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Centro de Investigación en
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Abstract

In this paper we introduce and analyze new augmented mixed finite element methods for a class of
nonlinear elasticity problems arising in hyperelasticity. The starting mixed method is based on the
incorporation of the strain tensor as an auxiliary unknown, which, together with the usual stress-
displacement-rotation approach employed in linear elasticity, yields a nonlinear twofold saddle point
operator equation as the resulting weak formulation. We first extend known results on the well-
posedness of the associated Galerkin scheme with PEERS of order k = 0 to the case k ≥ 1. Then
the augmented schemes are obtained by adding consistent Galerkin-type terms arising first from
the constitutive equation, and then from the equilibrium equation and the relations defining the
rotation in terms of the displacement and the strain tensor as independent unknown, all of them
multiplied by suitably chosen stabilization parameters. We apply classical results on the solvability
analysis of nonlinear saddle point and strongly monotone operator equations to prove that the
corresponding continuous and discrete augmented schemes are well-posed. In particular, we show
that the well-posedness of a partially augmented Galerkin scheme is ensured by any finite element
subspace for the strain tensor together with the PEERS space of order k ≥ 0 for the remaining
unknowns, whereas any finite element subspace of the whole continuous space will do in the case
of a fully augmented scheme. Then, we derive reliable and efficient residual-based a posteriori
error estimators for all the schemes. Finally, we provide several numerical results illustrating the
good performance of the mixed finite element methods, confirming the theoretical properties of the
estimators, and showing the behaviour of the associated adaptive algorithms.

Key words: twofold saddle point formulation, augmented approach, mixed finite element method,
a posteriori error estimator
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1 Introduction

The nonlinear twofold saddle point operator equations, also called dual-dual variational formulations,
arised about a decade ago from the necessity of applying dual-mixed methods to a class of nonlinear
boundary value problems appearing in continuum mechanics, particularly in potential theory, heat
conduction, elasticity, and fluid mechanics. At that time, the usual procedure for treating nonlinear
elliptic equations in divergence form was based on the inversion, thanks to the implicit function

∗This research was partially supported by BASAL project CMM, Universidad de Chile, and by Centro de Investigación
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‡Departamento de Construcción e Ingenieŕıa de Fabricación, Universidad de Oviedo, Oviedo, España, email:
amarquez@uniovi.es
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theorem, of the constitutive equations involved. In heat conduction, for instance, the gradient of the
temperature was expressed, when possible, as a function of the temperature and the flux variable.
Then, in order to deal with the case of constitutive equations that are not explicitly invertible, an
alternative approach was proposed first in [45] and [46], in connection with the coupling of mixed
finite element and boundary element methods for solving nonlinear transmission problems. This new
methodology, which has been later on extended to several other nonlinear boundary value problems,
is based on the introduction of auxiliary unknowns such as the gradient of the temperature (in heat
conduction) or the strain tensor (in elasticity and fluid mechanics), which yields twofold saddle point
operator equations as the resulting weak formulations (see, e.g. [1], [4], [5], [28], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [43], and [44]). Actually, the idea of introducing further incognitas to deal
with the nonlinearities of a boundary value problem had been employed before in [24], [14], and [15], in
which the associated Galerkin schemes were named expanded mixed finite element methods. However,
it is important to remark that the twofold saddle point structure has only been obtained and analyzed
in the works mentioned above. Now, particularly significant for the current paper are the results
from [5], where a detailed analysis of the continuous and discrete dual-mixed formulations of a two-
dimensional nonlinear boundary value problem arising in hyperelasticity was developed. In particular,
it is shown there that stable mixed finite elements for linear elasticity, such as PEERS of order 0,
also lead to well-posed Galerkin schemes for that nonlinear problem. The corresponding extensions
to nonlinear incompressible elasticity and quasi-Newtonian Stokes flows were short after provided in
[44], [32] and [31]. Further applications to diverse transmission problems are given in [4], [34], [38],
and [43]. The results in [32] were also extended in [19] and [49] to a setting in reflexive Banach spaces,
thus allowing other nonlinear models such as the Carreau law for viscoplastic flows. More recently,
a velocity-pseudostress formulation for the same quasi-Newtonian Stokes flows considered in [32] and
[19] is analyzed in [42]. In this case, in addition to introducing the gradient of the velocity of the
fluid as an auxiliary unknown, the pressure is eliminated using the incompressibility condition, and
similarly as in [32] the resulting variational formulation still shows a twofold saddle point structure.

In turn, the abstract framework that is needed for the solvability analysis of the continuous and
discrete nonlinear twofold saddle point formulations, which constitutes a natural extension of the
classical Babuška-Brezzi theory, was derived in [28] and [39]. It is quite clear from these works that,
as for the case of linear saddle point problems (see, e.g. [10]), the hardest aspect of the associated
numerical analysis refer to the choice of suitable finite element subspaces satisfying the discrete inf-sup
conditions involved. Moreover, while it is usually possible to establish specific well-posed Galerkin
schemes for each one of the problems studied so far, it is also true that not any polynomial degree can
be employed for the local approximations of the unknowns and that additional necessary conditions
among the global subspaces need to be satisfied.

In the case of linear problems, the restrictions and conditions mentioned in the previous paragraph
have been somehow overcomed through the application of several stabilization procedures developed
during the last two decades, which have allowed more flexibility in the choice of the corresponding
finite element subspaces. In particular, the augmented variational formulations, also known as Galerkin
least-squares methods, and which go back to [22] and [23], have already been extended in different
directions. Some applications to elasticity problems can be found in [26] and [12], and a non-symmetric
variant was considered in [18] for the Stokes problem. In addition, stabilized mixed finite element
methods for related problems, including Darcy and incompressible flows, can be seen in [3], [9], [25],
and [52]. For an abstract framework concerning the stabilization of general mixed finite element
methods, we refer to [11]. Furthermore, a new stabilized mixed finite element method for plane linear
elasticity was introduced and analyzed in [29]. The approach there is based on the incorporation of
suitable Galerkin least-squares terms arising from the constitutive and equilibrium equations, and from
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the relation defining the rotation in terms of the displacement. It is shown that the resulting continuous
and discrete augmented formulations are well posed, and that the latter becomes locking-free for both
Dirichlet and mixed boundary conditions. Moreover, in the case of pure Dirichlet conditions, the
augmented formulation becomes strongly coercive, and hence arbitrary finite element subspaces can
be employed in the associated Galerkin scheme, which constitutes one of its main advantages with
respect to other methods. In particular, Raviart-Thomas spaces of lowest order for the stress tensor,
continuous piecewise linear elements for the displacement, and piecewise constants for the rotation
can be used. The corresponding extensions to non-homogeneous Dirichlet boundary conditions and to
three-dimensional elasticity were provided in [30] and [40], respectively. In addition, residual based a
posteriori error analyses yielding reliable and efficient estimators for the augmented method from [29],
are presented in [7] and [6]. Furthermore, augmented mixed finite element methods for pseudostress-
based formulations of the stationary Stokes equations, which further extends the results from [29],
[30], and [40], are introduced and analyzed in [21]. The corresponding augmented mixed finite element
schemes for the velocity-pressure-stress formulation of the Stokes problem, in which the vorticity is
introduced as the Lagrange multiplier taking care of the weak symmetry of the stress, are studied in
[20]. The results in [21] and [20] also include the derivation of reliable and efficient residual-based a
posteriori error estimators.

Motivated by the discussion from the preceding paragraphs, and in order to achieve also more
flexibility in the choice of the finite element subspaces for the dual-mixed formulations of nonlinear
boundary value problems, we now aim to extend the applicability of the augmented dual-mixed for-
mulations developed in [29], [30], [40], [21], and [20] to the class of nonlinear twofold saddle point
operator equations described above. We are interested in the a priori and a posteriori error analy-
ses of the resulting augmented schemes, and as a model we consider the problem in hyperelasticity
studied in [5]. Up to the authors’ knowledge, the closest contribution in the proposed direction is
given by a partially augmented approach introduced in [42] for the velocity-pseudostress formulation
of quasi-Newtonian Stokes flows. Indeed, the redundant incorporation of the constitutive law relating
the stress and the strain tensors transforms the original twofold saddle point structure of the nonlinear
problem in [42] into a single saddle point operator equation, which certainly simplifies the require-
ments for well-posedness of the associated Galerkin scheme. The adaptation of this idea to our model
problem from [5] constitutes the starting point of the augmented formulations that are introduced
and analyzed in the present paper. As a by product of our preliminary analysis, we extend the results
from [5] and show that the Galerkin scheme becomes well-posed for any PEERS space of order k ≥ 1
(not only for k = 0 as proved in [5]).

The rest of our work is organized as follows. In Section 2 we introduce the model problem, derive
the associated nonlinear operator equation, which, as shown originally in [5], has a twofold saddle point
structure, and then discuss the solvability and stability of the continuous and discrete formulations.
Next, in Section 3 we propose and analyze a partially augmented approach for our twofold saddle point
problem. Classical results on nonlinear functional analysis are applied to prove the well-posedness of
the resulting continuous and discrete formulations. In particular, a discrete inf-sup condition for
one of the forms involved is no longer required, and hence a larger class of finite element subspaces
can be employed to define the Galerkin schemes. Several examples in this direction are specified.
The idea and analysis from Section 3 are extended in Section 4 through the introduction of a fully
augmented approach. In this case, no discrete inf-sup conditions are needed at all, and therefore the
associated discrete scheme becomes well-posed for any finite element subspace. Then, in Section 5 we
derive reliable and efficient residual-based a posteriori error estimators for the three Galerkin schemes
defined in the previous sections. Finally, several numerical results illustrating the performance of the
methods, confirming the reliability and efficiency of the a posteriori estimators, and showing the good
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behavior of the associated adaptive algorithms, are reported in Section 6.

We end this section with several notations to be used below. In what follows, R2×2 is the space
of square matrices of orden 2 with real entries, I := (δij) is the identity matrix of R2×2, and given
τ := (τij), ζ := (ζij) in R2×2, we write as usual

τ t := (τji) , tr(τ ) :=

2∑

i=1

τii , τ d := τ −
1

2
tr(τ ) I , and τ : ζ :=

2∑

i,j=1

τij ζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator of a tensor τ , and to the
tensorial product between τ and ζ. In turn, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and r ∈ R,
we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote
[H]2 and [H]2×2, respectively. In addition, we use 〈·, ·〉S to denote the usual duality pairings between
H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S). Furthermore, with div denoting the
usual divergence operator, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [10], [47]). The space of matrix valued functions
whose rows belong to H(div;O) will be denoted H(div;O), where div stands for the action of div
along each row of a tensor. The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖ · ‖div;O
and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O). Finally, we employ 0
to denote a generic null vector (including the null functional and operator), and use C and c, with or
without subscripts, bars, tildes or hats, to denote generic constants independent of the discretization
parameters, which may take different values at different places.

2 The twofold saddle point approach

2.1 The model problem

In order to describe the nonlinear problem studied in [5], we now let Ω be a bounded and simply
connected polygonal domain in R2 with Lipschitz-continuous boundary Γ. Our goal is to determine
the displacement u and stress σ of a hyperelastic material occupying the region Ω, which is subject to
a volume force and has a known displacement on Γ. As a description of the hyperelasticity we assume
the validity of the Hencky-Mises stress-strain relation as discussed in [53] (see also [59]). In other
words, given f ∈ L2(Ω) and g ∈ H1/2(Γ), the nonlinear boundary value problem reads as follows:
Find a tensor field σ and a vector field u such that

σ = λ̃(‖e(u)d‖)
(
divu

)
I + µ̃(‖e(u)d‖) e(u) in Ω ,

divσ = − f in Ω , u = g on Γ ,
(2.1)

where λ̃, µ̃ : R+ → R are the nonlinear Lamé functions, ∇u is the tensor gradient of u, e(u) :=
1
2

(
∇u +

(
∇u
)
t
)
is the strain tensor of small deformations, ‖ · ‖ is the euclidean norm in R2×2, and
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ν stands for the unit outward normal to Γ. In addition, from now on we suppose that λ̃, µ̃ ∈ C1(R+)
and that there exist κ, µ0, µ1, µ2 > 0 such that for all ρ ≥ 0,

λ̃(ρ) = κ−
1

2
µ̃(ρ) , µ0 ≤ µ̃(ρ) < 2κ , µ1 ≤ µ̃(ρ) + ρ µ̃′(ρ) ≤ µ2 . (2.2)

2.2 The continuous variational formulation

We now recall from [5] the dual-mixed variational formulation of (2.1). For this purpose we set

λ(r) := λ̃(‖rd‖) and µ(r) := µ̃(‖rd‖) ∀ r ∈ L2(Ω) ,

so that, defining the new unknown t := e(u) ∈ L2(Ω), problem (2.1) adopts the equivalent form

t = e(u) in Ω , σ = λ(t) tr(t) I + µ(t) t in Ω ,

divσ = − f in Ω , u = g on Γ .
(2.3)

Next, we introduce the subspace of L2(Ω) given by

L2
skew

(Ω) :=
{
η ∈ L2(Ω) : η + ηt = 0

}
.

Then, rewriting the identity t = e(u) as

t = ∇u − γ , (2.4)

where

γ :=
1

2

(
∇u− (∇u)t

)
(2.5)

is an auxiliary unknown (named rotation) living in L2
skew

(Ω), and following the usual integration by
parts procedure (see [5] for details), we arrive at the problem: Find (t,σ,u,γ) ∈ L2(Ω)×H(div; Ω)×
L2(Ω)× L2

skew
(Ω) such that

∫

Ω

{
λ(t) tr(t) tr(s) + µ(t) t : s

}
−

∫

Ω
σ : s = 0 ,

−

∫

Ω
t : τ −

∫

Ω
u · div τ −

∫

Ω
γ : τ = −〈 τ ν , g 〉Γ ,

−

∫

Ω
v · divσ −

∫

Ω
η : σ =

∫

Ω
f · v ,

(2.6)

for all (s, τ ,v,η) ∈ L2(Ω)× H(div; Ω)× L2(Ω)× L2
skew

(Ω).

Next, we notice that (2.6) has the typical twofold saddle point structure (see, e.g. [28], [39]). In fact,
let us define the Hilbert spaces X1 := L2(Ω), M1 := H(div; Ω), andM := L2(Ω)×L2

skew
(Ω), provided

with the usual norms and product norms, respectively, and the nonlinear operator A1 : X1 → X ′
1,

the bounded linear operators B1 : X1 → M ′
1 and B : M1 → M ′, and the bounded linear functionals

H ∈ X ′
1, G ∈ M ′

1 and F ∈ M ′, given for each r, s ∈ X1, ζ, τ ∈ M1 and (v,η) ∈ M as

[A1(r), s] :=

∫

Ω

{
λ(r) tr(r) tr(s) + µ(r) r : s

}
,

[B1(r), τ ] := −

∫

Ω
r : τ ,

[B(ζ), (v,η)] := −

∫

Ω
v · div ζ −

∫

Ω
ζ : η ,

(2.7)
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and

[H, s] := 0, [G, τ ] := −〈 τ ν , g 〉Γ , and [F, (v,η)] :=

∫

Ω
f · v ,

where the brackets [ ·, · ] denote the duality pairings induced by the corresponding operators and
functionals.

Then, it is easy to see that the variational formulation (2.6) can be rewritten as: Find (t,σ, (u,γ))
∈ X := X1 ×M1 ×M such that

[A1(t), s] + [B1(s),σ] = [H, s] ∀ s ∈ X1 ,

[B1(t), τ ] + [B(τ ), (u,γ)] = [G, τ ] ∀ τ ∈ M1 ,

[B(σ), (v,η)] = [F, (v,η)] ∀ (v,η) ∈ M .

(2.8)

The abstract theory for this kind of twofold saddle point operator equation, including the analysis
of the associated discrete formulation (whose definition is pretty straightforward from (2.8)), is already
well known (see [28], [39]), and their main results are recalled in the following section.

2.3 Abstract theory for twofold saddle point operator equations

Let X1, M1, and M be Hilbert spaces, and consider a nonlinear operator A1 : X1 → X ′
1, and

linear bounded operators B1 : X1 → M ′
1 and B : M1 → M ′, with transposes B′

1 : M1 → X ′
1 and

B′ : M → M ′
1, respectively. Then, given (H,G,F) ∈ X ′

1×M ′
1×M ′, we are interested in the following

nonlinear variational problem (written as a matrix operator equation): Find (t,σ, u) ∈ X1 ×M1 ×M
such that 


A1 B′

1 O

B1 O B′

O B O







t

σ

u


 =




H

G

F


 . (2.9)

We have the following theorem.

Theorem 2.1 Let V := Ker (B), define V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈ V }, and let Π1 : X ′
1 →

V ′
1 be the operator defined by Π1(H) = H|V1 for all H ∈ X ′

1. Assume that

i) the nonlinear operator A1 : X1 → X ′
1 is Lipschitz continuous with a Lipschitz constant γ > 0,

and for any t̃ ∈ X1, the nonlinear operator Π1A1(·+ t̃) : V1 → V ′
1 is strongly monotone with a

monotonicity constant α > 0 independent of t̃.

ii) there exists β > 0 such that for all v ∈ M

sup
τ∈M1\{0}

[B(τ ), v]

||τ ||M1

≥ β ||v||M ; (2.10)

iii) there exists β1 > 0 such that for all τ ∈ V

sup
s∈X1\{0}

[B1(s), τ ]

||s||X1

≥ β1 ||τ ||M1 ; (2.11)

Then, for each (H,G,F) ∈ X ′
1 ×M ′

1 ×M ′ there exists a unique (t,σ, u) ∈ X1 ×M1 ×M solution of
(2.9). Moreover, there exists C > 0, independent of the solution, such that

‖(t,σ, u)‖X1×M1×M ≤ C
{
‖H‖+ ‖G‖+ ‖F‖+ ‖A1(0)‖

}
. (2.12)
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Proof. See [28, Theorem 2.4] (see also [39, Theorem 2.1] or [43, Theorem 4.1]). �

Now, let X1,h, M1,h and Mh be finite dimensional subspaces of X1, M1 and M , respectively. Then
the Galerkin scheme associated with (2.9) reads as follows: Find (th,σh, uh) ∈ X1,h × M1,h × Mh

such that

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h ,

[B1(th), τ h] + [B(τ h), uh] = [G, τ h] ∀ τh ∈ M1,h ,

[B(σh), vh] = [F, vh] ∀ vh ∈ Mh .

(2.13)

The discrete analogue of Theorem 2.1 is established next.

Theorem 2.2 Let Vh := {τ h ∈ M1,h : [B(τ h), vh] = 0 ∀ vh ∈ Mh}, define the space V1,h :=
{sh ∈ X1,h : [B1(sh), τ h] = 0 ∀ τh ∈ Vh} and let Π1,h : X ′

1,h → V ′
1,h be the operator defined by

Π1,h(Hh) = Hh|V1,h
for all Hh ∈ X ′

1,h. Further, let A1,h := p′hA1 : X1 → X ′
1,h where ph : X1,h → X1

is the canonical injection with adjoint p′h : X ′
1 → X ′

1,h. Assume that

i) the nonlinear operator A1,h : X1 → X ′
1,h is Lipschitz-continuous with a Lipschitz constant

γh > 0, and for any t̃ ∈ X1,h, the nonlinear operator Π1,hA1,h(· + t̃) : V1,h → V ′
1,h is strongly

monotone with a monotonicity constant αh > 0 independent of t̃.

ii) there exists βh > 0 such that for all vh ∈ Mh

sup
τh ∈M1,h\{0}

[B(τ h), vh]

||τ h||M1

≥ βh ||vh||M ; (2.14)

iii) there exists β1,h > 0 such that for all τ h ∈ Vh

sup
sh ∈X1,h\{0}

[B1(sh), τ h]

||sh||X1

≥ β1,h ||τ h||M1 ; (2.15)

Then, for each (H,G,F) ∈ X ′
1 × M ′

1 × M ′ there exists a unique (th,σh, uh) ∈ X1,h × M1,h × Mh

solution of (2.13). Moreover, there exists Ch > 0, independent of the solution, but depending on h,
such that

‖(th,σh, uh)‖X1×M1×M ≤ Ch

{
‖Hh‖+ ‖Gh‖+ ‖Fh‖+ ‖A1,h(0)‖

}
,

where Hh := H|X1,h
, Gh := G|M1,h

, and Fh := F|Mh
.

Proof. See [28, Theorem 3.2] (see also [39, Theorem 3.1] or [43, Theorem 4.2]). �

Finally, concerning the error analysis, we have the following result.

Theorem 2.3 Assume that the hypotheses of Theorems 2.1 and 2.2 are satisfied, and let (t,σ, u)
∈ X1 × M1 × M and (th,σh, uh) ∈ X1,h × M1,h × Mh be the unique solutions of (2.9) and (2.13),
respectively. In addition, suppose that there exist positive constants γ̃, α̃, β̃, and β̃1 such that γh ≤ γ̃,
αh ≥ α̃, βh ≥ β̃, and β1,h ≥ β̃1 for all h. Then, there exists C > 0, independent of h, such that the
following Céa error estimate holds:

‖(t,σ, u)− (th,σh, uh)‖ ≤ C inf
(sh,τh,vh)

∈X1,h×M1,h×Mh

‖(t,σ, u)− (sh, τ h, vh)‖ .

Proof. See [28, Section 4] (see also [39, Theorem 3.3]). �

7



2.4 Analysis of the continuous formulation

The well-posedness of the continuous formulation (2.6) (equivalently (2.8)) was already established in
[5, Theorem 4.5]. However, for the sake of completeness, and for later use throughout the paper, in
what follows we collect the intermediate results yielding that main theorem. In addition, we remark
in advance that some parts of the analysis will employ alternative arguments to those given in [5]. We
begin with the Gâteaux differentiability of the nonlinear operator A1 (cf. (2.7)).

Lemma 2.1 The nonlinear operator A1 : X1 → X ′
1 is Gâteaux differentiable in X1, and the family

of Gâteaux derivatives {DA1(x)}x∈X1 is both uniformly bounded and uniformly elliptic on X1 ×X1.
More precisely, there exist positive constants γ1, α1, depending only on κ, µ0, µ1, and µ2 (cf. (2.2)),
such that for all x, r, s ∈ X1, there hold

| DA1(x)(r, s) | ≤ γ1 ‖r‖X1 ‖s‖X1 (2.16)

and
DA1(x)(r, r) ≥ α1 ‖r‖

2
X1

. (2.17)

Proof. Simple computations and the C1-regularity of µ̃ and λ̃ yield for x, r, s ∈ X1, x
d 6= 0,

lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
=

∫

Ω
λ̃′(‖xd‖)

(xd : rd)

‖xd‖
tr(x) tr(s)

+

∫

Ω
λ̃(‖xd‖) tr(r) tr(s) +

∫

Ω
µ̃′(‖xd‖)

(xd : rd)

‖xd‖
x : s +

∫

Ω
µ̃(‖xd‖) r : s ,

(2.18)

whereas for xd = 0 there holds

lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
=

∫

Ω
λ̃′(0) ‖rd‖ tr(x) tr(s)

+

∫

Ω
λ̃(0) tr(r) tr(s) +

∫

Ω
µ̃′(0) ‖rd‖x : s +

∫

Ω
µ̃(0) r : s .

(2.19)

The above identities show that A1 is Gâteaux differentiable at x. Moreover, DA1(x) is the bounded
linear operator from X1 into X ′

1 that can be identified with the bilinear form DA1(x) : X1 ×X1 → R
defined by

DA1(x)(r, s) := lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
∀ r, s ∈ X1 . (2.20)

Hence, the derivation of (2.16) and (2.17) follows from (2.20), using (2.18), (2.19), and the assumptions
on λ̃ and µ̃ (cf. (2.2)). We omit further details and refer to [27, Lemma 5.1]. In particular, from the
analysis there we find that

γ1 = max
{
µ2 + 2κ, 6κ

}
and α1 = min

{
µ0, µ1, 2κ

}
. (2.21)

Alternatively, one may look at the corresponding analysis within the proof of [5, Lemma 4.1]. �

The Lipschitz-continuity and strong monotonicity of A1, which is a straightforward consequence
of Lemma 2.1, is established next.

Lemma 2.2 Let γ1 and α1 be the constants from Lemma 2.1 (cf. (2.21)). Then, for each t, r ∈ X1

there hold
‖A1(t)− A1(r)‖X′

1
≤ γ1 ‖t− r‖X1 , (2.22)

and
[A1(t)− A1(r), t − r] ≥ α1 ‖t− r‖2X1

. (2.23)
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Proof. Given t, r ∈ X1, a direct application of the mean value theorem yields the existence of a
convex combination of t and r, say r̃ ∈ X1, such that

[A1(t)−A1(r), s] = DA1(r̃)(t − r, s) ∀ s ∈ X1 . (2.24)

Hence, (2.22) and (2.23) follow easily from (2.24) and the estimates (2.16) and (2.17). �

It is quite clear from Lemma 2.2 that the hypothesis i) of Theorem 2.1 is satisfied by the operator
A1, and hence by our twofold saddle point variational formulation (2.8). In particular, for the strong
monotonicity property, let V := Ker(B), V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈ V}, and Π1 : X

′
1 → V′

1

be the operator defined by Π1(H) = H|V1 for all H ∈ X ′
1. Hence, given t̃ ∈ X1 and r, s ∈ V1, we find

that
[Π1 A1(r+ t̃) − Π1 A1(s+ t̃), r− s] = [A1(r+ t̃) − A1(s+ t̃), r− s]

= [A1(r+ t̃) − A1(s+ t̃), (r + t̃)− (s+ t̃)] ≥ α1 ‖r− s‖2X1
,

(2.25)

which shows that for each t̃ ∈ X1, Π1 A1(·+ t̃) : V1 → V′
1 is strongly monotone with constant α = α1.

On the other hand, the continuous inf-sup condition (2.10) for B, which is equivalent to the surjec-
tivity of this operator, is already a classical requirement in the analysis of the dual-mixed variational
formulation for linear elasticity. However, just a few places seem to provide a proof of this inequality
(see, e.g. [5, Lemma 4.3]), and therefore a simple version of it is given now.

Lemma 2.3 The operator B : M1 → M ′ is surjective.

Proof. We first observe from (2.7) that B(τ ) = R−1
(
− div τ ,− 1

2(τ − τ t)
)
for each τ ∈ M1, where

R : M ′ → M is the corresponding Riesz operator. Then, given F ∈ M ′, we let (v,η) := R(F) ∈ M
and consider the boundary value problem

div e(z) = v − div η in Ω , z = 0 in Γ ,

whose weak formulation reduces to: Find z ∈ H1
0(Ω) such that

∫

Ω
e(z) : e(w) = −

∫

Ω
v ·w −

∫

Ω
η : ∇w ∀w ∈ H1

0(Ω) .

It follows, thanks to Korn’s inequality and Lax-Milgram’s Lemma, that the above problem has a
unique solution z depending continuously on the data v and η. In this way, defining τ̂ := e(z) + η,
we easily see that τ̂ ∈ H(div; Ω),

(
div τ̂ , 12 (τ̂ − τ̂ t)

)
= (v,η), and therefore B(−τ̂ ) = F, which

confirms the surjectivity of B. �

In turn, the continuous inf-sup condition (2.11) for B1 requires first to identify V := Ker(B),
which, acording to the definition of B (cf. (2.7)), is given by

V =
{
τ ∈ H(div; Ω) : div τ = 0 and τ = τ t in Ω

}
.

Then, using that V ⊆ X1 := L2(Ω) and that the tensors of V are divergence-free, it follows that

sup
s∈X1
s6=0

[B1(s), τ ]

‖s‖0,Ω
≥

[B1(−τ ), τ ]

‖τ‖0,Ω
= ‖τ‖0,Ω = ‖τ‖div;Ω ∀ τ ∈ V , (2.26)

which shows that B1 satisfies (2.11) with a constant β1 = 1.

9



Alternatively, we see from the definition of B1 (cf. (2.7)) that the above condition is equivalent to
the surjectivity of the operator

ΠB1 := − i′R−1
1 : X1 → V′ ,

where Π : M ′
1 → V′ is defined by Π(G) = G|V for all G ∈ M ′

1, i
′ is the adjoint of the canonical injection

i : V → X1, and R1 : X ′
1 → X1 is the Riesz operator. Thus, given F ∈ V′, the fact that ‖ · ‖div;Ω and

‖ · ‖0,Ω coincide in V says that actually F is bounded with respect to the L2(Ω)-norm. Hence, we let
F ∈ X ′

1 be any extension (by Riesz or Hahn-Banach) of F, define r := −R1(F) ∈ X1, and observe
that − i′ R−1

1 (r) = F, which shows the surjectivity of ΠB1. Note again that the inclusion V ⊆ X1

and the divergence-free property of the elements in V are crucial here.

Having proved the above results, the well-posedness of (2.8) can be established next.

Theorem 2.4 There exists a unique (t,σ, (u,γ)) ∈ X := X1 ×M1 ×M solution of problem (2.8).
Moreover, there exists C > 0, independent of the solution and the data, such that

‖(t,σ, (u,γ))‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. It follows from a straightforward application of Theorem 2.1, taking also into account that
A1(0) becomes the null functional 0. �

2.5 The discrete formulation and its analysis

We now let X1,h, M1,h and Mh := Mu

h × Mγ
h be arbitrary finite dimensional subspaces of X1, M1

and M := L2(Ω) × L2
skew

(Ω), respectively. Then the Galerkin scheme associated with (2.8) reads as
follows: Find (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh such that

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h ,

[B1(th), τ h] + [B(τ h), (uh,γh)] = [G, τ h] ∀ τ h ∈ M1,h ,

[B(σh), (vh,ηh)] = [F, (vh,ηh)] ∀ (vh,ηh) ∈ Mh .

(2.27)

In order to define specific finite element subspaces X1,h, M1,h and Mh satisfying the hypotheses of
the abstract Theorem 2.2, our strategy is to follow/adapt as much as possible the continuous analysis
from Section 2.4. To this respect, we first observe, thanks to Lemma 2.2, that the strong monotonicity
and Lipschitz-continuity properties concerning the operator A1,h := p′hA1 : X1 → X1,h (ph being the
canonical injection from X1,h to X1), which constitute the assumption i) of Theorem 2.2, are satisfied
for any finite dimensional subspace X1,h, and with the same constants γ1 and α1 from Lemma 2.1
(cf. (2.21)). In particular, it is easy to see that the simple computation given in (2.25) also works for
Π1,hA1,h instead of Π1 A1, where Π1,h is defined as in Theorem 2.2.

Now, given a pair of finite element subspaces M1,h and Mh satisfying the discrete inf-sup condition
(2.14) for B uniformly (which means that there exists β̃ > 0 such that βh ≥ β̃ for all h > 0), we let
Vh be the discrete kernel of B, that is

Vh :=
{
τ h ∈ M1,h : [B(τ h), (vh,ηh)] = 0 ∀ (vh,ηh) ∈ Mh

}
.

which, according to the definition of B (cf. (2.7)), reduces to

Vh :=
{
τ h ∈ M1,h :

∫

Ω
vh · div τ h = 0 ∀vh ∈ Mu

h and

∫

Ω
τ h : ηh = 0 ∀ηh ∈ Mγ

h

}
. (2.28)
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Next, in order to be able to apply analogous arguments to those employed in the previous section
(cf. (2.26)) to conclude the discrete inf-sup condition (2.15) for B1 uniformly, we just need to assume
that

Vh ⊆ X1,h and div τ h = 0 ∀ τ h ∈ Vh . (2.29)

In particular, note from the first identity defining Vh (cf. (2.28)) that a sufficient condition for the
second requirement in (2.29) is that div

(
M1,h

)
⊆ Mu

h .

The above analysis and the abstract Theorem 2.2 induce the following general result.

Theorem 2.5 Let X1,h, M1,h and Mh := Mu

h ×Mγ
h be finite dimensional subspaces of X1, M1 and

M := L2(Ω)× L2
skew

(Ω), respectively, and let Vh be the associated discrete kernel of B (as defined by
(2.28)). Assume that:

(H.1) M1,h and Mh satisfy the discrete inf-sup condition (2.14) for B uniformly.

(H.2) Vh is contained in X1,h.

(H.3) div τ h = 0 ∀ τ h ∈ Vh, or in particular

(̃H.3) div
(
M1,h

)
⊆ Mu

h .

Then, there exists a unique (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh solution of (2.27). Moreover, there
exist C, C̃ > 0, independent of h, such that

‖(th,σh, (uh,γh))‖X ≤ C
{
‖Hh‖+ ‖Gh‖+ ‖Fh‖

}

and

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C̃ inf
(sh,τh,(vh,ηh))

∈X1,h×M1,h×Mh

‖(t,σ, (u,γ))− (sh, τ h, (vh,ηh))‖ ,

where Hh := H|X1,h
, Gh := G|M1,h

, and Fh := F|Mh
.

2.6 Specific finite element subspaces

In order to provide concrete examples of finite element subspaces satisfying the assumptions of The-
orem 2.5, we assume from now on that Γ is a polygonal curve and let {Th}h>0 be a regular family of
triangulations of Ω, made up of triangles T of diameter hT , such that h := max {hT : T ∈ Th} and
Ω :=

⋃
{T : T ∈ Th}. Given an integer ℓ ≥ 0 and a subset S of R2, we denote by Pℓ(S) and P̃ℓ(S)

the spaces of polynomials defined on S of total degree at most ℓ and equal ℓ, respectively. Then, for
each T ∈ Th and for each integer k ≥ 0 we define the local Raviart-Thomas space of order k (see, e.g.
[10], [55])

RTk(T ) := Pk(T )⊕ P̃k(T )x,

where x := (x1, x2) is a generic vector of R2. Recall here that, according to the notation described in
Section 1, Pk(T ) stands for [Pk(T )]

2. In addition, we let bT be the triangle-bubble function defined
as the unique polynomial in P3(T ) vanishing on ∂T with

∫
T bT = 1. Then, for each T ∈ Th and for

each integer k ≥ 0 we define the local bubble space of order k

Bk(T ) := curlt
(
bT Pk(T )

)
,
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where, given a scalar field v, curlt v is the vector field

curlt v :=
( ∂v

∂x2
−

∂v

∂x1

)
. (2.30)

Next, given an integer k ≥ 0, we introduce the finite element subspaces

M1,h :=
{
τh ∈ H(div; Ω) : τ h|T ∈ [RTk(T )⊕Bk(T )]

2 ∀T ∈ Th
}
, (2.31)

Mu

h :=
{
vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
, (2.32)

Mγ
h :=

{
ηh ∈ L2

skew
(Ω) ∩C(Ω) : ηh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (2.33)

and
Mh := Mu

h × Mγ
h .

The resulting product space M1,h×Mu

h ×Mγ
h (with k = 0) corresponds to the classical PEERS-space

introduced originally in [2] for the linear elasticity problem. Moreover, it was shown in [2, Lemma 4.4]
that these particular spaces M1,h and Mh satisfy the discrete inf-sup condition (2.14) uniformly, thus
providing one of the first stable Galerkin schemes for the mixed variational formulation of the elasticity
problem with weak symmetry. In turn, the general case k ≥ 0 corresponds to the PEERS-space of
order k introduced in [50], which is denoted PEERSk := M1,h × Mu

h × Mγ
h . More precisely, it is

shown in [50, Theorem 4.5 and Section 5], as a simple corollary of the corresponding stability result
for the BDMS element, that PEERSk also satisfies the discrete inf-sup condition (2.14) uniformly.

Hence, knowing that the spaces defined by (2.31), (2.32), and (2.33) satisfy the hypothesis (H.1)
of Theorem 2.5 for each integer k ≥ 0, we now aim to prove that, defining a suitable subspace X1,h,
they all verify (H.2) and (H.3) as well. In fact, it is quite straightforward to see that in this case there
holds div

(
M1,h

)
⊆ Mu

h , which certainly implies that div τ h = 0 ∀ τ h ∈ Vh, thus satisfying (H.3),
where Vh is the discrete kernel of B defined according to (2.28), (2.31), (2.32), and (2.33). Moreover,
given τ h ∈ Vh ⊆ M1,h, T ∈ Th, and i ∈ {1, 2}, there exist q ∈ Pk(T ), q̃ ∈ P̃k(T ), and b ∈ Bk(T ),
such that, denoting by τ h,i the i-th row of τ h,

τ h,i = q + q̃ x + b in T .

It follows, performing simple algebraic computations, that

0 = div τ h,i = divq + (k + 2) q̃ in T ,

which yields q̃ = 0 since divq = 0 for k = 0, and for k ≥ 1 there also holds q̃ = 0 since otherwise

q̃ = −
1

(k + 2)
divq ∈ Pk−1(T ), which contradicts the fact that q̃ ∈ P̃k(T ). In this way, we actually

have that τh,i = q + b in T , from which we conclude that

τ h|T ∈ [Pk(T ) ⊕ Bk(T )]
2 ∀T ∈ Th .

Therefore, in order to accomplish (H.2), the above suggests to simply define for each k ≥ 0

X1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ [Pk(T )⊕Bk(T )]

2 ∀T ∈ Th
}
. (2.34)

We have thus demonstrated the following theorem, which extends to the case k ≥ 1 the corres-
ponding result provided in [5, Theorem 5.1].
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Theorem 2.6 Given an integer k ≥ 0, we let X1,h, M1,h and Mh := Mu

h × Mγ
h be the finite ele-

ment subspaces defined by (2.34), (2.31), (2.32), and (2.33), respectively. Then, there exists a unique
(th,σh, (uh,γh)) ∈ X1,h×M1,h×Mh solution of (2.27). Moreover, there exist C, C̃ > 0, independent
of h, such that

‖(th,σh, (uh,γh))‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}

and

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C̃ inf
(sh,τh,(vh,ηh))

∈X1,h×M1,h×Mh

‖(t,σ, (u,γ))− (sh, τ h, (vh,ηh))‖ . (2.35)

Proof. It is a straightforward application of Theorem 2.5 and the fact that the discrete functionals are
bounded by the data as indicated here. �

Furthermore, in order to establish the rate of convergence of the Galerkin solution provided by
Theorem 2.6, we need the approximation properties of the finite element subspaces involved. For this
purpose, we first define the global Raviart-Thomas, bubble, and piecewise polynomial spaces, all of
order k ≥ 0, as

RTk(Th) :=
{
τ h ∈ H(div; Ω) : τh|T ∈ [RTk(T )]

2 ∀T ∈ Th
}
,

Bk(Th) :=
{
τ h ∈ H(div; Ω) : τh|T ∈ [Bk(T )]

2 ∀T ∈ Th
}
,

and
Pk(Th) :=

{
vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
.

Note, in particular, that the finite element subspaces X1,h (cf. (2.34)), M1,h (cf. (2.31)), and Mu

h (cf.
(2.32)) can also be defined, for each k ≥ 0, as

X1,h = [Pk(Th)]
2×2 ⊕ Bk(Th) , M1,h := RTk(Th)⊕ Bk(Th) , and Mu

h := [Pk(Th)]
2 .

Now, we let Ek
h : H1(Ω) −→ RTk(Th) be the usual equilibrium interpolation operator (see, e.g.

[55], [10]), which, given τ ∈ H1(Ω), is characterized by the following identities:
∫

e
Ek
h(τ )ν · ψ =

∫

e
τν ·ψ ∀ edge e ∈ Th , ∀ ψ ∈ Pk(e) , when k ≥ 0 , (2.36)

and ∫

T
Ek
h(τ ) : ψ =

∫

T
τ : ψ ∀ T ∈ Th , ∀ ψ ∈ Pk−1(T ) , when k ≥ 1 . (2.37)

It is easy to show, using (2.36) and (2.37), that

div(Ek
h(τ )) = Pk

h(div(τ )) , (2.38)

where Pk
h is the orthogonal projector from L2(Ω) into [Pk(Th)]

2. Note that Pk
h can also be identified

with (Pk
h,P

k
h), where Pk

h is the orthogonal projector from L2(Ω) into Pk(Th). It is well known (see,
e.g. [16]) that for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖v −Pk
h(v)‖0,T ≤ C hmT |v|m,T ∀T ∈ Th . (2.39)

In addition, the operator Ek
h satisfies the following approximation properties (see, e.g. [10], [55]):

‖τ − Ek
h(τ )‖0,T ≤ C hmT |τ |m,T ∀T ∈ Th , (2.40)
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for each τ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ − Ek
h(τ ))‖0,T ≤ C hmT |div(τ )|m,T ∀T ∈ Th , (2.41)

for each τ ∈ H1(Ω) such that div(τ ) ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ ν − Ek
h(τ )ν‖0,e ≤ C h1/2e ‖τ‖1,Te ∀ edge e ∈ Th , (2.42)

for each τ ∈ H1(Ω), where Te ∈ Th contains e on its boundary. In particular, note that (2.41) follows
easily from (2.38) and (2.39). Moreover, it turns out (see, e.g. Theorem 3.16 in [48]) that Ek

h can also
be defined as a bounded linear operator from the larger space Hδ(Ω) ∩ H(div; Ω) into RTk(Th) for
all δ ∈ (0, 1]. Furthermore, it is easy to show, using the well-known Bramble-Hilbert Lemma and the
boundedness of the local interpolation operators on the reference element T̂ (see, e.g. [48, equation
(3.39)]), that in this case there holds the following interpolation error estimate

‖τ − Ek
h(τ )‖0,T ≤ C hδT

{
‖τ‖δ,T + ‖div(τ )‖0,T

}
∀T ∈ Th . (2.43)

Then, as a consequence of (2.39), (2.40), (2.41), (2.42), (2.43), and the usual interpolation esti-
mates, we find that the finite element subspaces X1,h, M1,h, and Mu

h given by (2.34), (2.31), and
(2.32) for k ≥ 0, satisfy the following approximation properties:

(APt

1,h) For each δ ∈ [0, k + 1] and for each s ∈ Hδ(Ω) there exists sh ∈ X1,h such that

‖s− sh‖0,Ω ≤ C hδ ‖s‖δ,Ω .

(APσ
1,h) For each δ ∈ (0, k+1] and for each τ ∈ Hδ(Ω) ∩ H(div; Ω) with div τ ∈ Hδ(Ω) there exists

τ h ∈ M1,h such that

‖τ − τ h‖div,Ω ≤ C hδ
{
‖τ‖δ,Ω + ‖div τ‖δ,Ω

}
.

(APu

h) For each δ ∈ [0, k + 1] and for each v ∈ Hδ(Ω) there exists vh ∈ Mu

h such that

‖v − vh‖0,Ω ≤ C hδ ‖v‖δ,Ω .

In turn, the approximation property of Mγ
h is given as follows (cf. [10]):

(APγ
h) For each δ ∈ [0, k + 1] and for each η ∈ Hδ(Ω) ∩ L2

skew
(Ω) there exists ηh ∈ Mγ

h such that

‖η − ηh‖0,Ω ≤ C hδ ‖η‖δ,Ω .

The following theorem establishes the corresponding rate of convergence of the Galerkin scheme
(2.27).

Theorem 2.7 Given an integer k ≥ 0, we let X1,h, M1,h and Mh := Mu

h ×Mγ
h be the finite element

subspaces defined by (2.34), (2.31), (2.32), and (2.33), respectively. Let (t,σ, (u,γ)) ∈ X := X1 ×
M1×M and (th,σh, (uh,γh)) ∈ X1,h×M1,h×Mh be the unique solutions of the continuous and discrete
formulations (2.8) and (2.27), respectively. Assume that t ∈ Hδ(Ω), σ ∈ Hδ(Ω), divσ ∈ Hδ(Ω),
u ∈ Hδ(Ω) and γ ∈ Hδ(Ω), for some δ ∈ (0, k + 1]. Then there exists C > 0, independent of h, such
that

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω + ‖γ‖δ,Ω

}
.

(2.44)

Proof. It follows from the Céa estimate (2.35) and the above approximation properties. �
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3 The augmented variational formulation

In this section we propose an augmented formulation for (2.8) and a corresponding discrete scheme
whose main advantage is the elimination of the assumption (H.2) in Theorem 2.5, which means that
the discrete inf-sup condition for B1 is no longer required. More precisely, we show that a suitable
enrichment of (2.8) yields an associated Galerkin scheme whose well-posedness is guaranteed by any
finite dimensional subspace X1,h of X1 and any pair (M1,h,Mh) satisfying (H.1) and (H.3) only.
In particular, the eventual need of approximating t by either continuous or discontinuous piecewise
polynomial tensors of any degree can be satisfied with this approach.

3.1 The continuous augmented formulation

As mentioned above, we now enrich the formulation (2.8) with the further introduction of the consti-
tutive law relating σ and t (written as in the second equation of (2.3)) multiplied by a stabilization
parameter. More precisely, given κ0 > 0, to be chosen later, we add

κ0

∫

Ω

(
σ −

{
λ(t) tr(t) I + µ(t) t

})
: τ = 0 ∀ τ ∈ H(div; Ω)

to the first equation of (2.8), and subtract the second equation of (2.8) to the resulting expression. In
addition, we keep the third equation as it is, but multiplied by −1. In this way, denoting the product
space X := X1 ×M1, we arrive at the following augmented formulation (written as a single saddle
point system): Find ((t,σ), (u,γ)) ∈ X ×M such that

[A(t,σ), (s, τ )] + [B(s, τ ), (u,γ)] = [F , (s, τ )] ∀ (s, τ ) ∈ X ,

[B(t,σ), (v,η)] = [G, (v,η)] ∀ (v,η) ∈ M ,
(3.1)

where the nonlinear operator A : X → X ′, the linear operator B : X → M ′, and the functionals
F ∈ X ′ and G ∈ M ′, are defined by:

[A(t,σ), (s, τ )] := [A1(t), s] + [B1(s),σ]− [B1(t), τ ] + κ0

∫

Ω

(
σ−

{
λ(t) tr(t) I+ µ(t) t

})
: τ , (3.2)

[B(s, τ ), (v,η)] := − [B(τ ), (v,η)] =

∫

Ω
v · div τ +

∫

Ω
τ : η , (3.3)

[F , (s, τ )] := [H, s] − [G, τ ] = 〈τ ν,g〉Γ , (3.4)

and

[G,v] := − [F,v] = −

∫

Ω
f · v . (3.5)

Our next goal is to show the unique solvability of the variational formulation (3.1), whence (2.8)
and (3.1) share the same unique solution. We first recall from [57] the following abstract theorem.

Theorem 3.1 Let X, M be Hilbert spaces and let A : X → X ′ and B : X → M ′ be nonlinear and
linear operators, respectively. Let V := Ker (B) = {x ∈ X : [B(x), q] = 0 ∀ q ∈ M }. Assume
that A is Lipschitz-continuous on X and that for all z̃ ∈ X, A(z̃ + ·) is uniformly strongly monotone
on V , that is, there exist constants γ, α > 0 such that

||A(x) − A(y)||X′ ≤ γ ‖x− y‖X ∀x, y ∈ X ,
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and
[A(z̃ + x)−A(z̃ + y), x− y] ≥ α ‖x− y‖2X

for all z̃ ∈ X and for all x, y ∈ V . In addition, assume that there exists β > 0 such that for all q ∈ M

sup
x∈X\{0}

[B(x), q]

‖x‖X
≥ β ‖q‖M .

Then, given (F ,G) ∈ X ′ ×M ′, there exists a unique (x, p) ∈ X ×M such that

[A(x), y] + [B(y), p] = [F , y] ∀ y ∈ X ,

[B(x), q] = [G, q] ∀ q ∈ M .

Further, the following estimates hold

‖x‖X ≤
1

α
‖F‖ +

1

β

(
1 +

γ

α

)
‖G‖ , (3.6)

‖p‖M ≤
1

β

(
1 +

γ

α

) (
‖F‖ +

γ

β
‖G‖

)
. (3.7)

Proof. It is a particular case of Proposition 2.3 in [57]. �

The discrete analogue of Theorem 3.1 and the corresponding Céa estimate are provided in [57,
Proposition 2.6, Theorem 2.1]. We omit details here.

In order to apply Theorem 3.1 to the augmented formulation (3.1), we need several preliminary
results establishing the required properties for our nonlinear operator A (cf. (3.2)). We begin with
the following lemma.

Lemma 3.1 Let A be the nonlinear operator defined by (3.2). Then, there exists a constant γ > 0
such that

||A(t,σ) − A(s, τ )||X′ ≤ γ ‖(t,σ)− (s, τ )‖X ∀ (t,σ), (s, τ ) ∈ X . (3.8)

Proof. Given (t,σ), (s, τ ), (r, ζ) ∈ X, we obtain, according to (3.2) and the definition of A1 (cf.
(2.7)), that

[A(t,σ)−A(s, τ ), (r, ζ)] = [A1(t)− A1(s), r] + [B1(r),σ − τ ] − [B1(t− s), ζ]

+ κ0

∫

Ω
(σ − τ ) : ζ − κ0 [A1(t) − A1(s), ζ] ,

(3.9)

which, employing Cauchy-Schwarz’s inequality, yields

∣∣ [A(t,σ)−A(s, τ ), (r, ζ)]
∣∣ ≤ ||A1(t)− A1(s)||X′

1
||r||X1 + ||B1(r)||M ′

1
||σ − τ ||M1

+ ‖B1(t− s)||M ′
1
||ζ||M1 + κ0 ||(σ − τ )||M1 ||ζ||M1 + κ0 ||A1(t)− A1(s)||X′

1
||ζ||M1 .

Hence, applying the Lipschitz-continuity of A1 (cf. (2.22) in Lemma 2.2) and the boundedness of
B1, we conclude from the above inequality that A is Lipschitz continuous on X with a constant γ
depending on γ1, ‖B1‖, and κ0. �

The following estimate is applied later on to show that A satisfies the strong monotonicity property.
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Lemma 3.2 Let A be the operator defined by (3.2) and assume that the parameter κ0 lies in

(
0,

2α1

γ21

)
,

where γ1 and α1 are the positive constants from Lemma 2.1 (cf. (2.21)). Then, there exists a constant
α > 0 such that

[A((r, ζ) + (t,σ)) − A((r, ζ) + (s, τ )), (t,σ) − (s, τ )] ≥ α
{
‖t − s‖2X1

+ ‖σ − τ‖20,Ω

}
(3.10)

for all (r, ζ) , (t,σ) , (s, τ ) ∈ X.

Proof. Given (r, ζ) , (t,σ) , (s, τ ) ∈ X, we find, using the identity (3.9) and noting that the terms
involving B1 cancell out, that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] = [A1(r+ t) − A1(r+ s), t− s]

+ κ0 ‖σ − τ‖20,Ω − κ0 [A1(r+ t)− A1(r+ s),σ − τ ] .

Then, using that [A1(r+ t)−A1(r+ s), t− s] = [A1(r+ t)−A1(r+ s), (r+ t)− (r+ s)], and applying
the strong monotonicity and Lipschitz-continuity of A1 (cf. Lemma 2.2), we deduce from the above
equation that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )]

≥ α1 ‖t− s‖2X1
+ κ0 ‖σ − τ‖20,Ω − κ0 γ1 ‖t− s‖X1 ‖σ − τ‖0,Ω

≥ α1 ‖t− s‖2X1
+ κ0 ‖σ − τ‖20,Ω − κ0 γ1

{
‖t − s‖2X1

2 δ
+

δ

2
‖σ − τ‖20,Ω

}

=
(
α1 −

κ0 γ1
2 δ

)
‖t− s‖2X1

+ κ0

(
1 −

γ1 δ

2

)
‖σ − τ‖20,Ω ∀ δ > 0 .

It follows that the constants multiplying the norms above become positive if δ ∈

(
0,

2

γ1

)
and

κ0 ∈

(
0,

2α1 δ

γ1

)
. In particular, for δ =

1

γ1
we require κ0 ∈

(
0,

2α1

γ21

)
, whence we find that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )]

≥
(
α1 −

κ0 γ
2
1

2

)
‖t − s‖2X1

+
κ0
2

‖σ − τ‖20,Ω .

Finally, this inequality implies the required estimate with α := min

{
α1 −

κ0 γ
2
1

2
,
κ0
2

}
. �

It is quite straightforward from Lemma 3.2 that, defining

Ṽ := X1 ×
{
τ ∈ M1 : div τ = 0 in Ω

}
, (3.11)

and assuming again that the parameter κ0 lies in

(
0,

2α1

γ21

)
, there holds with the same constant α,

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] ≥ α ‖(t,σ)− (s, τ )‖2X (3.12)
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for all (r, ζ) ∈ X, and for all (t,σ), (s, τ ) ∈ Ṽ. In particular, noting from the definition of B (cf.
(3.3)) that its kernel V reduces to

V = X1 ×
{
τ ∈ M1 : div τ = 0 and τ = τ t in Ω

}
,

which is certainly contained in Ṽ , we find that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] ≥ α ‖(t,σ)− (s, τ )‖2X

for all (r, ζ) ∈ X, and for all (t,σ), (s, τ ) ∈ V.

On the other hand, it is clear from the definition of our linear operator B (cf. (3.3)) that

sup
(s,τ )∈X\{0}

[B(s, τ ), (v,η)]

‖(s, τ )‖X
= sup

τ∈M1\{0}

[B(τ ), (v,η)]

‖τ‖M1

∀ (v,η) ∈ M , (3.13)

which implies that the continuous inf-sup conditions for B and B, the latter already proved in Lemma
2.3, coincide.

Hence, we are ready to establish the well-posedness of our augmented formulation (3.1).

Theorem 3.2 Assume that the parameter κ0 lies in

(
0,

2α1

γ21

)
, where γ1 and α1 are the positive

constants from Lemma 2.1. Then, there exists a unique ((t,σ), (u,γ)) ∈ X × M solution of (3.1).
Moreover, there exists C > 0 such that

‖((t,σ), (u,γ))‖X×M ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. By virtue of the previous discussion and the fact that the functionals F (cf. (3.4)) and G (cf.
(3.5)) are bounded by the data (as indicated here), the proof follows from a straightforward application
of Theorem 3.1. �

3.2 The discrete augmented formulation

We now come to the analysis of the Galerkin scheme associated with the augmented formulation (3.1).
To this end, we now let X1,h, M1,h, and Mh := Mu

h ×Mγ
h be finite dimensional subspaces of X1, M1,

and M , respectively, and define Xh := X1,h ×M1,h. Then, we are interested in the following discrete
scheme: Find ((th,σh), (uh,γh)) ∈ Xh ×Mh such that

[A(th,σh), (s, τ )] + [B(s, τ ), (uh,γh)] = [F , (s, τ )] ∀ (s, τ ) ∈ Xh ,

[B(th,σh), (v,η)] = [G, (v,η)] ∀ (v,η) ∈ Mh .
(3.14)

In order to analyze the solvability of (3.14), we first notice from (3.3) that the discrete kernel of

B, that is Vh :=
{
(sh, τ h) ∈ Xh : [B(sh, τ h), (vh,ηh)] = 0 ∀ (vh,ηh) ∈ Mh

}
, reduces to

Vh = X1,h ×
{
τh ∈ M1,h :

∫

Ω
vh · div τ h = 0 and

∫

Ω
τh : ηh = 0 ∀ (vh,ηh) ∈ Mh

}
.

In addition, as in (3.13), we realize that

sup
(sh,τh)∈Xh\{0}

[B(sh, τ h), (vh,ηh)]

‖(sh, τ h)‖X
= sup

τh∈M1,h\{0}

[B(τ h), (vh,ηh)]

‖τ h‖M1

∀ (vh,ηh) ∈ Mh ,

which implies that the discrete inf-sup conditions for B and B also coincide.

Hence, we are in a position to establish the following result.
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Theorem 3.3 Besides the hypotheses of Theorem 3.2, assume that X1,h is any finite element subspace

of X1, that div τh = 0 ∀ (sh, τ h) ∈ Vh (equivalently, Vh ⊆ Ṽ), and that B satisfies the discrete inf-
sup condition on M1,h ×Mh, that is there exists β̃ > 0, independent of h, such that

sup
τh∈M1,h\{0}

[B(τ h), (vh,ηh)]

‖τ h‖M1

≥ β̃ ‖(vh,ηh)‖M ∀ (vh,ηh) ∈ Mh .

Then there exists a unique ((th,σh), (uh,γh)) ∈ Xh ×Mh solution of (3.14). Moreover, there exist
C1, C2 > 0, independent of h, such that

‖((th,σh), (uh,γh))‖X×M ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
, (3.15)

and

‖((t,σ), (u,γ))− ((th,σh), ((uh,γh))‖X×M

≤ C2

{
inf

(sh,τh)∈Xh

‖(t,σ)− (sh, τ h)‖X + inf
(vh,ηh)∈Mh

‖(u,γ)− (vh,ηh)‖M
}
.

(3.16)

Proof. It is clear that the Lipschitz-continuity of A (cf. Lemma 3.1) is also valid on Xh ×X ′
h, which

means that, with the same constant γ from Lemma 3.1, there holds

||A(th,σh) − A(sh, τ h)||X′
h
≤ γ ‖(th,σh)− (sh, τ h)‖X ∀ (th,σh), (sh, τ h) ∈ Xh .

Furthermore, since Vh ⊆ Ṽ (cf. (3.11)), the strong monotonicity of A provided by (3.12) also holds
for all (rh, ζh) ∈ Xh, and for all (th,σh), (sh, τ h) ∈ Vh. Therefore, the unique solvability of (3.14)
and the estimate (3.15) are again consequence of Theorem 3.1 (see also the discrete analogue given
by [57, Proposition 2.6]). Finally, the Céa estimate (3.16) constitutes a particular application of the
general result given by [57, Theorem 2.1]. We omit further details. �

It is important to notice that, on the contrary to the condition (H.2) in Theorem 2.5, the well-
posedness of the present discrete augmented scheme (3.14) does not require any additional restriction
on X1,h, but being only a finite dimensional subspace of X1. Furthermore, as established by the

hypothesis (̃H.3) in Theorem 2.5, we recall that a sufficient condition for Vh ⊆ Ṽ to hold is that
div(M1,h) ⊆ Mu

h . Finally, we remark that, though the unique solutions of the discrete schemes (2.13)
and (3.14) are denoted in the same way, they do not necessarily coincide.

3.3 Specific finite element subspaces

We now provide several examples of subspaces verifying the hypotheses of Theorem 3.3. First of all,
it is quite clear from the analysis in Section 2.6 that, given an integer k ≥ 0, the subspaces M1,h

and Mh := Mu

h × Mγ
h defined by (2.31), (2.32), and (2.33), and the resulting discrete kernel Vh

of B (irrespective of the chosen subspace X1,h), satisfy the corresponding assumptions in Theorem
3.3. Consequently, and since any finite element subspace X1,h of X1 will yield a well-posed discrete
augmented scheme (3.14), we can establish the following result.

Theorem 3.4 Besides the hypotheses of Theorem 3.2, assume that X1,h is any finite element subspace
of X1, and that given an integer k ≥ 0, M1,h and Mh := Mu

h ×Mγ
h are defined by (2.31), (2.32), and

(2.33), respectively. Then there exists a unique ((th,σh), (uh,γh)) ∈ Xh × Mh solution of (3.14).
Moreover, there exist C1, C2 > 0, independent of h, such that

‖((th,σh), (uh,γh))‖X×M ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
,
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and

‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ C2

{
inf

(sh,τh)∈Xh

‖(t,σ)− (sh, τ h)‖X + inf
(vh,ηh)∈Mh

‖(u,γ)− (vh,ηh)‖M
}
.

(3.17)

Proof. It is a direct consequence of the previous analysis and Theorem 3.3. �

Next, for the rate of convergence of (3.14) we proceed similarly as we did for Theorem 2.7, using
now the Céa estimate (3.16) (or (3.17)), and the approximation properties of the subspaces involved.
In particular, if the discrete augmented scheme (3.14) is defined with the subspaces from Theorem
2.7, we obtain exactly the same estimate (2.44) provided there. Moreover, this result also holds if we
take the bubble functions away in (2.34) and consider the simpler subspace

X̃1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk(T ) ∀T ∈ Th

}
, (3.18)

which, failing to satisfy (H.2) in Theorem 2.5, is certainly not suitable for the non-augmented discrete
scheme (2.27). Note, however, that the approximation property (APt

1,h) of X1,h (cf. (2.34)), which

was introduced in Section 2.6, actually corresponds to the approximation property of X̃1,h (cf. (3.18)).
The results described in this paragraph are summarized as follows.

Theorem 3.5 Given an integer k ≥ 0, we take X1,h (cf. (2.34)) or X̃1,h (cf. (3.18)) as the finite
element subspace of X1, and let M1,h and Mh := Mu

h × Mγ
h be the finite element subspaces defined

by (2.31), (2.32), and (2.33), respectively. Let ((t,σ), (u,γ)) ∈ X × M and ((th,σh), (uh,γh)) ∈
Xh×Mh be the unique solutions of the continuous and resulting discrete formulations (3.1) and (3.14),
respectively. Assume that t ∈ Hδ(Ω), σ ∈ Hδ(Ω), divσ ∈ Hδ(Ω), u ∈ Hδ(Ω) and γ ∈ Hδ(Ω), for
some δ ∈ (0, k + 1]. Then there exists C > 0, independent of h, such that

‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω + ‖γ‖δ,Ω

}
.

On the other hand, we could keep M1,h and Mh as given by (2.31), (2.32), and (2.33), but use a
lower polynomial degree for approximating t in the case k ≥ 1. For example, instead of (3.18), we
could consider:

X̂1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk−1(T ) ∀T ∈ Th

}
, (3.19)

which clearly does not satisfy (H.2) in Theorem 2.5 either. It follows, applying (2.39), that the
approximation property of X̂1,h (cf. (3.19)) becomes as (APt

1,h), but with regularity range [0, k]
instead of [0, k + 1]. Hence, thanks to the approximation properties of M1,h and Mh (cf. (APσ

1,h) and
(APu

h) in Section 2.6), we also obtain in this case the same rate of convergence provided by Theorem
3.5, but limited to δ ∈ (0, k].

Another possibility is to approximate t by continuous piecewise polynomial tensors. For instance,
given k ≥ 0, we could keep again M1,h and Mh as given by (2.31), (2.32), and (2.33), and consider
now:

X1,h :=
{
sh ∈ C(Ω) : sh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (3.20)

which, due to the continuity requirement, does not verify (H.2) in Theorem 2.5 either. In this case,
assuming a convex domain Ω, one can show (cf. [54, eq. (3.5.15) and Remark 6.2.1]) that X1,h (cf.
(3.20)) satisfies the approximation property
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(APt

1,h) For each δ ∈ [0, k + 1] and for each s ∈ Hδ(Ω) ∩ X1 there exists sh ∈ X1,h such that

‖s− sh‖0,Ω ≤ C hδ ‖s‖δ,Ω .

Hence, the rate of convergence of the resulting augmented scheme is again the same provided by
Theorem 3.5.

4 The fully augmented variational formulation

In this section we propose a fully augmented formulation for (2.8) and a corresponding discrete scheme
whose main advantage is the elimination of the remaining assumptions on the finite element subspaces
(cf. Theorem 3.3), which means that the discrete inf-sup condition for B is no longer needed. In
other words, we show that a further enrichment of (3.1) yields an associated Galerkin scheme whose
well-posedness is guaranteed by any finite element subspace of the resulting global space.

4.1 The continuous fully augmented formulation

In what follows we proceed as in [29] and enrich the variational formulation (3.1) with additional
terms arising from the equilibrium equation and from the relations defining t and the rotation γ as
functions of the displacement u. In addition, in order to deal with the non-homogeneous Dirichlet
boundary condition on Γ, we apply the idea from [30] (see also [40]) and introduce a consistent
boundary term. More precisely, we first substract the second from the first equation of (3.1) and then
add the redundant equations:

κ1

∫

Ω

(
divσ + f

)
· div τ = 0 ,

κ2

∫

Ω

(
e(u) − t

)
: e(v) = 0 ,

κ3

∫

Ω

{
γ −

1

2
(∇u − (∇u)t)

}
: η = 0 ,

and

κ4

∫

Γ
u · v = κ4

∫

Γ
g · v ,

for all (τ ,v,η) ∈ H(div; Ω)×H1(Ω)×L2
skew

(Ω), where (κ1, κ2, κ3, κ4) is a vector of positive constants,
also named stabilization parameters, to be suitably chosen later on. It is important to observe here
that the above terms require now the displacement u to live in H1(Ω) (instead of u ∈ L2(Ω) as in
(2.8) and (3.1)).

In this way, we now look at the following fully augmented variational formulation: Find (t,σ,u,γ)
∈ X := L2(Ω)×H(div; Ω)×H1(Ω)× L2

skew
(Ω) such that

[A(t,σ,u,γ), (s, τ ,v,η)] = [F, (s, τ ,v,η)] ∀ (s, τ ,v,η) ∈ X , (4.1)

where the nonlinear operator A : X → X′ and the functional F ∈ X′ are defined by

[A(t,σ,u,γ), (s, τ ,v,η)] := [A(t,σ), (s, τ )] + [B(s, τ ), (u,γ)] − [B(t,σ), (v,η)]

+ κ1

∫

Ω
divσ · div τ + κ2

∫

Ω

(
e(u) − t

)
: e(v)

+ κ3

∫

Ω

{
γ −

1

2
(∇u − (∇u)t)

}
: η + κ4

∫

Γ
u · v ,

(4.2)
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and

[F, (s, τ ,v,η)] := [F , (s, τ )] − [G, (v,η)] − κ1

∫

Ω
f · div τ + κ4

∫

Γ
g · v .

Our next goal is to show the unique solvability of the variational formulation (4.1), whence (3.1)
and (4.1) share the same unique solution. We first recall from [53] the following abstract theorem.

Theorem 4.1 Let X be a Hilbert space and let A : X → X ′ be a nonlinear operator. Assume that A
is Lipschitz-continuous and strongly monotone on X, that is, there exist constants γ̃, α̃ > 0 such that

||A(x) − A(y)||X′ ≤ γ̃ ‖x− y‖X ∀x, y ∈ X ,

and
[A(x)−A(y), x − y] ≥ α̃ ‖x− y‖2X ∀x, y ∈ X .

Then, given F ∈ X ′, there exists a unique x ∈ X such that

[A(x), y] = [F, y] ∀x ∈ X .

Further, the following estimate holds

‖x‖X ≤
1

α̃
‖F‖X′ . (4.3)

Proof. It is a particular case of [53, Theorem 3.3.23]. �

In order to apply Theorem 4.1 to the fully augmented formulation (4.1), we need to prove first the
required properties for our nonlinear operator A (cf. (4.2)). We begin with the Lipschitz-continuity.

Lemma 4.1 Let A be the nonlinear operator defined by (4.2). Then, there exists a constant γ̃ > 0,
depending on γ (cf. (3.8)), ‖B‖, and the parameters κi, i ∈ {1, ..., 4}, such that

||A(t,σ,u,γ) − A(s, τ ,v,η)||X′ ≤ γ̃ ‖(t,σ,u,γ)− (s, τ ,v,η)‖X

for all (t,σ,u,γ) , (s, τ ,v,η) ∈ X.

Proof. It basically follows from the Lipschitz-continuity of the nonlinear operator A (cf. Lemma 3.1)
and the boundedness of the remaining terms (all bilinear) defining A, together with applications of
the Cauchy-Schwarz inequality and the trace theorem in H1(Ω). We omit further details.

�

In turn, the strong monotonicity of A makes use of a slight extension of the second Korn inequality,
which establishes the existence of a constant c1 > 0 such that

‖e(v)‖20,Ω + ‖v‖20,Γ ≥ c1 ‖v‖21,Ω ∀v ∈ H1(Ω) . (4.4)

The proof of (4.4) follows from a direct application of the Peetre-Tartar Lemma (see, e.g. [47, Theorem
2.1, Chapter I]). Alternatively, (4.4) is a particular case of [30, Lemma 3.1], whose proof employs
analogue arguments to those given in the proof of [8, Theorem 9.2.16].

Lemma 4.2 Let A be the nonlinear operator defined by (4.2), and let the parameter κ0 ∈

(
0,

2α1

γ21

)
,

where γ1 and α1 are the positive constants from Lemma 2.1 (cf. (2.21)). In addition, assume that
the parameters κ1, κ2, κ3, and κ4 are chosen such that 0 < κ1, 0 < κ2 < 2α, 0 < κ3 < α3, and
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0 < κ4, where α is the constant from (3.10) (cf. Lemma 3.2), that is α := min

{
α1 −

κ0 γ
2
1

2
,
κ0
2

}
,

and α3 := c1 min{κ2, 2κ4}. Then, there exists a constant α̃ > 0, depending on α, c1, κ1, κ2, κ3, and
κ4, such that

[A(t,σ,u,γ)− A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥ α̃ ‖(t,σ,u,γ) − (s, τ ,v,η)‖2X

for all (t,σ,u,γ), (s, τ ,v,η) ∈ X.

Proof. Given (t,σ,u,γ), (s, τ ,v,η) ∈ X, we observe, according to the definition of A (cf. (4.2)) and
the fact that the terms involving B cancell out, that

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] = [A(t,σ)−A(s, τ ), (t,σ)− (s, τ )]

+ κ1 ‖div
(
σ − τ

)
‖20,Ω + κ2

∫

Ω

(
e(u − v) −

(
t− s

))
: e(u − v)

+ κ3

∫

Ω

{(
γ − η

)
−

1

2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)}
:
(
γ − η

)
+ κ4 ‖u − v‖20,Γ ,

which, applying (3.10) (cf. Lemma 3.2), the Cauchy-Schwarz inequality, and the basic estimate a b ≤
1
2 (a

2 + b2), yields

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥ α
{
‖t − s‖20,Ω + ‖σ − τ‖20,Ω

}

+ κ1 ‖div
(
σ − τ

)
‖20,Ω +

κ2
2

‖e(u− v)‖20,Ω −
κ2
2

‖t− s‖20,Ω +
κ3
2

‖γ − η‖20,Ω

−
κ3
2

∥∥∥1
2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)∥∥∥
2

0,Ω
+ κ4 ‖u − v‖20,Γ .

Then, noting that
∥∥∥1
2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)∥∥∥
2

0,Ω
= |u− v|21,Ω − ‖e(u− v)‖20,Ω ,

and employing the Korn inequality (4.4), we find that

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥
(
α−

κ2
2

)
‖t − s‖20,Ω + α2 ‖σ − τ‖2div;Ω

+
(κ2 + κ3)

2
‖e(u− v)‖20,Ω + κ4 ‖u − v‖20,Γ −

κ3
2

|u− v|21,Ω +
κ3
2

‖γ − η‖20,Ω

≥
(
α−

κ2
2

)
‖t − s‖20,Ω + α2 ‖σ − τ‖2div;Ω +

(α3 − κ3)

2
‖u− v‖21,Ω +

κ3
2

‖γ − η‖20,Ω
(4.5)

where α2 := min{α, κ1}, thus finishing the proof with α̃ := min
{(

α− κ2
2

)
, α2,

(α3−κ3)
2 , κ3

2

}
.

�

The well-posedness of the fully augmented formulation (4.1) can be established as follows.

Theorem 4.2 Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as indicated in Lemma
4.2. Then, there exists a unique (t,σ,u,γ) ∈ X solution of (4.1). Moreover, there exists C > 0,
depending on α̃ (cf. Lemma 4.2), such that

‖(t,σ,u,γ)‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.
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Proof. Thanks to Lemmas 4.1 and Lemma 4.2, the proof is a direct application of Theorem 4.1.
�

It is important to remark here that all the parameters but κ3, which depends on the unknown
constant c1 (cf. (4.4)), can be chosen explicitly. In particular, and adopting as criterion the choice of

the average value of each feasible range, we take κ0 =
α1

γ21
and κ2 = α, which yields

κ2 =
α1

2
min

{
1,

1

γ21

}
.

Next, in order to maximize the values of the minima involved in the definition of α2 and α3, thus
maximizing these constants, we choose κ1 = α and 2κ4 = κ2, which gives

κ1 =
α1

2
min

{
1,

1

γ21

}
and κ4 =

α1

4
min

{
1,

1

γ21

}
.

Then, the theoretical feasible range of κ3 becomes the interval
(
0, c1 κ2

)
, whose average value is

κ3 = c1
α1

4
min

{
1,

1

γ21

}
.

The numerical results shown below in Section 6, which simply assume c1 = 1 in the above expression,
illustrate that not knowing this constant does not really affect, at least for the examples considered
there, the well-posedness of the resulting discrete fully augmented scheme.

On the other hand, we remark that when g = 0, that is in the case of homogeneous Dirichlet
boundary conditions, there is no need to introduce the boundary term on Γ, and hence no parameter
κ4 appears in the fully augmented formulation. In fact, the corresponding product space is then
X0 := L2(Ω)×H(div; Ω)×H1

0(Ω)× L2
skew

(Ω), and according to the first Korn inequality, which says
that

‖e(v)‖20,Ω ≥
1

2
|v|21,Ω ∀v ∈ H1

0(Ω) ,

the estimate (4.5) now becomes

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥
(
α−

κ2
2

)
‖t − s‖20,Ω

+ α2 ‖σ − τ‖2div;Ω +
(κ2 − κ3)

4
|u− v|21,Ω +

κ3
2

‖γ − η‖20,Ω .

In this way, the strong monotonicity of A is guaranteed by any explicit choice of the parameters
satisfying 0 < κ2 < 2α and 0 < κ3 < κ2 (besides the already mentioned choices for κ0 and κ1).

4.2 The discrete fully augmented formulation

We now consider the Galerkin scheme associated with the fully augmented formulation (4.1). For this
purpose, we now let X1,h, M1,h, M

u

h , and Mγ
h be finite dimensional subspaces of L2(Ω), H(div; Ω),

H1(Ω), and L2
skew

(Ω), respectively, and define Xh := X1,h×M1,h×Mu

h ×Mγ
h . Then, we are interested

in the following discrete scheme: Find (th,σh,uh,γh) ∈ Xh such that

[A(th,σh,uh,γh), (s, τ ,v,η)] = [F, (s, τ ,v,η)] ∀ (s, τ ,v,η) ∈ Xh . (4.6)

The following theorem establishes the well-posedness and convergence properties of (4.6).
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Theorem 4.3 Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as indicated in Lemma
4.2. In addition, let X1,h, M1,h, Mu

h , and Mγ
h be arbitrary finite dimensional subspaces of L2(Ω),

H(div; Ω), H1(Ω), and L2
skew

(Ω), respectively. Then there exists a unique (th,σh,uh,γh) ∈ Xh

solution of (4.6). Moreover, there exist C1, C2 > 0, independent of h, such that

‖(th,σh,uh,γh)‖X ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
, (4.7)

and
‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ C2 inf
(sh,τh,vh,ηh)∈Xh

‖(t,σ,u,γ)− (sh, τ h,vh,ηh)‖X .
(4.8)

Proof. It is clear that the Lipschitz-continuity and strong monotonicity of A (cf. Lemmas 4.1 and 4.2)
are certainly valid on Xh ×X′

h, with the same constants γ̃ and α̃, respectively. Therefore, the unique
solvability of (4.6) and the estimate (4.7) are again consequence of Theorem 4.1. In turn, the Céa
estimate (4.8) follows from standard arguments, similarly as for linear problems, and using obviously
the above mentioned properties of A. We omit further details.

�

Next, we consider the canonical finite element subspaces X1,h, M1,h, Mu

h , and Mγ
h of L2(Ω),

H(div; Ω), H1(Ω), and L2
skew

(Ω), respectively. More precisely, given an integer k ≥ 0, we now define

X1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk(T ) ∀T ∈ Th

}
, (4.9)

M1,h :=
{
τ h ∈ H(div; Ω) : τh|T ∈ [RTk(T )]

2 ∀T ∈ Th
}
, (4.10)

Mu

h :=
{
vh ∈ C(Ω̄) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (4.11)

and
Mγ

h :=
{
ηh ∈ L2

skew
(Ω) : ηh|T ∈ Pk(T ) ∀T ∈ Th

}
. (4.12)

It is easy to see that the approximation properties of X1,h (cf. (4.9)) and M1,h (cf. (4.10)) are
given by (APt

1,h) and (APσ
1,h) in Section 2.6. Note, in particular, that the present X1,h coincides with

the subspace X̃1,h (cf. (3.18)), whose approximation property was already identified in Section 3.3. In
turn, the approximation property of Mγ

h (cf. (4.12)) is basically the same as that of X1,h (except for
the skew-symmetry), while the one of Mu

h (cf. (4.11)), which is the classical Lagrange finite element
subspace of order k + 1, reduces to the following (see [16]):

(APu

h) For each δ ∈ (0, k + 1] and for each v ∈ H1+δ(Ω) there exists vh ∈ Mu

h such that

‖v − vh‖1,Ω ≤ C hδ ‖v‖1+δ,Ω .

The following theorem provides the corresponding rate of convergence of (4.6).

Theorem 4.4 Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as indicated in Lemma
4.2. In addition, given an integer k ≥ 0, we let X1,h, M1,h, M

u

h , and Mγ
h be the finite element subspaces

defined by (4.9), (4.10), (4.11), and (4.12), respectively. Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh

be the unique solutions of the continuous and discrete formulations (4.1) and (4.6), respectively, and
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suppose that t ∈ Hδ(Ω), σ ∈ Hδ(Ω), divσ ∈ Hδ(Ω), u ∈ H1+δ(Ω) and γ ∈ Hδ(Ω), for some
δ ∈ (0, k + 1]. Then there exists C > 0, independent of h, such that

‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖1+δ,Ω + ‖γ‖δ,Ω

}
.

Proof. It follows from the Céa estimate (4.8) and the above indicated approximation properties. �

5 A posteriori error analysis

In this section we derive reliable and efficient residual-based a posteriori error estimators for the
Galerkin schemes (2.27), (3.14) and (4.6).

5.1 Preliminaries and main results

We begin by introducing several notations. We let Eh be the set of all edges of the triangulation
Th, and given T ∈ Th, we let E(T ) be the set of its edges. Then we write Eh = Eh(Ω) ∪ Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands for the
length of the edge e. Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)

t, and let
se := (−ν2, ν1)

t be the corresponding fixed unit tangential vector along e. Then, given e ∈ Eh(Ω)
and τ ∈ L2(Ω) such that τ |T ∈ C(T ) on each T ∈ Th, we let [τ se] be the corresponding jump across
e, that is [τ se] := (τ |T − τ |T ′)|e se, where T and T ′ are the triangles of Th having e as a common
edge. Abusing notation, when e ∈ Eh(Γ), we also write [τ se] := τ |e se. Similar definitions hold for the
tangential jumps of scalar fields v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. From now on, when
no confusion arises, we simply write s and ν instead of se and νe, respectively. Finally, given scalar,
vector and tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we recall that curlt v is
defined in (2.30), and now let

curl v :=




∂v

∂x2

−
∂v

∂x1


 , curl(ϕ) :=

(
curlt ϕ1

curlt ϕ2

)
and curl(τ ) :=




∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2


 .

Then, letting (t,σ, (u,γ)) ∈ X1 × M1 × M and (th,σh, (uh,γh)) ∈ X1,h × M1,h × Mh be the
unique solutions of the continuous and discrete formulations (2.8) and (2.27), respectively, we define
for each T ∈ Th a local error indicator θT as follows:

θ2T :=
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

+ ‖f + divσh‖
2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ h2T
∥∥curl

{
th + γh

}∥∥2
0,T

+ h2T ‖∇uh − (th + γh)‖
2
0,T +

∑

e∈E(T )∩Eh(Ω)

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh(Γ)

he

{∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}
.

(5.1)

Note that the above requires that
dg

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(Γ). This is fixed below by assuming

that g ∈ H1(Γ).
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Similarly, letting ((t,σ), (u,γ)) ∈ X × M and ((th,σh), (uh,γh)) ∈ Xh × Mh be the unique
solutions of the continuous and discrete formulations (3.1) and (3.14), respectively, we define for each
T ∈ Th a local error indicator θ̃T as follows:

θ̃2T := θ2T + h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
.

(5.2)

In turn, letting (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the continuous
and discrete formulations (4.1) and (4.6), respectively, we define for each T ∈ Th a local error indicator
θ̂T as follows:

θ̂2T :=
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

+ ‖f + divσh‖
2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ h2T
∥∥curl

{
th + γh

}∥∥2
0,T

+ h2T ‖∇uh − (th + γh)‖
2
0,T +

∑

e∈E(T )∩Eh(Ω)

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh(Γ)

{
he

∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}

+ h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+

∥∥∥∥γh −
1

2
(∇uh − (∇uh)

t)

∥∥∥∥
2

0,T

+ ‖e(uh) − th‖
2
0,T +

∑

e∈E(T )∩Eh(Ω)

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
.

(5.3)
Equivalently,

θ̂2T = θ̃2T +
∑

e∈E(T )∩Eh(Γ)

(1− he) ‖g − uh‖
2
0,e

+

∥∥∥∥γh −
1

2
(∇uh − (∇uh)

t)

∥∥∥∥
2

0,T

+ ‖e(uh) − th‖
2
0,T .

The residual character of each term on the right hand sides of (5.1), (5.2) and (5.3) is quite clear.
As usual the expressions

θ :=




∑

T∈Th

θ2T





1/2

, θ̃ :=




∑

T∈Th

θ̃2T





1/2

and θ̂ :=




∑

T∈Th

θ̂2T





1/2

are employed as the respective global residual error estimators.

The following theorems constitute the main results of this section.

Theorem 5.1 Let (t,σ, (u,γ)) ∈ X := X1 ×M1 ×M and (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh

be the unique solutions of the continuous and discrete formulations (2.8) and (2.27), respectively, and
assume that g ∈ H1(Γ). Then there exist positive constants Ceff and Crel, independent of h, such
that

Ceff θ + h.o.t. ≤ ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ Crel θ , (5.4)

where h.o.t. stands for one or several terms of higher order.
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Theorem 5.2 Let ((t,σ), (u,γ)) ∈ X×M and ((th,σh), (uh,γh)) ∈ Xh×Mh be the unique solutions
of the continuous and discrete augmented formulations (3.1) and (3.14), respectively, and assume that
g ∈ H1(Γ). Then there exist positive constants C̃eff and C̃rel, independent of h, such that

C̃eff θ̃ + h.o.t. ≤ ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M ≤ C̃rel θ̃ , (5.5)

where h.o.t. stands for one or several terms of higher order.

Theorem 5.3 Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the continuous
and discrete augmented formulations (4.1) and (4.6), respectively, and assume that g ∈ H1(Γ). Then
there exist positive constants Ĉeff and Ĉrel, independent of h, such that

Ĉeff θ̂ + h.o.t. ≤ ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤ Ĉrel θ̂ , (5.6)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that for the proofs of these theorems we follow very closely the approaches
introduced in [42] and [27]. The efficiency of the global error estimators (lower bounds in (5.4), (5.5)
and (5.6)) is proved below in Section 5.5, whereas the corresponding reliability (upper bounds in
(5.4), (5.5) and (5.6)) is derived next in Sections 5.2, 5.3 and 5.4. However, since the reliability and
efficiency of θ (cf. Theorem 5.1) were already proved in [27] within a general framework for nonlinear
twofold saddle point formulations, in the corresponding sections below we just provide, for sake of
completeness, the main aspects of the associated analysis.

5.2 Reliability of the a posteriori error estimator θ

We begin by recalling from the analysis in Section 2.4 that the Gâteaux derivatives
{
DA1(r̃)

}
r̃∈X1

constitute a family of uniformly bounded and uniformly elliptic bilinear forms on X1 ×X1 (cf. (2.16)
and (2.17) in Lemma 2.1), and that the operators B and B1 satisfy the corresponding continuous
inf-sup conditions (cf. Lemma 2.3 and the discussion right after it). Hence, as a consequence of the
continuous dependence result provided by the linear version of Theorem 2.1 (cf. (2.12) with A1 linear),
we conclude that the linear operator L obtained by adding the three equations of the left hand side
of (2.8), after replacing A1 by the Gâteaux derivative DA1(r̃) at any r̃ ∈ X1, satisfies a global inf-sup
condition. More precisely, there exists a constant C̃ > 0 such that

C̃ ‖(r, ζ, (w, ξ))‖X ≤ sup
(s,τ ,(v,η))∈X\{0}

[L(s, τ , (v,η)), (r, ζ, (w, ξ))]

‖(s, τ , (v,η))‖X
(5.7)

for all (r̃, (r, ζ, (w, ξ))) ∈ X1 ×X, where

[L(s, τ , (v,η)), (r, ζ, (w, ξ))] := DA1(r̃)(r, s) + [B1(s), ζ] + [B1(r), τ ]

+ [B(τ ), (w, ξ)] + [B(ζ), (v,η)] .
(5.8)

We now have the following preliminary result.

Lemma 5.1 Let (t,σ, (u,γ)) ∈ X := X1 ×M1 ×M and (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh be
the unique solutions of the continuous and discrete formulations (2.8) and (2.27), respectively. Then
there exists C > 0, independent of h, such that

C ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

+ ‖R‖M ′
1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

,
(5.9)
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where

R(τ ) := −〈τ ν,g〉Γ +

∫

Ω
(th + γh) : τ +

∫

Ω
uh · div τ ∀ τ ∈ M1 . (5.10)

In addition, there holds
R(τ h) = 0 ∀ τh ∈ M1,h .

Proof. We first proceed as in the proof of Lemma 2.2 (cf. (2.24)) and observe, thanks to the mean
value theorem, that there exists a convex combination of t and th, say r̃h ∈ X1, such that

DA1(r̃h)(t− th, s) = [A1(t), s] − [A1(th), s] ∀ s ∈ X1 . (5.11)

Then, applying (5.7)-(5.8) to the error (r, ζ, (w, ξ)) := (t,σ, (u,γ))− (th,σh, (uh,γh)), and making
use of the identity (5.11), the equations forming (2.8), and the definitions of the operators A1, B1, and
B (cf. (2.7)), we find that

C̃ ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ sup
(s,τ ,(v,η))∈X\{0}

{
Q(s) + R(τ ) + S(v,η)

‖(s, τ , (v,η))‖X

}

≤ ‖Q‖X′
1
+ ‖R‖M ′

1
+ ‖S‖M ′ ,

(5.12)

where R is defined by (5.10), and Q ∈ X ′
1 and S ∈ M ′ are given by

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

S(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η ∀ (v,η) ∈ M .

It follows, using Cauchy-Schwarz’s inequality and the fact that

∫

Ω
σh : η =

1

2

∫

Ω

(
σh − σ

t

h

)
: η, that

‖Q′‖M ′
1
≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

(5.13)

and
‖S′‖M ′ ≤ ‖f + divσh‖0,Ω + ‖σh − σt

h‖0,Ω . (5.14)

In this way, (5.9) is a direct consequence of (5.12), (5.13) and (5.14). In turn, it is easy to see from
the second equation of (2.27) that R(τh) = 0 ∀ τ h ∈ M1,h, which completes the proof.

�

It remains to bound ‖R‖M ′
1
in (5.9), for which we proceed as in [41, Section 4.1] (see also [42,

Section 4.2]) and use that R(τ ) = R(τ − τ h) for each τ h ∈ M1,h. Hence, in order to define a suitable
τ h ∈ M1,h for the computation of R(τ − τ h) according to (5.10), we now let Ih : H1(Ω) −→ Xh be
the Clément interpolation operator (cf. [17]), where

Xh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1 ∀T ∈ Th

}
.

The following lemma establishes the local approximation properties of Ih.

Lemma 5.2 There exist constants C1, C2 > 0, independent of h, such that for all v ∈ H1(Ω) there
hold

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ih(v)‖0,e ≤ C2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.
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Proof. See [17].
�

Next, given τ ∈ M1, we consider the Helmholtz decomposition

τ = curl(ϕ) + ∇z , (5.15)

where ϕ := (ϕ1, ϕ2)
t ∈ H1(Ω), with

∫

Ω
ϕ1 =

∫

Ω
ϕ2 = 0, z ∈ H2(Ω), and

‖ϕ‖1,Ω + ‖z‖2,Ω ≤ C ‖τ‖div;Ω . (5.16)

Then, we set ϕh := (Ih(ϕ1), Ih(ϕ2))
t and define the discrete Helmholtz decomposition

τ h := curl(ϕh) + Ek
h(∇z) , (5.17)

where Ek
h : H1(Ω) −→ RTk(Th) is the Raviart-Thomas interpolation operator (cf. (2.36), (2.37)). In

this way, replacing τ (cf. (5.15)) and τ h (cf. (5.17)) into the expression R(τ ) = R(τ − τ h), observing
that div(∇z) = div τ , and noting, according to (2.38) and the definition of Pk

h , that

∫

Ω
uh · div(∇z− Ek

h(∇z)) =

∫

Ω
uh ·

(
div τ − Pk

h(div τ )
)
= 0 ,

we find that R(τ ) can be decomposed as R(τ ) = R1(ϕ) + R2(z), where

R1(ϕ) := −〈curl(ϕ−ϕh)ν ,g〉Γ +

∫

Ω
(th + γh) : curl(ϕ−ϕh)

and

R2(z) := −〈(∇z− Ek
h(∇z))ν,g〉Γ +

∫

Ω
(th + γh) : (∇z− Ek

h(∇z)) .

The following two lemmas provide upper bounds for |R1(ϕ)| and |R2(z)|.

Lemma 5.3 Assume that g ∈ [H1(ΓD)]
2. Then there exists C > 0, independent of h, such that

|R1(ϕ)| ≤ C




∑

T∈Th

θ21,T





1/2

‖τ‖div;Ω ,

where
θ21,T := h2T

∥∥curl
{
th + γh

}∥∥2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

.

Proof. It follows analogously to the proof of [41, Lemma 4.3] by employing th + γh instead of just th.
The main tools employed are integration by parts, the Cauchy-Schwarz inequality, the approximation
properties of the Clément interpolant (cf. Lemma 5.2), the fact that the number of triangles in ∆(T )
and ∆(e) are bounded, and the estimate (5.16). We omit further details here.

�
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Lemma 5.4 There exists C > 0, independent of h, such that

|R2(z)| ≤ C




∑

T∈Th

θ22,T





1/2

‖τ‖div;Ω ,

where
θ22,T = h2T ‖∇uh − (th + γh)‖

2
0,T +

∑

e∈E(T )∩Eh(Γ)

he ‖g − uh‖
2
0,e .

Proof. It follows analogously to the proof of [41, Lemma 4.4] by employing again th + γh instead of
just th. In this case the main tools are given by the identities (2.36) and (2.37) characterizing Ek

h ,
the Cauchy-Schwarz inequality, the approximation properties (2.42) and (2.40) (with m = 1), and the
estimate (5.16). Further details are omitted here.

�

Finally, it follows from the decomposition of R and Lemmas 5.3 and 5.4 that

|R(τ ) | = |R(τ − τ h)| ≤




∑

T∈Th

(
θ21,T + θ22,T

)




1/2

‖τ‖M1 ∀ τ ∈ M1 , (5.18)

which, together with the estimate (5.9) (cf. Lemma 5.1), yields the reliability of θ.

5.3 Reliability of the a posteriori error estimator θ̃

We now consider the augmented formulation (3.1) and let M be the linear operator obtained by
adding the two equations of its left hand side, after replacing A1 within A (see (3.2)) by the Gâteaux
derivative DA1(r̃) at any r̃ ∈ X1, that is

[M((s, τ ), (v,η)), ((r, ζ), (w, ξ))] := DA1(r̃)(r, s − κ0 τ ) + [B1(s), ζ] − [B1(r), τ ]

+κ0

∫

Ω
ζ : τ + [B(s, τ ), (w, ξ)] + [B(r, ζ), (v,η)]

(5.19)

for all ((s, τ ), (v,η)), ((r, ζ), (w, ξ)) ∈ X×M . Note that we have used here that the nonlinear operator
A (cf. (3.2)) can be rewritten as

[A(r, ζ), (s, τ )] := [A1(r), s − κ0 τ ] + [B1(s), ζ] − [B1(r), τ ] + κ0

∫

Ω
ζ : τ . (5.20)

Then, applying the continuous dependence result provided by the linear version of Theorem 3.1 (cf.
(3.6)-(3.7) with A linear), which is actually the usual estimate provided by the Babuška-Brezzi theory
(see, e.g. [47, Theorem 4.1, Chapter I]), and having in mind again the uniform estimates (2.16) and
(2.17), we deduce that M satisfies a global inf-sup condition uniformly with respect to r̃ ∈ X1, that
is there exists a constant C̃ > 0 such that

C̃ ‖((r, ζ), (w, ξ))‖X×M ≤ sup
((s,τ ),(v,η))∈X×M\{0}

[M((s, τ ), (v,η)), ((r, ζ), (w, ξ))]

‖((s, τ ), (v,η))‖X×M
(5.21)

for all (r̃, ((r, ζ), (w, ξ))) ∈ X1 × (X ×M).

The analogue of Lemma 5.1 is established as follows.
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Lemma 5.5 Let ((t,σ), (u,γ)) ∈ X ×M and ((th,σh), (uh,γh)) ∈ Xh×Mh be the unique solutions
of the continuous and discrete augmented formulations (3.1) and (3.14), respectively. Then there exists
C > 0, independent of h, such that

C ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M ≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

+ ‖R+ R̃ ‖M ′
1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

,
(5.22)

where R is defined by (5.10) and

R̃(τ ) := κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: τ ∀ τ ∈ M1 . (5.23)

In addition, there holds
R(τ h) + R̃(τ h) = 0 ∀ τh ∈ M1,h .

Proof. We proceed analogously to the proof of Lemma 5.1, though we omit several similar details.
Indeed, according to (5.19) and (5.21), we easily deduce that

C̃ ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ sup
((s,τ ),(v,η))∈X×M\{0}

{
Q(s) + R(τ ) + R̃(τ ) + S(v,η)

‖((s, τ ), (v,η))‖X×M

}

≤ ‖Q‖X′
1
+ ‖R+ R̃‖M ′

1
+ ‖S‖M ′ ,

(5.24)

where R and R̃ are defined by (5.10) and (5.23), and Q ∈ X ′
1 and S ∈ M ′ are given as in the proof of

Lemma 5.1, that is

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

S(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η ∀ (v,η) ∈ M .

The rest of the derivation of (5.22) is pretty straightforward from (5.24) and the above expressions
for Q and S. Finally, taking s = 0 and τ = τh ∈ M1,h in the first equation of (3.14), we deduce that

R+ R̃ vanishes in M1,h, which completes the proof.
�

We now aim to bound ‖R + R̃‖M ′
1
in (5.22) by proceeding similarly as we did before for ‖R‖M ′

1
.

Indeed, we first note that R(τ )+ R̃(τ ) = R(τ −τ h)+ R̃(τ −τh) for each τh ∈ M1,h, and then employ
again the Helmholtz decompositions (5.15) and (5.17) for rewriting τ and introducing the particular
tensor τ h ∈ M1,h, respectively. In this way, since R(τ − τ h) is already bounded by (5.18), it only

remains to estimate the extra-term given by R̃(τ − τ h), which becomes

R̃(τ − τ h) := κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: curl(ϕ−ϕh)

+κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: (∇z − Ek

h(∇z)) .

Moreover, by applying the same techniques employed to prove Lemmas 5.3 and 5.4 (see also [41,
Lemmas 4.3 and 4.4] for further details), we arrive at the following estimate for R̃(τ − τ h).
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Lemma 5.6 There exists C > 0, independent of h, such that

|R̃(τ − τ h)| ≤ C




∑

T∈Th

θ̃21,T





1/2

‖τ‖div;Ω ∀ τ ∈ M1 , (5.25)

where
θ̃21,T = h2T

∥∥curl
(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+
∑

e∈E(T )

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e

+ h2T
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

.

As a consequence of (5.18) and (5.25) we deduce that

|R(τ ) + R̃(τ )| = |R(τ − τh) + R̃(τ − τh)|

≤




∑

T∈Th

(
θ21,T + θ22,T + θ̃21,T

)




1/2

‖τ‖M1 ∀ τ ∈ M1 ,

which, together with (5.22), and noting that the third term in the definition of θ̃21,T is certainly

dominated by
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

, yields the reliability of the a posteriori error

estimator θ̃.

5.4 Reliability of the a posteriori error estimator θ̂

Following the same reasoning of the previous sections, we now consider the fully augmented formulation
(4.1) and let N be the linear operator obtained by replacing A1 within A (see (4.2) and (5.20)) by the
Gâteaux derivative DA1(r̃) at any r̃ ∈ X1, that is

[N (s, τ ,v,η), (r, ζ,w, ξ)] := DA1(r̃)(r, s − κ0 τ ) + [B1(s), ζ] − [B1(r), τ ]

+κ0

∫

Ω
ζ : τ + [B(s, τ ), (w, ξ)] − [B(r, ζ), (v,η)] + κ1

∫

Ω
div ζ · div τ

+ κ2

∫

Ω
(e(w) − r) : e(v) + κ3

∫

Ω

{
ξ −

1

2
(∇w − (∇w)t)

}
: η + κ4

∫

ΓD

w · v

(5.26)

for all (s, τ ,v,η), (r, ζ,w, ξ) ∈ X. Then, applying the continuous dependence result provided by the
linear version of Theorem 4.1 (cf. (4.3) with A linear), we deduce that N satisfies a global inf-sup
condition uniformly with respect to r̃ ∈ X1, which means that there exists a constant C̃ > 0 such that

C̃ ‖(r, ζ,w, ξ)‖X ≤ sup
(s,τ ,v,η)∈X\{0}

[N (s, τ ,v,η), (r, ζ,w, ξ)]

‖(s, τ ,v,η)‖X
(5.27)

for all (r̃, (r, ζ,w, ξ)) ∈ X1 × X.

The analogue of Lemma 5.5 is established as follows.
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Lemma 5.7 Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the continuous
and discrete fully augmented formulations (4.1) and (4.6), respectively. Then there exists C > 0,
independent of h, such that

C ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤
∥∥σh −

{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

+ ‖R + R̃ + R̂‖M ′
1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

+ ‖e(uh) − th‖0,Ω +
∥∥∥γh −

1

2
(∇uh − (∇uh)

t)
∥∥∥
0,Ω

+ ‖uh − g‖0,Γ

(5.28)

where R and R̃ are defined by (5.10) and (5.23), respectively, and

R̂(τ ) := κ1

∫

Ω

(
divσh + f

)
· div τ ∀ τ ∈ M1 . (5.29)

In addition, there holds

R(τ h) + R̃(τ h) + R̂(τ h) = 0 ∀ τh ∈ M1,h .

Proof. We proceed analogously to the proofs of Lemmas 5.1 and 5.5. Indeed, applying now (5.27) and
(5.26), we deduce that

C̃ ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ sup
(s,τ ,v,η)∈X\{0}

{
Q(s) + R(τ ) + R̃(τ ) + R̂(τ ) + Ŝ(v,η)

‖(s, τ ,v,η)‖X

}

≤ ‖Q‖X′
1
+ ‖R+ R̃+ R̂‖M ′

1
+ ‖Ŝ‖M ′ ,

(5.30)

where R, R̃, and R̂ are defined by (5.10), (5.23), and (5.29), respectively, Q ∈ X ′
1 is given as in the

proof of Lemma 5.5, that is

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

and

Ŝ(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η + κ2

∫

Ω
(e(uh) − th) : e(v)

+ κ3

∫

Ω

{
γh −

1

2
(∇uh − (∇uh)

t)
}
: η + κ4

∫

Γ
(uh − g) · v ∀ (v,η) ∈ M

The rest of the derivation of (5.28) follows from (5.30) and the application of the Cauchy-Schwarz
inequality to the above expressions for Q and Ŝ. In particular, the fact that the test functions v
belong now to H1(Ω), and the corresponding trace theorem, imply that

∣∣∣∣
∫

Γ
(uh − g) · v

∣∣∣∣ ≤ ‖uh − g‖0,Γ ‖v‖0,Γ ≤ c ‖uh − g‖0,Γ ‖v‖1,Ω .

Finally, it is straightforward to see that, taking s = 0, v = 0, η = 0 and τ = τ h ∈ M1,h in (4.6), we

find that R+ R̃+ R̂ vanishes in M1,h, which ends the proof.
�
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It remains to bound ‖R+ R̃+ R̂‖M ′
1
in (5.28), for which we proceed as we did before for ‖R‖M ′

1
and

‖R + R̃‖M ′
1
. In other words, we now use that R(τ )+R̃(τ )+R̂(τ ) = R(τ−τh)+R̃(τ−τh)+R̂(τ−τh)

for each τ h ∈ M1,h, and then employ once again the Helmholtz decompositions (5.15) and (5.17). In

this way, since R(τ − τ h) and R̃(τ − τ h) are already bounded by (5.18) and (5.25), we just need to
estimate the extra-term given by R̂(τ − τh), which is done as follows.

Lemma 5.8 There exists C > 0, independent of h, such that

|R̂(τ − τ h)| ≤ C




∑

T∈Th

θ̂21,T





1/2

‖τ‖div;Ω , (5.31)

where
θ̂21,T := h2T ‖divσh + f‖20,T .

Proof. It suffices to observe, having in mind (5.15) and (5.17), that

R̂(τ − τ h) = κ1

∫

Ω
(divσh + f) · div (∇z− Ek

h(∇z)) ,

and then apply the Cauchy-Schwarz inequality, (2.38), and (2.39).
�

As a consequence of (5.18), (5.25), and (5.31) we deduce that

|R(τ ) + R̃(τ ) + R̂(τ ) | = |R(τ − τ h) + R̃(τ − τ h) + R̂(τ − τ h) |

≤




∑

T∈Th

(
θ21,T + θ22,T + θ̃21,T + θ̂21,T

)




1/2

‖τ ‖M1 ∀ τ ∈ M1 ,

which, replaced back into (5.28) for estimating ‖R + R̃ + R̂|M ′
1
, and noting that h2T ‖divσh + f‖20,T

and he ‖g−uh‖
2
0,e are dominated by ‖divσh + f‖20,T and ‖g−uh‖

2
0,e, respectively, yields the reliability

of the a posteriori error estimator θ̂.

At this point we find it important to remark that the derivation of θ̂ does not take into account
that actually uh also belongs to H1(Ω). To this respect, we show next that this fact allows to
simplify the upper bound of ‖R + R̃ + R̂‖M ′

1
(cf. (5.28)), which yields a simpler reliable and efficient

a posteriori error estimator. However, unless the Dirichlet datum is homogeneous, this alternative
estimator does not become localizable, which makes it unsuitable for adaptive computations. More
precisely, integrating by parts the third term in the definition of R (cf. (5.10)), we find that

R(τ ) =

∫

Ω

(
th + γh − ∇uh

)
: τ + 〈τ ν,uh − g〉Γ ∀ τ ∈ M1 ,

which gives

‖R‖M ′
1
≤ C

{
‖th + γh − ∇uh‖0,Ω + ‖uh − g‖1/2,Γ

}
.

In turn, simple applications of the Cauchy-Schwarz inequality in (5.23) and (5.29) imply, respectively,

‖R̃‖M ′
1
≤ κ0

∥∥σh −
{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

and ‖R̂‖M ′
1
≤ κ1 ‖f + divσh‖0,Ω .
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In this way, employing the above estimates to bound ‖R + R̃ + R̂‖M ′
1
in (5.28), we arrive at

C ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤
∥∥σh −

{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

+ ‖th + γh − ∇uh‖0,Ω + ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖e(uh) − th‖0,Ω +
∥∥∥γh −

1

2
(∇uh − (∇uh)

t)
∥∥∥
0,Ω

+ ‖uh − g‖1/2,Γ ,

(5.32)

from which it is clear that the last term on the right hand side is not localizable. Certainly, one could
use interpolation results to handle ‖uh − g‖1/2,Γ in terms of local terms, but then it is easy to see that
the resulting estimator does not become efficient. Nevertheless, if the Dirichlet datum g vanishes on
Γ, the last term in (5.32) dissapears, and the above reduces to

‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤ C θ := C




∑

T∈Th

θ
2
T





1/2

,

where
θ
2
T :=

∥∥σh −
{
λ(th) tr(th)I + µ(th) th

}∥∥2
0,T

+ ‖th + γh − ∇uh‖
2
0,T + ‖f + divσh‖

2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ ‖e(uh) − th‖
2
0,T +

∥∥∥γh −
1

2
(∇uh − (∇uh)

t)
∥∥∥
2

0,T
.

(5.33)

The efficiency of θ, which is quite straightforward, is briefly mentioned at the end of Section 5.5.

5.5 Efficiency of the a posteriori error estimators θ, θ̃ and θ̂

In this section we establish the efficiency of our main a posteriori error estimators θ, θ̃ and θ̂ (lower
bounds in (5.4), (5.5) and (5.6), respectively). In other words, we provide suitable upper bounds
for the eight terms defining the local error indicator θ2T (cf. (5.1)), for the remaining two terms

completing the definition of the local error indicator θ̃2T (cf. (5.2)) and for the remaining three terms

completing the local error indicator θ̂2T (cf. (5.3)). For this purpose, we first notice that the converses
of the derivations of (2.8), (3.1) and (4.1) from (2.1) hold true. Indeed, it is not difficult to prove,
applying integration by parts backwardly and using appropriate test functions, that the unique solution
(t,σ, (u,γ)) ∈ X1 ×M1 ×M of (2.8) (which is easily shown to coincide with that of (3.1) and (4.1))
solves the original problem (2.1).

We begin with three simple estimates. Since f = −divσ in Ω, it is clear that

‖f + divσh‖0,T =
∥∥div

(
σ − σh

)∥∥
0,T

. (5.34)

In addition, using that σ = λ(t) tr(t)I + µ(t) t in Ω and applying the Lipschitz-continuity of A1 (cf.
Lemma 2.2), but restricted to the triangle T ∈ Th instead of Ω, we deduce that

∥∥σh −
{
λ(th) tr(th) I + µ(th) th

}∥∥
0,T

≤ c
{
‖σ − σh‖0,T + ‖t− th‖0,T

}
. (5.35)

Furthermore, using the symmetry of σ, we easily find that

∥∥σh − σt

h

∥∥
0,T

≤ 2 ‖σ − σ‖0,T . (5.36)
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Next, in order to bound the terms involving the mesh parameters hT and he, we make use of
the general results and estimates available in the analysis of related linear problems (see, e.g. [41,
Section 4.2]). The techniques applied there are based on triangle-bubble and edge-bubble functions,
extension operators, and discrete trace and inverse inequalities. For further details on these tools we
refer particularly to [41, Lemmas 4.7 and 4.8, and eq. (4.34)].

We have the following efficiency estimates.

Lemma 5.9 There exist C1, C2 > 0, independent of h, such that

h2T
∥∥curl

{
th + γh

}∥∥2
0,T

≤ C1

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀T ∈ Th ,

and
he ‖ [(th + γh) s] ‖

2
0,e ≤ C2

{
‖ t− th ‖

2
0,ωe

+ ‖γ − γh ‖
2
0,ωe

}
∀ e ∈ Eh(Ω) ,

where ωe := ∪
{
T ∈ Th : e ∈ E(T )

}
.

Proof. It suffices to apply the general results stated in [41, Lemmas 4.9 and 4.10] to ρh = th + γh

and ρ = t + γ = ∇u, noting that curl(ρ) = curl(∇u) = 0 in Ω (cf. (2.4) and (2.5)).
�

Lemma 5.10 There exists C3 > 0, independent of h, such that

h2T ‖∇uh − (th + γh)‖
2
0,T ≤ C3

{
‖u− uh ‖

2
0,T + h2T ‖ t− th ‖

2
0,T + h2T ‖γ − γh ‖

2
0,T

}
(5.37)

for all T ∈ Th .

Proof. It follows from the proof of [41, Lemma 4.13], which itself is a slight modification of the proof
of [13, Lemma 6.3], by replacing the tensor utilized there by ∇uh − (th + γh), and recalling that
∇u = t+ γ.

�

Lemma 5.11 Assume that g is piecewise polynomial. Then there exists C4 > 0, independent of h,
such that

he

∥∥∥dg
ds

− (th + γh )s
∥∥∥
2

0,e
≤ C4

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) , (5.38)

where T is the triangle of Th having e as an edge.

Proof. It suffices to modify the proof of [41, Lemma 4.15], by using
dg

ds
− (th + γh) s instead of

dg

ds
−

1

2µ
σt

h s, and noting in the present case that
dg

ds
= (∇u) s = (t+ γ) s on Γ.

�

Lemma 5.12 There exists C5 > 0, independent of h, such that

he ‖g − uh‖
2
0,e ≤ C5

{
‖u− uh‖

2
0,T + h2T ‖t − th‖

2
0,T + h2T ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

37



Proof. Similarly to the previous lemmas, it follows as in the proof of [41, Lemma 4.14] by utilizing
the tensor ∇uh − (th + γh), and then using that ∇u = t + γ in Ω. At the end, the above estimate
(5.37) for h2T ‖∇uh − (th + γh)‖

2
0,T is also employed.

�

We remark here that if g were not piecewise polynomial but sufficiently smooth, then higher
order terms given by the errors arising from suitable polynomial approximations would appear in
(5.38). This explains the eventual expression h.o.t. in (5.4). In this way, the efficiency of θ follows
straightforwardly from estimates (5.34), (5.35) and (5.36), together with Lemmas 5.9 throughout 5.12,
after summing up over T ∈ Th and using that the number of triangles on each domain ωe is bounded
by two.

Next, for the efficiency of θ̃ it only remains to provide upper bounds for the two terms completing
the definition of the local error indicator θ̃2T (cf. (5.2)), which is established in the following lemma.

Lemma 5.13 There exist C6, C7 > 0, independent of h, such that

h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

≤ C6

{
‖t − th‖

2
0,T + ‖σ − σh‖

2
0,T

}

for all T ∈ Th, and

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
≤ C7

{
‖t− th‖

2
0,ωe

+ ‖σ − σh‖
2
0,ωe

}

for all e ∈ Eh(Ω).

Proof. As in the proof of Lemma 5.9, it suffices now to apply the general results stated in [41, Lemmas
4.9 and 4.10] to ρh = σh −

{
λ(th) tr(th) I + µ(th) th

}
and ρ = σ−

{
λ(t) tr(t) I + µ(t) t

}
= 0 in

Ω, and then use the Lipschitz-continuity of A1 (cf. (2.22) in Lemma 2.2) restricted to T and ωe.
�

Now, for the efficiency of θ̂ it remains to provide upper bounds for the three terms completing the
definition of the local error indicator θ̂2T (cf. (5.3)), which is done in what follows. In fact, using that

t = e(u) and that γ =
1

2
(∇u − (∇u)t) in Ω, we easily deduce that

‖e(uh) − th‖0,T ≤ C
{
‖u − uh‖1,T + ‖t − th‖0,T

}
(5.39)

and ∥∥∥γh −
1

2
(∇uh − (∇uh)

t)
∥∥∥
0,T

≤ C
{
‖u − uh‖1,T + ‖γ − γh‖0,T

}
. (5.40)

In addition, employing that u = g on Γ and applying the trace theorem, we find that

∑

e∈Eh(Γ)

‖g − uh‖
2
0,e = ‖u− uh‖

2
0,Γ ≤ c ‖u− uh‖

2
1,Ω .

Finally, in order to complete the efficiency estimate for θ, we just need to bound the second term

defining the local error indicator θ
2
T (cf. (5.33)), which, using again that t+ γ = ∇u, yields

‖th + γh − ∇uh‖0,T ≤ ‖t− th‖0,T + ‖γ − γh‖0,T + ‖u− uh‖1,T . (5.41)

Therefore, the required lower bound for θ is a straightforward consequence of (5.34), (5.35), (5.36),
(5.39), (5.40), and (5.41).

38



6 Numerical results

In this section we present numerical examples illustrating the performance of the Galerkin schemes
(2.27), (3.14), and (4.6), confirming the reliability and efficiency of the a posteriori error estimators
derived in Section 5, and showing the behaviour of the associated adaptive algorithms. The specific
finite element subspaces X1,h, M1,h, M

u

h , and Mγ
h that are employed for the respective computational

implementations are indicated below in Table 6.1. In each case we consider k = 0. In addition, all the
nonlinear algebraic systems arising from the Galerkin schemes are solved by the Newton method with
a tolerance of 1E-06 and taking as initial iteration the solution of the associated linear problems with
µ̃, and hence λ̃, constant.

Table 6.1: Finite element subspaces employed

Galerkin scheme X1,h M1,h Mu

h Mγ
h

(2.27) (2.34) (2.31) (2.32) (2.33)

(3.14) (3.18) (2.31) (2.32) (2.33)

(4.6) (4.9) (4.10) (4.11) (4.12)

In what follows, N stands for the total number of degrees of freedom (unknowns) of each Galerkin
scheme, which can be proved to behave asymptotically as the number of elements of each triangulation,
multiplied by the factors 13.5, 11.5, and 9, for (2.27), (3.14), and (4.6), respectively. Also, the
individual and total errors are given by

e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div;Ω , e0(u) := ‖u− uh‖0,Ω ,

e1(u) := ‖u− uh‖1,Ω , e(γ) := ‖γ − γh‖0,Ω ,

e(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e0(u)]

2 + [e(γ)]2
}1/2

,

ẽ(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e0(u)]

2 + [e(γ)]2
}1/2

,

ê(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e1(u)]

2 + [e(γ)]2
}1/2

,

and

e(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e1(u)]

2 + [e(γ)]2
}1/2

,

whereas the effectivity indexes are defined by

ef(θ) := e(t,σ,u,γ)/θ , ef(θ̃) := ẽ(t,σ,u,γ)/θ̃ ,

ef(θ̂) := ê(t,σ,u,γ)/θ̂ , and ef(θ) := e(t,σ,u,γ)/θ .

In addition, we introduce the experimental rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r0(u) :=

log(e0(u)/e
′
0(u))

log(h/h′)
,
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r1(u) :=
log(e1(u)/e

′
1(u))

log(h/h′)
, r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
,

r(t,σ,u,γ) :=
log(e(t,σ,u,γ)/e′(t,σ,u,γ))

log(h/h′)
,

and analogously for r̃(t,σ,u,γ), r̂(t,σ,u,γ), and r(t,σ,u,γ), where e and e
′ denote the correspond-

ing errors at two consecutive triangulations with mesh sizes h and h′, respectively. However, when
the adaptive algorithm is applied (see details below), the expression log(h/h′) appearing in the com-
putation of the above rates is replaced by − 1

2 log(N/N ′), where N and N ′ denote the corresponding
degrees of freedom of each triangulation.

The examples to be considered in this section are described next. Example 1 is employed to
illustrate the performance of the discrete schemes and to confirm the reliability and efficiency of the
a posteriori error estimators when a sequence of quasi-uniform meshes is considered. Then, Examples
2 and 3 are utilized to show the behavior of the associated adaptive algorithms, which apply the

following procedure from [58] for each χ ∈
{
θ, θ̃, θ̂, θ

}
with local indicators χT , T ∈ Th:

1) Start with a coarse mesh Th.

2) Solve the discrete problem for the actual mesh Th.

3) Compute χT for each triangle T ∈ Th.

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator χT ′ satisfies

χT ′ ≥
1

2
max

{
χT : T ∈ Th

}

6) Define resulting mesh as actual mesh Th and go to step 2.

In all the examples we consider the Lamé functions λ̃, µ̃ : R+ → R defined by

λ̃(ρ) := κ−
1

2
µ̃(ρ) and µ̃(ρ) := β0 + β1 (1 + ρ2)(β−2)/2 ∀ ρ ∈ R+ ,

with κ = β0 = β1 = 1/4, and β = 3/2, which are easily shown to verify the assumptions (2.2)
with µ0 = µ1 = 1/4 and µ2 = 5/8. This function µ̃ corresponds to the Carreau law for viscoplastic
materials (see, e.g. [51], [56]). Now, according to (2.21), we obtain α1 = 1/4 and γ1 = 3/2, which,
as indicated in Section 4.1, yields the following stabilization parameters for the partial and fully
augmented formulations:

κ0 =
α1

γ21
= 1/9 , κ1 =

α1

2
min

{
1,

1

γ21

}
= 1/18 , κ2 =

α1

2
min

{
1,

1

γ21

}
= 1/18 ,

κ3 =
α1

4
min

{
1,

1

γ21

}
= 1/36 , and κ4 =

α1

4
min

{
1,

1

γ21

}
= 1/36 .

(6.1)

In Example 1 we set Ω =]0, 1[2 and choose the data f and g so that the exact solution is given by

u(x) :=




sinx1 cos x2 exp(x1x2)

cos x1 sinx2 exp(−x1x2)


 ∀x := (x1, x2)

t ∈ Ω .
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In turn, in Example 2 we consider the T -shaped domain Ω =] − 1, 1[2 \
(
[−1,−0.25] × [−1, 0.5] ∪

[0.25, 1] × [−1, 0.5]
)
, and choose the data f and g so that the exact solution is given by

u(x) :=

(∥∥x− (−0.25, 0.5)
∥∥4/3 sin

(
2θ1 + π

3

)
,
∥∥x− (0.25, 0.5)

∥∥5/3 sin

(
2θ2
3

))
t

for all x := (x1, x2)
t ∈ Ω, with

θ1 := Arctan

(
x2 − 0.50

x1 + 0.25

)
and θ2 := Arctan

(
x2 − 0.50

x1 − 0.25

)
.

Note that the partial derivatives of this solution are singular at the points (−0.25, 0.5) and (0.25, 0.5),
which are the middle corners of the T .

Finally, in Example 3, we consider the L-shaped domain Ω := ]−1, 1[2 \ [0, 1]2 and choose the data
f and g so that the exact solution is given by

u(x) := sin(π x1) sin(π x2) r
−2/3 sin

(
2 θ − π

3

)
(1, 1)t ∀x := (x1, x2)

t ∈ Ω ,

where (r, θ) stands for the usual polar coordinates, that is r := ‖x‖ and θ := Arctan

(
x2
x1

)
. Note

that the trace of u vanishes on Γ := ∂Ω and that its partial derivatives are singular at the origin,
which is the inner corner of the L.

In Tables 6.2, 6.3, and 6.4 we summarize the convergence history of the finite element schemes
(2.27), (3.14), and (4.6) as applied to Example 1 for sequences of quasi-uniform triangulations of the
domains. The number of Newton iterations required, for the tolerance given, ranges between 3 and
6 for all the nonlinear systems involved. We observe in these tables, looking at the corresponding
experimental rates of convergence, that the O(h) predicted by Theorems 2.7, 3.5, and 4.4 (with δ = 1
in the three cases) is attained by all the unknowns. In addition, we also highlight, according to the
last column of each one of the tables, that the effectivity indexes ef(θ), ef(θ̃), and ef(θ̂) remain all
bounded (they lie in neighborhoods of 0.34, 0.19, and 0.17, respectively), which illustrates, in this case
of a regular solution, the reliability and efficiency of the three a posteriori error estimators θ, θ̃, and θ̂.
On the other hand, in Figure 6.1, which for sake of completeness includes additional inputs that are not
listed in the corresponding tables, we display the total errors e(t,σ,u,γ), ẽ(t,σ,u,γ), and ê(t,σ,u,γ)
vs. the degrees of freedom N . It is interesting to notice there that, though the three schemes yield the
same rate of convergence (which was already confirmed by the tables), the augmented one requires less
degrees of freedom than the other two to achieve a given accuracy. This fact is particularly important
when comparing the non-augmented and augmented approaches since both measure their respective
errors with exactly the same norm, and hence, this example would suggest to better employ the latter
one instead of the former. Actually, this observation could have been announced in advance since, on
the contrary to the finite element subspace X1,h (cf. (2.34)) employed in (2.27), the corresponding

finite element subspace X̃1,h (cf. (3.18)) utilized in the augmented scheme (3.14) does not include the
bubble functions, which certainly yields a less amount of degrees of freedom.

Next, in Tables 6.5 up to 6.12, we provide the convergence history of the quasi-uniform and
adaptive schemes (2.27), (3.14), and (4.6) as applied to Examples 2 and 3. More precisely, Example 2 is
utilized to illustrate the behavior of the three methods, while Example 3, which considers homogeneous
Dirichlet boundary conditions, is employed only to show the performance of the fully-augmented
approach (4.6) with the a posteriori error estimator θ. The number of Newton iterations required now
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ranges between 3 and 8, and between 11 and 18, respectively. We notice, as expected, that the errors
of the adaptive methods decrease faster than those obtained by the quasi-uniform ones. This fact is
better illustrated in Figures 6.2, 6.3, 6.4, and 6.7, where we display the total errors vs. the degrees
of freedom N for the corresponding refinements. In addition, in Figures 6.5 and 6.6 we summarize
the results of Example 2 by displaying the total errors vs. N for the quasi-uniform and adaptive
refinements of the three schemes. It is interesting to observe there that, at least for this example, both
augmented approaches perform much better than the non-augmented one. Note that all these figures
include additional data that are not shown in the corresponding tables. Furthermore, we see from the
last column of the tables that the effectivity indexes remain again bounded from above and below,
which confirms the reliability and efficiency of θ, θ̃, θ̂, and θ, in these cases of non-smooth solutions,
as well. Some intermediate meshes obtained with the associated adaptive algorithms are displayed in
Figures 6.8 and 6.10 for the augmented and fully-augmented schemes, respectively. It is important to
observe here that the adapted meshes concentrate the refinements around the points (−0.25, 0.5) and
(0.25, 0.5) in Example 2, and around the origin in Example 3, which confirms that the methods are
able to recognize the singularity regions of the solutions. On the other hand, in Figures 6.9 and 6.11
we consider fixed meshes (according to the values of N indicated there) and display the total errors vs.
κ0 and κ3, respectively, for the quasi-uniform augmented and fully-augmented approaches as applied
to Example 2. The other parameters needed are taken from (6.1). The corresponding non-augmented
schemes yield N = 252868 and N = 312172 with total errors e(t,σ,u,γ) given by 3.188E − 01 and
3.003E − 01, respectively. It is quite clear from these figures that for each one of the parameters
κ0 and κ3 there is a sufficiently large range yielding stable Galerkin schemes in the sense that the
corresponding errors remain bounded. This fact, which was theoretically known in advance for κ0
(cf. Theorems 3.3 and 4.3), certainly confirms the robustness of the augmented and fully-augmented
methods with respect to these stabilization parameters. This remark is specially significant for κ3,
which, as explained in Section 4.1, can only be determined heuristically. Note in particular that the
parameters κ0 = 1/9 and κ3 = 1/36 employed in our computations lie precisely in the ranges identified
by Figures 6.9 and 6.11. Finally, in order to illustrate the accurateness of the finite element schemes
and their associated adaptive algorithms, in Figures 6.12, 6.13, and 6.14, we display some components
of the approximate (left) and exact (right) solutions for Examples 2 and 3.

We conclude this paper by emphasizing that we have provided enough support to consider the
augmented and fully-aumented mixed finite element schemes (3.14) and (4.6), together with its asso-
ciated adaptive algorithms, as valid and competitive alternatives to solve the present class of nonlinear
elasticity problems.

N h e(t) r(t) e(σ) r(σ) e0(u) r0(u) e(γ) r(γ) ef(θ)
7009 1/16 3.808E−02 − 7.034E−02 − 2.003E−02 − 1.472E−02 − 0.3418
10921 1/20 3.047E−02 1.000 5.628E−02 1.000 1.602E−02 1.000 1.106E−02 1.294 0.3412
15697 1/24 2.539E−02 1.001 4.690E−02 1.000 1.335E−02 1.000 8.693E−03 1.327 0.3409
21337 1/28 2.176E−02 1.002 4.020E−02 1.000 1.145E−02 1.000 7.065E−03 1.351 0.3407
27841 1/32 1.903E−02 1.002 3.517E−02 1.000 1.001E−02 1.000 5.887E−03 1.370 0.3407
35209 1/36 1.691E−02 1.002 3.126E−02 1.000 8.902E−03 1.000 5.003E−03 1.385 0.3406
62497 1/48 1.268E−02 1.002 2.344E−02 1.000 6.676E−03 1.000 3.342E−03 1.407 0.3407
110977 1/64 9.502E−03 1.002 1.758E−02 1.000 5.007E−03 1.000 2.217E−03 1.432 0.3408
173281 1/80 7.598E−03 1.002 1.406E−02 1.000 4.006E−03 1.000 1.607E−03 1.443 0.3409
249409 1/96 6.330E−03 1.002 1.172E−02 1.000 3.338E−03 1.000 1.233E−03 1.453 0.3409
443137 1/128 4.746E−03 1.000 8.790E−03 0.999 2.504E−03 1.000 8.165E−04 1.403 0.3411
692161 1/160 3.796E−03 1.000 7.032E−03 1.000 2.003E−03 1.000 5.909E−04 1.448 0.3412
996481 1/192 3.164E−03 1.000 5.861E−03 1.000 1.669E−03 1.000 4.545E−04 1.440 0.3413

Table 6.2: Example 1, quasi–uniform non–augmented scheme (2.27)
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N h e(t) r(t) e(σ) r(σ) e0(u) r0(u) e(γ) r(γ) ef(θ̃)
5985 1/16 4.047E−02 − 3.547E−02 − 2.003E−02 − 5.355E−03 − 0.1990
7561 1/18 3.597E−02 1.000 3.169E−02 0.957 1.780E−02 1.000 4.499E−03 1.478 0.1985
11265 1/22 2.942E−02 1.001 2.612E−02 0.966 1.457E−02 1.000 3.343E−03 1.481 0.1978
15705 1/26 2.489E−02 1.001 2.221E−02 0.971 1.233E−02 1.000 2.612E−03 1.481 0.1973
20881 1/30 2.157E−02 1.001 1.932E−02 0.975 1.068E−02 1.000 2.113E−03 1.481 0.1970
26793 1/34 1.903E−02 1.001 1.709E−02 0.979 9.425E−03 1.000 1.756E−03 1.482 0.1967
37041 1/40 1.617E−02 1.001 1.458E−02 0.981 8.012E−03 1.000 1.380E−03 1.482 0.1964
72465 1/56 1.154E−02 1.001 1.046E−02 0.986 5.723E−03 1.000 8.381E−04 1.482 0.1960
147681 1/80 8.078E−03 1.001 7.352E−03 0.990 4.006E−03 1.000 4.942E−04 1.481 0.1957
289185 1/112 5.773E−03 0.995 5.268E−03 0.989 2.861E−03 1.000 3.098E−04 1.280 0.1956
477793 1/144 4.492E−03 0.998 4.104E−03 0.994 2.226E−03 1.000 2.271E−04 1.188 0.1955
589761 1/160 4.044E−03 0.998 3.696E−03 0.995 2.003E−03 1.000 2.025E−04 1.089 0.1955
849025 1/192 3.370E−03 0.999 3.078E−03 1.003 1.669E−03 1.000 1.804E−04 0.635 0.1955
1155393 1/224 2.891E−03 0.996 2.640E−03 0.996 1.431E−03 1.000 1.594E−04 0.803 0.1955

Table 6.3: Example 1, quasi–uniform augmented scheme (3.14)

N h e(t) r(t) e(σ) r(σ) e1(u) r1(u) e(γ) r(γ) ef(θ̂)
4738 1/16 4.223E−02 − 2.633E−02 − 5.051E−02 − 1.154E−01 − 0.1755
8890 1/22 3.030E−02 1.040 1.895E−02 1.030 3.613E−02 1.049 8.808E−02 0.872 0.1726
12378 1/26 2.549E−02 1.034 1.596E−02 1.025 3.035E−02 1.042 7.588E−02 0.900 0.1715
16442 1/30 2.199E−02 1.030 1.379E−02 1.021 2.616E−02 1.037 6.657E−02 0.919 0.1708
21082 1/34 1.934E−02 1.026 1.214E−02 1.018 2.298E−02 1.033 5.926E−02 0.933 0.1702
29122 1/40 1.638E−02 1.022 1.030E−02 1.015 1.945E−02 1.028 5.084E−02 0.945 0.1696
56898 1/56 1.163E−02 1.015 7.326E−03 1.010 1.379E−02 1.019 3.680E−02 0.966 0.1687
74242 1/64 1.016E−02 1.012 6.404E−03 1.008 1.204E−02 1.016 3.232E−02 0.973 0.1685
166658 1/96 6.750E−03 1.007 4.260E−03 1.004 7.989E−03 1.010 2.171E−02 0.985 0.1679
295938 1/128 5.061E−03 1.003 3.193E−03 1.002 5.986E−03 1.004 1.633E−02 0.991 0.1677
462082 1/160 4.048E−03 1.000 2.554E−03 1.001 4.787E−03 1.001 1.308E−02 0.994 0.1675
665090 1/192 3.372E−03 1.001 2.128E−03 1.001 3.989E−03 1.000 1.091E−02 0.995 0.1675
904962 1/224 2.892E−03 0.997 1.824E−03 1.000 3.421E−03 0.997 9.359E−03 0.996 0.1675
1181698 1/256 2.532E−03 0.995 1.596E−03 0.999 2.995E−03 0.995 8.192E−03 0.997 0.1674

Table 6.4: Example 1, quasi–uniform fully-augmented scheme (4.6)
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Figure 6.1: Example 1, total error vs. N for the quasi-uniform schemes
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N h e(t) e(σ) e0(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)
184 1/1 3.315E−01 1.168E−00 2.361E−01 4.371E−01 1.311E−00 − 0.4497
745 1/3 1.584E−01 8.296E−01 9.472E−02 1.251E−01 8.590E−01 0.613 0.6926
3817 1/7 7.368E−02 6.473E−01 4.206E−02 4.717E−02 6.545E−01 0.274 0.8589
6256 1/9 5.511E−02 5.812E−01 3.230E−02 2.601E−02 5.853E−01 0.175 0.9000
9211 1/11 4.484E−02 5.181E−01 2.685E−02 2.164E−02 5.211E−01 0.405 0.9125
13297 1/13 3.803E−02 5.056E−01 2.245E−02 1.792E−02 5.078E−01 0.433 0.9324
15115 1/14 3.559E−02 5.058E−01 -2.101E−02 1.466E−02 5.077E−01 0.002 0.9416
25828 1/18 2.763E−02 4.486E−01 1.616E−02 1.243E−02 4.499E−01 0.866 0.9540
38188 1/22 2.298E−02 4.151E−01 1.328E−02 9.829E−03 4.160E−01 0.621 0.9626
67732 1/29 1.699E−02 3.717E−01 9.862E−03 5.512E−03 3.723E−01 0.485 0.9746
142486 1/42 1.197E−02 3.507E−01 6.824E−03 3.858E−03 3.510E−01 0.108 0.9858
252868 1/56 8.936E−03 3.186E−01 5.112E−03 2.911E−03 3.188E−01 0.117 0.9903
321172 1/63 7.982E−03 3.002E−01 4.535E−03 2.301E−03 3.003E−01 0.507 0.9914
519349 1/80 6.257E−03 2.758E−01 3.562E−03 1.778E−03 2.759E−01 0.428 0.9937
660085 1/90 5.596E−03 2.584E−01 3.156E−03 1.632E−03 2.585E−01 0.552 0.9943
813916 1/100 4.978E−03 2.391E−01 2.846E−03 1.364E−03 2.391E−01 0.739 0.9947

Table 6.5: Example 2, quasi–uniform non-augmented scheme (2.27)

N h e(t) e(σ) e0(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)
184 1.000 3.315E−01 1.168E−00 2.361E−01 4.371E−01 1.311E−00 − 0.4497
1288 0.451 1.190E−01 7.572E−01 9.565E−02 1.088E−01 7.801E−01 0.481 0.6742
3340 0.375 8.009E−02 5.796E−01 6.607E−02 7.456E−02 5.935E−01 0.683 0.7048
5881 0.354 6.565E−02 4.499E−01 5.269E−02 5.932E−02 4.615E−01 0.852 0.6963
10315 0.250 5.654E−02 3.534E−01 4.681E−02 4.376E−02 3.636E−01 1.007 0.6732
16111 0.188 4.523E−02 2.925E−01 3.259E−02 3.274E−02 2.996E−01 0.975 0.7048
18856 0.188 3.898E−02 2.648E−01 3.068E−02 2.898E−02 2.709E−01 1.277 0.7071
25870 0.125 3.277E−02 2.206E−01 2.627E−02 2.219E−02 2.257E−01 1.085 0.7075
56914 0.094 2.219E−02 1.520E−01 1.683E−02 1.515E−02 1.553E−01 0.981 0.7226
83722 0.094 1.772E−02 1.246E−01 1.450E−02 1.204E−02 1.272E−01 1.091 0.7203
124744 0.063 1.457E−02 1.021E−01 1.204E−02 8.918E−03 1.043E−01 0.968 0.7247
202879 0.047 1.140E−02 8.102E−02 8.635E−03 7.565E−03 8.262E−02 1.045 0.7362
484858 0.031 7.374E−03 5.211E−02 6.112E−03 4.357E−03 5.316E−02 0.999 0.7258
811063 0.023 5.713E−03 4.126E−02 4.351E−03 3.431E−03 4.202E−02 0.987 0.7432
1002865 0.023 5.031E−03 3.670E−02 4.060E−03 2.975E−03 3.738E−02 1.102 0.7382

Table 6.6: Example 2, adaptive non-augmented scheme (2.27)
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Figure 6.2: Example 2, e(t,σ,u,γ) vs. N for non-augmented scheme (2.27)
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N h e(t) e(σ) e0(u) e(γ) ẽ(t,σ,u,γ) r̃(t,σ,u,γ) ef(θ̃)
160 1/1 2.476E−01 4.578E−01 2.291E−01 9.596E−02 5.767E−01 − 0.2685
641 1/3 1.307E−01 3.193E−01 9.468E−02 4.036E−02 3.600E−01 0.721 0.3645
1894 1/5 7.750E−02 2.555E−01 5.534E−02 2.062E−02 2.734E−01 0.407 0.4225
5346 1/9 4.686E−02 2.105E−01 3.231E−02 1.098E−02 2.183E−01 0.325 0.4918
7867 1/11 3.801E−02 1.867E−01 2.686E−02 7.872E−03 1.925E−01 0.486 0.5052
11351 1/13 3.214E−02 1.804E−01 2.245E−02 6.398E−03 1.847E−01 0.519 0.5436
19863 1/17 2.487E−02 1.623E−01 1.688E−02 4.792E−03 1.651E−01 0.745 0.5949
27187 1/20 2.134E−02 1.571E−01 1.453E−02 3.909E−03 1.592E−01 0.201 0.6436
43166 1/25 1.687E−02 1.414E−01 1.151E−02 2.745E−03 1.429E−01 0.349 0.6849
84032 1/35 1.223E−02 1.260E−01 8.181E−03 1.830E−03 1.268E−01 0.231 0.7512
173459 1/50 8.548E−03 1.136E−01 5.698E−03 1.181E−03 1.141E−01 0.478 0.8230
215506 1/56 7.637E−03 1.116E−01 5.112E−03 1.046E−03 1.120E−01 0.161 0.8497
442551 1/80 5.353E−03 9.618E−02 3.562E−03 6.419E−04 9.640E−02 0.455 0.8907
562455 1/90 4.785E−03 9.118E−02 3.156E−03 5.895E−04 9.137E−02 0.455 0.9007
693514 1/100 4.262E−03 8.424E−02 2.846E−03 4.910E−04 8.440E−02 0.752 0.9054

Table 6.7: Example 2, quasi–uniform augmented scheme (3.14)

N h e(t) e(σ) e0(u) e(γ) ẽ(t,σ,u,γ) r̃(t,σ,u,γ) ef(θ̃)
160 1.000 2.476E−01 4.578E−01 2.291E−01 9.596E−02 5.767E−01 − 0.2685
1569 0.500 8.140E−02 2.640E−01 6.894E−02 2.496E−02 2.858E−01 0.544 0.3910
6105 0.250 4.152E−02 1.845E−01 3.585E−02 9.050E−03 1.927E−01 0.595 0.3973
14792 0.188 2.875E−02 1.380E−01 2.583E−02 5.233E−03 1.434E−01 0.683 0.4147
23877 0.125 2.273E−02 1.063E−01 2.010E−02 3.875E−03 1.106E−01 1.239 0.3984
31951 0.125 1.971E−02 9.002E−02 1.802E−02 3.139E−03 9.395E−02 1.683 0.3925
36300 0.125 1.846E−02 8.232E−02 1.698E−02 2.770E−03 8.610E−02 1.368 0.3850
44567 0.094 1.657E−02 7.462E−02 1.520E−02 2.371E−03 7.797E−02 0.966 0.3851
55891 0.088 1.482E−02 6.750E−02 1.359E−02 2.081E−03 7.047E−02 0.894 0.3866
69790 0.063 1.329E−02 6.113E−02 1.227E−02 1.870E−03 6.378E−02 0.898 0.3890
88006 0.063 1.181E−02 5.432E−02 1.103E−02 1.555E−03 5.669E−02 1.015 0.3870
114690 0.063 1.023E−02 4.805E−02 9.387E−03 1.298E−03 5.003E−02 0.944 0.3895
142100 0.063 9.170E−03 4.349E−02 8.309E−03 1.113E−03 4.523E−02 0.941 0.3914
174543 0.047 8.284E−03 3.888E−02 7.528E−03 9.659E−04 4.047E−02 1.083 0.3860
223591 0.044 7.395E−03 3.487E−02 6.867E−03 1.121E−03 3.632E−02 0.873 0.3884

Table 6.8: Example 2, adaptive augmented scheme (3.14)
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Figure 6.3: Example 2, ẽ(t,σ,u,γ) vs. N for augmented scheme (3.14)

45



N h e(t) e(σ) e1(u) e(γ) ê(t,σ,u,γ) r̂(t,σ,u,γ) ef(θ̂)
138 1/1 2.389E−01 4.817E−01 7.515E−01 9.610E−02 9.290E−01 − 0.7159
526 1/3 1.325E−01 3.210E−01 2.506E−01 1.289E−01 4.472E−01 0.968 0.5157
1519 1/5 7.912E−02 2.535E−01 1.539E−01 1.001E−01 3.228E−01 0.695 0.4972
6234 1/11 3.916E−02 1.832E−01 6.733E−02 7.062E−02 2.112E−01 0.583 0.4606
12094 1/15 2.899E−02 1.688E−01 5.364E−02 5.144E−02 1.867E−01 0.735 0.5308
15661 1/17 2.548E−02 1.607E−01 4.966E−02 4.272E−02 1.754E−01 0.925 0.5794
21411 1/20 2.192E−02 1.557E−01 4.383E−02 3.874E−02 1.678E−01 0.265 0.5984
33951 1/25 1.732E−02 1.404E−01 3.133E−02 3.137E−02 1.483E−01 0.393 0.6307
66000 1/35 1.261E−02 1.254E−01 2.083E−02 2.367E−02 1.299E−01 0.260 0.6845
136083 1/50 8.807E−03 1.133E−01 1.435E−02 1.646E−02 1.157E−01 0.494 0.7689
214624 1/63 7.034E−03 1.048E−01 1.049E−02 1.355E−02 1.064E−01 0.541 0.8016
346875 1/80 5.530E−03 9.606E−02 8.087E−03 1.073E−02 9.715E−02 0.469 0.8391
440779 1/90 4.943E−03 9.112E−02 7.438E−03 9.560E−03 9.206E−02 0.457 0.8538
543413 1/100 4.401E−03 8.420E−02 6.289E−03 8.664E−03 8.499E−02 0.758 0.8582
779875 1/120 3.721E−03 8.440E−02 5.497E−03 7.126E−03 8.496E−02 0.002 0.8971

Table 6.9: Example 2, quasi–uniform fully-augmented scheme (4.6)

N h e(t) e(σ) e1(u) e(γ) ê(t,σ,u,γ) r̂(t,σ,u,γ) ef(θ̂)
138 1.000 2.389E−01 4.817E−01 7.515E−01 9.610E−02 9.290E−01 − 0.7159
976 0.707 9.092E−02 2.702E−01 1.721E−01 1.088E−01 3.503E−01 0.739 0.4652
3796 0.500 5.491E−02 1.825E−01 7.484E−02 6.519E−02 2.149E−01 0.812 0.4612
7538 0.250 4.004E−02 1.414E−01 4.926E−02 4.594E−02 1.617E−01 0.797 0.4850
12319 0.250 3.503E−02 1.130E−01 4.231E−02 3.729E−02 1.311E−01 0.740 0.4827
19871 0.177 2.551E−02 9.059E−02 3.037E−02 2.994E−02 1.033E−01 0.985 0.4802
30635 0.125 2.039E−02 7.395E−02 2.404E−02 2.357E−02 8.377E−02 0.952 0.4933
46093 0.125 1.714E−02 6.098E−02 2.042E−02 1.911E−02 6.924E−02 0.957 0.4978
73803 0.125 1.323E−02 4.800E−02 1.551E−02 1.572E−02 5.447E−02 0.994 0.4814
120383 0.094 1.028E−02 3.849E−02 1.191E−02 1.211E−02 4.331E−02 1.065 0.4925
185623 0.063 8.290E−03 3.112E−02 9.650E−03 9.901E−03 3.504E−02 0.983 0.4889
301403 0.063 6.490E−03 2.442E−02 7.533E−03 7.847E−03 2.751E−02 0.881 0.4850
486087 0.044 5.134E−03 1.960E−02 5.950E−03 6.096E−03 2.198E−02 0.987 0.4950
612070 0.044 4.663E−03 1.794E−02 5.406E−03 5.497E−03 2.008E−02 0.785 0.4999

Table 6.10: Example 2, adaptive fully-augmented scheme (4.6)
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Figure 6.4: Example 2, ê(t,σ,u,γ) vs. N for fully-augmented scheme (4.6)
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Figure 6.5: Example 2, total error vs. N for the quasi-uniform refinements

0.01

0.1

1

10

100 1000 10000 100000 1e+06 1e+07

total error

N

non-augmented

3
3

3 3333333333333333333333333333

3

augmented

+
+

+
+ + +++++++++++++++

+
fully-augmented

2

2
2

2
2
222222222222222222222

2

Figure 6.6: Example 2, total error vs. N for the adaptive refinements
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N h e(t) e(σ) e1(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)
72 1/1 4.382E−00 8.486E−00 1.048E+01 7.985E−01 1.420E+01 − 0.8621
824 1/3 2.058E−00 6.466E−00 4.903E−00 3.122E−00 8.935E−00 1.203 0.7309
2206 1/5 1.321E−00 5.356E−00 3.093E−00 2.202E−00 6.696E−00 0.043 0.7667
4614 1/7 9.479E−01 4.609E−00 2.050E−00 1.815E−00 5.445E−00 0.337 0.7872
7382 1/9 7.771E−01 3.871E−00 1.258E−00 1.560E−00 4.428E−00 0.656 0.7971
11194 1/11 6.347E−01 3.940E−00 1.175E−00 1.407E−00 4.392E−00 -0.725 0.8183
15888 1/13 5.392E−01 3.616E−00 9.299E−01 1.191E−00 3.956E−00 -0.532 0.8395
26662 1/17 4.172E−01 3.297E−00 6.863E−01 9.214E−01 3.517E−00 0.253 0.8731
58920 1/25 2.802E−01 2.993E−00 4.572E−01 5.925E−01 3.098E−00 0.078 0.9263
113638 1/35 2.057E−01 2.834E−00 3.457E−01 4.663E−01 2.900E−0 -0.259 0.9462
229726 1/50 1.471E−01 2.368E−00 2.119E−01 3.478E−01 2.407E−00 1.282 0.9584
370046 1/63 1.150E−01 2.159E−00 1.522E−01 2.671E−01 2.184E−00 0.258 0.9703
457062 1/70 1.025E−01 2.110E−00 1.358E−01 2.584E−01 2.132E−00 0.226 0.9710
596632 1/80 8.987E−02 2.146E−00 1.301E−01 2.082E−01 2.162E−00 -0.104 0.9808
749216 1/90 8.001E−02 2.037E−00 1.102E−01 1.889E−01 2.050E−00 0.453 0.9826

Table 6.11: Example 3, quasi–uniform fully-augmented scheme (4.6)

N h e(t) e(σ) e1(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)
72 1.000 4.382E−00 8.486E−00 1.048E+01 7.985E−01 1.420E+01 − 0.8621
828 0.500 2.085E−00 7.518E−00 5.603E−00 2.675E−00 9.971E−00 0.884 0.7717
2519 0.500 1.328E−00 5.213E−00 2.092E−00 1.539E−00 5.974E−00 1.014 0.8418
7419 0.354 8.816E−01 3.233E−00 1.143E−00 1.222E−00 3.746E−00 0.989 0.8128
9694 0.250 7.603E−01 2.827E−00 9.475E−01 9.652E−01 3.225E−00 1.041 0.8394
12043 0.250 6.977E−01 2.440E−00 8.382E−01 9.335E−01 2.831E−00 1.228 0.8165
16637 0.250 6.173E−01 2.006E−00 7.332E−01 8.056E−01 2.364E−00 1.018 0.8107
24816 0.250 4.949E−01 1.625E−00 5.711E−01 6.824E−01 1.917E−00 1.074 0.8093
38405 0.125 3.943E−01 1.315E−00 4.469E−01 5.334E−01 1.539E−00 0.903 0.8129
61030 0.125 3.147E−01 1.033E−00 3.475E−01 4.375E−01 1.216E−00 1.001 0.8049
94214 0.125 2.511E−01 8.360E−01 2.803E−01 3.495E−01 9.812E−01 0.999 0.8086
154303 0.088 1.990E−01 6.632E−01 2.210E−01 2.754E−01 7.772E−01 0.959 0.8099
195155 0.063 1.757E−01 5.871E−01 1.930E−01 2.459E−01 6.880E−01 1.039 0.8068
247607 0.063 1.563E−01 5.214E−01 1.708E−01 2.176E−01 6.106E−01 1.002 0.8089
305215 0.063 1.393E−01 4.701E−01 1.526E−01 1.982E−01 5.504E−01 0.993 0.8072

Table 6.12: Example 3, adaptive fully-augmented scheme (4.6)
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Figure 6.7: Example 3, e(t,σ,u,γ) vs. N for fully-augmented scheme (4.6)
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Figure 6.8: Example 2 (augmented), adapted meshes for N ∈ {14792, 23877, 36300, 69790}
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Figure 6.9: Example 2, ẽ(t,σ,u,γ) vs. κ0 for N = 215506
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Figure 6.10: Example 3 (fully-augmented), adapted meshes for N ∈ {9694, 16637, 38405, 94214}
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Figure 6.11: Example 2, ê(t,σ,u,γ) vs. κ3 for N = 214624
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Figure 6.12: Example 2, σ22 and t11 (N = 174543) for adaptive augmented scheme

Figure 6.13: Example 2, u1 and u2 (N = 185623) for adaptive fully-augmented scheme

Figure 6.14: Example 3, σ12 and u2 (N = 195155) for adaptive fully-augmented scheme
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analysis for the mixed formulation of the elasticity equations

2012-07 Ana I. Garralda Guillem, Gabriel N. Gatica, Antonio Marquez, Manuel
Ruiz Galan: A posteriori error analysis of twofold saddle point variational formula-
tions for nonlinear boundary value problems
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