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Abstract. This work presents a priori and a posteriori error analyses of a new multiscale hybrid-
mixed method (MHM) for an elliptic model. Specially designed to incorporate multiple scales into
the construction of basis functions, this finite element method relaxes the continuity of the primal
variable through the action of Lagrange multipliers, while assuring the strong continuity of the normal
component of the flux (dual variable). As a result, the dual variable, which stems from a simple post-
processing of the primal variable, preserves local conservation. We prove existence and uniqueness of
a solution for the MHM method as well as optimal convergence estimates of any order in the natural
norms. Also, we propose a face-residual a posteriori error estimator, and prove that it controls the
error of both variables in the natural norms. Several numerical tests assess the theoretical results.
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1. Introduction. Let Ω ⊂ R
d, d ∈ {2, 3}, be an open, bounded domain with

polygonal boundary ∂Ω := ∂ΩD ∪ ∂ΩN , where ∂ΩD and ∂ΩN denote Dirichlet and
Neumann boundaries, respectively. We consider the elliptic problem to find u such
that

−∇· (K∇u) = f in Ω , (1.1)

K∇u·n = 0 on ∂ΩN , u = gD on ∂ΩD , (1.2)

where gD and f are given regular functions, n is the outward normal vector of ∂Ω.
If ∂ΩD = ∅, we assume

∫

Ω
u = 0 and

∫

Ω
f = 0. The diffusion coefficient K = {Kij} is

a symmetric tensor in [L∞(Ω)]d×d (with its usual meaning) which is assumed to be
uniformly elliptic, i.e., there exist positive constants cmin and cmax such that

cmin |ξ|2 ≤ Kij(x)ξiξj ≤ cmax |ξ|2 for all ξ = {ξi} ∈ R
d, x ∈ Ω̄ , (1.3)

where | · | is the Euclidian norm. The coefficient K is free to involve multiscale features
as in [11] and [7], for instance.

It is often of interest to approximate both the primal variable u ∈ H1(Ω) and
the dual (flux) variable σ := −K∇u ∈ H(div; Ω) (these space having their usual
definitions). The standard approach is to substitute σ in (1.1)-(1.2) to yield a problem
in mixed form. In the case of a heterogeneous coefficient K, it is of particular interest
to look for u and σ from the perspective of local problems as a way to collect fine-scale
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contributions in parallel. Such a viewpoint is featured in the works by Chen and Hou
[6] and Arbogast [2]. A different approach, named multiscale hybrid-mixed (MHM)
method, was taken in [10]: u was sought as the solution of the elliptic equation in
a weaker, broken space which relaxes continuity, allows reconstruction of the dual
variable, and localizes computations. It was then shown in [10] that the framework
provides a way to recover the aforementioned multiscale methods and to generalize
them to higher-order approximations. In the present work, we focus on an analysis of
the MHM method presented in [10], providing both a priori and a posteriori estimates.

For the sake of completeness, we now summarize the main points in deriving
the MHM method. The starting point consists of stating problem (1.1)-(1.2) such
that continuity on faces (hereafter this will refer to one-dimensional edges as well) is
weakly enforced through the action of Lagrange multipliers. To this end, we introduce
a family of regular triangulation Th of Ω into elements K, with diameter hK and we
set h := maxK∈Th

hK . The collection of all faces F in the triangulation, with diameter
hF , is denoted Eh. This set is decomposed into the set of internal faces E0, the set
of faces on the Dirichlet boundary ED, and faces on the Neumann boundary EN . To
each F ∈ Eh, we associate a normal n taking care to ensure this is directed outward
on ∂Ω. For each K ∈ Th, we further denote by nK the outward normal on ∂K, and
let nK

F := nK |F for each F ⊂ ∂K.
We replace the original strong problem by the following weak formulation : Find

(λ, u) ∈ Λ× V such that

(K∇u, ∇v)Th
+ (λn, JvK)Eh

= (f, v)Th
for all v ∈ V , (1.4)

(µn, JuK)Eh
= (µ, gD)ED

for all µ ∈ Λ , (1.5)

where we primarily work with the spaces V := H1(Th) (or V := H1(Th) ∩ L2
0(Ω) in

the case ∂ΩD = ∅) and

Λ :=
{

µ ∈ H− 1

2 (Eh) : µ|F = 0, for all F ∈ EN
}

.

Here, we adopt the notation (µn, JvK)Eh
:=

∑

K∈Th
(µn·nK , v)∂K . We refer the

reader to the definitions of the relevant broken spaces and further details on the
notation (µn, JvK)Eh

in the appendix. However, we mention that (·, ·)Th
denotes a

broken L2 inner product which implicitly indicates summation over the set. Note
problem (1.4)-(1.5) is the standard hybrid formulation from which the primal hybrid
methods arise [15]. In the pure homogeneous Dirichlet case with K being the identity,
such an approach is shown in [17] to be well posed with λ ∈ H−1/2(Eh) and u ∈ H1(Ω)
being the solution to (1.1)-(1.2); the authors then propose inf-sup stable pairs of finite
element sub-spaces.

We now characterize the solution of (1.4)-(1.5) as a collection of solutions of local
problems which are pieced together using solutions to a global problem. To this end,
we introduce the decomposition

V := V0 ⊕ V ⊥
0 ,

where V0 corresponds to

V0 := {v ∈ V : v |K ∈ P0(K), for all K ∈ Th} ,

and P0(K) stands for the space of piecewise constants. The orthogonal complement in
V corresponds to V ⊥

0 ≡ L2
0(Th)∩ V , and thus a function v ∈ V admits the expansion

v = v0 + v⊥0 in terms of unique v0 ∈ V0 and v⊥0 := v − v0 ∈ V ⊥
0 .
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Next, we observe that by taking (µ, v) = (0, v⊥0 |K) in (1.4)-(1.5), a portion of the
solution to problem (1.4)-(1.5) may be found locally in each element K. Indeed, the
component u⊥

0 of the exact solution can be expanded as

u⊥
0 = T λ+ T̂ f , (1.6)

where T and T̂ are bounded linear operators determined by local problems and with
value in V ⊥

0 . To be precise, given µ ∈ Λ, T µ |K ∈ H1(K) ∩ L2
0(K) is the unique

solution of

(K∇T µ, ∇w)K = −
(

µn·nK , w
)

∂K
, for all w ∈ H1(K) ∩ L2

0(K) , (1.7)

and given q ∈ L2(Ω), T̂ q |K ∈ H1(K) ∩ L2
0(K) is the unique solution of

(K∇ T̂ q, ∇w)K = (q, w)K , for all w ∈ H1(K) ∩ L2
0(K) . (1.8)

Further properties of T and T̂ are presented in Lemmas 8.1 and 8.2 in the appendix.
Note that decomposition (1.6) provides us a way to eliminate the portion of the
solution u⊥

0 in terms of λ and f . We complete the computation of the exact solution
u by selecting (µ, v) = (µ, v0) in (1.4)-(1.5) and solving the resulting global problem:
Find (λ, u0) ∈ Λ× V0 such that

(λn, Jv0K)Eh
= (f, v0)Th

, for all v0 ∈ V0 , (1.9)

(µn, Ju0 + T λK)Eh
= (µ, gD)ED

− (µn, JT̂ fK)Eh
, for all µ ∈ Λ . (1.10)

It is worth mentioning that the dual variable

σ = −K∇(T λ+ T̂ f) ,

belongs to the spaceH(div; Ω) since σ·n |F is continuous across F ∈ Eh and f ∈ L2(Ω)
by assumption [5, page 95].

Interestingly, global problem (1.9)-(1.10) may be interpreted as a modified version
of the mixed form of the elliptic problem (1.1)-(1.2). Indeed, owing to the identities
(see [10]),

(µn, JT λK)Eh
= −(K∇T λ,∇T µ)Th

, (µn, Jv0K)Eh
= −(∇· (K∇T λ), v0)Th

,

(µn, JT̂ fK)Eh
= −(f, T µ)Th

,
(1.11)

we may immediately write (1.9)-(1.10) in the form: Find (λ, u0) ∈ Λ × V0 such that

(∇· (K∇T λ), v0)Th
= −(f, v0)Th

, for all v0 ∈ V0 , (1.12)

(K∇T λ,∇T µ)Th
+ (∇· (K∇T µ), u0)Th

= − (µ, gD)ED
− (f, T µ)Th

, for all µ ∈ Λ .

(1.13)

In this work, we establish weak formulation (1.9)-(1.10) and its discrete version,
the MHM method, are well posed (Theorem 3.2). We then show a best approximation
result highlighting that the error only depends on the quality of the approximation
on faces (Lemma 3.3), which we then use to prove that the MHM method provides
optimal numerical approximations to the primal and dual variables in natural norms
(Theorem 4.1). Furthermore, an a posteriori error estimator (see Equations (5.1)-
(5.3)) is precisely established in terms of the jump of the primal variable on the
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faces. Interestingly, such a face-based residual estimator is shown to control the
natural norms of the primal and dual variables inside the whole computational domain
(Theorem 5.3), revealing the effectivity and reliability of the estimator.

The paper is outlined as follows: The MHM finite element method is reviewed
in Section 2. Section 3 is dedicated to wellposedness of the method, and Section 4
proposes a priori error estimates. The a posteriori error estimator is developed in
Section 5. Numerical results are then presented in Section 6, followed by conclusions
in Section 7. Some auxiliary results are provided in the appendix.

2. The multiscale hybrid-mixed method. To present a finite element ap-
proximation to global problem (1.9)-(1.10), we shall only require a finite element
space approaching Λ since the space V0 is already discrete. At this point, we use a
general approach of selecting a conforming finite subspace Λh of Λ, i.e.,

Λh ⊂ Λ ∩ L2(Eh) , (2.1)

making the mild assumption Λ0 ⊆ Λh, where the space Λ0 stands for

Λ0 := {µ ∈ Λ : µ |F ∈ P0(F ), for all F ∈ Eh} .

Here P0(F ) denotes the space of constant polynomials over faces F ∈ Eh. This
assumption is key to establishing wellposedness. Observe that functions in Λh may
be discontinuous at the vertices (or at the edges in the three-dimensional case), but
are single valued along faces.

We now define the MHM method, which is built by using the subspace Λh in
place of Λ. Given µh ∈ Λh, find Tµh |K ∈ H1(K) ∩ L2

0(K) such that it holds

(K∇Tµh, ∇w)K = −
(

µh n·nK , w
)

∂K
, for all w ∈ H1(K) ∩ L2

0(K) . (2.2)

Then, using Λh in place of Λ in global problem (1.10) yields the MHM method: Find
(

λh, u
h
0

)

∈ Λh × V0 such that

(λh n, Jv0K)Eh
= (f, v0)Th

, for all v0 ∈ V0 , (2.3)

(µh n, Ju
h
0 + TλhK)Eh

= (µh, gD)ED
− (µh n, JT̂ fK)Eh

, for all µh ∈ Λh . (2.4)

It is important to note that by assumption on the space Λh in (2.1), the jump terms
in method (2.3)-(2.4) have a precise mathematical meaning.

Equivalently, we may express the MHM method in a mixed form through the use
of identities (1.11): Find

(

λh, u
h
0

)

∈ Λh × V0 such that, for all (µh, v0) ∈ Λh × V0, it
holds

(∇· (K∇Tλh), v0)Th
= −(f, v0)Th

, (2.5)

(K∇Tλh,∇Tµh)Th
+
(

∇· (K∇Tµh), u
h
0

)

Th
= − (µh, gD)ED

− (f, Tµh)Th
. (2.6)

Owing to the fact µh is an element of the finite element space Λh, Tµh is seen as the
linear combination of solutions of the problem (2.2) applied to each one of the basis
functions spanning Λh with coefficients equal to the degrees of freedom of µh (see [10]
for further details).

We close this section with several comments. Although we find that the mixed
formulation of the Laplace problem is a consequence of the approach, we recall that
the approach is built on an approximation of u. Therefore, we may interpret the
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approach as defining finite elements (i.e., basis functions and degrees of freedom)
for which σ·n is well-approximated. Also, an easy computation shows that method
(2.3)-(2.4) (or (2.5)-(2.6)) is locally mass conservative, i.e.,

∫

K

∇· (K∇(T λh + T̂ f)) =

∫

K

f ⇐⇒
∫

∂K

λh n·nK =

∫

K

f ,

so that such a feature may be interpreted as the compatibility condition that is fulfilled
by the local problems (1.8) and (2.2).

Also, it is worth noting that since uh
0 lies in the same space as u0, the accuracy

of uh
0 depends only on the best approximation of λ in Λh. In consequence, optimal

convergence for uh
0 + T λh + T̂ f and K∇(T λh + T̂ f) in the natural norms relies

only on the capacity of λh to approximate λ. These statements are proved in the
forthcoming Sections 3-5, and numerically assessed in Section 6.

The analysis in this work assumes that T λh and T̂ f are exactly known (see [10]
for examples). In general, their numerical approximation is needed. This leads to a
two-level methodology, where the functions T λh and T̂ f in (2.3)-(2.4) (equivalently
(2.5)-(2.6)) are replaced by their locally approximated discrete counterparts Th λh and
T̂h f , where Th and T̂h approach T and T̂ , respectively, when the characteristic length
of the sub-mesh tends to zero (see [1] for an example of a two-level strategy with such
a feature). Such computations may be performed either solving the elliptic problems
(1.8) and (2.2) or, if local conformity in H(div;K) is demanded, solving their mixed
counterpart obtained from a recursive hybridization procedure. It is important to note
that in either case, method (2.3)-(2.4) (or (2.5)-(2.6)) consists of the same number of
degrees of freedom, with the local approximation appearing as a preprocessing step
which is easily parallelized.

Finally, if we suppose f is regular (belonging to H1(Ω), for instance), then the
MHM method (2.3)-(2.4) maybe simplified by dropping the source term

(µh n, JT̂ fK)Eh
,

and using uh
0 +T λh to approximate u. In fact, we prove that the induced consistency

error stays controlled in Section 4. As a result, we can completely disregard the local
problem (1.8) in such cases.

3. Wellposedness and best approximation. In this section we show method
(2.3)-(2.4) is well posed and provide a best approximation. First, we revisit an ab-
stract result for mixed problems. Throughout the following sections, we will use C
to denote an arbitrary positive constant that is independent of h but can change for
each occurence.

3.1. Abstract results. We consider the wellposedness of the following problem:
Find (u, p) ∈ W ×Q such that

B(u, p; v, q) = F (v, q), for all (v, q) ∈ W ×Q, (3.1)

where W and Q are reflexive Banach spaces equipped with the norms ‖.‖W and ‖.‖Q,
respectively. We assume here that the bounded bilinear formB : (W×Q)×(W×Q) →
R has the specific form

B(u, p; v, q) := a(u, v) + b(v, p) + b(u, q) ,

where a : W × W → R and b : W × Q → R are assumed to be bounded bilinear
forms.
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Defining a norm on W ×Q by

‖(w, q)‖W×Q := ‖w‖W + ‖q‖Q ,

problem (3.1) is well posed if and only if, (i) the following surjectivity condition holds
(with respect to the operator associated with B(.; .)): There exists a positive constant
β such that

inf
(u,p)∈W×Q

sup
(w,q)∈W×Q

B(u, p;w, q)

‖(u, p)‖W×Q‖(w, q)‖W×Q
≥ β , (3.2)

and, (ii) the following injectivity condition holds:

B(w, q;u, p) = 0, for all (w, q) ∈ W ×Q =⇒ W ×Q ∋ (u, p) = 0 . (3.3)

Above and hereafter we lighten notation and understand the supremum to be taken
over sets excluding the zero function, even though this is not specifically indicated.
It is well known (see [9, page 101] for instance) that conditions (3.2) and (3.3) are
satisfied given necessary and sufficient conditions on forms a(., .) and b(., .). The
sufficiency is revisited in the following lemma, in which we use an alternative proof to
derive a more convenient constant β (in terms of its dependence on K) than presented
in [9]. We recall the norm of the operator a(., .) stands for

‖a‖ := sup
v,w∈W

a(v, w)

‖v‖W ‖w‖W
< ∞ . (3.4)

Lemma 3.1. Let N := {w ∈ W : b(w, q) = 0, for all q ∈ Q}, and assume

a(w, v) = 0, for all w ∈ N =⇒ N ∋ v = 0. (3.5)

Moreover, suppose there exist positive constants ca and cb such that:

ca‖w‖W ≤ sup
v∈N

a(w, v)

‖v‖W
, for all w ∈ N , (3.6)

cb‖q‖Q ≤ sup
w∈W

b(w, q)

‖w‖W
, for all q ∈ Q. (3.7)

Then, given β = 1

4max
{

1

ca
, 2

cb
(1+ ‖a‖

ca
)
} , the bounded bilinear form B(.; .) satisfies con-

ditions (3.2)-(3.3), and problem (3.1) is well posed.
Proof. Suppose that (u, p) ∈ W × Q. To define a test function with which to

prove inf-sup condition (3.2) we require an auxiliary function. More specifically, by
[9, Lemma A.42], condition (3.7) implies out that there exists a function u∗ ∈ W with
the properties b(u∗, q) = b(u, q), for all q ∈ Q, and

cb‖u∗‖W ≤ sup
q∈Q

b(u, q)

‖q‖Q
. (3.8)

Since W , N , and Q are reflexive, we are assured the supremum are achieved in (3.6)-
(3.8) using [4, page 4]. Therefore, since u− u∗ ∈ N , we conclude the existence of the
following functions:

w̄ ∈ N : ‖w̄‖W = 1 and ca ‖u− u∗‖W ≤ a(u− u∗, w̄) , (3.9)

v̄ ∈ W : ‖v̄‖W = 1 and cb ‖p‖Q ≤ b(v̄, p) , (3.10)

q̄ ∈ Q : ‖q̄‖Q = 1 and cb ‖u∗‖W ≤ b(u, q̄) . (3.11)
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Now, we define the test function (ŵ, q̂) ∈ W ×Q by (ŵ, q̂) :=
(

1
δ v̄ +

1
2 w̄,

1
4 q̄

)

, where
δ is a positive constant to be determined momentarily. It follows from definition (3.1)
that

‖(u, p)‖W×Q ≤ ‖u− u∗‖W + ‖u∗‖W + ‖p‖Q

≤ 1

ca
a(u− u∗, w̄) +

1

cb
b(u, q̄) +

1

cb
b(v̄, p)

=
2

ca
a(u,

1

2
w̄) +

4

cb
b(u,

1

4
q̄) +

δ

cb
b(
1

δ
v̄, p)− 1

ca
a(u∗, w̄)

=
2

ca
a(u, ŵ) +

4

cb
b(u, q̂) +

δ

cb
b(ŵ, p)− 1

ca
a(u∗, w̄)− 2

δ ca
a(u, v̄) ,

(3.12)

where we used b(12 w̄, p) = 0 since w̄ ∈ N .
We must estimate the last two terms on the right-hand side of inequality (3.12).

First, by definition of ‖a‖ in (3.4), inequality (3.11), and ‖w̄‖W = 1, it follows,

1

ca
a(u∗, w̄) ≤ ‖a‖

ca
‖u∗‖W ‖w̄‖W

≤ ‖a‖
ca cb

b(u, q̄)

=
4‖a‖
ca cb

b(u, q̂) .

Similarly, it holds

2

δ ca
a(u, v̄) ≤ 2 ‖a‖

δ ca
‖u‖W‖v̄‖W

=
2 ‖a‖
δ ca

‖u‖W .

Plugging these two results into (3.12), we find

(1 − 2 ‖a‖
δ ca

) ‖u‖W + ‖p‖Q ≤ 2

ca
a(u, ŵ) +

4

cb
(1 +

‖a‖
ca

) b(u, q̂) +
δ

cb
b(ŵ, p) .

Setting δ := 4 ‖a‖
ca

above and upon defining M := 2 max
{

1
ca
, 2
cb
(1 + ‖a‖

ca
)
}

, it follows

1

2
‖(u, p)‖W×Q ≤ MB(u, p; ŵ, q̂).

Finally, since ca
‖a‖ ≤ 1, the test function (ŵ, q̂) satisfies

‖(ŵ, q̂)‖W×Q ≤ ca
4 ‖a‖ ‖v̄‖W +

1

2
‖w̄‖W +

1

4
‖q̄‖Q

≤ 1 ,

and we have thereby verified the inf-sup condition (3.2) with β = 1

4 max
{

1

ca
, 2

cb
(1+ ‖a‖

ca
)
} .

Next, we prove (3.3). Suppose,

B(w, q;u, p) = 0, for all (w, q) ∈ W ×Q. (3.13)
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If we set w = 0 in (3.13) it holds that b(u, q) = 0, for all q ∈ Q, so we conclude u ∈ N .
But then by (3.13) it follows that a(u,w) = 0, for all w ∈ N , so that according to
(3.6), u = 0. Finally, by (3.13), b(w, p) = 0, for all w ∈ W , so that we conclude by
(3.7) that p = 0. We have therefore verified condition (3.3).

3.2. Wellposedness of the MHM method. First, we express (1.9)-(1.10)
such that it fits in the abstract form (3.1). To this end, we define the bilinear forms
a : Λ× Λ → R and b : Λ× V → R by

a(λ, µ) := (µn, JT λK)Eh
, b(λ, v) := (λn, JvK)Eh

,

and, thereby, problem (1.9)-(1.10) reads: Find (λ, u0) ∈ Λ× V0 such that

B(λ, u0;µ, v0) = F (µ, v0), for all (µ, v0) ∈ Λ× V0 , (3.14)

where

B(λ, u0;µ, v0) := a(λ, µ) + b(µ, u0) + b(λ, v0) ,

F (µ, v0) := (f, v0)Th
− (µn, JT̂ fK)Eh

+ (µ, gD)ED .

The MHM method (2.3)-(2.4) is written similarly: Find (λh, u
h
0) ∈ Λh × V0 such that

B(λh, u
h
0 ;µh, v0) = F (µh, v0), for all (µh, v0) ∈ Λh × V0 . (3.15)

In order to introduce a norm on Λ× V0, we first define a norm on H(div; Ω) and
a norm on V , respectively, as follows

‖σ‖2div :=
∑

K∈Th

(

‖σ‖20,K + d2Ω ‖∇·σ‖20,K
)

, (3.16)

‖v‖2V :=
∑

K∈Th

(

d−2
Ω ‖v‖20,K + ‖∇v‖20,K

)

, (3.17)

where dΩ is the diameter of Ω. Next, we define the quotient norm on Λ,

‖µ‖Λ := inf
σ∈H(div;Ω)

σ·n=µ on ∂K,K∈Th

‖σ‖div. (3.18)

Interestingly, from definition of norms (3.17) and (3.18) the following equivalence
holds (see Lemma 8.3 in the appendix): Given µ ∈ Λ,

√
2

2
‖µ‖Λ ≤ sup

v∈V

b(µ, v)

‖v‖V
≤ ‖µ‖Λ , (3.19)

which has the immediate consequence that b(., .) is a bounded bilinear form, as is
a(., .) since by definition a(λ, µ) = b(µ, T λ). Finally, using (3.17) and (3.18), we
equip the space Λ× V0 with the following norm of Λ× V

‖(µ, v0)‖Λ×V := ‖µ‖Λ + ‖v0‖V . (3.20)

In the sequel, we will make use of the following tensor norm on K

‖K‖2 := max
|ξ|=1

‖K(x) ξ‖0,Ω
|Ω|1/2 , ξ ∈ R

d ,
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where ‖.‖0,Ω reads the L2 norm over Ω. By the properties (1.3), the tensor K is
invertible at each point x (its inverse tensor denoted by K−1) and it holds

cmin ≤ ‖K‖2 ≤ cmax . (3.21)

We shall also make extensive use of the following value

κ :=
cmax

cmin
, (3.22)

and note that if the entries of K are constant functions, then κ is simply the condition
number of K. We are ready to present the wellposedness result.

Theorem 3.2. Suppose Λl is an arbitrary subspace of Λ. Then, given (λ, u0), (µ, v0) ∈
Λl × V0, it holds

B(λ, u0;µ, v0) ≤ C̄ ‖(λ, u0)‖Λ×V ‖(µ, v0)‖Λ×V , (3.23)

where C̄ = max{2 κ
cmin

, 1}. Moreover, under the assumption Λ0 ⊆ Λl, it follows

sup
(µ,v0)∈Λl×V0

B(λ, u0;µ, v0)

‖(µ, v0)‖Λ×V
≥ β ‖(λ, u0)‖Λ×V , for all (λ, u0) ∈ Λl × V0 , (3.24)

where β = 1
4max{cmax,C (1+2 κ2)} , and C is a positive constant independent of h and K,

and

B(λ, u0; µ, v0) = 0, for all (λ, u0) ∈ Λl × V0 =⇒ Λl × V0 ∋ (µ, v0) = 0 . (3.25)

Hence, problems (3.14) and (3.15) are well posed.
Proof. First, we prove (3.23). Since by definition a(λ, µ) = b(µ, Tλ), it follows by

the equivalence result (3.19), Lemmas 8.3 and 8.1 in the appendix, and definition of
norm (3.20) that

B(λ, u0;µ, v0) = b(µ, T λ+ u0) + b(λ, v0)

≤ sup
w∈V

b(µ,w)

‖w‖V
‖T λ+ u0‖V + sup

w∈V

b(λ,w)

‖w‖V
‖v0‖V

≤ ‖µ‖Λ(‖T λ‖V + ‖u0‖V ) + ‖λ‖Λ‖v0‖V
≤ 2

κ

cmin
‖µ‖Λ‖λ‖Λ + ‖µ‖Λ‖u0‖V + ‖λ‖Λ‖v0‖V ,

and result (3.23) follows immediately. Observe that in the process of proving (3.23),
we have also established a(λ, µ) ≤ 2 κ

cmin

‖λ‖Λ‖µ‖Λ, so that we conclude from (3.4),

‖a‖ ≤ 2
κ

cmin
. (3.26)

To prove (3.24) and (3.25), we establish the conditions of Lemma 3.1. Define
N := {µ ∈ Λl : b(µ, v0) = 0, for all v0 ∈ V0}. It follows by the identity (1.11) that
for arbitrary µ ∈ N , ∇· (K ∇Tµ) = 0. Using (1.3), we get

−a(µ, µ) = (K−1 K∇ Tµ,K∇Tµ)Th

≥
∑

K∈Th

1

cmax
‖K∇Tµ‖20,K

=
∑

K∈Th

1

cmax

(

‖K ∇Tµ‖20,K + d2Ω‖∇· (K ∇Tµ
)

‖20,K
)

≥ 1

cmax
‖µ‖2Λ , (3.27)
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where we also used the definition (3.18) of norm ‖.‖Λ. Therefore, the operator −a(., .)
is coercive on N , which verifies (3.5) and (3.6) of Lemma 3.1.

Next, we choose arbitrary v0 ∈ V0, and let σ∗ be the function in the lowest-order
Raviart-Thomas finite element space [16] such that (∇·σ∗, v0)Th

≥ cb ‖σ∗‖div‖v0‖V ,
where cb is a positive constant independent of the functions σ∗ and v0. Defining
µ∗ := σ∗·n, it then follows by indentities (1.11) and the definition of the norm (3.18)
that b(µ∗, v0) ≥ cb ‖µ∗‖Λ‖v0‖V . Having verified all conditions of Lemma 3.1 with
ca = 1

cmax

and cb, noting (3.26), the inf-sup constant β is

β =
1

4max{cmax, 2 cb(1 + 2 κ2)} ,

where we note that cb is independent of h and K.

3.3. Best approximation estimates. Standard theory implies the MHM me-
thod (3.15) is strongly consistent and provides a best approximation result, as pointed
out in the next lemma. Interestingly, the result shows that the quality of approxima-
tion depends only on the space Λh.

Lemma 3.3. Let (λ, u0) ∈ Λ × V0 and (λh, u
h
0 ) ∈ Λh × V0 be the solutions of

(3.14) and (3.15), respectively. Under the assumptions of Theorem 3.2, the following
results hold:

B(λ − λh, u0 − uh
0 ;µh, v0) = 0, for all (µh, v0) ∈ Λh × V0 , (3.28)

and

‖(λ− λh, u0 − uh
0 )‖Λ×V ≤ C̄

β
inf

µh∈Λh

‖λ− µh‖Λ , (3.29)

where C̄ and β are the continuity and the inf-sup constants from Lemma 3.2, respec-
tively.

Proof. The first result follows directly from the definition of problems (3.14) and
(3.15). As for (3.29), Cèa’s Lemma [19] implies

‖(λ− λh, u0 − uh
0)‖Λ×V ≤ C̄

β
inf

(µh,v0)∈Λh×V0

‖(λ− µh, u0 − v0)‖Λ×V ,

so that the result follows by observing u0 is best approximated in V0 by taking v0 = u0.

As a result of the consistency of the MHM method, its solution fulfills the local
divergence constraint exactly, as shown in the next result. Hereafter, we shall make
use of the following characterizations of the exact and numerical solutions u and uh

u = u0 + T λ+ T̂ f and uh = uh
0 + T λh + T̂ f ,

where (λ, u0) ∈ Λ× V0 and (λh, u
h
0 ) ∈ Λh × V0 are the solutions of (3.14) and (3.15),

respectively.
Corollary 3.4. Let (λ, u0) ∈ Λ× V0 and (λh, u

h
0 ) ∈ Λh × V0 be the solutions of

(3.14) and (3.15), respectively. The following result holds

∇· (K∇uh) = ∇· (K∇u) in Ω . (3.30)
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Proof. Given v0 ∈ V0 and K ∈ Th, we select (µ, v0) = (0, v0 |K) in (3.14) and
(3.15). Then, from identities (1.11) the continuous and the discrete solution u and
uh, respectively, satisfy

∫

K

∇· (K∇uh) v0 = −
∫

∂K

λh n·nK v0

= −
∫

K

f v0

=

∫

K

∇· (K∇u) v0

and the result follows by observing that ∇· (K∇(u − uh)) |K ∈ R for all K ∈ Th.
Remark 1. If the contribution T̂ f , which is present in uh, is not exactly available

(and must be computed from a two-level method) then result (3.30) must be weakened
to

ΠK∇· (K∇uh) = ΠK∇· (K∇u), for all K ∈ Th , (3.31)

where ΠK is the local L2 projection onto the constant space, i.e, ΠK v := 1
|K|

∫

K v.
�

From Lemma 3.3, we next provide estimates in natural norms. Some results
make use of the assumption that problem (1.1)-(1.2) has smoothing properties (see
[9, Definition 3.14] for details).

Lemma 3.5. Let (λ, u0) ∈ Λ × V0 and (λh, u
h
0 ) ∈ Λh × V0 be the solutions of

(3.14) and (3.15), respectively. Then, it holds

‖u0 − uh
0‖0,Ω ≤ C̄ dΩ

β
inf

µh∈Λh

‖λ− µh‖Λ , (3.32)

‖K∇(u− uh)‖div ≤
√
2 κ

C̄

β
inf

µh∈Λh

‖λ− µh‖Λ , (3.33)

‖u− uh‖0,Ω ≤
(

1 +
2 κ

cmin

) C̄ dΩ
β

inf
µh∈Λh

‖λ− µh‖Λ , (3.34)

where C̄ and β are the continuity and the inf-sup constants from Lemma 3.2, re-
spectively. Furthermore, if problem (1.1)-(1.2) has smoothing properties, there exist
positive constants C, independent of h and K, such that

‖u− uh‖0,Ω ≤ C
C̄2

β cmin
h inf

µh∈Λh

‖λ− µh‖Λ , (3.35)

‖u0 − uh
0‖0,Ω ≤ C

C̄
(

C̄ + κ
)

β cmin
h inf

µh∈Λh

‖λ− µh‖Λ . (3.36)

Proof. Result (3.32) follows directly from the best approximation result of Lemma
3.3. Next, note that

u− uh = (u0 + T λ+ T̂ f)− (uh
0 + T λh + T̂ f)

= (u0 − uh
0) + T (λ− λh) . (3.37)
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Therefore, Lemma 8.1 implies ‖K∇(u − uh)‖div ≤
√
2κ ‖λ − λh‖Λ, so that result

(3.33) follows from Lemma 3.3. From (3.37) and Lemma 8.1, we observe

‖u− uh‖Ω ≤ ‖u0 − uh
0‖0,Ω + dΩ ‖T (λ− λh)‖V

≤ ‖u0 − uh
0‖0,Ω +

2 dΩ κ

cmin
‖λ− λh‖Λ ,

and estimate (3.34) results from (3.33) and Lemma 3.3.
To prove result (3.35), we employ a duality argument. Define e := u − uh and

suppose that (γ, w0) ∈ Λ× V0 satisfies

B(µ, v0; γ, w0) = (T µ+ v0, e)Th
, for all (µ, v0) ∈ Λ× V0. (3.38)

The problem of finding such a (γ, w0) is the adjoint to problem (3.14) with homogenous
Dirichlet boundary condition prescribed on ∂Ω, and the right-hand side rewritten us-
ing identities (1.11). Furthermore, define (γ0, w

h
0 ) ∈ Λ0×V0 by the finite-dimensional

adjoint problem

B(µ0, v0; γ0, w
h
0 ) = (T µ0 + v0, e)Th

, for all (µ0, v0) ∈ Λ0 × V0. (3.39)

Both (3.38) and (3.39) have unique solutions by Theorem 3.2 and the symmetry of the
problem statements. Under the assumption that problem (1.1)-(1.2) has smoothing
properties, we observe that the solution w := w0 + T γ + T̂ e has extra regularity
since f = e ∈ L2(Ω), and there is a positive constant C (depending only on Ω) such
that ‖w‖2,Ω ≤ C

cmin

‖e‖0,Ω. From this, Lemma 3.3, and the interpolation estimate (a
particular case of result (4.2))

inf
µ0∈Λ0

‖γ − µ0‖Λ ≤ C h ‖w‖2,Ω ,

where C is a positive constant independent of h and K, we get

‖(γ − γ0, w0 − wh
0 )‖Λ×V ≤ C h‖w‖2,Ω

≤ C

cmin
h ‖e‖0,Ω .

Therefore, by definition (3.38) of (γ, w0), the consistency result of Lemma 3.3, the
continuity result of Theorem 3.2, and the best approximation result of Lemma 3.3,
we find

‖e‖20,Ω = (e, e)Th

= (T (λ− λh) + (u0 − uh
0), e)Th

= B(λ− λh, u0 − uh
0 ; γ, w0)

= B(λ− λh, u0 − uh
0 ; γ − γ0, w0 − wh

0 )

≤ C̄ ‖(λ− λh, u0 − uh
0 )‖Λ×V ‖(γ − γ0, w0 − wh

0 )‖Λ×V

≤ C̄2

β

C

cmin
h inf

µh∈Λh

‖λ− µh‖Λ‖e‖0,Ω ,

which establishes (3.35). As for (3.36), using the triangle inequality, the local Poincaré
inequality (8.3) and Lemma 8.1, it holds

‖u0 − uh
0‖0,Ω ≤ ‖u− uh‖0,Ω + ‖T (λ− λh)‖0,Ω

≤ ‖u− uh‖0,Ω + C h ‖T (λ− λh)‖V

≤ ‖u− uh‖0,Ω + C
2 κ

cmin
h ‖λ− λh‖Λ ,
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and the result follows from (3.35) and Lemma 3.3.

As a corollary to the previous lemma, we can establish bounds which indicate the
impact on the best approximation results of ignoring T̂ f . This requires the projection
Π : V → V0 defined such that for v ∈ V , Π v |K = ΠK v, for all K ∈ Th.

Corollary 3.6. Let (λ, u0) ∈ Λ× V0 and (λh, u
h
0 ) ∈ Λh × V0 be the solutions of

(3.14) and (3.15), respectively. There exist C such that

‖K∇(u− T λh)‖div ≤ C
(

inf
µh∈Λh

‖λ− µh‖Λ + ‖f −Π f‖0,Ω
)

, (3.40)

‖u− (uh
0 + T λh)‖0,Ω ≤ C

(

inf
µh∈Λh

‖λ− µh‖Λ + h‖f −Π f‖0,Ω
)

. (3.41)

Moreover, if problem (1.1)-(1.2) has smoothing properties, it holds

‖u− (uh
0 + T λh)‖0,Ω ≤ C h ( inf

µh∈Λh

‖λ− µh‖Λ + ‖f −Π f‖0,Ω) . (3.42)

Proof. First, by the triangle inequality we get

‖K∇(u− T λh)‖div ≤ ‖K∇(u − uh)‖div + ‖K∇ T̂ f‖div,

so that Lemma 3.5 and Lemma 8.2 imply result (3.40). Similarly, from the local
Poincaré inequality (8.3), we see

‖u− (uh
0 + T λh)‖0,Ω ≤ ‖u− uh‖0,Ω + ‖T̂ f‖0,Ω

≤ ‖u− uh‖0,Ω + C h ‖K∇T̂ f‖V ,

from which the result (3.41) follows by result (3.34) of Lemma 3.5 and Lemma 8.2.
If problem (1.1)-(1.2) has smoothing properties, we use (3.35) of Lemma 3.5 instead,
which yields (3.42).

4. A priori error estimates. Note that the result in Lemma 3.3 holds for any
finite element space Λh under the assumption Λ0 ⊆ Λh. As such, the MHM method
(3.15) achieves optimal convergence given by the best approximation properties of
Λh. In this section, we consider the approximation properties of the subspace

Λh ≡ Λl := {µ ∈ Λ : µ |F ∈ Pl(F ), for all F ∈ Eh} , (4.1)

where l ≥ 0. Supposing 1 ≤ k ≤ l+1, we follow closely [17] (see [8] for a h−p version)
to show that, given w ∈ Hk+1(Ω), there exists C such that

inf
µl∈Λl

‖λ− µl‖Λ ≤ C hk‖w‖k+1,Ω , (4.2)

where λ = −K∇w·n. This approximation property implies the convergence rates of
the following theorem.

Theorem 4.1. Let (λ, u0) ∈ Λ × V0 and (λl, u
h
0 ) ∈ Λl × V0 be the solutions of

(3.14) and (3.15), respectively. Assume u ∈ Hk+1(Ω), where 1 ≤ k ≤ l+1, and Λl is
given in (4.1). Then, there exist positive constants C, independent of h and K, such
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that

‖(λ− λl, u0 − uh
0)‖Λ×V ≤ C

C̄

β
hk ‖u‖k+1,Ω , (4.3)

‖K∇(u− uh)‖div ≤ C κ
C̄

β
hk ‖u‖k+1,Ω , (4.4)

‖u− uh‖0,Ω ≤ C
(

1 +
κ

cmin

) C̄

β
hk ‖u‖k+1,Ω , (4.5)

‖u− uh
0‖0,Ω ≤ C

(

1 +
C̄ (C̄ + κ)

β cmin

)

h ‖u‖k+1,Ω , (4.6)

where C̄ and β are the continuity and the inf-sup constants from Lemma 3.2, re-
spectively. Moreover, if problem (1.1)-(1.2) has smoothing properties, the following
estimates hold

‖u− uh‖0,Ω ≤ C
C̄2

β cmin
hk+1 ‖u‖k+1,Ω , (4.7)

‖u0 − uh
0‖0,Ω ≤ C

C̄
(

C̄ + κ
)

β cmin
hk+1 ‖u‖k+1,Ω . (4.8)

Proof. Result (4.3) follows using estimate (4.2) in the best approximation result
of Lemma 3.3, and results (4.4)-(4.5), (4.7)-(4.8) follow using estimate (4.2) in, re-
spectively, (3.33)-(3.36) of Lemma 3.5. Finally, we arrive at estimate (4.6) using the
triangle inequality, u0 = Πu with the approximation property of Π, and (4.8) with
h ≤ dΩ, as follows

‖u− uh
0‖0,Ω ≤ ‖u− u0‖0,Ω + ‖u0 − uh

0‖0,Ω

≤ C
(

1 +
C̄
(

C̄ + κ
)

β cmin

)

h ‖u‖k+1,Ω .

As a corollary to the previous theorem, we prove the influence of ignoring T̂ f on
the best approximation results.

Corollary 4.2. Let (λ, u0) ∈ Λ × V0 and (λl, u
h
0 ) ∈ Λl × V0 be the solutions of

(3.14) and (3.15), respectively. Under the assumption of Theorem 4.1, there exist C
such that

‖K∇(u− T λl)‖div ≤ C
(

hk ‖u‖k+1,Ω + ‖f −Π f‖0,Ω
)

, (4.9)

‖u− (uh
0 + T λl)‖0,Ω ≤ C

(

hk ‖u‖k+1,Ω + h ‖f −Π f‖0,Ω
)

. (4.10)

Moreover, if problem (1.1)-(1.2) has smoothing properties, it follows that

‖u− (uh
0 + T λl)‖0,Ω ≤ C

(

hk+1 ‖u‖k+1,Ω + h ‖f −Π f‖0,Ω
)

. (4.11)

Proof. The result is a direct application of Corollary 3.6 along with (4.2).
The previous corollary indicates that, in the case of lowest-order interpolation (i.e.,
Λh ≡ Λ0), excluding T̂ f from the numerical solution does not weaken convergence
rates when f ∈ H1(Ω). Consequently, we may disregard the contribution associated
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with T̂ f in the MHM method in such cases, which brings the desirable feature of
avoiding any computation related to local problem (1.8). To see this clearly, consider
the inconsistent MHM method defined by ignoring the term −(µl n, JT̂ fK)Th

. Such a
method reads: Find (λ̄l, ū

h
0) ∈ Λl × V0 such that

B(λ̄l, ū
h
0 ;µl, v0) = (f, v0)Th

+ (µl, gD)ED , for all (µl, v0) ∈ Λl × V0 . (4.12)

The next estimates show that the induced consistency error remains smaller than the
leading error for the lowest-order interpolation.

Theorem 4.3. Let (λ, u0) ∈ Λ × V0 and (λ̄l, ū
h
0 ) ∈ Λl × V0 be the solutions of

(3.14) and (4.12), respectively. Under the assumption of Theorem 4.1, there exist C
such that

‖(λ− λ̄l, u0 − ūh
0 )‖Λ×V ≤ C

(

hk ‖u‖k+1,Ω + h ‖f −Π f‖0,Ω
)

, (4.13)

‖K∇(u− T λ̄l)‖div ≤ C
(

hk ‖u‖k+1,Ω + ‖f −Π f‖0,Ω
)

, (4.14)

‖u− (ūh
0 + T λ̄l)‖0,Ω ≤ C

(

hk ‖u‖k+1,Ω + h ‖f −Π f‖0,Ω
)

. (4.15)

Proof. Clearly, the inconsistent MHM method (4.12) is well posed. Furthermore,
since the method is defined from the consistent method (3.15) by removing the term
−(µl n, JT̂ fK)Th

= (f, T µl)Th
(see (1.11)), the first Strang lemma (e.g., [9, page 95])

implies there is a constant C such that

‖(λ− λ̄l, u0 − ūh
0)‖Λ×V ≤ C

[

inf
(µl,v0)∈Λl×V0

‖(λ− µl, u0 − v0)‖Λ×V

+ sup
(µl,v0)∈Λl×V0

|(f, T µl)Th
|

‖(µl, v0)‖Λ×V

]

≤ C

[

inf
µl∈Λl

‖λ− µl‖Λ + sup
(µl,v0)∈Λl×V0

|(f, T µl)Th
|

‖(µl, v0)‖Λ×V

]

,

where we used v0 = u0. Now, using T µl |K ∈ L2
0(K), the Cauchy-Schwarz inequality,

the local Poincaré inequality (8.3), and Lemma 8.1, it follows

|(f, T µl)Th
| = |

∑

K∈Th

(f −Π f, T µl)Th
|

≤ ‖f −Π f‖0,Ω‖T µl‖0,Ω
≤ C h ‖f −Π f‖0,Ω‖T µl‖V
≤ C h ‖f −Π f‖0,Ω‖µl‖Λ ,

and we find result (4.13) from (4.2). From Lemmas 8.1 and 8.2, we get

‖K∇(u− T λ̄l)‖div ≤ ‖K∇T (λ− λ̄l)‖div + ‖K∇T̂ f‖div
≤ C(‖λ− λ̄l‖Λ + ‖f −Π f‖0,Ω),

and result (4.14) follows using (4.13). As for result (4.15), we make use of triangle
inequality and Lemmas 8.1 and 8.2, to obtain

‖u− (ūh
0 − T λ̄l)‖0,Ω ≤ ‖u0 − ūh

0‖0,Ω + ‖T (λ − λ̄l)‖0,Ω
≤ ‖u0 − ūh

0‖0,Ω + C ‖T (λ− λ̄l)‖V
≤ ‖u0 − ūh

0‖0,Ω + C ‖λ− λ̄l‖Λ ,
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and result follows from (4.13).

5. A posteriori error estimates. Recalling that uh = uh
0 + T λh + T̂ f , let us

define the residual on faces as follows

RF :=











− 1
2JuhK, F ∈ E0 ,

(gD − uh)n, F ∈ ED ,

0, F ∈ EN ,

(5.1)

where we assume (for simplicity) that gD ∈ H
1/2
00 (Eh) ∩ Mh. Here Mh ⊂ H1/2(Eh)

corresponds to the finite dimensional space of trace of functions in V0 ⊕ span{Tφh :
φh a basis for Λh} ⊕ span{T̂ f} on the skeleton

⋃

K∈Th
∂K. Also, set

ηF :=
cl cmin

h
1/2
F

‖RF ‖0,F , (5.2)

where cmin is defined in (1.3) and cl is a positive constant depending on l, but inde-
pendent of K and h, left to be fixed in the next section. The error estimator is given
by

η :=
[

∑

K∈Th

η2K

]1/2

, (5.3)

with

η2K :=
∑

F⊂∂K

η2F .

Before heading to the main result of this section, we sharpen a result provided
in [12]. To this end, we equip the local space H1/2(∂K) with the following local
boundary norm: given w ∈ H1/2(∂K), we define

|||w|||1/2,∂K := inf
v∈V

v=w on ∂K,K∈Th

(

h−2
K ‖v‖20,K + ‖∇v‖20,K

)1/2

, (5.4)

and the corresponding dual norm in H−1/2(∂K)

|||µ|||−1/2,∂K := sup
w∈H1/2(∂K)

(µ,w)∂K
|||w|||1/2,∂K

. (5.5)

Lemma 5.1. Given σ ∈ H(div;K) for K ∈ Th, the following trace inequality
holds,

|||σ·nK |||2−1/2,∂K ≤ ‖σ‖20,K + h2
K‖∇·σ‖20,K . (5.6)

Proof. Suppose K ∈ Th and choose arbitrary σ ∈ H(div;K) and w ∈ H1/2(∂K).
Then, given any v ∈ H1(K) such that v|∂K = w, it follows by Green’s Theorem and
the Cauchy-Schwarz inequality,

(σ·nK , w)∂K = (σ,∇v)K + (∇·σ, v)K

≤ ‖σ‖0,K‖∇v‖0,K + hK ‖∇·σ‖0,K
1

hK
‖v‖0,K

≤ (‖σ‖20,K + h2
K‖∇·σ‖20,K)1/2(h−2

K ‖v‖20,K + ‖∇v‖20,K)1/2 .
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Since this holds for all v ∈ H1(K) such that v |∂K = w, it follows

(σ·nK , w)∂K ≤ (‖σ‖20,K + h2
K‖∇·σ‖20,K)1/2|||w|||1/2,∂K .

Next, dividing through by |||w|||1/2,∂K , the result (5.6) follows since this last inequality

holds for all w ∈ H1/2(∂K).

We also require the following technical result.

Lemma 5.2. Given K ∈ Th, let Mh |∂K be the restriction to ∂K of functions
belonging to Mh. We define the projection operator Π∂K : H−1/2(∂K) → Mh |∂K by

(Π∂K µ,mh)∂K = (µ,mh)∂K , for all mh ∈ Mh |∂K . (5.7)

Therefore, there exists a positive constant C, independent of h and K, such that

‖Π∂K µ‖0,∂K ≤ C h
−1/2
K |||µ|||−1/2,∂K . (5.8)

Proof. First, we observe that Mh |∂K ⊂ H−1/2(∂K) (and also of L2(∂K)) from
classical Sobolev embedding theorems [13, page 87]. Next, from (5.7) with mh =
Π∂K µ, using the norm ||| · |||−1/2,∂K given in (5.5), and a standard scaling argument
(see also [12, page 494]), there exists a positive constant C, independent of h and K,
such that

‖Π∂K µ‖20,∂K ≤ |||µ|||−1/2,∂K |||Π∂K µ|||1/2,∂K
≤ C h

−1/2
K |||µ|||−1/2,∂K‖Π∂K µ‖0,∂K .

Dividing both sides by ‖Π∂K µ‖0,∂K yields (5.8).

Hereafter, we shall make use of the following norm on H(div; Ω)

‖σ‖2div,h :=
∑

K∈Th

(

‖σ‖20,K + h2
K ‖∇ · σ‖20,K

)

, (5.9)

and, also, of the following locally-defined norm: Given F ∈ Eh, we set

‖v‖2V,ωF
:=

∑

K∈ωF

(

h−2
K ‖v‖20,K + ‖∇v‖20,K

)

,

where ωF is either the set of (two) elements K, K ′ ∈ Th such that K ∩K ′ = {F} if
F ∈ E0, or corresponds to K if F ⊂ ∂K ∩ Eh/E0. We are ready to establish the a
posteriori error estimate, showing the reliability and efficiency of the error estimator.

Theorem 5.3. Let η be defined in (5.3), and assume u ∈ V and K∇u ∈
H(div; Ω). There exist positive constants C, independent of h and K, such that

‖K∇(u− uh)‖div,h + cmin ‖u− uh‖V ≤ C
max {cmin, κ}

β cmin cl
η , (5.10)

where β is the inf-sup constant in Lemma 3.2. Moreover, given F ∈ Eh, it holds

ηF ≤ C cmin ‖u− uh‖V,ωF . (5.11)
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Proof. We establish the result (5.10) first. From (3.14) and (3.15), we find for
each (µ, v0) ∈ Λ× V0,

B(λ− λh, u0 − uh
0 ;µ, v0) = B(λ − λh, u0 − uh

0 ;µ, 0)

= (µn, Ju− uhK)Eh
(5.12)

=
∑

K∈Th

(µn·nK ,−uh)∂K + (µ, gD)ED

=
∑

K∈Th

(Π∂K µn·nK ,−uh)∂K +
∑

F∈ED

(Π∂K µ, gD)F

=
∑

K∈Th

∑

F⊂∂K

(Π∂K µn, RF )F , (5.13)

where we used definition (5.1), the fact that uh |∂K ∈ Mh |∂K , and the extension of
gD|F by zero to ∂K when F ⊂ ∂K also belongs to Mh |∂K . Next, from Lemma 5.1
and Lemma 8.1 (with K taken as the identity matrix) we conclude the existence of a
function σ∗ ∈ H(div; Ω) with the property σ∗·n = µ, and ‖σ∗‖div ≤

√
2 ‖µ‖Λ. As

such, from the Cauchy-Schwarz inequality, Lemma 5.2 and Lemma 5.1, mesh regu-
larity, the definition of norms in (5.9) and (3.16), and the Cauchy-Schwarz inequality
again, it holds

∑

K∈Th

∑

F⊂∂K

(Π∂K µn, RF )F ≤
∑

K∈Th

∑

F⊂∂K

‖Π∂K µ‖0,F‖RF ‖0,F

≤ C
∑

K∈Th

h
−1/2
K |||µ|||−1/2,∂K(

∑

F⊂∂K

‖RF ‖20,F )1/2

≤ C ‖σ∗‖div,h
(

∑

K∈Th

∑

F⊂∂K

h−1
F ‖RF‖20,F

)
1

2

≤ C ‖σ∗‖div
(

∑

K∈Th

∑

F⊂∂K

h−1
F ‖RF ‖20,F

)
1

2

≤ C
√
2

cl cmin
‖µ‖Λ η ,

where C is a positive constant independent of h and K. Inserting this into (5.13), it
then follows by Theorem 3.2 and definition (3.20) of ‖(., .)‖Λ×V that

‖(λ− λh, u0 − uh
0)‖Λ×V ≤ 1

β
sup

(µ,v0)∈Λ×V0

B(λ− λh, u0 − uh
0 ;µ, v0)

‖(µ, v0)‖Λ×V

≤ C
√
2

β cmin cl
η . (5.14)

Next, since u−uh = T (λ−λh)+u0−uh
0 , Lemma 8.1 and definition (3.20) of ‖(., .)‖Λ×V

imply

‖K∇(u− uh)‖div,h ≤ ‖K∇(u− uh)‖div
= ‖K∇T (λ− λh)‖div
≤

√
2 κ ‖λ− λh‖Λ

≤
√
2 κ ‖(λ− λh, u0 − uh

0)‖Λ×V
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and

‖u− uh‖V ≤ ‖u0 − uh
0‖V + ‖T (λ− λh)‖V

≤ ‖u0 − uh
0‖V +

2 κ

cmin
‖λ− λh‖Λ

≤ 2

cmin
max {cmin, κ} ‖(λ− λh, u0 − uh

0)‖Λ×V .

Therefore, summing up both previous estimates we get

‖K∇(u − uh)‖div,h + cmin‖u− uh‖V ≤ 2 max {cmin, κ} ‖(λ− λh, u0 − uh
0 )‖Λ×V

≤ C
max {cmin, κ}

β cmin cl
η ,

and result (5.10) follows. Now, we turn to proving (5.11). Given a face F ∈ Eh, let
µ∗ ∈ Λ be defined such that µ∗n|F = RF and µ∗n|F ′ = 0 for Eh ∋ F ′ 6= F . It follows
by (5.12) and RF ∈ [L2(F )]d (with its usual meaning) that

‖RF‖20,F = (RF , Ju− uhK)F

≤ ‖RF‖0,F ‖Ju− uhK‖0,F ,

and thus, the local trace inequality (8.4) and mesh regularity imply

‖RF ‖0,F ≤ ‖Ju− uhK‖0,F

≤ C
∑

K∈ωF

[

h−1
K ‖u− uh‖20,K + hK‖∇ (u− uh)‖20,K

]1/2

≤ C h
1/2
F

∑

K∈ωF

[

h−2
K ‖u− uh‖20,K + ‖∇(u− uh)‖20,K

]1/2

= C h
1/2
F ‖u− uh‖V,ωF ,

and multiplying both sides by cl cmin the result (5.11) follows from the definition of
ηF in (5.2).

Next, we show that a stronger control on the L2-norm holds if we assume extra
regularity.

Corollary 5.4. Let η be defined in (5.3) and suppose problem (1.1)-(1.2) has
smoothing properties. Also, assume that conditions of Theorem 5.3 hold. Then, there
exists a positive constant C, independent of h and K, such that

‖K∇(u− uh)‖div,h + cmin

(

h−1‖u− uh‖0,Ω + ‖∇(u− uh)‖0,Ω
)

≤ C
max {cmin, κ}+ C̄2

β cmin

β cmin cl
η ,

where β and C̄ are the inf-sup and the continuity constant in Lemma 3.2, respectively.
Proof. Using (3.35) of Lemma 3.5 and (5.14), we establish that

h−1‖u− uh‖0,Ω ≤ C
C̄2

β cmin
‖λ− λh‖Λ

≤ C
C̄2

β2 c2min cl
η ,



20 R. Araya, C. Harder, D. Paredes and F. Valentin

where C is a positive constant independent of h and K, and the result follows from
Theorem 5.3.

We close this section with some important comments. First, if f is assumed
piecewise constant in each K ∈ Th, then the estimator ηF is driven by the simplified
face-residual terms

RF :=











− 1
2 Juh

0 + T λhK, F ∈ E0 ,
(gD − uh

0 − T λh)n, F ∈ ED ,

0, F ∈ EN ,

(5.15)

as T̂ f vanishes according to (1.8). More generally, from the trace inequality (8.4) we
have

‖T̂ f‖0,F ≤ C
[ 1

hK
‖T̂ f‖20,K + hK‖∇T̂ f‖20,K

]1/2

and, since T̂ f ∈ L2
0(K), the Poincaré and trace inequalities (8.3) and (8.4), respec-

tively, imply

‖JT̂ fK‖0,F ≤ C h
1/2
K ‖∇T̂ f‖0,K

≤ C h
1/2
K ‖f −ΠK f‖0,K ,

where we used Lemma 8.2. Consequently, the error is also bounded by the estimator
given in (5.15) added to

[

∑

K∈Th

hK‖f −ΠK f‖20,K
]1/2

,

which corresponds to a higher-order term if f is regular and l is low. Finally, if u ∈
Hk+1(Ω) with 1 ≤ k ≤ l+ 1, and l ≥ 0 is the degree of the polynomial interpolation,
then the estimator η satisfies the following estimate

η ≤ C hk |u|k+1,Ω .

6. Numerical results. As the a priori estimates have already been verified in
[10], this section is dedicated to the validation of the a posteriori error estimates. We
present three illuminating numerical experiments computed using the triangle soft-
ware [18] to perform mesh adaptations. In all cases, the domain is a unit square which
is decomposed into triangles. The first numerical test aims at validating theoretical
results, while the second and third ones deal with the capacity of the MHM method
and the a posteriori estimator to handle problems with singularities. One of these has
a jumping coefficient, while the other is the quarter five-spot problem. The latter,
in spite of lying outside the scope of current theoretical framework, is investigated
as a way to demonstrate the robustness of the MHM method and its associated a
posteriori estimator.

6.1. An analytical solution. This numerical test assesses the theoretical as-
pects of the method presented in the previous sections. We consider an analytical
solution u(x, y) = cos(2 π x) cos(2 π y) and prescribe the corresponding boundary con-
ditions and right-hand side. To study the reliability and efficiency of the estimator
(5.3), consider the following index of effectivity

Ef :=
η

|u− uh|E
,
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where the corresponding values of cl are 3, 7, 18, 50, for l = 0, 1, 2, 3 respectively, and

|u− uh|E := ‖K∇(u − uh)‖div,h + cmin

(

h−1‖u− uh‖0,Ω + ‖∇(u− uh)‖0,Ω
)

.

First, we set K = I, where I is the identity matrix, and illustrate the results in
Tables 6.1 and 6.2 and in Figures 6.1 and 6.3, with l = 0 and l = 3, on a sequence
of structured triangular meshes. We also vary K = α I with α ∈ R ranging from
10−6 to 106, and we investigate the index of effectivity with respect to the value of
K (see Figures 6.2 and 6.4). We observe that the results match perfectly with the
theoretical order of convergence (linear when l = 0 and fourth order for l = 3) and we
verify that the index of effectivity stays close to one and independent of h and K in
all cases. Analogous results also arise using l = 1 and l = 2 by modifying the values
of cl accordingly.

Table 6.1

Convergence history for K = I and l = 0.

h |u− uh|E η Ef

0.2500000 6.286 4.398 0.709
0.1250000 2.410 2.157 0.896
0.0625000 1.078 1.071 0.994
0.0312500 0.520 0.535 1.027
0.0156250 0.258 0.267 1.036
0.0078125 0.129 0.134 1.039
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h
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Fig. 6.1. Convergence curves with K = I. Here l = 0.
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Fig. 6.2. The index of effectivity shows independence with respect to K = α I (on the finest
mesh). Here l = 0.
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Fig. 6.3. Convergence curves with K = I. Here l = 3.
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Table 6.2

Convergence history for K = I and l = 3.

h |u− uh|E η Ef

0.2500000 2.595× 10−2 2.637× 10−2 1.016
0.1250000 1.600× 10−3 1.605× 10−3 1.003
0.0625000 9.986× 10−5 9.941× 10−5 0.995
0.0312500 6.240× 10−6 6.198× 10−6 0.993
0.0156250 3.900× 10−7 3.872× 10−7 0.993
0.0078125 2.437× 10−8 2.419× 10−8 0.993
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Fig. 6.4. The index of effectivity shows independence with respect to K = α I (on the finest
mesh). Here l = 3.

6.2. A discontinuous coefficient case. We now consider performance of the
MHM method and the a posteriori estimator (5.3) in the presence of discontinuous
coefficients. We let K = 10−6 I in a square of area 0.25 centered at the barycenter
of the unit-square domain, and take K = I elsewhere. Dirichlet conditions of u = 1
and u = 0 are used on left and right-hand sides of the square, respectively, with
homogeneous Neumann conditions on the top and bottom. It is worth of mentioning
that the performance on this test motivates the use of the MHMmethod in oil recovery
applications where different permeabilities are present. Figure 6.5 presents the initial
mesh and the final adapted mesh obtained using l = 2 on the faces. We see that the
mesh has been adapted to capture the singularities at the corners of the square area
having K = 10−6 I.
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Fig. 6.5. The initial mesh (4 elements) and the final adapted mesh (848 elements) with l = 2.

Fig. 6.6. Surface of the absolute value of the flux, |σh|, with l = 2.
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Observe also that the estimator has led faces to be aligned with this square area,
thereby allowing accurate approximation of the flux (σh := −K∇uh) between the
regions with different K. In fact, consider Figure 6.6, which shows the absolute value
of the flux variable. We see very good approximation, with great performance across
the interface between the regions with different coefficients.

6.3. The five-spot problem. The quarter five-spot problem is of practical
importance in oil recovery and serves as one of the main benchmarks to validate the
stability and accuracy of numerical methods for the Darcy model. This problem is now
addressed considering K = I in a unit square domain, with injection and production
wells modeled by Dirac deltas. Figures 6.7 and 6.8 present the initial and the final
adapted meshes adopting l = 0 and l = 2 on faces.

Fig. 6.7. The initial mesh (2 elements) and the final adapted mesh (356 elements) with l = 0.

Fig. 6.8. The initial mesh (2 elements) and the final adapted mesh (184 elements) with l = 2.
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As expected, mesh refinement is concentrated around wells, and we see that the
use of higher-order approximation on faces (l = 2) lowers the number of elements
required to achieve the same precision when compared to the case l = 0.

Fig. 6.9. Surfaces of uh (left) and the absolute value of |σh| (right) on the final adapted mesh.
Here l = 0.

Fig. 6.10. Surfaces of uh (left) and the absolute value of |σh| (right) on the final adapted mesh.
Here l = 2.

This is illustrated in Figures 6.9 and 6.10, in which we show surfaces of the primal
and dual variables, i.e. uh and σh, respectively, on these adapted meshes. Overall, the
results show that the MHM method and its associated error estimator deal perfectly
with problems which lie outside the theory in which they were developed.

7. Conclusion. The MHM method, first presented in [10] as a consequence of
a hybridization procedure, emerges as a method that naturally incorporates multiple
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scales while providing solutions with high-order precision in the H1(Ω) and H(div; Ω)
spaces for the primal and dual (or flux) variables, respectively. The analysis results
in a priori estimates showing optimal convergence in natural norms and provides a
face-based a posteriori estimator. Regarding the latter, we prove that reliability and
efficiency hold with respect to natural norms. Although the computation of local
problems is embedded in the upscaling procedure, they are completely independent
and thus may be obtained using parallel computation facilities. Also interesting is
that the flux variable preserves the local conservation property using a simple post-
processing of the primal variable. Overall, the aforementioned features stem from
a new family of inf-sup stable pairs of approximation spaces based on the simplest
space (i.e., piecewise constant functions) and face-based interpolations. Numerical
tests have assessed the theoretical results, showing in particular the great performance
of the proposed a posteriori estimator. Thereby, we conclude that the MHM method,
which is naturally shaped to be used in parallel computing environments, appears to
be a highly competitive option to handle realistic multiscale boundary value problems
with precision on coarse meshes.

8. Appendix. Throughout this work, we require the notion of the following
broken Sobolev spaces:

Hm(Th) :=
{

v ∈ L2(Ω) : v|K ∈ Hm(K), K ∈ Th
}

,

H
1

2 (Eh) :=
{

µ ∈ ΠK∈Th
H

1

2 (∂K) : ∃ v ∈ H1(Ω) s.t. µ|∂K = v|∂K , K ∈ Th
}

,

H− 1

2 (Eh) :=
{

µ ∈ ΠK∈Th
H− 1

2 (∂K) : ∃σ ∈ H(div; Ω) s.t. µ|∂K = σ·n|∂K , K ∈ Th
}

,

H
1

2

00(Eh) := ΠF∈Eh
H

1

2

00(F ) ,

where we identify H
1

2 (∂K) by

H
1

2 (∂K) :=
{

µ ∈ L2(∂K) : ∃ v ∈ H1(K) s.t. µ = v|∂K , K ∈ Th
}

,

and H− 1

2 (∂K) its dual space. Also, we denote by H
1

2

00(F ) the functions in H
1

2 (F )
(with the usual definition) for which its extension by zero to ∂K belongs to H1/2(∂K).

We recall (c.f. [13, page 99]) that the dual space of H
1

2

00(F ) corresponds to H− 1

2 (F ).
To better understand the behavior of functions in H1(Th) on Eh, we introduce

the notion of jump J · K and average value {·} (see [3]); given a function v ∈ H1(Th),
these are defined on face F = ∂K1 ∩ ∂K2 ∈ E0 by

JvK|F := vK1 |F nK1

F + vK2 |F nK2

F , {v} |F :=
1

2

(

vK1 |F + vK2 |F
)

,

where vKi ∈ H1(Ki), i ∈ {1, 2}. Furthermore, we define the jump and average values

of vector-valued functions σ ∈
[

H1(Th)
]d
, respectively, by

JσK|F := σK1 |F ·nK1

F + σK2 |F ·nK2

F , {σ} |F :=
1

2

(

σK1 |F + σK2 |F
)

.

For faces F ∈ ED∪EN with incident triangleK, we define the jump of a scalar function
and average value of a vector-valued function by

JvK|F := v|KF nK
F , {σ} |F := σK |F .
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An important identity holds regarding these values,

∑

K∈Th

(

σK ·nK , vK
)

∂K
= ({σ} , JvK)Eh

+ (JσK, {v})E0
, (8.1)

where (., .)Eh
and (., .)E0

implicitly indicate summation over the respective sets Eh and
E0. Here and throughout this work, we understand (., .)∂K in the sense of a product of

duality so that given µ ∈ H− 1

2 (∂K), (µ, v)∂K makes sense for arbitrary v ∈ H
1

2 (∂K).
In the case that σ ∈ [H1(Th)]d ∩H(div; Ω), defining Λ ∋ µ := σ·n it holds from

(8.1) that

∑

K∈Th

(

µn · nK , vK
)

∂K
= (µn, JvK)Eh

. (8.2)

In the general case σ ∈ H(div; Ω), the right-hand side of the above equivalence may
lose its mathematical meaning. Nonetheless, since the right-hand side is suggestive
of the action of the left-hand side (which continues to be valid mathematically) we
adopt it as a formal notation throughout this work when σ belongs to H(div; Ω).

Also, we shall need some auxiliary results such as the optimal local Poincaré
inequality (on convex domains): For v ∈ H1(K) ∩ L2

0(K) it holds [14],

‖v‖0,K ≤ hK

π
‖∇v‖0,K , (8.3)

and the local trace inequality: Given v ∈ H1(K) there exists a C, such that

‖v‖0,∂K ≤ C

(

1

hK
‖v‖20,K + hK‖∇v‖20,K

)1/2

. (8.4)

Next, we prove some of the auxiliary results which are used in previous sections.
Lemma 8.1. Let µ ∈ Λ and suppose K ∈ [L∞(Ω)]d×d is symmetric positive

definite. Define T : Λ → V such that for each K ∈ Th, T µ |K ∈ H1(K) ∩ L2
0(K) is

the unique solution of

(K∇T µ, ∇w)K = −
(

µn·nK , w
)

∂K
, for all w ∈ H1(K) ∩ L2

0(K) .

Then, T is a bounded linear operator satisfying the following bounds:

‖K∇T µ‖div ≤
√
2 κ ‖µ‖Λ , (8.5)

‖T µ‖V ≤ 2
κ

cmin
‖µ‖Λ . (8.6)

Proof. By definition (3.16) of ‖.‖div, the fact ∇· (K∇T µ) |K ∈ R with the identi-
ties of (1.11) imply

‖K∇T µ‖2div =
∑

K∈Th

[

‖K∇T µ‖20,K + d2Ω ‖∇· (K∇T µ)‖20,K
]

≤
∑

K∈Th

[

(K∇T µ, ‖K‖2∇T µ)K + d2Ω (∇· (K∇T µ),∇· (K∇T µ))K

]

≤
∑

K∈Th

−(µn·nK , cmax T µ+ d2Ω ∇· (K∇T µ))∂K ,
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where we used (3.21). Therefore, since cmax T µ + d2Ω ∇· (K∇T µ) ∈ V , it follows by
the local Poincaré inequality (8.3) and the fact ∇· (K∇T µ)|K ∈ R,

‖K∇T µ‖2div ≤ sup
v∈V

b(µ, v)

‖v‖V

[

∑

K∈Th

(

d−2
Ω ‖cmaxT µ+ d2Ω∇· (K∇T µ)‖20,K + ‖cmax∇T µ‖20,K

)

]1/2

≤ sup
v∈V

b(µ, v)

‖v‖V

[

∑

K∈Th

(

2 d−2
Ω c2max‖T µ‖20,K + 2 d2Ω‖∇· (K∇T µ)‖20,K + c2max‖∇T µ‖20,K

)

]1/2

≤ sup
v∈V

b(µ, v)

‖v‖V

[

∑

K∈Th

(

(2 + π2) c2max

π2 c2min

‖K∇T µ‖20,K + 2 d2Ω‖∇· (K∇T µ)‖20,K
)

]1/2

.

Then, using definition of κ in (3.22), we get

‖K∇T µ‖div ≤
√
2κ sup

v∈V

b(µ, v)

‖v‖V
. (8.7)

Now, choose arbitrary v ∈ V , and suppose that σ ∈ H(div; Ω) satisfies the property
σ·nK |∂K = µn·nK for µ ∈ Λ. It follows by (8.2), Green’s Theorem, and the
Cauchy-Schwarz inequality that

∑

F∈Eh

(µn, JvK)F =
∑

K∈Th

(µn·nK , v)∂K

=
∑

K∈Th

(σ·nK , v)∂K

=
∑

K∈Th

[(∇·σ, v)K + (σ,∇v)K ]

≤
∑

K∈Th

[

dΩ ‖∇·σ‖0,K d−1
Ω ‖v‖0,K + ‖σ‖0,K‖∇v‖0,K

]

≤ ‖σ‖div‖v‖V .

Then, by definition of supremum, it follows that

sup
v∈V

b(µ, v)

‖v‖V
= sup

v∈V

(µn, JvK)Eh

‖v‖V
≤ ‖σ‖div .

Since σ was arbitrarily taken, inequality above and definition of infimum imply

sup
v∈V

b(µ, v)

‖v‖V
≤ ‖µ‖Λ , (8.8)

and result (8.5) follows immediately replacing the result above in (8.7). The bound
(8.6) follows using the Poincaré inequality (8.3) and result (8.5).

Lemma 8.2. Let q ∈ L2(Ω) and suppose K ∈ [L∞(Ω)]d×d is symmetric positive
definite. Define T̂ : L2(Ω) → V such that for each K ∈ Th, T̂ q |K ∈ H1(K) ∩ L2

0(K)
is the unique solution of

(K∇ T̂ q, ∇w)K = (q, w)K , for all w ∈ H1(K) ∩ L2
0(K) . (8.9)
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Then, T̂ is a bounded linear operator satisfying the following bounds:

‖K∇ T̂ q‖div ≤
√
2 dΩ κ ‖q −Π q‖0,Ω , (8.10)

‖T̂ q‖V ≤ 2 dΩ
κ

cmin
‖q −Π q‖0,Ω . (8.11)

Proof. First, we establish (8.10). Note that (3.21), the fact T̂ q |K ∈ L2
0(K) ∩

H1(K), and the Cauchy-Schwarz and the local Poincaré inequality (8.3), and hK ≤ dΩ
imply

‖K∇ T̂ q‖20,K ≤ ‖K‖2(K∇ T̂ q,∇ T̂ q)K

≤ cmax (q, T̂ q)K

= cmax (q −ΠK q, T̂ q)K

≤ cmax ‖q −ΠK q‖0,K‖T̂ q‖0,K
≤ κ

π
dΩ ‖q −ΠK q‖0,K‖K∇ T̂ q‖0,K .

Furthermore, it holds from (8.9) that −∇· (K∇ T̂ q) |K = q − ΠK q. Therefore, by
definition (3.16) of ‖.‖div, and observing that 1 ≤ κ, we get

‖K∇ T̂ q‖2div =
∑

K∈Th

[

‖K∇ T̂ q‖20,K + d2Ω ‖q −ΠK q‖20,K
]

≤ 2 d2Ω max

{

(κ

π

)2

, 1

}

‖q −Π q‖20,Ω ,

from which the bound (8.10) follows immediately. The bound (8.11) follows using the
local Poincaré inequality (8.3) and the result (8.10).

Lemma 8.3. Suppose µ ∈ Λ. It follows that

√
2

2
‖µ‖Λ ≤ sup

v∈V

b(µ, v)

‖v‖V
≤ ‖µ‖Λ.

Proof. Choose arbitrary µ ∈ Λ. The left-hand bound follows from equation
(8.7) (with K as the identity matrix) to establish there exists σ ∈ H(div; Ω) with

the properties that σ·n|∂K = µ|∂K and
√
2
2 ‖σ‖div ≤ supv∈V

b(µ,v)
‖v‖V

. The right-hand

bound is equation (8.8) in the proof of Lemma 8.1.
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