

r
(B̃0 − B̃0h)G̃h dr dz.

Hence, from (4.7) we arrive at
∫

Ω

1

r
(B̃(P̃hH̃(t))− B̃(H̃h(t)))G̃h dr dz + ã

(∫ t

0

(P̃hH̃ − H̃h)(s) ds, G̃h

)

=

∫

Ω

1

r
(B̃0 − B̃0h)G̃h dr dz +

∫

Ω

1

r
(B̃(P̃hH̃(t))− B̃(H̃(t)))G̃h dr dz.
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Now we take G̃h := P̃hH̃(t) − H̃h(t). Integrating in time, using the strong mono-

tonicity and Lipschitz continuity of B̃ (cf. (4.1) and (4.2)) and Cauchy-Schwartz

and Young inequalities, we obtain

ω

2

∫ T

0

‖P̃hH̃(t)− H̃h(t)‖
2
L2
1/r

(Ω) dt

+

∫ T

0

ã

(∫ t

0

(P̃hH̃ − H̃h)(s) ds, P̃hH̃(t)− H̃h(t)

)
dt

≤
TL2

ω
‖H̃0 − H̃0h‖

2
L2
1/r

(Ω) +
L2

ω

∫ T

0

‖P̃hH̃(t)− H̃(t)‖2L2
1/r

(Ω) dt. (4.10)

To estimate the right-hand side above we use Lemma 4.4, whereas, for the left-

hand side we use the following equality (analogous to (3.11))

∫ T

0

ã

(∫ t

0

(P̃hH̃ − H̃h)(s) ds, P̃hH̃(t)− H̃h(t)

)
dt

=
1

2
ã

(∫ T

0

(P̃hH̃ − H̃h)(t) dt,

∫ T

0

(P̃hH̃ − H̃h)(t) dt

)
(4.11)

and the fact that

ω

4

∫ T

0

‖P̃hH̃(t)− H̃h(t)‖
2
L2
1/r

(Ω) dt+ β

∥∥∥∥∥

∫ T

0

(P̃hH̃ − H̃h)(t) dt

∥∥∥∥∥

2

H1
1/r

(Ω)

≤
ω

2

∫ T

0

‖P̃hH̃(t)− H̃h(t)‖
2
L2
1/r

(Ω) dt

+
1

2
ã

(∫ T

0

(P̃hH̃ − H̃h)(t) dt,

∫ T

0

(P̃hH̃ − H̃h)(t) dt

)
, (4.12)

for some positive constant β, which follows from (4.11) and Lemma 4.1. Thus, from

(4.10) and (4.12) we obtain

‖P̃hH̃ − H̃h‖L2(0,T ;L2
1/r

(Ω)) +

∥∥∥∥∥

∫ T

0

(P̃hH̃ − H̃h)(t) dt

∥∥∥∥∥
H1

1/r
(Ω)

≤ C
{
h2‖H̃‖L2(0,T ;H2

1/r
(Ω)) − ‖H̃0 − H̃0h‖L2

1/r
(Ω)

}
. (4.13)

Therefore, (4.8) follows from (4.9), (4.13) and Lemma 4.4, and we conclude the

proof.

Remark 4.1. If H̃0 ∈ H2
1/r(Ω), then we can use the Lagrange interpolant of H̃0 as

H̃0h, and in such a case, we have

‖H̃h − H̃‖L2(0,T ;L2
1/r

(Ω)) ≤ Ch2
{
‖H̃‖L2(0,T ;H2

1/r
(Ω)) + ‖H̃0‖H2

1/r
(Ω)

}
.
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Remark 4.2. It is straightforward to obtain from (4.9), Lemma 4.4 and (4.13) the

following L2(0, T ; H1
1/r(Ω))-type error estimate:

sup
t∈[0,T ]

∥∥∥∥
∫ t

0

(H̃h − H̃)(s) ds

∥∥∥∥
L2(0,T ;H1

1/r
(Ω))

≤ C
{
‖H̃0 − H̃0h‖L2

1/r
(Ω) + h‖H̃‖L2(0,T ;H2

1/r
(Ω))

}
.

4.2. Full discretization

In this section we introduce a time discretization of Problem 4.2 by means of a

backward Euler scheme and prove its convergence. We consider a uniform partition

{ti := i∆t, i = 0, . . . ,M} of [0, T ], with time step ∆t := T/M ,M ∈ N. The notation

∂̄zi+1 refers to the difference quotient

∂̄zi+1 :=
zi+1 − zi

∆t
.

We consider the following further assumption on the data of the problem:

H.8 f ∈ H1(0, T ;W ′).

A full discretization of Problem 4.1 stands as follows:

Problem 4.3. For i = 0, . . . ,M − 1, find H̃i+1
h ∈ Yh and B̃i+1

h ∈ L2
1/r(Ω) satisfying

∫

Ω

1

r
∂̄B̃i+1

h G̃h dr dz + ã(H̃i+1
h , G̃h) = 〈R̃i+1, G̃h〉 ∀G̃h ∈ Yh, (4.14)

B̃i+1
h (r, z) = B̃(r, z, H̃i+1

h (r, z)) a.e. in Ω, (4.15)

B̃0
h(r, z) = B̃0h(r, z) a.e. in Ω, (4.16)

where B̃0h is as in (4.3). In the problem above, we have used R̃i+1 ∈ Y ′, defined by

〈R̃i+1, G̃〉 := 〈f(ti+1), r−1G̃〉W,W′+
(
∂̄b(ti+1)− 〈f(ti+1), r−1〉W,W′

)
(G̃|Γ) G ∈ Y,

to approximate R̃(ti+1), i = 0, . . . ,M − 1.

The existence of solution at each time step is guaranteed by the following

lemma.

Lemma 4.5. There exists a unique solution to Problem 4.3.

Proof. For each i = 0, . . . ,M − 1, we rewrite (4.14) as follows:

Z(H̃i+1
h ) = R̃i+1|Yh

+ F̃ i+1 in Y
′

h, (4.17)

with Z : Yh → Y
′

h defined by

〈Z(H̃i+1
h ), G̃h〉Yh,Y

′

h
:=

∫

Ω

1

r
B̃(r, z, H̃i+1

h (r, z))G̃h dr dz +∆t ã(H̃i+1
h , G̃h) G̃h ∈ Yh
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and F̃ i+1 ∈ Y
′

h by

〈F̃ i+1, G̃h〉Yh,Y
′

h
:=

∫

Ω

1

r
B̃(r, z, H̃i

h(r, z))G̃h dr dz ∀G̃h ∈ Yh.

Since B̃ is strongly monotone and Lipschitz continuous (cf. (4.1) and (4.2)) and

ã(G̃h, G̃h) ≥
1

σ∗
| G̃h|

2
H1

1/r
(Ω) ∀G̃h ∈ Yh,

we have that Z : Yh → Y
′

h is a strongly monotone, Lipschitz continuous operator.

Thus, applying the Banach fixed-point technique, it can be shown that the equation

(4.17) (i = 0, . . . ,M − 1) has a unique solution. (see, for instance, Ref. 16 ).

The following theorem provides an error estimate for the fully-discrete problem.

Theorem 4.2. Let H̃ and H̃i+1
h be the solutions to Problems 4.1 and 4.3, respec-

tively. If H̃ ∈ H1(0, T ; H2
1/r(Ω)), then there exists C > 0 such that

(
M−1∑

i=0

∆t‖H̃(ti+1)− H̃i+1
h ‖2L2

1/r
(Ω)

)1/2

≤ C
{
(∆t+ h2)‖H̃‖H1(0,T ;H2

1/r
(Ω)) + ‖H̃0 − H̃0h‖L2

1/r
(Ω) +∆t ‖f‖H1(0,T ;W′)

}
.

Proof. We write as in the proof of Theorem 4.1

H̃(ti+1)− H̃i+1
h =

(
H̃(ti+1)− P̃hH̃(ti+1)

)
+
(
P̃hH̃(ti+1)− H̃i+1

h

)
(4.18)

and focus on estimating the second term. First, by taking G̃ = G̃h in Problem 4.1,

integrating from 0 to tl+1 ∈ (0, T ] and using (4.7), we obtain

∫

Ω

1

r
B̃(H̃(tl+1)) G̃h dr dz +∆t ã

(
l∑

i=0

P̃hH̃(ti+1), G̃h

)

= ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, G̃h

)
+

〈∫ tl+1

0

R̃(t) dt, G̃h

〉

+

∫

Ω

1

r
B̃0 G̃h dr dz ∀G̃h ∈ Yh, (4.19)

with H̃∆t being the piecewise constant interpolant of H̃ (i.e., H̃∆t(t
0) := H̃(t0) and

H̃∆t(t) := H̃(ti), t ∈ (ti−1, ti]). Then, by summing up (4.14) for i = 0, . . . , l, with
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l ∈ {0, . . . ,M − 1}, and subtracting from (4.19), we have

∫

Ω

1

r
(B̃(P̃hH̃(tl+1))− B̃(H̃ l+1

h ))G̃h dr dz +∆t ã

(
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h ), G̃h

)

=

∫

Ω

1

r
(B̃0 − B̃0h)G̃h dr dz +

∫

Ω

1

r
(B̃(P̃hH̃(tl+1))− B̃(H̃(tl+1)))G̃h dr dz

+ ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, G̃h

)
+

〈∫ tl+1

0

R̃(t) dt−∆t

l∑

i=0

R̃i+1, G̃h

〉
.

(4.20)

The last term above can be written as follows: for all G̃h ∈ Yh

〈∫ tl+1

0

R̃(t) dt−∆t

l∑

i=0

R̃i+1, G̃h

〉
=

∫ tl+1

0

〈
Ef (t), G̃

〉
dt

where Ef ∈ L2(0, T,Y ′) is defined, a.e. t ∈ (0, T ) by

〈
Ef (t), G̃

〉
:=
〈
(f − f∆t)(t), r

−1G̃
〉
W,W′

−
〈
(f − f∆t)(t), r

−1
〉
W,W′

(G̃|Γ)

for G̃ ∈ Y, with f∆t being the piecewise constant interpolant of f defined as above.

Notice that, clearly,

‖Ef‖L2(0,T ;Y′) ≤ C ‖f − f∆t‖L2(0,T ;W′) . (4.21)

Now, by choosing G̃h = P̃hH̃(tl+1) − H̃ l+1
h in (4.20) and using the monotonicity

and Lipschitz continuity of B̃ (cf. (4.1) and (4.2)) and Cauchy-Schwartz and Young

inequalities, we obtain

ω

2
‖P̃hH̃(tl+1)− H̃ l+1

h ‖2L2
1/r

(Ω) +∆t ã

(
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h ), P̃hH̃(tl+1)− H̃ l+1

h

)

≤
L2

ω
‖H̃0 − H̃0h‖

2
L2
1/r

(Ω) +
L2

ω
‖P̃hH̃(tl+1)− H̃(tl+1)‖2L2

1/r
(Ω)

+ ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, P̃hH̃(tl+1)− H̃ l+1
h

)

+

〈∫ tl+1

0

Ef (t) dt, P̃hH̃(tl+1)− H̃ l+1
h

〉
.
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Summing up the above equation for l = 0, . . . ,M − 1, we obtain

ω

2

M−1∑

l=0

∆t ‖P̃hH̃(tl+1)− H̃ l+1
h ‖2L2

1/r
(Ω)

+∆t2
M−1∑

l=0

ã

(
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h ), P̃hH̃(tl+1)− H̃ l+1

h

)

≤
L2T

ω
‖H̃0 − H̃0h‖

2
L2
1/r

(Ω) +
L2∆t

ω

M−1∑

l=0

‖P̃hH̃(tl+1)− H̃(tl+1)‖2L2
1/r

(Ω)

+∆t
M−1∑

l=0

ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, P̃hH̃(tl+1)− H̃ l+1
h

)

+∆t

M−1∑

l=0

〈∫ tl+1

0

Ef (t) dt, P̃hH̃(tl+1)− H̃ l+1
h

〉
. (4.22)

First, we will deal with the left-hand side above. We rewrite its second term by

using the following identity, for l ≥ 1:

P̃hH̃(tl+1)− H̃ l+1
h =

l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h )−

l−1∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h ). (4.23)

Thus we obtain a discrete version of (4.11), namely,

∆t2
M−1∑

l=0

ã

(
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h ), P̃hH̃(tl+1)− H̃ l+1

h

)

=
1

2
ã

(
∆t

M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h ),∆t

M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

)
.

Using this and Lemma 4.1, we obtain the following estimates for the left-hand side

of (4.22): there exists β > 0 (which depends on ω, T and σ∗) such that

ω

2

M−1∑

l=0

∆t‖P̃hH̃(tl+1)− H̃ l+1
h ‖2L2

1/r
(Ω)

+
1

2
ã

(
∆t

M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h ),∆t

M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

)

≥
ω

4

M−1∑

l=0

∆t‖ P̃hH̃(tl+1)− H̃ l+1
h ‖2L2

1/r
(Ω)

+ β

∥∥∥∥∥∆t
M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

. (4.24)

Next, we estimate the right-hand side of (4.22). The second term will be easily

bounded by means of Lemma 4.4. For the third term we use (4.23) and summation
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by parts to obtain

∆t
M−1∑

l=0

ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, P̃hH̃(tl+1)− H̃ l+1
h

)

= ã

(∫ T

0

(H̃∆t − H̃)(t) dt, ∆t
M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

)

−

M−2∑

l=0

ã

(∫ tl+2

tl+1

(H̃∆t − H̃)(t) dt, ∆t

l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h )

)
.

Hence, using the continuity of ã and Young’s inequality, we obtain that for all α > 0,

there exists Cα > 0 such that

∆t

M−1∑

l=0

ã

(∫ tl+1

0

(H̃∆t − H̃)(t) dt, P̃hH̃(tl+1)− H̃ l+1
h

)

≤ Cα‖H̃∆t − H̃‖2L2(0,T ;H1
1/r

(Ω)) +
α

2

∥∥∥∥∥∆t
M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

+
1

2

M−2∑

l=0

∥∥∥∥∥∆t
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

. (4.25)

For the last term of (4.22), we proceed analogously to obtain

∆t

M−1∑

l=0

〈∫ tl+1

0

Ef (t) dt, P̃hH̃(tl+1)− H̃ l+1
h

〉

≤ Cα‖Ef‖
2
L2(0,T ;Y′) +

α

2

∥∥∥∥∥∆t
M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

+
1

2

M−2∑

l=0

∥∥∥∥∥∆t
l∑

i=0

(P̃hH̃(ti+1)− H̃i+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

. (4.26)

By taking α := β/2, replacing (4.24)-(4.26) in (4.22) and using (4.21) and the

discrete Gronwall’s inequality, we arrive at

M−1∑

l=0

∆t‖ P̃hH̃(tl+1)− H̃ l+1
h ‖2L2

1/r
(Ω) +

∥∥∥∥∥∆t
M−1∑

l=0

(P̃hH̃(tl+1)− H̃ l+1
h )

∥∥∥∥∥

2

H1
1/r

(Ω)

≤ C

{
‖H̃∆t − H̃‖2L2(0,T ;H1

1/r
(Ω)) + ‖f − f∆t‖

2
L2(0,T ;W′)

+ ‖H̃0 − H̃0h‖
2
L2
1/r

(Ω) +∆t
M−1∑

l=0

‖P̃hH̃(tl+1)− H̃(tl+1)‖2L2
1/r

(Ω)

}
. (4.27)
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Thus, the result follows from (4.18), Lemma 4.4 and classical approximation results

for the piecewise constant interpolant.

Remark 4.3. As noted in Remark 4.1, if H̃0 ∈ H2
1/r(Ω), then the Lagrange inter-

polant of H̃0 can be used as H̃0h and, in such a case, we conclude that

(
M−1∑

i=0

∆t‖H̃(ti+1)− H̃i+1
h ‖2L2

1/r
(Ω)

)1/2

≤ C
{
(∆t+ h2)‖H̃‖H1(0,T ;H2

1/r
(Ω)) + h2‖H̃0‖H2

1/r
(Ω) +∆t ‖f‖H1(0,T ;W′)

}
.

Remark 4.4. A result analogous to that of Remark 4.2 also holds true. In fact,

from (4.18), Lemma 4.4 and (4.27) it is straightforward to prove that

max
l∈{1,...,M}

∥∥∥∥∥

l−1∑

i=0

∆t(H̃(ti+1)− H̃i+1
h )

∥∥∥∥∥
H1

1/r
(Ω)

≤ C
{
(∆t+ h)‖H̃‖H1(0,T ;H2

1/r
(Ω)) + ‖H̃0 − H̃0h‖L2

1/r
(Ω) +∆t‖f‖H1(0,T ;W′)

}
.

5. Numerical results

In this section we report some numerical results obtained with a Fortran code,

which implements the numerical method described above. In order to analyze the

convergence properties of the numerical scheme, we apply it to a test problem with

a known analytical solution.

We consider the eddy current Problem 2.1 defined in the meridian section

Ω :=[0.06,0.18] × [0,0.06], where the dimensions are given in meters. The right-

hand side f is chosen so that

H =
150 exp(t)

r
sin
( πr

0.06

)
sin
( πz

0.06

)

is the solution to the problem. Notice that H̃ = rH is constant (actually it vanishes)

on the boundary of the domain.

We consider a nonlinear material whose magnetization is given by its anhys-

teretic H-B curve defined by

B(H) := µ0H +
2Js
π

arctan

(
π(µr − 1)µ0H

2 Js

)
, (5.1)

where µ0 = 4π×10−7 Hm−1, µr = 3000 and Js = 1.89 T. This curve, whose positive

part is shown in Fig. 2, is very similar to the first magnetization curve of laminated

steels (cf. Ref. 21). The value of the electrical conductivity is σ = 4 × 106 (Ohm

m)−1.

The problem has been solved in the time interval [0,2] so that the values of

the solution H vary approximately between −12000 and 12000 A/m. Hence, the

nonlinear part of the curve is clearly attained (see Fig. 2).
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Fig. 2. Positive part of the H-B curve.

The numerical method has been applied with several successively refined meshes

and time-steps. The nonlinear system arising at each time step have been solved

with a Newton’s iteration. A sufficiently small tolerance has been chosen (10−4), so

that the error of this iteration be negligible. The computed approximate solutions

have been compared with the analytical one by calculating the percentual relative

error for H̃ and grad H̃ in the L2(0, T ; L2
1/r(Ω))-norm by means of

E∆t
h (H̃) := 100

(∑M
k=1 ∆t‖H̃(tk)− H̃k

h‖
2
L2
1/r

(Ω)

)1/2

(∑M
k=1 ∆t‖H̃(tk)‖2

L2
1/r

(Ω)

)1/2
,

E∆t
h (grad H̃) := 100

(∑M
k=1 ∆t‖grad H̃(tk)− grad H̃k

h‖
2
L2
1/r

(Ω)

)1/2

(∑M
k=1 ∆t ‖grad H̃(tk)‖2

L2
1/r

(Ω)

)1/2
.

Table 1 shows the relative errors for H̃ at different levels of discretization. We

notice that by taking a small enough time-step ∆t one can observe the behavior

of the error with respect to the space discretization (see the row corresponding to

∆t/128). On the other hand, by considering a small enough mesh-size h, one can

inspect the order of convergence with respect to ∆t (see the column corresponding

to h/16). In this example, we observe an order of convergence O(h2 + ∆t) for H̃,

which is the one expected from the theoretical analysis (cf. Remark 4.3).

In Table 2 we show the percentual relative errors for grad H̃ in the

L2(0, T ; L2
1/r(Ω))-norm. In this case, the space discretization error dominates the
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time discretization one, even for the finest mesh. In fact, an order O(h) can be

observed for both time steps. Let us remark that we have not proved theoretically

this experimental result (note that the estimates in Remark 4.4 are in a different

norm).

Table 1. Relative error (%) for H̃: E∆t

h
(H̃).

h h/2 h/4 h/8 h/16

∆t 13.85 2.91 0.63 0.65 0.75

∆t/2 14.04 3.14 0.61 0.30 0.38

∆t/4 14.14 3.25 0.70 0.15 0.18

∆t/8 14.19 3.32 0.77 0.15 0.08

∆t/16 14.21 3.36 0.80 0.17 0.04

∆t/32 14.22 3.37 0.82 0.19 0.04

∆t/64 14.21 3.38 0.83 0.20 0.04

∆t/128 14.20 3.38 0.83 0.20 0.04

Table 2. Relative error (%) for grad H̃: E∆t

h
(grad H̃).

h h/2 h/4 h/8 h/16

∆t 94.04 49.88 25.33 12.73 6.41

∆t/2 94.13 49.95 25.36 12.73 6.38

Once the order of convergence is checked, we report in one single figure the si-

multaneous dependence on h and ∆t for H̃ in L2(0, T ; L2
1/r(Ω))-norm by proceeding

in the following way: we choose initial coarse values of h and ∆t and, for each succes-

sively refined mesh, we take a value of ∆t proportional to h2 (see the values within

boxes in Table 1). Fig. 3 shows a log-log plot of the corresponding relative errors for

H̃ in the L2(0, T ; L2
1/r(Ω))-norm versus the number of degrees of freedom (d.o.f.).

The slope of the curve shows an order of convergence O(h2) = O(h2 + ∆t). In a

similar way, Fig. 4 shows an order O(h+∆t) for grad H̃ in the L2(0, T ; L2
1/r(Ω))-

norm.
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Fig. 3. E∆t

h
(H̃) versus number of d.o.f. (log-log scale), ∆t = Ch2.
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(Birkhäuser, 2005).
17. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satis-

fying boundary conditions, Math. Comp. 54 (1990) 483–493.
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2012-16 Alfredo Bermúdez, Bibiana López-Rodŕıguez, Rodolfo Rodŕıguez, Pilar
Salgado: An eddy current problem in terms of a time-primitive of the electric field
with non-local source conditions

2012-17 Gabriel N. Gatica, Antonio Marquez, Walter Rudolph: A priori and a
posteriori error analyses of augmented twofold saddle point formulations for nonlinear
elasticity problems

2012-18 Raimund Bürger, Enrique D. Fernández Nieto, El Hadji Koné, Tomás
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