
UNIVERSIDAD DE CONCEPCIÓN
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SUMMARY

Sound propagation in moving media can be described by Galbrun equation for the oscillating component of
the fluid displacement. A displacement based finite element formulation using standard Lagrangian elements
produces spurious modes. Investigations in literature (e.g., IJNME 63, 974-987, 2005) have shown that Mini
elements and Taylor-Hood elements suppress the effect of spurious modes. Herein, the quadratic eigenvalue
problem for the mixed formulation in 2D using Mini and Taylor-Hood elements is solved. Solution confirms
former results such that both element types are suitable forlow Mach numbers and under certain conditions.
Although the formulation is not free from spurious results,physical and spurious modes are well separated
for low Mach numbers in non-dissipative systems. As reported, mini elements produce spurious modes for
Mach numbers> 0.5 whereas Taylor-Hood elements perform more stable even for large Mach numbers
in non-dissipative systems. If absorbing walls are considered, separation of physical and spurious modes
becomes less clear. Then, eigenvalues of both types of modesare located closer to each other in the complex
plane. Examples encompass the 1d duct problem, for which thespurious modes are discussed for the energy
conserving problem, and an annular duct for which the dissipative case is investigated.

KEY WORDS: Galbrun equation; mixed finite element fomulation; spurious modes; sound propagation
in flow

1. INTRODUCTION

For many aeroacoustic problems such as jet noise, duct acoustics and liner design, a main focus lies
on the prediction of sound propagation in nonuniform flow, see for example [1,3]. Mathematically,
such problems are often described by the linear Euler equations (LEE). However, acoustic problems
with ambient flow can also be modeled by using Galbrun equation, which was first derived by
Galbrun in 1931 [9]. This is a second order linear partial differential equation describing the sound
propagation in terms of a displacement perturbation as the only variable. Forpractical use, a mixed
formulation in terms of displacement and pressure perturbation is used. Despite of using these two
variables for solution, there is still a gain of variables compared to the conventional system of
equations. A further advantage of the Galbrun equation is the existence ofan exact expression for
acoustic energy and intensity [10]. Furthermore, boundary conditions and coupling conditions are
easily formulated [8].

The solution of the eigenvalue problem of the Galbrun equation can help to better understand
the phenomenon of sound propagation in the presence of ambient flow. Especially in the case of
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swirling mean flows, Galbrun formulation seems to be an interesting alternative since an often
used simplification of the LEE, the so called full-potential formulation, is not applicable. A few
papers [6–8, 16–18, 22, 23] deal with solving Galbrun equation using the finite element method
(FEM). However, none of these works explicitly addresses the solution of the eigenvalue problem.
Among other applications, solution of the eigenvalue problem is relevant forintonation of musical
woodwind instruments. While traditionally analyzed only experimentally, application of numerical
methods has been approaching this class of instruments in recent years. Two examples of these
applications to woodwind instruments are known by Fuß et al. [5] for the recorder and by Richter et
al. [21] for the bassoon.

In this study, the quadratic eigenvalue problem resulting from the discretization of Galbrun
equation is solved by means of a FEM. A mixed element formulation is chosen thatsatisfies the
inf-sup condition in the no-flow case. Satisfaction of the inf-sup condition by these formulations
for non-vanishing flow has remained open. Treysséde et al. [23] showed that spurious modes are
not observed when Mini elements or Taylor-Hood elements are used. Thepaper by Gabard et
al. [7] indicates that spurious modes can be observed for Mini elements atlarge Mach numbers,
in particular for Mach numbers greater than 0.5. Taylor-Hood elements performed more stable even
at large Mach numbers. It remained unclear whether these formulations are actually free of spurious
modes or not. The authors of this article could not find any indication in the literature where the
eigenvalue problem of Galbrun equation has been investigated for a finite element model.

It is demonstrated in this study why Taylor-Hood elements perform well for weakly damped
problems. Previous results for Mini elements are confirmed and, for higher Mach numbers, real
eigenvalues of spurious character are evaluated. Nevertheless, spurious modes are found in all
cases except for the no-flow case. For Taylor-Hood elements, these eigenvalues occur in regions
far (enough) away from the real axis. Furthermore, it is shown that problems with large regions of
absorption (e.g., exterior acoustic problems) do not easily allow the separation between physical
and spurious modes. In these cases, special techniques are requiredto identify the relevant physical
modes.

The outline of the paper is as follows. Galbrun equation is recalled in Section 2. Then, a mixed
formulation of the corresponding eigenvalue problem is given. We end thissection with a brief
description of the finite elements used to solve this problem. In Section 3, we consider as a first test
the sound propagation inside a one-dimensional duct with rigid walls. A constant ambient pressure
and a steady ambient flow velocity are assumed. In this case, the analytical solution is known and
this allows us to assess the effectiveness of the used finite element methods.A similar problem but
now posed inside an annulus with partially absorbing boundary conditions issolved as a second test
in Section 4. In spite of the bounded character of the domain, the configuration of this test is similar
to that of an exterior problem. Finally, we draw some conclusions in Section 5.

2. THEORETICAL ASPECTS

2.1. Galbrun equation

The equation for an acoustic problem with ambient flow in terms of the oscillatorydisplacementw,
also referred to as the Galbrun equation, can be written as

ρ0
d2w

dt2
+ (∇ ·w +w ·∇)∇p0 −∇(ρ0c0

2
∇ ·w +w ·∇p0) = 0. (1)

Herein,p0, ρ0, andc0 represent the ambient pressure, mass density and speed of sound, respectively.
A detailed discussion on the derivation of Galbrun equation can be found in[10] and [20].

For numerical analysis, the values of the ambient variablesp0, ρ0, andc0, are assumed to be
constant. This simplifies Galbrun equation to

ρ0
d2w

dt2
− ρ0c0

2
∇(∇ ·w) = 0. (2)
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Note thatdw/dt accounts for the material time derivative which is determined as

d(·)

dt
=

∂(·)

∂t
+ v0 ·∇(·), (3)

where we assume a steady ambient flow velocityv0. For constant speed of soundc0 and constant
ambient densityρ0, Equation (2) looks similar to the Pierce equation for the velocity potential [19].
However, the Pierce equation is a generalized scalar wave equation whereas our simplified Galbrun
equation remains a vector equation. The Mach number as normalized velocity isrelated to the
ambient flow velocity and the speed of sound as

Ma =
|v0|

c0
. (4)

Furthermore, a harmonic time dependencee−iωt is assumed for oscillatory quantities, in particular
for the displacementw and for the (sound) pressurep. Application of harmonic time dependence to
Equation (2) yields

−ρ0ω
2
w − 2iωρ0v0 ·∇w + ρ0v0 ·∇(v0 ·∇w)− ρ0c0

2
∇(∇ ·w) = 0. (5)

If not mentioned otherwise, a rigid surface boundary condition will be regarded in the numerical
simulation. At a motionless and rigid surface the normal component of the oscillatory displacement
has to vanish, i.e.,

w · n = 0, (6)

wheren is the unit outward normal. The implementation of this boundary condition for the Galbrun
equation is much simpler than for the Helmholtz equation, because the displacement is an explicit
variable, contrary to the pressure.

In the second numerical example of this study, an admittance boundary condition is applied to
consider the effect of absorption. Assuming constant ambient pressure, a boundary admittance
Y , and vanishing flow in the direction normal to the boundary (i.e.,v0 · n = 0), the admittance
boundary condition can be formulated as

−iωw · n = Y p =
Ỹ p

ρ0c0
, (7)

where Ỹ represents a normalized boundary admittance. For a detailed discussion ofdifferent
boundary conditions we refer to [10].

2.2. Weak formulation and polynomial eigenvalue problem

It has been shown in the paper by Treysséde et al. [23] that a simple weak formulation of
Equation (5) produces spurious modes when Lagrangian elements are used. To avoid this, a mixed
finite element formulation was proposed. This mixed formulation is based on the two variables,
pressure and displacement, which satisfy the inf-sup condition in the no-flow case. Then, the mixed
formulation, which is an analogous formulation to Equation (5), can be written as

−ρ0ω
2
w − 2iωρ0v0 ·∇w + ρ0v0 ·∇(v0 ·∇w) +∇p = 0

(8)
p+ ρ0c

2
0∇ ·w = 0.

To obtain a variational form of Equation (8), we introduce test functionsw
∗ andp∗. The result of

the weak formulation as given in [23] assumes a divergence-free flow fieldv0, i.e.,∇ · v0 = 0. This
assumption, which is part of the necessary hypotheses for an incompressible fluid, should be valid
even for air provided separation of scales holds. With the domainΩ and the boundaryΓ, integration
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by parts leads to the weak formulation of the Galbrun equation:

−

∫

Ω

1

ρ0c02
p∗p dΩ+

∫

Ω

∇p∗ ·w dΩ+

∫

Ω

w
∗ ·∇p dΩ− ω2

∫

Ω

ρ0w
∗ ·w dΩ

−iω

∫

Ω

ρ0w
∗ · (v0 ·∇w) dΩ+ iω

∫

Ω

ρ0(v0 ·∇w
∗) ·w dΩ

−

∫

Ω

ρ0(v0 ·∇w
∗) · (v0 ·∇w) dΩ+

∫

Γ

w
∗ ·

[

ρ0(v0 · n)
dw

dt

]

dΓ

−

∫

Γ

p∗(w · n) dΓ = 0, ∀{w∗, p∗}. (9)

The first four terms represent the no-flow case, the following three areadded in the ambient flow
case, and the last two are the boundary integrals appearing due to integration by parts. The terms
with ω2 andω will later lead to the mass and damping matrices, respectively, and the remaining
integrals contribute to the stiffness matrix. Up to this point, the left-hand side of Equation (9) results
in a quadratic polynomial matrix.

In computations with flow limited to domains with rigid walls and absorbing walls with zeroflow
in normal direction, the normal components of the ambient flowv0 · n are equal to zero on the
boundary. Hence, the first boundary integral vanishes in such a case. The second boundary integral
of Equation (9) vanishes for rigid boundary conditions (cf. Equation (6)). Frequency dependence of
the boundary admittance controls whether the contribution of the second boundary integral is added
to mass, stiffness or damping matrix, or even if it results in a new term. For instance, a frequency
independent boundary admittance results in a matrix proportional to1/ω. Thus, in this case, the
polynomial matrix becomes cubic (cf. Equation (11), below).

In case of rigid walls, Equation (9) results in a quadratic eigenvalue problem as

−ω2
Mu− iωDu+Ku = 0, (10)

with u comprising displacement and pressure degrees of freedom. The mass matrix M and the
stiffness matrixK are symmetric and real, the damping matrixD is skew-symmetric. In this mixed
formulation, mass and damping matrices, both are singular because neither ofthem include entries
connected to the pressure terms.

In case of frequency independent admittance boundary conditions, Equation (9) results in a cubic
eigenvalue problem as

−ω3
Mu− iω2

Du+ ωKu+Au = 0. (11)

MatricesM , D andK are the same as above. Usually,A is sparse and complex.
The eigenvalue problem is set up and solved by using the commercial codesCOMSOL

Multiphysics [4] and MATLAB [15]. While the quadratic eigenvalue problemis solved within
MATLAB using commandeigs, the cubic eigenvalue problem is solved iteratively within
COMSOL.

2.3. Types of finite elements

Herein, different types of finite elements are investigated. Their choice is mainly motivated by the
selection of finite elements in the papers by Treysséde et al. [23] and Gabard et al. [7]. Behavior
of standard Lagrangian elements is demonstrated for comparison only. Thediscussion of elements
is limited to the two-dimensional case. However, all of these element types are known for three
dimensional applications as well. In what follows, elements will be referred toby their names and
by abbreviations as used in [7] and shown in Figure 1.

2.3.1. Lagrangian elementsStandard Lagrangian elements are well-known. They represent the
most commonly used type of finite elements; see for example [2,24]. Herein, only linear triangular
elements as shown in Figure 1(a) are used. All nodes of the element are equipped with displacement
and with pressure degrees of freedom. This element type will also be referred to as T3–3c.
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(a) Linear element (b) Mini element (c) Taylor-Hood el. (d) Taylor-Hood el.

Displacement dof Pressure dof

T6–3cT3–3c T4–3c Q9–4c

Figure 1. Element types which have been used to solve the eigenvalue problem.

2.3.2. Mini elementsSimilar to Lagrangian elements, Mini elements are triangular elements with
displacement and pressure degrees of freedom at their three vertices(cf. Figure 1(b)). In addition
to these nine degrees of freedom, another two degrees of freedom forthe displacement are linked
with a fourth node in the barycenter of the element. The associated basis functions are known as
bubble functions since they vanish along all edges of the element. The abbreviation for this element
is T4–3c.

2.3.3. Taylor-Hood elementsA combination of linear approximation for pressure and quadratic
approximation for displacement is known as Taylor-Hood element. Treysséde et al. [23] and Gabard
et al. [7] tested quadrilateral elements as shown in Figure 1(d). To achieve a better comparison with
the triangular Mini elements, triangular Taylor-Hood elements are tested as well (cf. Figure 1(c)).
As shown, the Taylor-Hood elements will be referred to as T6–3c and Q9–4c.

2.3.4. Other elementsFor this study, the authors have tested a number of additional higher order
elements similar to Taylor-Hood-like elements, e.g. T10–6c and Q25–16c. Since they behave similar
to Taylor-Hood elements shown in Figures 1(c) and 1(d), a detailed description of these test cases
is omitted.

3. COMPUTATIONAL EXAMPLE I: THE LONG DUCT

3.1. Model description

We consider a similar example as in [13] (for the no-flow case). It consistsof a fluid-filled duct
of lengthL and widthH such thatH << L. We assume that the duct domain covers the area
of 0 ≤ x ≤ L and0 ≤ y ≤ H (cf. Figure 2). The ambient flow velocityv0 reduces to a (positive)
componentv0x, whereas the orthogonal component vanishes:v0y = 0. Then, the Mach number
is Ma = v0x/c0. Since we compare solutions of the two-dimensional method with the analytical
solution of the corresponding one-dimensional problem, it is necessary toapply zero boundary
conditions to all surfaces as in Equation (6).

v0x

x

y

In
le

t

O
ut

le
t

H

Figure 2. Geometry of the duct.
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3.2. Analytical solution

It is possible to derive an analytical solution of the Galbrun equation for a one-dimensional duct
with constant ambient velocity. An infinite duct has a continuous spectrum ofeigenvalues. In
order to have a discrete spectrum, we solve the problem on the interval(0, L) with the boundary
conditionswx(0) = 0 andwx(L) = 0. In this case, these boundary conditions do not represent
rigid walls, which would physically contradict the condition of a constant velocity, but they
represent nodes imposed to the eigenvectors. Notice that, in such a case,the boundary term
∫

Γ
w

∗ ·
[

ρ0(v0 · n)
dw
dt

]

dΓ from Equation (9) does not appear either, because the test functions
w

∗ vanish on the inlet and the outlet of the duct. Thus, a discrete spectrum of eigenvectors with
wavelengthsλ = 2L, 3/2L, L, L/2, . . . is extracted from the original continuous spectrum. The
eigenvalues for the circular frequencyωn and the frequencyfn are real and yield

ωn =
c0πn

L

(

1−Ma2
)

, i.e., fn =
c0n

2L

(

1−Ma2
)

. (12)

The solution corresponds to that of the no-flow case diminished by the termMa2. The first three
eigenfrequencies as functions of the Mach number are depicted in Figure3.
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 L
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0

 

 

λ
1

λ
2

λ
3

λ
01

λ
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03

Figure 3. Duct: First three eigenfrequencies in terms ofMa.

Contrary to the eigenvalues, the eigenvectors are complex:

wn = C
[

e−i πn

c0L
(v+c0)x − e−i πn

c0L
(v−c0)x

]

. (13)

Here and below,C is chosen in such a way that the first real maximum amplitude on the domain
equals 1. The behavior of the real and the imaginary parts are depicted in Figure 4. Their amplitudes
increase and decrease periodically. Notice that real and imaginary partsexhibit the same behavior
shifted in phase.

3.3. Numerical results

In this subsection, it will be clarified whether the elements, depicted in Figure 1, are suitable to
solve the eigenvalue problem or if it is necessary to look for alternative elements. It turns out that
the applicability of elements strongly depends on the Mach number. This behavior has already been
noticed in former studies [6, 8, 18, 22, 23], but none of these explicitly addresses the eigenvalue
problem; the main focus within their studies was on the propagation of acoustic waves. Herein, a
classification of the elements will show at which Mach numbers each of them can be reasonably
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0 0.2 0.4 0.6 0.8 1
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x/L

ℜ
(w
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ℑ

(w
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|w
|

 

 

ℜ (w) ℑ (w) |w|

Figure 4. Duct: Behavior ofℜ(wx) andℑ(wx) along the duct.

employed. The notion of stability of an element has to be redefined. In what follows, an element
is denoted to bestable if the exact solutions (cf. Equation (12)) can be clearly identified in the
numerical spectrum. Otherwise, if the field of regular solutions is polluted by parasitic values, the
element is defined to beunstable.

The domain used for this study has a length of 3.4 m and its width is set to 0.05 m. This high
ratio of side lengths is chosen to maximize the number of regular modes which areonly related
to the length of the duct. The speed of sound and mass density are assumed tobe c0 = 340m/s
andρ0 = 1.2 kg/m3 respectively. Hence, the expected eigenfrequencies corresponding to the one-
dimensional duct in the no-flow case aref = 0Hz, 50 Hz, 100 Hz, 150 Hz, and so on (cf. [13]). The
corresponding circular frequencies areωk = 100πkHz, with k = 0, 1, 2, . . .

To analyze the appearance of spurious eigenvalues more closely, multiple test scenarios have been
developed. For this, the Mach number is increased in three steps. We consider the cases ofMa = 0,
Ma = 0.1, Ma = 0.5 andMa = 0.9. Within each step, the computation of the eigenvalue problem
is carried out on two different meshes for each element type depicted in Figure 1. Table I provides
a brief survey of the different meshes that we have used and the corresponding problem sizes, i.e.,
the number of degree of freedom (dof). These four meshes are depicted in Figure 5.

(a)

(b)

(c)

(d)

Figure 5. Duct meshed by triangular (a,c) and quadrilateralelements (b,d), coarse grid representing mesh
case 1 (a,b), finer grids representing mesh case 2 (c,d).
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Table I. Duct: Test cases which will be applied to each element depicted in Figure 1. The number of elements
is declared bynel and “dof” represents the number of degrees of freedom.

Mesh case 1 Mesh case 2

nel dof nel dof
T3–3c 126 285 504 945
T4–3c 126 537 504 1953
T6–3c 126 725 504 2581
Q9–4c 58 680 500 5028

The first test case deals with the no-flow case, i.e., the case ofMa = 0. This investigation is
chosen to confirm that Lagrangian elements are not suited to be applied to Equation (9). With this
end, the eigenvalues computed by using linear Lagrangian elements (cf. Figure 6(a)) are compared
to the solution which is achieved when using Mini elements (cf. Figure 6(b)).Both solutions appear
to be purely real. Hardly any error is visible for the Mini elements for which the eigenvalues are
equidistantly distributed along the real axis. However, the eigenvalues which are found by using
Lagrangian elements seem to be randomly distributed along the real axis. Actually, the correct
eigenvalues are evaluated similar to the Mini elements but, additionally, a number of other modes,
the so-called spurious modes, are computed. Such spurious modes pollute the solution of the typical
boundary value problem as demonstrated by Treysséde et al. [23]. These spurious modes, which
occur for the no-flow problem, do not vanish for a Mach number greaterthan zero. Therefore,
Lagrangian elements are not not further taken into account in this study.

0 500 1000 1500 2000 2500 3000
−2000

−1500

−1000

−500

0

500

1000

1500

2000

ℜ (ω)

ℑ
(ω

)

(a) Lagrangian elements

0 500 1000 1500 2000 2500 3000
−2000

−1500

−1000

−500

0

500

1000

1500

2000

ℜ (ω)

ℑ
(ω

)

(b) Mini elements

Figure 6. Duct: Test case 1:Ma = 0, mesh case 2: Comparison of eigenvaluesωk for Lagrangian elements
and Mini elements.

In the second test case, we consider a Mach numberMa = 0.1. The eigenvalue distribution of
two different meshes of Taylor-Hood triangular elements (T6–3c) is shown in Figure 7. At first
glance, both plots show the complex eigenvalues virtually arbitrarily distributedin the complex
plane. However, the regularly appearing dots along the real axis correspond to the eigenvalues
which have a physical meaning. The eigenvalues of spurious modes are all complex. This behavior
is clearly observed for both meshes. A qualitatively similar result is obtained for the other two types
of elements, i.e., T4–3c and Q9–4c. In all cases, the spurious modes appear at a certain distance
of the physical modes and, apparently, this is the reason why they have not been observed in other
studies when solving the boundary value problems in [7,8,22,23].

Eigenvalues of the quadratic eigenvalue problem (cf. Equation (10)) occur either as real values
or as conjugate complex pairs. Consequently, the distribution of eigenvalues in the complex plane
should be symmetric with respect to the real axis. Results in Figure 7, and lateron in Figures 9,
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(a) Mesh case 1: 725 dof
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(b) Mesh case 2: 2581 dof

Figure 7. Duct: Test case 2:Ma = 0.1, Taylor-Hood elements T6–3c, eigenvalue distribution fortwo meshes
(cf. Table I).

10, and 11, show essentially symmetric distributions. However, at a close upthey are not entirely
symmetric, which is likely due to numerical approximation errors. At least, numerous computations
confirm the location and uniqueness of eigenvalues along and close to the real axis and a generally
correct distribution of the remaining ones.

(a) f = 198Hz (b) f = (193.4 + 74.7i)Hz

Figure 8. Duct: Test case 2:Ma = 0.1, Taylor-Hood elements T6–3c: Eigenvectors forwx of a physical (left)
and a spurious (right) mode close to 195 Hz. The lower parts show cross-plots along the line of symmetry of

the upper parts, i.e., alongy = H/2.

It is not really practical, but at least possible, to identify physical and spurious modes based on a
visual impression of the eigenvectors. Figure 8 allows us to compare two eigenmodes with adjacent
frequencies aroundf = 195Hz. In this case, the T6–3c elements are used on the finer mesh (i.e.,
mesh case 2). In the lower part of Figure 8(a), the real and imaginary parts of the fourth mode
of the numerical solution match well with the exact solutions (cf. Equation (13)). All outputs are
scaled such that the greatest magnitude equals one. The spurious mode in Figure 8(b) is not only
identified by its complex eigenfrequency off = 193.4 + 74.7iHz, as shown. It clearly contains high
frequency waves which are not physical for a frequency of approximately 195 Hz. A rough estimate
is always possible by using the equationλ = c/f . Of course, this estimate holds for the no-flow
case. But it is easily applicable for low Mach numbers as well.
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Greater Mach numbers are studied in a third test case. Figures 9, 10, and11 show the eigenvalue
distributions for the Mini elements (T4–3c), triangular (T6–3c), and quadrilateral (Q9–4c) Taylor-
Hood elements. These results are found for the mesh case 2, i.e., for the finer mesh.

The eigenvalue distribution of the solution using Mini elements confirms the observations of
Gabard et al. [7]. Therein, the authors stated that the Mini elements perform stable up to a
Mach number of 0.5. Beyond this, the solution may become unstable. This is clearly confirmed
in Figure 9(b). While the eigenvalues on the real axis are still evenly distributed in Figure 9(a)
numerous additional and unwanted eigenvalues are observed in Figure 9(b). There is no doubt
that Mini elements are not suited for solution of the boundary value problemfor Mach numbers
approaching 1. We are not clarifying the limit though.
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(a) Ma = 0.5
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0 200 400 600 800 1000 1200
−1000

0

1000

ℜ (ω)

ℑ
(ω

)

(b) Ma = 0.9

Figure 9. Duct: Test case 3: Mini elements T4–3c, mesh case 2,eigenvalue distribution for two Mach
numbers.

The situation is different for both variants of Taylor-Hood elements. Both,triangular (cf.
Figure 10) and quadrilateral (cf. Figure 11) elements, clearly distinguisheigenvalues on the real
axis from the other ones. Again, eigenvalues on the real axis account for the physically relevant
ones whereas complex eigenvalues are associated to spurious modes. For Mach numbers of 0.9, the
spacing between the eigenvalues decreases dramatically. While the fourth non-zero eigenfrequency
of the no-flow case is found at 200 Hz, and thus its circular frequencyω lies beyond 1200 Hz,
for a Mach number of 0.9 we expect 20 of them with circular frequencies below 1200 Hz (cf.
Equation 12). In the lower part of Figure 10(b), we count 18 dots up to acircular frequency of
1200 Hz, whereas, in that of Figure 11(b), the actual number of 20 dotsis identified. The increasing
number of modes within a particular frequency range leads to significantly decreasing frequencies
for which the mesh can be used.

Many applications require determination of the lowest eigenvalues. Therefore, it is important to
know up to which frequency the finite elements give accurate results. For that, we define the relative
error as

erel =

∣

∣

∣

∣

ωnum − ωex

ωex

∣

∣

∣

∣

(14)

whereωnum represents the numerical solution andωex the analytical solution of the one-dimensional
problem.

Assuming the rule of thumbkh < 1 (cf. [11, 12]), we would expect our finer meshes (i.e., mesh
case 2) to allow more than 9.5 waves along the duct (f < 950Hz in the no-flow case) for the triangles
and almost 16 (f < 1590Hz in the no-flow case) for the quadrilaterals. Tables II, III, and IV survey
the maximum eigenfrequencies for which the numerical solution remains below acertain error for
the finite elements that we are considering. Since the wavelength shortens for increasing Mach
number, the right-hand parts of these tables contain the maximum number of waves in the duct to
remain below this certain error in the eigenfrequency.
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Figure 10. Duct: Test case 3: Taylor-Hood elements T6–3c, mesh case 2, eigenvalue distribution for two
Mach numbers.
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Figure 11. Duct: Test case 3: Taylor-Hood elements Q9–4c, mesh case 2, eigenvalue distribution for two
Mach numbers.

Table II. Duct: Mesh case 2, Mini elements T4–3c: Limitations of element type.

Maximum eigenfrequencyf in Hz for Maximum number of waves for
Ma erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1% erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1%

0 50 250 850 0.5 2.5 8.5
0.1 198 396 891 2 4 9
0.5 75 262 562 1 3.5 7.5
0.9 0 10 19 0 0.5 1

Table III. Duct: Mesh case 2, Taylor-Hood elements T6-3c: Limitations of element type.

Maximum eigenfrequencyf in Hz for Maximum number of waves for
Ma erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1% erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1%

0 250 550 950 2.5 5.5 9.5
0.1 346 594 940 3.5 6 9.5
0.5 262 412 638 3.5 5.5 8.5
0.9 48 86 124 2.5 4.5 6.5
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Table IV. Duct: Mesh case 2, Taylor-Hood elements Q9–4c: Limitations of element type.

Maximum eigenfrequencyf in Hz for Maximum number of waves for
Ma erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1% erel ≤ 0.01% erel ≤ 0.1% erel ≤ 1%

0 450 850 950 4.5 8.5 9.5
0.1 594 891 940 6 9 9.5
0.5 412 675 825 5.5 9 11
0.9 76 133 218 4 7 11.5

3.4. Duct with admittance boundary conditions at end caps

Eigenvalues of the system with admittance boundary conditions at end caps can be analytically
found when the condition of Equation (7) is used. Obviously, this condition isnot valid for a
physically realistic model since it neglects the fact that the end caps are inletand outlet of the duct.
The solution would be very similar to the one in [13]. This means, that for the formulation used in
this paper, the complex eigenvalues have a small but constant imaginary part. Hardly any difference
in comparison to the non-dissipative system will be observed. For this reason, the example of the
duct with admittance boundary conditions at end caps will not be discussedin detail in this work.

4. COMPUTATIONAL EXAMPLE II - ANNULUS WITH ABSORBING BOUNDARY

4.1. Model description

We consider an annulus domain for our the second computational example. Again, we use the
material data of air, i.e.,c0 = 340m/s andρ0 = 1.2 kg/m3. The domain is bounded by an inner
and an outer circle of radiusr1 andr2, respectively (cf. Figure 12). The radii of the inner and the
outer circle are set to be 0.75 and 1.0 m, respectively.

ρ0cY = 1

~w · ~n = 0

v

r1

r2

Figure 12. Annulus: Domain and mesh of the two-dimensional problem.

We further assume a steady ambient flow in circumferential direction. The velocity profile is
assumed to be linear in terms of the radius as

v =

[

vr
vϕ

]

=

[

0
rωϕ

]

, (15)

with ωϕ being the (constant) angular velocity of the flow. We will refer to the Mach number as the
flow velocity at the outer boundary related to the speed of sound. Hence,Ma = vϕ(r2)/c0. For the



PHYSICAL AND SPURIOUS MODES FOR THE GALBRUN EQUATION 13

inner boundary, we assume the boundary condition is as in Equation (6):

wr(r1) = 0. (16)

Again, this boundary condition represents a rigid (i.e., fully reflecting) wall.The condition at the
outer boundary represents absorption, but does not aim at a non-reflecting boundary condition.
However, the boundary condition is chosen such that the distribution of eigenvalues of physical
and spurious modes is comparable to the situation for a discretized exterior problem similar to [5].
With respect to Equation (7), we use

ρ0c0Y = Ỹ = 1 (17)

and, thus,
−iωρ0c0wr(r2) = p(r2). (18)

Different from the tests in the previous section, only triangular Taylor-Hood elements (T6–3c)
are used for the analysis of the annulus. This restriction is used since Minielements have shown
limitations in the previous example. Quadrilateral Taylor–Hood elements (Q9–4c) are not reported
because they behave similarly to the triangular ones.

The finite element model of the annulus consists of 786 triangular T6–3c elements (cf. Figure 12
(right)). This results in 469 nodes and 3917 degrees of freedom. Note that a cubic eigenvalue
problem results in three eigenvalues per degree of freedom. However,fewer eigenvalues are
determined since the leading matrix and the frequency independent matrixA are both singular.
The cubic eigenvalue problem is solved iteratively within the software COMSOL Multiphysics [4].
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Figure 13. Eigenvalue distribution forMa = 0.

In order to obtain a reference eigenvalue distribution, the eigenvalue problem is solved for the
no-flow case first, i.e.,Ma = 0. Figure 13 shows the eigenvalues of lowest magnitude. Clearly, the
spectrum is free of spurious modes as expected for the no-flow case (i.e., a mixed finite element
solution of the Helmholtz equation). Some of the modes, in particular purely imaginary modes
and modes in the region determined by1900 < ℜ(ω) < 2800 and2400 < ℑ(ω) < 2600 look like
the basic modes of external problems, as identified in [14]. These are the monopole (eigenvalue
2769− 2412i), two dipoles (2735− 2431i), two quadrupoles (2595− 2488i) and two hexapoles
(1988− 2581i). Other modes look more like standing waves in circumferential direction. Loworder
modes are missing, the first of these modes (eigenvalue2593− 983i) shows five waves over the
circumference. Subsequent modes with eigenvalues3025− 797i and3434− 673i consist of six and



14 FELIX DIETZSCH ET AL.

seven waves, respectively. In comparison to [14], it is worth mentioning that, real eigenvalues in our
paper can be compared with imaginary eigenvalues in the former one. Recallthat eigenvectors can
be scaled arbitrarily. One dipole mode and the circumferential mode of five waves are depicted in
Figure 14. These modes correspond to the green dots indicating their eigenvalues in the complex
plane in Figure 13. Note that only the sound pressure component is shownin Figure 14.

Figure 14. Two arbitrarily chosen eigenvectors (sound pressure component only) for the caseMa = 0, dipole
mode (left) and mode with five circumferential waves (right); eigenvalue shown in the center of the annulus.

Similar to the duct case, the Mach number is increased in three steps. Again, we consider the
cases ofMa = 0.1,Ma = 0.5 andMa = 0.9.

For Ma = 0.1 (cf. Figure 15), the distribution of physical eigenvalues in the complex plane is
polluted by spurious modes. However, it is still possible to make assumption on which modes might
be physical. In particular, the right-hand part of the graph seems to be free of spurious solutions.
Low order modes, however, must be sought among numerous false eigenvalues. As an example,
Figure 15, shows the eigenvalues of two physical (green) and two spurious modes (red) which
are located closely together. The mode shapes are depicted in Figure 16 for the physical and in
Figure 17 for the spurious modes. A distinction between them is possible with respect to the acoustic
wavelength. The modes in Figure 16 are identified by the wavelengthλ which is close toλ = c/fi
with frequencyfi = ℜ{ωi/(2π)} (whereωi represents the eigenvalue) and the effective speed of
sound given byc = c0 ± v0. Spurious modes are identified by shorter wavelengths as shown in
Figure 17. However, it is not clear whether this criterion can be used as ageneral one.

For Ma = 0.5 andMa = 0.9 (cf. Figure 18), spurious solutions are spread all over the shown
interval. A visual distinction between physical and spurious modes is almost impossible. In both
subfigures, two physical and two spurious solutions are marked in greenand red, respectively.
The corresponding physical modes are depicted in Figure 19 forMa = 0.5 and in Figure 20 for
Ma = 0.9. Identification of physical modes based on their wavelengths is still possible. For instance,
Figure 20 (right) corresponds to a distorted dipole mode. The distortion results from the flow
field. In addition to the physical modes, an investigation of the spurious oneswhich are marked
in Figure 18 has shown a similar pressure distribution as in Figure 17. Finally,the authors find it
worth mentioning that forMa = 0.9 (cf. Figure 18 (right)), the eigenvalues closest to the real axis
with 1200 < ℜ(ω) < 3000 are all physical modes.

5. CONCLUSIONS

In this study, the acoustic eigenvalue problem in the presence of an ambientflow described by
Galbrun equation is analyzed numerically using a mixed finite element formulation.The results
of eigenvalues and eigenvectors for a straight duct and for an annulus with an absorbing wall are
discussed.
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Figure 15. Eigenvalue distribution forMa = 0.1.

Figure 16. Sound pressure component of two physical modes for Ma = 0.1; eigenvalue shown in the center
of the annulus.

Figure 17. Sound pressure component of two spurious modes for Ma = 0.1; eigenvalue shown in the center
of the annulus.



16 FELIX DIETZSCH ET AL.

0 1000 2000 3000 4000
−4000

−2000

0

2000

4000

ℜ(ω)

ℑ
(ω

)

2078-470i

1700-773i

1629-900i

2053-336i

0 1000 2000 3000 4000

0

ℜ(ω)

1201-771i

1756-1986i

1062-809i

1838-1832i

Figure 18. Eigenvalue distribution forMa = 0.5 (left) andMa = 0.9 (right).

Figure 19. Sound pressure component of two physical modes for Ma = 0.5; eigenvalue shown in the center
of the annulus.

Figure 20. Sound pressure component of two physical modes for Ma = 0.9; eigenvalue shown in the center
of the annulus.
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In the case of the energy conserving duct problem, our study basically confirms former results
available in the literature. For Mach numbers up to 0.5, Mini elements seem to perform reliably,
whereas, for higher flow velocities, even real spurious eigenvalues occur. Taylor-Hood elements,
both triangular and quadrilateral, seem to perform robustly even for a Mach number 0.9. However,
except for the no-flow case, there are always spurious modes in the system. A problem with purely
real eigenvalues or eigenvalues with a small imaginary part can be safely analyzed in frequency
domain since the physical and spurious modes are well separated from each other. This explains
why Taylor-Hood elements have produced reliable solutions in literature.

The situation is different for exterior problems. The configuration of the annulus is similar to that
of an exterior problem, which is confirmed by the shape of the modes in the no-flow case. Again,
Taylor-Hood elements produce spurious modes except for the no-flow case. Different from the duct
example, physical and spurious modes can hardly be separated now. For a simple case as herein
discussed, it seems possible to identify physical modes manually. Such a spatial filter technique
could even be automated. However, it cannot account for a reasonable solution of exterior problems
of Galbrun equation, because evaluation of a large number of eigenvalues for real applications is
not realistic.

The main conclusion is the need of developing a suitable finite element satisfyingthe inf-sup
condition and, hence, spurious modes free.
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23. F. Treysśede, G. Gabard, and M. Ben Tahar. A mixed finite element method foracoustic wave propagation in
moving fluids based on an eulerian-lagrangian description.Journal of the Acoustical Society of America, 113:704
– 716, 2003.

24. O. C. Zienkiewicz and R. L. Taylor.The Finite Element Method. Volume 1: The Basis. Butterworth-Heinemann,
Oxford, 5 edition, 2000.



Centro de Investigación en Ingenieŕıa Matemática (CI
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