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SUMMARY

Sound propagation in moving media can be described by Ga#xuation for the oscillating component of
the fluid displacement. A displacement based finite elenoentidlation using standard Lagrangian elements
produces spurious modes. Investigations in literatuge,(NME 63, 974-987, 2005) have shown that Mini
elements and Taylor-Hood elements suppress the effecuabsis modes. Herein, the quadratic eigenvalue
problem for the mixed formulation in 2D using Mini and Tayldood elements is solved. Solution confirms
former results such that both element types are suitablevioMach numbers and under certain conditions.
Although the formulation is not free from spurious resutiisysical and spurious modes are well separated
for low Mach numbers in non-dissipative systems. As reghnt@ni elements produce spurious modes for
Mach numbers> 0.5 whereas Taylor-Hood elements perform more stable everafge|Mach numbers

in non-dissipative systems. If absorbing walls are coneieseparation of physical and spurious modes
becomes less clear. Then, eigenvalues of both types of nameéscated closer to each other in the complex
plane. Examples encompass the 1d duct problem, for whickpitieéous modes are discussed for the energy
conserving problem, and an annular duct for which the didisip case is investigated.

KEY WORDS: Galbrun equation; mixed finite element fomulatispurious modes; sound propagation
in flow

1. INTRODUCTION

For many aeroacoustic problems such as jet noise, duct acoustics ardkbign, a main focus lies
on the prediction of sound propagation in nonuniform flow, see for el@afip3]. Mathematically,
such problems are often described by the linear Euler equations (LB&g\ér, acoustic problems
with ambient flow can also be modeled by using Galbrun equation, which vedérived by
Galbrun in 1931 [9]. This is a second order linear partial differentiab¢ign describing the sound
propagation in terms of a displacement perturbation as the only variablpraical use, a mixed
formulation in terms of displacement and pressure perturbation is usepit®etusing these two
variables for solution, there is still a gain of variables compared to the otowal system of
equations. A further advantage of the Galbrun equation is the existerateexact expression for
acoustic energy and intensity [10]. Furthermore, boundary conditietisaupling conditions are
easily formulated [8].

The solution of the eigenvalue problem of the Galbrun equation can helpter baderstand
the phenomenon of sound propagation in the presence of ambient flpeciglty in the case of

*Correspondence to: Steffen Marburg, LRT4 — Institute of Meas Universiat der Bundeswehr Ethchen, D-85579
Neubiberg, Germany, Email: steffen.marburg@unibw.de



2 FELIX DIETZSCH ET AL.

swirling mean flows, Galbrun formulation seems to be an interesting alternative an often
used simplification of the LEE, the so called full-potential formulation, is nofiepiple. A few
papers [6-8, 16-18, 22, 23] deal with solving Galbrun equation usiaditiite element method
(FEM). However, none of these works explicitly addresses the solufitreceigenvalue problem.
Among other applications, solution of the eigenvalue problem is relevamtfmmation of musical
woodwind instruments. While traditionally analyzed only experimentally, applicatiomumerical
methods has been approaching this class of instruments in recent ywarexamples of these
applications to woodwind instruments are known by Ful’ et al. [5] for therdec and by Richter et
al. [21] for the bassoon.

In this study, the quadratic eigenvalue problem resulting from the disdietizaf Galbrun
equation is solved by means of a FEM. A mixed element formulation is chosesdtisfies the
inf-sup condition in the no-flow case. Satisfaction of the inf-sup conditipthbse formulations
for non-vanishing flow has remained open. Tré&gss et al. [23] showed that spurious modes are
not observed when Mini elements or Taylor-Hood elements are usedpdjer by Gabard et
al. [7] indicates that spurious modes can be observed for Mini elemetdasgat Mach numbers,
in particular for Mach numbers greater than 0.5. Taylor-Hood elemenrifisrperd more stable even
at large Mach numbers. It remained unclear whether these formulat®astarlly free of spurious
modes or not. The authors of this article could not find any indication in thetliteravhere the
eigenvalue problem of Galbrun equation has been investigated for a fanter model.

It is demonstrated in this study why Taylor-Hood elements perform well feakly damped
problems. Previous results for Mini elements are confirmed and, for higaeh numbers, real
eigenvalues of spurious character are evaluated. Neverthelesmuspmodes are found in all
cases except for the no-flow case. For Taylor-Hood elements, tigesvalues occur in regions
far (enough) away from the real axis. Furthermore, it is shown thailems with large regions of
absorption (e.g., exterior acoustic problems) do not easily allow the siepabetween physical
and spurious modes. In these cases, special techniques are reguoieatify the relevant physical
modes.

The outline of the paper is as follows. Galbrun equation is recalled in Sectibhe?, a mixed
formulation of the corresponding eigenvalue problem is given. We endsétison with a brief
description of the finite elements used to solve this problem. In Section 3, wa&leols a first test
the sound propagation inside a one-dimensional duct with rigid walls. At@einambient pressure
and a steady ambient flow velocity are assumed. In this case, the analgtidarsis known and
this allows us to assess the effectiveness of the used finite element meéttsdaélar problem but
now posed inside an annulus with partially absorbing boundary conditieodvisd as a second test
in Section 4. In spite of the bounded character of the domain, the cortfigudd this test is similar
to that of an exterior problem. Finally, we draw some conclusions in Section 5.

2. THEORETICAL ASPECTS

2.1. Galbrun equation

The equation for an acoustic problem with ambient flow in terms of the oscilldispfacementv,
also referred to as the Galbrun equation, can be written as

2

had +(V-w+w-V)Vpy — V(poco®V - w + w - Vpg) = 0. Q)

Lo T 12

Herein,pg, po, andcy represent the ambient pressure, mass density and speed of sepedtively.
A detailed discussion on the derivation of Galbrun equation can be foyd@jimnd [20].

For numerical analysis, the values of the ambient variaplep,, andcy, are assumed to be
constant. This simplifies Galbrun equation to

Pw

POW - POCOQV(V ‘w) =0. 2
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Note thatdw /dt accounts for the material time derivative which is determined as

W22 4w, 3
where we assume a steady ambient flow velogityFor constant speed of soungland constant
ambient density,, Equation (2) looks similar to the Pierce equation for the velocity potential [19]
However, the Pierce equation is a generalized scalar wave equatioeastmrr simplified Galbrun
equation remains a vector equation. The Mach number as normalized velooithatisd to the
ambient flow velocity and the speed of sound as

Ma = [vol . 4)
Co

Furthermore, a harmonic time dependenc#’ is assumed for oscillatory quantities, in particular
for the displacemeniy and for the (sound) pressuseApplication of harmonic time dependence to
Equation (2) yields

7p0w2'w — 2iwp01)0 -Vw + LoV - V('Uo . V’IU) — poCO2V(V : w) =0. (5)

If not mentioned otherwise, a rigid surface boundary condition will benged in the numerical
simulation. At a motionless and rigid surface the normal component of the ¢sGildisplacement
has to vanish, i.e.,

w-n =0, (6)

wheren is the unit outward normal. The implementation of this boundary condition for terGn
equation is much simpler than for the Helmholtz equation, because the displadsmemrexplicit
variable, contrary to the pressure.

In the second numerical example of this study, an admittance boundaritioons applied to
consider the effect of absorption. Assuming constant ambient peessuroundary admittance
Y, and vanishing flow in the direction normal to the boundary (wg.,n = 0), the admittance
boundary condition can be formulated as

Yp

b
PoCo

(@)

—lww-n=Yp=

where Y represents a normalized boundary admittance. For a detailed discussiifiecént
boundary conditions we refer to [10].

2.2. Weak formulation and polynomial eigenvalue problem

It has been shown in the paper by Tresds et al. [23] that a simple weak formulation of
Equation (5) produces spurious modes when Lagrangian elementsedrelasavoid this, a mixed
finite element formulation was proposed. This mixed formulation is based on thedxables,
pressure and displacement, which satisfy the inf-sup condition in the wasélse. Then, the mixed
formulation, which is an analogous formulation to Equation (5), can be writen a

—pow?w — 2iwpevy - Vw + povg - V(vg-Vw)+Vp = 0
2 (8)
p+ pocgV - w 0.

To obtain a variational form of Equation (8), we introduce test functiernsaandp*. The result of
the weak formulation as given in [23] assumes a divergence-free i, i.e.,V - v = 0. This

assumption, which is part of the necessary hypotheses for an incaifyectuid, should be valid
even for air provided separation of scales holds. With the dofaind the boundary, integration
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by parts leads to the weak formulation of the Galbrun equation:

1
—/ 2p*de+/Vp*~wdQ+/w*~Vde—w2/pow*-wdQ
Q Poco Q Q Q

—iw/ pow™ - (vo - Vw) dQ + iw/ po(vg - Vw™) - w dQ
Q Q

dw

w g )57 | ar

—/on(vo - Vw®) - (vo - Vw) dQ +/ dt

r

_/Fp*(w‘n) dl' =0, v{w*, p*}. )

The first four terms represent the no-flow case, the following threadded in the ambient flow
case, and the last two are the boundary integrals appearing due tofiotedmaparts. The terms
with w? andw will later lead to the mass and damping matrices, respectively, and the remaining
integrals contribute to the stiffness matrix. Up to this point, the left-hand sidgudition (9) results
in a quadratic polynomial matrix.

In computations with flow limited to domains with rigid walls and absorbing walls with fievo
in normal direction, the normal components of the ambient flgiwn are equal to zero on the
boundary. Hence, the first boundary integral vanishes in sucheaThe second boundary integral
of Equation (9) vanishes for rigid boundary conditions (cf. Equatigh &equency dependence of
the boundary admittance controls whether the contribution of the second&guntegral is added
to mass, stiffness or damping matrix, or even if it results in a new term. For ggstarfrequency
independent boundary admittance results in a matrix proportionglo Thus, in this case, the
polynomial matrix becomes cubic (cf. Equation (11), below).

In case of rigid walls, Equation (9) results in a quadratic eigenvalue proate

—w?Mu — iwDu + Ku =0, (20)

with « comprising displacement and pressure degrees of freedom. The mabs Ma#nd the
stiffness matrixi< are symmetric and real, the damping matfhis skew-symmetric. In this mixed
formulation, mass and damping matrices, both are singular because neithemahclude entries
connected to the pressure terms.
In case of frequency independent admittance boundary conditionafiBn (9) results in a cubic
eigenvalue problem as
—w*Mu — iw?*Du + wKu + Au = 0. (11)

MatricesM, D and K are the same as above. Usualdyjs sparse and complex.

The eigenvalue problem is set up and solved by using the commercial €@O&SOL
Multiphysics [4] and MATLAB [15]. While the quadratic eigenvalue problésnsolved within
MATLAB using commandei gs, the cubic eigenvalue problem is solved iteratively within
COMSOL.

2.3. Types of finite elements

Herein, different types of finite elements are investigated. Their choiceiigymaotivated by the
selection of finite elements in the papers by Trégeset al. [23] and Gabard et al. [7]. Behavior
of standard Lagrangian elements is demonstrated for comparison onlgistussion of elements
is limited to the two-dimensional case. However, all of these element typesavenkfor three
dimensional applications as well. In what follows, elements will be referrdxy tiheir names and
by abbreviations as used in [7] and shown in Figure 1.

2.3.1. Lagrangian elementStandard Lagrangian elements are well-known. They represent the
most commonly used type of finite elements; see for example [2, 24]. Herdynljimear triangular
elements as shown in Figure 1(a) are used. All nodes of the elementépeedwith displacement
and with pressure degrees of freedom. This element type will also lreedte as T3-3c.
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AVAWANE

(a) Linear element (b) Mini element (c) Taylor-Hood el. (d) Taylor-Hood el.
T3-3c T4-3c T6-3c Q9-4c

® Displacement dof O  Pressure dof

Figure 1. Element types which have been used to solve thegilye problem.

2.3.2. Mini elementsSimilar to Lagrangian elements, Mini elements are triangular elements with
displacement and pressure degrees of freedom at their three vécficEgure 1(b)). In addition

to these nine degrees of freedom, another two degrees of freeddahefdisplacement are linked
with a fourth node in the barycenter of the element. The associated basi®fsare known as
bubble functions since they vanish along all edges of the element. Theviditom for this element

is T4-3c.

2.3.3. Taylor-Hood element& combination of linear approximation for pressure and quadratic
approximation for displacement is known as Taylor-Hood element. Tedgsst al. [23] and Gabard
et al. [7] tested quadrilateral elements as shown in Figure 1(d). To &chibetter comparison with
the triangular Mini elements, triangular Taylor-Hood elements are testedlb&fvé&igure 1(c)).

As shown, the Taylor-Hood elements will be referred to as T6—3c and€Q9—

2.3.4. Other elementfor this study, the authors have tested a number of additional higher order
elements similar to Taylor-Hood-like elements, e.g. T10-6¢ and Q25-16e tBieygbehave similar

to Taylor-Hood elements shown in Figures 1(c) and 1(d), a detailedip&sorof these test cases

is omitted.

3. COMPUTATIONAL EXAMPLE I: THE LONG DUCT

3.1. Model description

We consider a similar example as in [13] (for the no-flow case). It consfsasfluid-filled duct

of length L and width H such thatd << L. We assume that the duct domain covers the area
of 0 <z < L and0 < y < H (cf. Figure 2). The ambient flow velocity, reduces to a (positive)
componenty,,, whereas the orthogonal component vanishgg:= 0. Then, the Mach number

is Ma = vg, /co. Since we compare solutions of the two-dimensional method with the analytical
solution of the corresponding one-dimensional problem, it is necessapply zero boundary
conditions to all surfaces as in Equation (6).

/11 1/ I I /I I I I IV

i Y V0x
l—
: X

Figure 2. Geometry of the duct.

I

Outlet
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3.2. Analytical solution

It is possible to derive an analytical solution of the Galbrun equation fareadimensional duct
with constant ambient velocity. An infinite duct has a continuous spectrumigavalues. In
order to have a discrete spectrum, we solve the problem on the intérval with the boundary
conditionsw,(0) = 0 and w, (L) = 0. In this case, these boundary conditions do not represent
rigid walls, which would physically contradict the condition of a constant siglp but they
represent nodes imposed to the eigenvectors. Notice that, in such atlmdsgundary term
Jpw* - [po(’vo -n)%{’} dI’ from Equation (9) does not appear either, because the test functions
w* vanish on the inlet and the outlet of the duct. Thus, a discrete spectruigerivectors with
wavelengths\ = 2L, 3/2L, L, L/2,... is extracted from the original continuous spectrum. The
eigenvalues for the circular frequengy and the frequency,, are real and yield

CoTn

wn = =7 (1-Ma?), ie,

_con
fa=357

(1- Ma2) . (12)

The solution corresponds to that of the no-flow case diminished by thex&rmThe first three
eigenfrequencies as functions of the Mach number are depicted in Rgure
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Figure 3. Duct: First three eigenfrequencies in terma/af

Contrary to the eigenvalues, the eigenvectors are complex:

wy, =C [eii%(vﬂo)m — e 'ar (vfco)ﬂ . (13)

Here and below( is chosen in such a way that the first real maximum amplitude on the domain
equals 1. The behavior of the real and the imaginary parts are depictiepine B. Their amplitudes
increase and decrease periodically. Notice that real and imaginaryeghilst the same behavior
shifted in phase.

3.3. Numerical results

In this subsection, it will be clarified whether the elements, depicted in Figuagelsuitable to
solve the eigenvalue problem or if it is necessary to look for alternativeesies. It turns out that
the applicability of elements strongly depends on the Mach number. Thisibehag already been
noticed in former studies [6, 8, 18, 22, 23], but none of these explicittirestes the eigenvalue
problem; the main focus within their studies was on the propagation of acousteEswHerein, a
classification of the elements will show at which Mach numbers each of tharbe&aeasonably
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O(w),0(w), [wl

0.6 0.8 1

Figure 4. Duct: Behavior dft(w;) and$(w, ) along the duct.

employed. The notion of stability of an element has to be redefined. In whaivg, an element
is denoted to betableif the exact solutions (cf. Equation (12)) can be clearly identified in the
numerical spectrum. Otherwise, if the field of regular solutions is pollutedabbgsitic values, the
element is defined to henstable

The domain used for this study has a length of 3.4 m and its width is set to 0.05snhigh
ratio of side lengths is chosen to maximize the number of regular modes whidnlgreclated
to the length of the duct. The speed of sound and mass density are assub®ag) to 340 m/s
andp, = 1.2kg/m3 respectively. Hence, the expected eigenfrequencies correspaiodine one-
dimensional duct in the no-flow case gre= 0 Hz, 50 Hz, 100 Hz, 150 Hz, and so on (cf. [13]). The
corresponding circular frequencies are= 100k Hz, with k. = 0,1, 2, ...

To analyze the appearance of spurious eigenvalues more closely, mukifdedrarios have been
developed. For this, the Mach number is increased in three steps. Wderahg cases af/a = 0,
Ma = 0.1, Ma = 0.5 andMa = 0.9. Within each step, the computation of the eigenvalue problem
is carried out on two different meshes for each element type depicteduneFlg Table | provides
a brief survey of the different meshes that we have used and thespording problem sizes, i.e.,
the number of degree of freedom (dof). These four meshes argekkpid-igure 5.

i (a)
H —®
B ©
o

Figure 5. Duct meshed by triangular (a,c) and quadrilatelethents (b,d), coarse grid representing mesh
case 1 (a,b), finer grids representing mesh case 2 (c,d).
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Table I. Duct: Test cases which will be applied to each eldmepicted in Figure 1. The number of elements
is declared by, and “dof” represents the number of degrees of freedom.

Mesh case 1 Mesh case 2

Nel dof Nel dof
T3-3c 126 285 504 945
T4-3c 126 537 504 1953
T6-3c 126 725 504 2581
Q9-4c 58 680 500 5028

The first test case deals with the no-flow case, i.e., the cagdact 0. This investigation is
chosen to confirm that Lagrangian elements are not suited to be appliedatideg(9). With this
end, the eigenvalues computed by using linear Lagrangian elements (gf Bi@)) are compared
to the solution which is achieved when using Mini elements (cf. Figure @o}h solutions appear
to be purely real. Hardly any error is visible for the Mini elements for whidh eéfgenvalues are
equidistantly distributed along the real axis. However, the eigenvalueswahnécfound by using
Lagrangian elements seem to be randomly distributed along the real axislijcthe correct
eigenvalues are evaluated similar to the Mini elements but, additionally, a nufdbireo modes,
the so-called spurious modes, are computed. Such spurious modes pellsméution of the typical
boundary value problem as demonstrated by Teegs<st al. [23]. These spurious modes, which
occur for the no-flow problem, do not vanish for a Mach number grehsm zero. Therefore,
Lagrangian elements are not not further taken into account in this study.

200 T T T T T 200
1500~ 1 1500~
1000 1 1000~
500 1 500+
© . m e e = .4 B
5 9 S o
=500 1 =500
-1000- 1 -1000-
-1500- 1 -1500-
200 ‘ ‘ ‘ ‘ ‘ 200 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
O(w) O(w)
(a) Lagrangian elements (b) Mini elements

Figure 6. Duct: Test case Ma = 0, mesh case 2: Comparison of eigenvalugdor Lagrangian elements
and Mini elements.

In the second test case, we consider a Mach numfier= 0.1. The eigenvalue distribution of
two different meshes of Taylor-Hood triangular elements (T6—3c) is shiawrigure 7. At first
glance, both plots show the complex eigenvalues virtually arbitrarily distribiatéde complex
plane. However, the regularly appearing dots along the real axisspomd to the eigenvalues
which have a physical meaning. The eigenvalues of spurious modek emenplex. This behavior
is clearly observed for both meshes. A qualitatively similar result is obtaoratié other two types
of elements, i.e., T4-3c and Q9—4c. In all cases, the spurious modear agp@ecertain distance
of the physical modes and, apparently, this is the reason why they habeemwobserved in other
studies when solving the boundary value problems in [7, 8,22, 23].

Eigenvalues of the quadratic eigenvalue problem (cf. Equation (1@)rather as real values
or as conjugate complex pairs. Consequently, the distribution of eigesvialilee complex plane
should be symmetric with respect to the real axis. Results in Figure 7, anditaterFigures 9,
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O(w)

0 560 1000 * 1500 2600 2500 3000 B 0 560 1600 1500 2600 2500 3000
O O
(a) Mesh case 1: 725 dof (b) Mesh case 2: 2581 dof

Figure 7. Duct: Test case 21a = 0.1, Taylor-Hood elements T6-3c, eigenvalue distributiortfay meshes
(cf. Table I).

10, and 11, show essentially symmetric distributions. However, at a clodeey@mre not entirely
symmetric, which is likely due to numerical approximation errors. At least, nonsssomputations
confirm the location and uniqueness of eigenvalues along and close &athexis and a generally
correct distribution of the remaining ones.

Eigenvector i]?(wx) Eigenvector Wf(wx)

05 05
= 0 m 0
= B
05 05
1 -
. . 0 0.2 0.4 0.6
3 x/L
g L\ o M
N el
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0;8 1
L XL
e ER(WX) S(WX) _— W(WX) S(WX)
(@) f =198Hz (b) £ = (193.4 + 74.7i) Hz

Figure 8. Duct: Test case 2a = 0.1, Taylor-Hood elements T6—3c: Eigenvectorsdarof a physical (left)
and a spurious (right) mode close to 195 Hz. The lower padw sioss-plots along the line of symmetry of
the upper parts, i.e., along= H/2.

It is not really practical, but at least possible, to identify physical anaigps modes based on a
visual impression of the eigenvectors. Figure 8 allows us to compare twoneggkes with adjacent
frequencies around = 195 Hz. In this case, the T6—3c elements are used on the finer mesh (i.e.,
mesh case 2). In the lower part of Figure 8(a), the real and imaginaty pathe fourth mode
of the numerical solution match well with the exact solutions (cf. Equation).(23) outputs are
scaled such that the greatest magnitude equals one. The spurious magierén&tb) is not only
identified by its complex eigenfrequency b= 193.4 + 74.7i Hz, as shown. It clearly contains high
frequency waves which are not physical for a frequency of apprately 195 Hz. A rough estimate
is always possible by using the equatidr= ¢/ f. Of course, this estimate holds for the no-flow
case. But it is easily applicable for low Mach numbers as well.
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Greater Mach numbers are studied in a third test case. Figures 9, 101 ahdw the eigenvalue
distributions for the Mini elements (T4—3c), triangular (T6-3c), and qleadral (Q9-4c) Taylor-
Hood elements. These results are found for the mesh case 2, i.e., foretheéigh.

The eigenvalue distribution of the solution using Mini elements confirms thenadigns of
Gabard et al. [7]. Therein, the authors stated that the Mini elementsrpedtable up to a
Mach number of 0.5. Beyond this, the solution may become unstable. This ity aeafirmed
in Figure 9(b). While the eigenvalues on the real axis are still evenly digtdbin Figure 9(a)
numerous additional and unwanted eigenvalues are observed in FignreTBere is no doubt
that Mini elements are not suited for solution of the boundary value probderivlach numbers
approaching 1. We are not clarifying the limit though.

800 - - - - 800 . .
-’ - . . . *
. . - . . .
- - 6000~ c s - ) ceetew
6000,e o v TR A I PO
3 “w s - v 4000 "o, 2% ] &
4000 R e " ] s N AR v
4 "_q- e e’ e 200082, *%* . -
. ®e 2o PICT B =
. PN 3 Ofeeosemmectmnd coo oo s @fom o o -
200 . Lnas T =] .
. hd A e R I .
O S I I IR R R R e e e Telt e ted
=] —400GF o0 s J tlt T T R L o
[® oo L S e Lt .
00 R I L T I | -600¢, , | .t . R
v ..—"‘-.. Teee. ®oe 800! hd L hd ‘. .." -"- L
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. ... :
LY o ., . D(w)
. L4
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—~800! ® e L . LU —~100¢ L L L L -
0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 1200
O(w) O()
(@) Ma =0.5 (b) Ma =0.9

Figure 9. Duct: Test case 3: Mini elements T4-3c, mesh casggenvalue distribution for two Mach
numbers.

The situation is different for both variants of Taylor-Hood elements. Bathngular (cf.
Figure 10) and quadrilateral (cf. Figure 11) elements, clearly distingriggnvalues on the real
axis from the other ones. Again, eigenvalues on the real axis accoutiid physically relevant
ones whereas complex eigenvalues are associated to spurious maddackRmumbers of 0.9, the
spacing between the eigenvalues decreases dramatically. While the foni#lero eigenfrequency
of the no-flow case is found at 200Hz, and thus its circular frequentigs beyond 1200 Hz,
for a Mach number of 0.9 we expect 20 of them with circular frequencédewb 1200 Hz (cf.
Equation 12). In the lower part of Figure 10(b), we count 18 dots up ¢ocalar frequency of
1200 Hz, whereas, in that of Figure 11(b), the actual number of 2Gglmtentified. The increasing
number of modes within a particular frequency range leads to significarthgasng frequencies
for which the mesh can be used.

Many applications require determination of the lowest eigenvalues. Treréf is important to
know up to which frequency the finite elements give accurate results. &prte define the relative
error as

num ex

ereli w —Ww

e (14)
wherew™ ™ represents the numerical solution astél the analytical solution of the one-dimensional
problem.

Assuming the rule of thumbh < 1 (cf. [11, 12]), we would expect our finer meshes (i.e., mesh
case 2) to allow more than 9.5 waves along the dfiet ©50 Hz in the no-flow case) for the triangles
and almost 16 { < 1590 Hz in the no-flow case) for the quadrilaterals. Tables Il, 11, and IV syrv
the maximum eigenfrequencies for which the numerical solution remains betewain error for
the finite elements that we are considering. Since the wavelength shorteinerasing Mach
number, the right-hand parts of these tables contain the maximum number &g imahe duct to
remain below this certain error in the eigenfrequency.
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Figure 11. Duct: Test case 3: Taylor-Hood elements Q9-4shnoase 2, eigenvalue distribution for two
Mach numbers.

Table II. Duct: Mesh case 2, Mini elements T4-3c: Limitas@i element type.

Maximum eigenfrequency in Hz for Maximum number of waves for

Ma e <0.01% e <0.1% e <1% e <0.01% e <0.1% e < 1%
0 50 250 850 0.5 2.5 8.5
0.1 198 396 891 2 4 9
0.5 75 262 562 1 35 7.5
0.9 0 10 19 0 0.5 1

Table Ill. Duct: Mesh case 2, Taylor-Hood elements T6-3mitations of element type.

Maximum eigenfrequency in Hz for Maximum number of waves for

Mo €'<001% e <01% e <1% e <001% ' <01% e < 1%
0 250 550 950 25 55 95
0.1 346 594 940 3.5 6 9.5
0.5 262 412 638 35 5.5 8.5
0.9 48 86 124 25 4.5 6.5
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Table IV. Duct: Mesh case 2, Taylor-Hood elements Q9—4citations of element type.

Maximum eigenfrequency in Hz for Maximum number of waves for
Ma e <0.01% e1<01% e <1% e <0.01% e <01% e <1%
0 450 850 950 45 8.5 9.5
0.1 594 891 940 6 9 9.5
0.5 412 675 825 55 9 11
0.9 76 133 218 4 7 11.5

3.4. Duct with admittance boundary conditions at end caps

Eigenvalues of the system with admittance boundary conditions at end aagdsecanalytically
found when the condition of Equation (7) is used. Obviously, this conditiomotsvalid for a

physically realistic model since it neglects the fact that the end caps aratmletutlet of the duct.
The solution would be very similar to the one in [13]. This means, that for thredlation used in
this paper, the complex eigenvalues have a small but constant imaginamjaatly any difference
in comparison to the non-dissipative system will be observed. For thismgte example of the
duct with admittance boundary conditions at end caps will not be discussiedail in this work.

4. COMPUTATIONAL EXAMPLE Il - ANNULUS WITH ABSORBING BOUNDARY

4.1. Model description

We consider an annulus domain for our the second computational exangaé, Ave use the
material data of air, i.egy = 340m/s and py = 1.2kg/m?. The domain is bounded by an inner

and an outer circle of radiug andr,, respectively (cf. Figure 12). The radii of the inner and the
outer circle are set to be 0.75 and 1.0 m, respectively.

\AVAVAYAVAVs

S,

NN
AVAVAVAV,;

VAV VIVI

RIS
VAVAY AN

1% V4 ‘WA Vi Y

Figure 12. Annulus: Domain and mesh of the two-dimensionatbiem.

We further assume a steady ambient flow in circumferential direction. Tloeityeprofile is
assumed to be linear in terms of the radius as

]

with w,, being the (constant) angular velocity of the flow. We will refer to the Maaminer as the
flow velocity at the outer boundary related to the speed of sound. Hfce; v, (r2)/co. For the
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inner boundary, we assume the boundary condition is as in Equation (6):
wy(r1) =0. (16)

Again, this boundary condition represents a rigid (i.e., fully reflecting) Wéie condition at the
outer boundary represents absorption, but does not aim at a fiectirg boundary condition.
However, the boundary condition is chosen such that the distribution efieaues of physical
and spurious modes is comparable to the situation for a discretized extedenprsimilar to [5].

With respect to Equation (7), we use

poCoY =Y =1 (17)

and, thus,
—iwpocowy(r2) = p(ra). (18)

Different from the tests in the previous section, only triangular TayloodHelements (T6-3c)
are used for the analysis of the annulus. This restriction is used sincesMiments have shown
limitations in the previous example. Quadrilateral Taylor—Hood elements (Q@rdmot reported
because they behave similarly to the triangular ones.

The finite element model of the annulus consists of 786 triangular T6—3c migifoé Figure 12
(right)). This results in 469 nodes and 3917 degrees of freedom. Nateatlubic eigenvalue
problem results in three eigenvalues per degree of freedom. Howfevesr eigenvalues are
determined since the leading matrix and the frequency independent matire both singular.
The cubic eigenvalue problem is solved iteratively within the software COMBQItiphysics [4].

0
~1000 T 2593-983i
-2000f o
/§\‘3000’ <\\\2735-2431i :
&
-40001
5000} T
-6000}
-7000 i i
0 2000 4000 6000 8000
R(w)

Figure 13. Eigenvalue distribution fdra = 0.

In order to obtain a reference eigenvalue distribution, the eigenvalldepnds solved for the
no-flow case first, i.eMa = 0. Figure 13 shows the eigenvalues of lowest magnitude. Clearly, the
spectrum is free of spurious modes as expected for the no-flow case (iréxed finite element
solution of the Helmholtz equation). Some of the modes, in particular purely imggnades
and modes in the region determined 100 < R(w) < 2800 and2400 < ¥(w) < 2600 look like
the basic modes of external problems, as identified in [14]. These are thepwie (eigenvalue
2769 — 2412¢), two dipoles 2735 — 24313), two quadrupoles2695 — 2488i) and two hexapoles
(1988 — 25813). Other modes look more like standing waves in circumferential direction.droer
modes are missing, the first of these modes (eigenzilog — 983:) shows five waves over the
circumference. Subsequent modes with eigenval02s — 797: and3434 — 673: consist of six and
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seven waves, respectively. In comparison to [14], it is worth mentionigg ithal eigenvalues in our
paper can be compared with imaginary eigenvalues in the former one. Rextatigenvectors can
be scaled arbitrarily. One dipole mode and the circumferential mode of fivesnare depicted in
Figure 14. These modes correspond to the green dots indicating theivaigesnin the complex
plane in Figure 13. Note that only the sound pressure component is shéwgure 14.

1r 1r
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Figure 14. Two arbitrarily chosen eigenvectors (soundquescomponent only) for the casdé: = 0, dipole
mode (left) and mode with five circumferential waves (rigbtyenvalue shown in the center of the annulus.

Similar to the duct case, the Mach number is increased in three steps. Agaggnsider the
cases of\la = 0.1, Ma = 0.5 andMa = 0.9.

For Ma = 0.1 (cf. Figure 15), the distribution of physical eigenvalues in the complexeplan
polluted by spurious modes. However, it is still possible to make assumptiohich modes might
be physical. In particular, the right-hand part of the graph seems taebeofrspurious solutions.
Low order modes, however, must be sought among numerous falsevaiges As an example,
Figure 15, shows the eigenvalues of two physical (green) and twaosigumodes (red) which
are located closely together. The mode shapes are depicted in Figure th@ fohysical and in
Figure 17 for the spurious modes. A distinction between them is possible wiiheEto the acoustic
wavelength. The modes in Figure 16 are identified by the wavelengthich is close to\ = ¢/ f;
with frequencyf; = R{w;/(27)} (Wherew, represents the eigenvalue) and the effective speed of
sound given by = ¢y &= vy. Spurious modes are identified by shorter wavelengths as shown in
Figure 17. However, it is not clear whether this criterion can be usedjaseral one.

For Ma = 0.5 and Ma = 0.9 (cf. Figure 18), spurious solutions are spread all over the shown
interval. A visual distinction between physical and spurious modes is almosissiipe. In both
subfigures, two physical and two spurious solutions are marked in gne@rred, respectively.
The corresponding physical modes are depicted in Figure 194toe 0.5 and in Figure 20 for
Ma = 0.9. Identification of physical modes based on their wavelengths is still posBilnénstance,
Figure 20 (right) corresponds to a distorted dipole mode. The distortiaritsefsom the flow
field. In addition to the physical modes, an investigation of the spurious whieh are marked
in Figure 18 has shown a similar pressure distribution as in Figure 17. Fitiadlyguthors find it
worth mentioning that folla = 0.9 (cf. Figure 18 (right)), the eigenvalues closest to the real axis
with 1200 < R(w) < 3000 are all physical modes.

5. CONCLUSIONS

In this study, the acoustic eigenvalue problem in the presence of an anfibiendescribed by
Galbrun equation is analyzed numerically using a mixed finite element formulat@nresults
of eigenvalues and eigenvectors for a straight duct and for an ety an absorbing wall are
discussed.
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Figure 15. Eigenvalue distribution fata = 0.1.
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Figure 16. Sound pressure component of two physical modegdo= 0.1; eigenvalue shown in the center
of the annulus.
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Figure 17. Sound pressure component of two spurious modesgde= 0.1; eigenvalue shown in the center
of the annulus.
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Figure 18. Eigenvalue distribution fara = 0.5 (left) and Ma = 0.9 (right).
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Figure 19. Sound pressure component of two physical moaegdo= 0.5; eigenvalue shown in the center
of the annulus.
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In the case of the energy conserving duct problem, our study basicalfirmas former results
available in the literature. For Mach numbers up to 0.5, Mini elements seemftomeeliably,
whereas, for higher flow velocities, even real spurious eigenvaloesr.oTaylor-Hood elements,
both triangular and quadrilateral, seem to perform robustly even forcMamber 0.9. However,
except for the no-flow case, there are always spurious modes ingtesyA problem with purely
real eigenvalues or eigenvalues with a small imaginary part can be safglyzad in frequency
domain since the physical and spurious modes are well separated fobnotr. This explains
why Taylor-Hood elements have produced reliable solutions in literature.

The situation is different for exterior problems. The configuration of tireuus is similar to that
of an exterior problem, which is confirmed by the shape of the modes in tflewm@ase. Again,
Taylor-Hood elements produce spurious modes except for the no-flsev Different from the duct
example, physical and spurious modes can hardly be separated nosvskople case as herein
discussed, it seems possible to identify physical modes manually. Sucthia far technique
could even be automated. However, it cannot account for a redsaubtion of exterior problems
of Galbrun equation, because evaluation of a large number of eigesvalugeal applications is
not realistic.

The main conclusion is the need of developing a suitable finite element satisfigrigf-sup
condition and, hence, spurious modes free.
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