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SIMULATION OF SECONDARY SETTLING TANKS IN WASTEWATER

TREATMENT

RAIMUND BÜRGERA,∗, STEFAN DIEHLB, SEBASTIAN FARÅSB, AND INGMAR NOPENSC

Abstract. A one-dimensional model for the sedimentation-compression-dispersion process
in the secondary settling tank can be expressed as a nonlinear strongly degenerate para-
bolic partial differential equation (PDE), which has coefficients with spatial discontinuities.
Reliable numerical methods for simulation produce approximate solutions that converge to
the physically relevant solution of the PDE as the discretization is refined. We focus on two
such methods and assess their performance via simulations for two scenarios. One method
is provably convergent and is used as a reference method. The other method is less effi-
cient in reducing numerical errors, but faster and more easily implemented. Furthermore,
we demonstrate some pitfalls when deriving numerical methods for this type of PDE and
can thereby rule out certain methods as unsuitable; among others, the wide-spread Takács
method.

1. Introduction

The key operation in many wastewater treatment plants (WWTPs) for the purification
of industrial and domestic sewage is the activated sludge process in biological reactors and
secondary settling tanks (SSTs). Despite a century of usage and experience, the sedimenta-
tion process in the SST is still a challenge in modelling the full-scale operation of wastewater
treatment plants (WWTPs). In modelling the activated sludge process, biological reactors
have traditionally received more attention than SSTs. This emphasis has mainly been mo-
tivated by the wish to predict the effluent quality while the role of the SST model was to
create a reasonable sludge balance. Most commercial simulators, however, do not provide
reliable simulation models in the sense that there is no guarantee that the simulations sat-
isfy fundamental physical properties under all conditions. From a practical point of view,
current SST simulation models tend to be inaccurate under wet weather conditions where a
significant amount of sludge mass is recycled within the plant.
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In the traditional layer models, the development of which experienced a breakthrough by
Takács et al. (1991), the numerical method is written up directly by a mass balance reasoning
between the layers and often by the addition of heuristic assumptions to fix problems or to
try to adjust the simulator to data. Recent attempts to improve SST simulation models in
this way are presented by Verdickt et al. (2005), Nocoń (2006), Plósz et al. (2007), Abusam
& Keesman (2009), David et al. (2009a, 2009b) and Guo et al. (2010).

From a consistent modelling point of view, common simulation models frequently lack
a proved connection to underlying physical principles. The conservation law of mass can
be captured by a mathematical model in integral form or as a partial differential equation
(PDE), which is nonlinear and may have discontinuous solutions. Another physical principle
is that only stable discontinuities should appear in the solution, which means that a so-
called entropy condition must be imposed. The model PDE cannot be expected to have a
closed-form solution, so a numerical method is needed. It should be derived from the integral
form of the model equation and produce approximate solutions that converge to the exact
solution as the discretization is refined (Bürger et al., 2011). Such a numerical method is
called reliable. To date, the only published numerical method with a proof of convergence for
this type of PDE (without dispersion) was presented by Bürger et al. (2005). We denote this
Method EO, since it utilizes the numerical flux by Engquist & Osher (1981). Method EO
was also used earlier by De Clercq et al. (2008).

Bürger et al. (2011) proposed a one-dimensional (1D) SST model that captures most of
the phenomena addressed by previous 1D models, namely hindered settling, compression
at high concentrations, and dispersion around the inlet due to turbulence. In a subsequent
paper, Bürger et al. (2012) derived a numerical method and described all details necessary
for its implementation. This numerical method is here called Method G, since its numerical
flux is based on the well-known flux by Godunov (1959). Godunov’s flux was introduced for
the simulation of SSTs by Diehl & Jeppsson (1998) and it is also used by Plósz et al. (2007).
Method G is more easily implemented and requires fewer computations than Method EO.
The speed is an important aspect when the SST simulator should be included in a simulator
of an entire WWTP. Proving convergence for a numerical method for this type of PDE is
difficult. Since Method EO is proved reliable (at least for constant feed inputs), we use it
here as a reference method.

The first purpose of the current work is to compare Method G with Method EO and
thereby strengthen our hypothesis that also Method G is reliable. The second purpose is to
investigate accuracy and required CPU times for the two methods. The third purpose is to
enlighten the inherent difficulties of obtaining a reliable numerical method for the PDE under
consideration. Some pitfalls (like errors in the implementation of numerical methods) will be
demonstrated. In particular, we will investigate the Stenstrom-Vitasovic-Takács minimum-
flux used in the well-known simulation method by Takács et al. (1991), and demonstrate
that this method may lead to erroneous numerical results.

The remainder of the paper is organized as follows. In Section 2, the model and the fun-
damentals of reliable numerical methods are reviewed. The comparison between Method G
and Method EO can be found in Section 3. Pitfalls and unsuitable numerical methods are
discussed in Section 4 and conclusions can be found in Section 5.
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2. The model and numerical methods

2.1. The model in PDE form. Suppose that the sludge concentration C is horizontally
constant. Then C can be treated as a function of depth z and time t only. Let A denote
the constant cross-sectional area of the SST and Qf and Cf the volumetric flow rate and
concentration of the feed inlet, respectively. Conservation of mass yields the model PDE

∂C

∂t
+

∂

∂z
F (C, z, t) =

∂

∂z

((
γ(z)dcomp(C) + ddisp(z,Qf)

)∂C
∂z

)
+
Qf(t)Cf(t)

A
δ(z). (1)

Here, γ(z) is a characteristic function which equals 1 inside the tank and zero outside. The
last term is a point source, where δ is the Dirac delta distribution. Dispersion near the
feed inlet is modelled by ddisp and compression by dcomp. We assume that dcomp(C) 6= 0
only for concentrations above a critical concentration Cc at which the flocs begin to form
a compressible network. If fbk denotes the Kynch batch flux function fbk(C) = Cvhs(C),
where vhs is the hindered settling velocity, then the flux function F depends discontinuously
on z in the following way:

F (C, z, t) =


−Qe(t)C/A for z < −H (effluent zone),

fbk(C)−Qe(t)C/A for −H ≤ z < 0 (clarification zone),
fbk(C) +Qu(t)C/A for 0 < z ≤ B (thickening zone),

Qu(t)C/A for z > B (underflow zone),

(2)

where H is the height of the clarification zone and B is the depth of the thickening zone.
The volumetric flow rates in the effluent and the underflow are given by Qe ≥ 0 and Qu ≥ 0,
respectively, and satisfy Qf = Qe +Qu.

Our model thus consists of the PDE (1) and three constitutive relations for fbk, dcomp

and ddisp. It is well known that solutions C = C(z, t) of (1) may contain discontinuities,
which may either move, such as rising or falling jumps in concentration in the clarification
and thickening zones, or be stationary, as are concentration jumps caused by changes in the
definition of (2) across the boundaries of the four zones. Therefore, Equation (1) has to be
interpreted in the so-called weak sense. Furthermore, to obtain a unique solution for given
initial data, an additional physical principle, called the entropy condition, must be satisfied
at every discontinuity (Bürger et al., 2005; Diehl, 2009).

2.2. The model in integral form and method-of-lines formulation. Because of pos-
sible discontinuities in the solution, the derivatives in Equation (1) are not classical ones,
which means that it is not straightforward to use any finite difference approximation for the
derivatives. The formulation of a reliable numerical method starts most conveniently from a
more fundamental form of the conservation law than the PDE (1), namely the integral form:

d

dt

∫ z2

z1

C(z, t) dz = Φ|z=z1 − Φ|z=z2 +
1

A

∫ z2

z1

Qf(t)Cf(t)δ(z) dz, (3)

where (z1, z2) is an arbitrary interval of the z-axis (a layer in the method) and the flux Φ is

Φ

(
C,
∂C

∂z
, z, t

)
= F (C, z, t)−

(
γ(z)dcomp(C) + ddisp(z,Qf)

)∂C
∂z

. (4)

Note that (3), (4) is equivalent to the PDE (1), if the latter is interpreted in the weak sense.
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The z-axis is divided into a finite number of layers and a method-of-lines formulation of
the numerical method is possible, i.e. a system of ordinary differential equations (ODEs).
Precisely, we subdivide the SST into N internal layers, so that each layer has the depth
∆z = (B + H)/N , and assume that the boundaries between the layers are zj := j∆z − H
for j = 0, . . . , N . In particular, z0 = −H and zN = B. We will refer to “layer j” as the
interval [zj−1, zj]. Define jf := dH/∆ze, which is equal to the smallest integer larger or equal
to H/∆z. Then the location of the feed inlet (z = 0) is in the interval (zjf−1, zjf ] and the
corresponding layer is called the “feed layer”. In the formulation of the numerical scheme
we add two layers to both the top and bottom corresponding to the effluent and underflow
zones, respectively. Thus, our computational domain is composed of N+4 intervals of length
∆z, enclosed by the points zj, j = −2, . . . , N + 2.

The method-of-lines formulation is

dCj

dt
= −

F num
j − F num

j−1

∆z
+

1

∆z

(
Jnum

disp,j − Jnum
disp,j−1 + Jnum

comp,j − Jnum
comp,j−1

)
+
QfCf

A∆z
δj,jf , j = −1, . . . , N + 2,

(5)

where Cj(t) is the average concentration in layer j at time t, and δj,jf is the standard
Kronecker symbol with δj,jf = 1 if j = jf and δj,jf = 0 otherwise. The expressions F num

j ,
Jnum

disp,j and Jnum
comp,j are numerical approximations of the three respective terms of Φ in (4). We

refer to Bürger et al. (2012) for the derivation and implementation of the method. In Bürger
et al. (2011), we emphasized some fundamental principles (CFL condition, consistency and
entropy satisfying numerical flux) for PDE solvers for (1). We will here go into more detail
and discuss the monotonicity property of the numerical method, which is central for proving
convergence.

2.3. Numerical fluxes. In the spatial discretization, F demands some extra care. Its
numerical approximation is called the numerical flux, denoted by F num. This quantity will
in general depend on the adjacent layer concentrations Cj and Cj+1, i.e.,

F num
j

(
Cj(t), Cj+1(t), t

)
≈ F

(
C(zj, t), zj, t

)
.

There are several reasonable choices of the numerical flux F num
j , and several restrictions

that must be met to ensure convergence to the exact solution. These issues are broadly
discussed in textbooks on numerical schemes for conservation laws (see, e.g., LeVeque, 1992,
2002; Holden & Risebro, 2007). One basic requirement is that the numerical flux should be
consistent with the exact flux, i.e.,

F num
j (C,C, t) = F (C, zj, t) for all C, j, t. (6)

Two alternative choices are the consistent numerical fluxes due to Godunov (1959) and
Engquist & Osher (1981), leading to slightly different numerical schemes. Once a formula
for the numerical flux has been chosen, there are two principle ways to proceed. For simplicity
of description, consider only the thickening zone (0 < z < B) (the clarification-zone case is
analogous). The flux in the thickening zone f is given by the superposition of the nonlinear
function fbk and a linear term due to the downward bulk flow (cf. (2)):

f(C, t) = fbk(C) +Qu(t)C/A.
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The first way is to apply the Engquist-Osher (or Godunov) formula directly on the total
flux f . This was done with the Engquist-Osher formula by Bürger et al. (2005), whereas
Diehl & Jeppsson (1998) used the Godunov formula. The second way is to apply the chosen
formula to the two terms of the flux function f separately; partly on the nonlinear term fbk,
and partly on the linear term QuC/A. This implies that the linear term is discretized in an
upwind fashion, i.e., QuC/A is replaced by QuCj/A. (For the clarification zone −QeC/A is
replaced by −QeCj+1/A.)

To elucidate the benefits of the second alternative, observe that the computations of both
the Godunov and Enquist-Osher numerical fluxes rely on the knowledge of the local extrema
of the function they are applied on. Consider again the thickening zone. Since Qu may vary
with time, so may the local extrema (with respect to C) of f(C,Qu). Consequently, the first
alternative requires us to keep track of these extrema over time. On the other hand, fbk

is the same function throughout the simulation, so in the second alternative it suffices to
determine the extrema just once in an initializing step. This means easier implementation,
fewer computations, and thereby faster simulations. The last property comes, however, at
the cost of increased numerical errors; see Section 3.

We have so far discussed four possible ways of computing F num
j . In light of the convergence

results by Bürger et al. (2005), we choose as the numerical flux in Method EO the Engquist-
Osher formula on the total flux f (for the thickening zone):

F num,EO
j = F num,EO

(
Cj, Cj+1, t

)
:=

1

2

(
f(Cj, t) + f(Cj+1, t)−

∫ Cj+1

Cj

∣∣∣∣ ∂f∂C (C, t)

∣∣∣∣ dC
)

(7)

and analogously for the clarification zone and the outlet zones. In Method G, we choose
instead

F num,G
j = F num,G(Cj, Cj+1, t) :=


−Qe(t)Cj+1/A for j = −2,−1,

−Qe(t)Cj+1/A+Gj for j = 0, . . . , jf − 1,

Qu(t)Cj/A+Gj for j = jf , . . . , N ,

Qu(t)Cj/A for j = N + 1, N + 2,

(8)

where the Godunov formula applied to fbk is

Gj = Gj(Cj, Cj+1) :=

 min
Cj≤C≤Cj+1

fbk(C) if Cj ≤ Cj+1,

max
Cj+1≤C≤Cj

fbk(C) if Cj > Cj+1.
(9)

This formula is particularly easy to evaluate in the most relevant case that fbk has precisely
one local maximum (see Bürger et al., 2012).

2.4. The CFL condition and fully discrete scheme. Suppose that we want to simulate
an SST over a time interval [0, T ] for a chosen layer thickness ∆z. For the discretization in
time of the system of ODEs (5), the time step ∆t must be chosen such that the condition

∆t ≤ 1

k1

∆z
+

k2

∆z2

(10)
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is satisfied, where we define the constants

k1 := max
0≤t≤T

Qf(t)

A
+ max

0≤C≤Cmax

∣∣f ′bk(C)
∣∣,

k2 := 2

(
max

0≤C≤Cmax

dcomp(C) + max
−H≤z≤B, 0≤t≤T

ddisp

(
z,Qf(t)

))
.

(11)

Here Cmax is a maximum concentration, chosen such that fbk(C) ≈ 0 ≈ f ′bk(0) for C > Cmax.
Observe that for given ∆z, inequality (10) yields an upper limit of the time step ∆t that
must be submitted into any ODE solver. A condition like (10) is known as a CFL condition
(after Courant, Friedrichs & Lewy, 1928). This is a necessary condition to ensure stability
of the numerical scheme.

The two numerical fluxes described above are only first-order accurate in space. Hence,
for the time discretization, first-order accurate explicit Euler steps are usually sufficient. Let
tn := n∆t and Cn

j be the approximate value of Cj(t) at t = tn. Then the fully discrete
scheme can be written as the explicit marching formula

Cn+1
j = Cn

j −
∆t

∆z

(
F num,n

j − F num,n
j−1

)
+

∆t

∆z

(
Jnum,n

disp,j − J
num,n
disp,j−1 + Jnum,n

comp,j − J
num,n
comp,j−1

)
+

∆t

∆z

Qf(tn)Cf(tn)

A
δj,jf , j = −1, . . . , N + 2.

(12)

Here F num,n
j is the value of F num

j produced by replacing Cj and Cj+1 by Cn
j and Cn

j+1,
respectively. The dispersion and compression terms are given by the respective expressions

Jnum,n
disp,j := ddisp(zj, Qf(tn))

Cn
j+1 − Cn

j

∆z
, (13)

Jnum,n
comp,j := γ(zj)

Dnum,n
j+1 −Dnum,n

j

∆z
, (14)

where Dnum,n
j is either the exact or an approximate integrated compression coefficient

D(C) =

∫ C

Cc

dcomp(s) ds. (15)

We refer to Bürger et al. (2012) for details on how to compute this. See also Section 4.6.

2.5. Constitutive relations and parameters for simulations. For the simulations we
use the parameters H = 1 m, B = 3 m and A = 400 m2. The maximum concentration for the
CFL condition (10)–(11) is Cmax = 20 kg/m3. The constitutive functions fbk and dcomp are
chosen according to De Clercq et al. (2008) but with some changes of the parameter values:

fbk(C) =

{
v0Ce−rC for C < Cmax,

0 for C ≥ Cmax,
(16)

dcomp(C) =

0 for C < Cc,
ρsαfbk(C)

∆ρ gC(C − Cc + β)
for C ≥ Cc,

(17)
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Figure 1. Graphs of functions used in the simulations of Scenarios 1 and 2.
Left: The dispersion coefficient ddisp(z,Qf). Right: The solids loading
Qf(t)Cf(t) in the feed inlet.

where v0 = 3.47 m/h, r = 0.37 m3/kg, α = 4.00 Pa and β = 4.00 kg/m3. The density
of the solids is ρs = 1050 kg/m3, the density difference between the solids and water is
∆ρ = 52 kg/m3, the acceleration of gravity is g = 9.81 m/s2 and the critical concentration is
Cc = 6.00 kg/m3. The third constitutive function ddisp is set to be increasing with the feed
flow rate Qf and assumed to be nonzero around the inlet only:

ddisp(z,Qf) =

α1Qf exp

(
−z2/(α2Qf)

2

1− |z|/(α2Qf)

)
for |z| < α2Qf ,

0 for |z| ≥ α2Qf ,

where α1 = 0.0023 m−1 and α2 = 0.0025 h/m2, see Figure 1 (left).

3. Comparison between Method G and Method EO

To compare Method G with Method EO, we use the same division of the z-axis for both.
Therefore, we let the number of internal layers (within the SST) be N = 10 · 3p for p =
0, 1, . . . , 5. The methods are compared by simulations of two scenarios starting at the same
steady state (computed with Method EO). To illustrate the convergence and define suitable
error measures, a reference solution was generated with Method EO using N = 2430 (p =
5) for each scenario. Subsequently, approximate solutions for N = 10, 30, 90, 270 and
810 were produced with both methods. The scenarios are constructed to demonstrate and
compare the two methods and to show their robustness. Therefore, extreme variations in
the concentrations and flow rates have been imposed.

Scenario 1. We start in a steady state with the feed flow rate Qf = 230 m3/h, the feed
concentration Cf = 4.5 kg/m3, the underflow rate Qu = 100 m3/h and with a sludge blanket
in the thickening zone. At t = 5 h, we impose a step increase in the solids loading in the
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Figure 2. Four approximate solutions for Scenario 1. The reference solution
in the lower right plot is computed with Method EO for N = 2430 internal
layers, while the others are computed with Method G for 10, 30 and 90 internal
layers.

feed inlet constructed by changing Qf to 360 m3/h, decreasing Cf by 10% and keeping the
underflow rate constant, see Figure 1 (right). At t = 20 h all variables are returned to their
initial values. The total simulation time is T = 48 h.

Scenario 2. The same initial state as in Scenario 1 is used. Throughout the simulation,
the underflow and effluent flow rates are kept proportional to the feed flow rate: Qu = α3Qf

and Qe = (1 − α3)Qf , where α3 = 10/23 (i.e., the same ratio as in the initial state). The
solids loading in the feed inlet is changed according to Figure 1 (right) with the feed flow
rate Qf oscillating around its initial value with period 24 h and amplitude 50 m3/h. The
total simulation time is T = 96 h.

Results. A selection of numerical solutions generated by Method G for Scenario 1 is pre-
sented in Figure 2. The corresponding reference solution is shown in the lower right figure.
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Figure 3. Scenario 2. Top: A simulation produced with Method G for
N = 90 internal layers (left) and the reference solution (right). Bottom:
Concentration profiles at t = 20 h, 40 h, 65 h and 96 h from the simulations
produced with Method G (left) and Method EO (right) for N = 10, 30 and
90 internal layers.

It is evident how the approximate solution for N = 10 layers deviates from the reference
solution, but as the number of layers increases the approximations clearly converge. The
simulations for Scenario 2 are presented in a slightly different way in Figure 3.

In light of the convergence analysis for Method EO in Bürger et al. (2005), it is reasonable
to assume that the reference solutions for N = 2430 internal layers are the ones closest to the
true solution for the given input data in each scenario. In order to quantify the performance
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Figure 4. Masses for Scenario 2. The mass mN(t) for different number of
internal layers are plotted together with mref(t). Left: The underlying simu-
lations are produced with Method G. Right: The underlying simulations are
produced with Method EO.

of Method G compared with Method EO, the following error measures are used in Table 1:

eC =

∫ T

0

∫ H

−B

∣∣CN(z, t)− Cref(z, t)
∣∣ dz dt∫ T

0

∫ H

−B

Cref(z, t) dz dt

and

em =

∫ T

0

∣∣mN(t)−mref(t)
∣∣ dt∫ T

0

mref(t) dt

.

In the relative error eC , CN is a piecewise constant representation of the approximate solution
generated over N internal layers by any of the two methods and Cref is the reference solution
restricted to the same grid by taking averages. In the relative mass error em, mN(t) and
mref(t) are the masses in the SST at time t derived from CN and Cref , respectively. Figure 4
shows the time variations for the masses in Scenario 2.

From the columns containing the CPU times in Table 1, it is seen that Method G is faster
than Method EO for any fixed N . However, this comes at the price of less accurate numerical
approximations, which is clear from both error measures. In fact, the eC versus CPU time
diagrams of Figure 5 illustrate that for both scenarios, the data points corresponding to
Method EO can be interpolated to give a rough line that lies below that for the results
obtained with Method G. This means that Method EO requires less CPU time to produce
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Table 1. Errors and CPU times for simulations with different number of
layers N .

Scenario 1 Scenario 2

N eC [−] em [−] CPU time [s] eC [−] em [−] CPU time [s]
Method G 10 1.68E−1 1.30E−1 2.96E−3 1.29E−1 1.09E−1 3.14E−3

30 8.28E−2 7.24E−2 1.96E−2 5.42E−2 4.70E−2 3.99E−2
90 3.06E−2 2.72E−2 3.90E−1 1.98E−2 1.73E−2 8.28E−1
270 1.04E−2 9.37E−3 9.63E+0 6.82E−3 6.04E−3 2.07E+1
810 3.51E−3 3.26E−3 2.62E+2 2.32E−3 2.14E−3 5.63E+2

Method EO 10 6.19E−2 3.90E−2 1.01E−2 5.71E−2 4.20E−2 1.67E−2
30 1.91E−2 1.08E−2 4.57E−2 1.97E−2 1.38E−2 1.35E−1
90 6.10E−3 3.82E−3 1.01E+0 6.25E−3 4.28E−3 2.14E+0
270 1.88E−3 1.08E−3 2.55E+1 1.91E−3 1.35E−3 5.17E+1
810 4.68E−4 2.77E−4 6.95E+2 4.73E−4 3.31E−4 1.38E+3
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Figure 5. The error eC versus CPU time for different values of N according
to Table 1.

a numerical solution with an error below a certain threshold, which means that Method EO
is more efficient for both scenarios.

4. Pitfalls and unsuitable methods

4.1. Monotone numerical fluxes. Method EO gives rise to approximate solutions that
converge to the physically relevant solution of the governing PDE (1) as ∆t→ 0 and ∆z → 0,
provided that ∆t and ∆z satisfy the CFL condition (10), (11). Although it has not yet been
proved, the comparisons by simulation in Section 3, together with the fact that the fluxes
F num,EO and F num,G are equal in many cases (although the formulas are quite different),
indicate strongly that Method G is also reliable. The decisive property that permits to
prove such a convergence result (see Bürger et al. 2005, 2010) is the monotonicity of the
numerical flux F num, i.e., the function F num is non-decreasing in its first argument and
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non-increasing in its second. For the fluxes F num,EO and F num,G defined by (7) and (8),
respectively, it turns out that for fixed n, and under the CFL condition (10), (11), the right-
hand side of the discrete scheme as a whole, (12), is a non-decreasing function of the three
values Cn

j−1, C
n
j and Cn

j+1. The convergence of monotone schemes to the physically relevant
solution, the entropy solution, of a scalar conservation law was first demonstrated by Harten
et al. (1976) and Crandall & Majda (1980), and has also been established for the special case
of the present clarifier-thickener model arising from setting to zero dcomp and ddisp (Bürger et
al. 2004, 2010). On the other hand, if these terms are present and we assume (for simplicity)
that the coefficients of (1) are constant in time and (10) is satisfied, then (12) equipped
with the Engquist-Osher flux is still a three-point monotone scheme that converges to the
(properly defined) entropy solution, see Bürger et al. (2005).

4.2. The Lax-Friedrichs numerical flux is consistent and monotone but unsuit-
able. The importance of monotonicity and the fact that both Method EO and Method G
give rise to monotone schemes raises the question whether other monotone, and possibly
easier to evaluate, fluxes could be substituted for F num,EO or F num,G. One such flux is the
Lax-Friedrichs numerical flux, which, applied on the batch-settling flux fbk reads:

F num,LxF(Cj, Cj+1) :=
∆z

2∆t
(Cj − Cj+1) +

1

2

(
fbk(Cj) + fbk(Cj+1)

)
. (18)

It can easily be checked that this flux is consistent, i.e., it satisfies (6), and is monotone under
the CFL condition (10). In contrast to F num,EO and F num,G, the numerical flux F num,LxF has
the apparent advantage that it can be evaluated without the necessity to keep track of the
extrema of fbk, and it is tempting to consider F num,LxF as a serious alternative. However,
the whole scheme (12) is not monotone with F num = F num,LxF (unless dcomp = ddisp ≡ 0). In
fact, differentiating (12), we have

∂Cn+1
j

∂Cn
j

= −2µ
(
dcomp(Cn

j ) + ddisp(zj, Qf(tn))
)
,

which may be negative irrespective of any CFL condition. This indicates an unstable be-
haviour; simulations deteriorate. Thus, the Engquist-Osher or Godunov flux cannot be
replaced by an arbitrary monotone flux.

4.3. The Stenstrom-Vitasovic-Takács flux is consistent but unsuitable (entropy
violating). Jeppsson & Diehl (1996) demonstrated the advantages of the Godunov flux
compared with the minimum-flux formula in the well-known method by Takács et al. (1991).
The method was originally presented by Vitasovic (1989), who utilized the minimum-flux
formula by Stenstrom (1976):

Sj = min
(
fbk(Cj), fbk(Cj+1)

)
. (19)

Hence, this flux could replace Gj in (8) to obtain a total numerical flux. This numerical
flux is consistent, which is easily seen by setting Cj = Cj+1. However, it is not generally
monotone. For example, if fbk(Cj) < fbk(Cj+1) and f ′bk(Cj) < 0, then ∂Sj/∂C

n
j = f ′bk(Cj) <

0. Furthermore, it may produce a solution that does not satisfy the entropy condition. This
was demonstrated by Bürger et al. (2011) by an example where an unphysical discontinuity
(it does not satisfy the entropy condition) is stable when simulating with the flux Sj.
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An explanation for the success of Takács’ simulation model during normal operating con-
ditions is the following. For an ordinary batch sedimentation test where the concentration is
non-decreasing as a function of depth, Sj = Gj holds, when fbk is a unimodal function (has
only one local maximum). Therefore, standard batch sedimentation tests can be simulated
correctly with Sj. Our algorithm for the implementation of Method G (Bürger et al., 2012)
has the feature that it can be seen as an extension of (19).

For continuous sedimentation, the concentration is also normally non-decreasing with
depth, and the Takács method often works satisfactorily. However, during extreme events,
such as storm weather, the concentration distribution may be decreasing with depth, then
the Takács method fails, as our Simulation GvT shows.

Simulation GvT (Godunov versus Takács). In order to compare the numerical flux
(19) in Takács’ method with Godunov’s flux, we turn off the other effects; ddisp ≡ 0 and
dcomp ≡ 0. Assume that the flows to the SST have been turned off for some time and the
sludge in the SST has settled. At t = 0, we assume that there is a concentration of 15 kg/m3

at the bottom of the thickening zone and clear water above. We let the influent variables be
constant in time and the volumetric underflow rate small: Qf = 405 m3/h, Qu = 5 m3/h, and
hence Qe = 400 m3/h, Cf = 4.0 kg/m3. The result of the simulations with different number
of layers are shown in Figures 6 and 7. Correct approximations of the solution are produced
by Method G. It is in fact possible to construct the unique entropy-satisfying solution;
see Diehl (2005; Section 4.7.4). Because of the low volumetric underflow rate, solids will
build up around the inlet in both clarification and thickening zones. Immediately, particles
start to settle down to the sludge blanket, which they reach within half an hour. In the
numerical solutions with Takács’ method, the particles move much slower downwards above
an unphysical discontinuity. They only follow the downward bulk flow and reach the sludge
blanket after 2 hours. This clearly illustrates a physically incorrect situation. Note that the
approximate solution satisfies the conservation of mass, but not the entropy condition. A
second incorrectness of the Takács method is the build-up of particles just above the sludge
blanket for the simulations with N = 30 and 90. The third incorrectness is the ripple that
appears above the sludge blanket in the thickening zone as the number of layers increases.
A fourth incorrectness is the speed of the rising discontinuity in the clarification zone, which
is too high for the Takács method. The correct concentration building up in the clarification
zone, 3.80 kg/m3, is in fact slightly less than the feed concentration Cf = 4.0 kg/m3, see
Diehl (2005; Section 4.7.4). All in all, the simulations produced by the Takács method are
qualitatively different for different number of layers – a feature that makes it useless. In
addition, it is different from the correct solution.

4.4. Parameters in the numerical method. In a consistent modelling methodology
(Bürger et al., 2011), all physical phenomena should be captured first in the model equation
(1) or equivalently (3), which contains the constitutive relations with its model parameters.
Any numerical method for simulation should then be closely related to the model equation.
In particular, the only model parameters allowed in the numerical method are inherited from
the constitutive relations. The purpose of any numerical method is only to produce approx-
imate solutions of the PDE. Introducing parameters directly into the numerical methods
means that one imposes assumptions on the solution, which may be unphysical. Numerical
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Figure 6. 3D graphs of Simulation GvT.

solutions should instead be the output results of the physical principles and the assumed
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Figure 7. The concentration profile at t = 3 h of Simulation GvT.

constitutive relations. Examples of such parameters which cannot be found in the corre-
sponding model equation are the threshold concentration in the clarification zone by Takács
et al. (1991), the reduction factor multiplied with the downward bulk velocity Qu/A by Plósz
et al. (2007, 2011), and factors in the numerical flux to account for compression by Abusam
& Keesman (2009).

4.5. Boundary conditions and heuristic assumptions. The advantage of the model
formulation that the governing equation (1) or (3) should hold on the entire real line, i.e.,
the SST and the outlet pipes are divided into four zones, is that no boundary conditions
need to be imposed. In fact, no extra boundary conditions must be imposed, since this
means potentially unphysical assumptions on the solution. The conservation of mass (3)
should hold in any interval [z1, z2] of the real axis, also when such an interval contains one
of the outlet locations. Hence, the correct boundary “condition” is that the flux of particles
leaving the SST is equal to the flux of particles in the outlet pipe just outside the SST. The
outlet concentrations Ce and Cu are part of the solution, i.e., they are model outputs which
should be delivered automatically without any extra assumption. Note that the special case
of batch settling in a column is included within this setting. Then Qe = Qu = 0, and since
we have neither compression nor dispersion in the effluent and underflow zones, at the top
and bottom respectively, the total flux Φ in (4) is zero outside the SST, and hence also at
the top and bottom inside the SST.

In many of the published simulation methods for SSTs, extra boundary conditions are
assumed. The most common assumption is that the concentrations in the outlet pipes are
equal to the concentrations in the top and bottom layer, respectively (Abusam & Keesman,
2009; David et al., 2009a, b; Dupont & Dahl, 1995; Hamilton et al., 1992; Härtel & Pöpel,
1992; Koehne et al., 1995; Lee et al., 2006; Nocoń, 2006; Otterpohl & Freund, 1992; Ozinsky
et al., 1994; Plósz et al., 2007, 2011; Stepova & Kalugin, 2011; Takács et al., 1991; Verdickt
et al., 2005; Vitasovic, 1989; Watts et al., 1996; Wett, 2002). In other words, one assumes
that the concentration is continuous across the SST boundaries and this is done without
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any reference to the solution of the model PDE. Instead, the conservation of mass implies
that the total flux Φ, see (4), is continuous over the boundaries. In fact, assuming that the
concentration is continuous over the boundaries may violate the conservation of mass as can
be seen with the following example. Consider the hyperbolic case when dcomp = ddisp ≡ 0
and assume that Ctop := C(−H+0, t) > 0 is the concentration at the top of the clarification
zone at time t. Then the total flux at the top of the clarification zone inside the SST is

Φ

(
Ctop,

∂C

∂z
,−H + 0, t

)
= fbk(Ctop)− QeC

top

A

and in the effluent pipe

Φ

(
Ce,

∂C

∂z
,−H − 0, t

)
= −QeCe

A
,

since there is only bulk flow in the effluent pipe (it is impossible for any gravity settling to
make particles move back into the SST as they have left it). The conservation of mass, i.e.,
the flux is continuous, yields

fbk(Ctop)−QeC
top/A = −QeCe/A ⇐⇒ Ce = Ctop − Afbk(Ctop)

Qe

. (20)

Hence, the conservation of mass implies that the effluent concentration Ce is strictly less
than the one inside the SST Ctop. Erroneously setting Ce := Ctop thus means that extra
mass is created from nowhere.

It should be mentioned that (20) holds in steady state and in the hyperbolic case when
dcomp = ddisp ≡ 0. The difficulty is to establish Ctop (and the corresponding bottom concen-
tration) from the exact solution of the PDE during dynamic operation. Such formulas have
been presented by Diehl (1996), which imply the numerical update formulas presented by
Diehl & Jeppsson (1998). In our simulation model, however, when the second-order deriva-
tive terms are sometimes present and sometimes not, we prefer the straightforward numerical
implementation by using the four extra layers outside the SST.

As has also been noticed by Bürger et al. (2005), all simulations indicate that in regions
where the second-order terms are nonzero in the governing equation (1), the solution is
smooth also over boundaries. For the simulation of SSTs where the concentration at the
bottom in most cases is greater than the critical one Cc, the underflow concentration Cu

equals the bottom concentration inside the SST. However, at the top it is likely that there is
no compression present. An example where there is a discontinuity at the effluent location
between the effluent concentration Ce and Ctop = Cc is provided in Figure 3 for t & 80 h.

There are attempts to let the feed inlet location depend on the solution itself in the
numerical algorithm (Watts et al., 1996; Plósz et al., 2007, 2011). The solution is always
dependent on the feed location, wherefore it is doubtful that such an approach can be
formulated as any well-posed mathematical problem (model PDE plus initial data).

We are forced to mention that the number of layers N should only be a parameter that
controls the quality of approximation of the exact solution of the model PDE. The number
of layers is not a parameter to be adjusted to a particular physical reality (cf. Stricker et al.,
2007).
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In the paper by Stricker et al. (2007), the effect of compression is modelled by introduction
of extra terms in the batch settling flux function fbk. Although this is in agreement with
a consistent modelling methodology (parameters should be introduced in the constitutive
assumptions only), this is unsuitable from the commonly known physical insight that such
a constitutive assumption necessarily involves also the gradient of the concentration.

4.6. Discretization of the dispersion and compression fluxes. Finally, let us comment
on the on proper discretization of the second-order derivative terms on the right-hand side of
(1), or rather, the dispersion and compression fluxes in (4). Since the dispersion coefficient
ddisp(z,Qf) is a continuous function and does not depend on the solution C, the corresponding
term only means a smoothing of the solution. A straightforward difference approximation;
see (13), is therefore unharmful.

The modelling of the compression of particles above a certain critical concentration, or gel
point, Cc > 0, may well imply that the compression coefficient dcomp(C) has a discontinuity at
C = Cc. The case that should be discussed carefully occurs thus when ddisp ≡ 0 and dcomp(C)
vanishes on a C-interval of positive length but is positive elsewhere. We may focus on the
typical compression coefficient (17). Then the governing equation (1) is strongly degenerate
parabolic since it degenerates to a first-order hyperbolic type wherever the solution assumes
values C < Cc. This behaviour demands some care in the discretization. Roughly speaking,
convergence analyses for numerical schemes for strongly degenerate parabolic equations (Evje
& Karlsen, 2000; see also Bürger & Karlsen, 2001) suggest that the discretization (12), (14),
which boils down to(

dcomp(C)
∂C

∂z

)
(zj, tn) =

∂D(C)

∂z
(zj, tn) =

D
(
Cn

j+1

)
−D

(
Cn

j

)
∆z

+O(∆z), (21)

ensures that the corresponding scheme converges to the appropriate physically relevant (en-
tropy) solution of (1) as ∆t,∆z → 0, provided the CFL condition (10) is satisfied. The
formula (21) is called conservative discretization. Note that the discretization (21) ensures
that the final scheme is monotone under the CFL condition.

The salient point we are making here is that there are other “natural” discretizations, for
example (cf. Watts et al., 1996)(

dcomp(C)
∂C

∂z

)
(zj, tn) ≈ dcomp

(
Cn

j + Cn
j+1

2

)
Cn

j+1 − Cn
j

∆z
. (22)

While this “non-conservative” discretization (or others such as the one proposed by Stepova
& Kalugin (2011; Eq. (47))) can well be employed for strictly parabolic equations with
dcomp > 0, which have smooth solutions, in the strongly degenerate case (22) will in general
produce wrong discontinuous solutions. We demonstrate this by the following example.

Simulation D. The simulation demonstrates the fill-up of an SST, which is initially filled
with only water. We turn off the dispersion effect (α1 = 0) and let the other parameters in
the constitutive relations be as in Section 2.5. We use the following time-independent values:
Qf = 250 m3/h, Qu = 80 m3/h, Qe = 170 m3/h and Cf = 4 kg/m3. Correct approximate
solutions are presented to the left in Figure 8. It contains a typical sludge blanket with the
critical concentration Cc = 6 kg/m3 just below it. In fact, the PDE theory yields that the
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Figure 8. 3D graphs of Simulation D.

only entropy-satisfying discontinuities that may arise in the solution must have lower and
higher concentration values in the interval [0, Cc]. To the right in Figure 8, simulations are
shown with the incorrect discretization (22) and we can infer three incorrectnesses. The
location of the sludge blanket is wrong, the concentration below the discontinuity is greater
than Cc and in the transient part of the solution, a non-monotone behaviour of the numerical
method can be seen. It should be mentioned that all simulations have been done with the
CFL condition (10). The problem with the incorrect discretization is that there is no CFL
condition with ∆t/(∆z)2 bounded because of the appearance of a term containing d′comp(C),
which is unbounded near C = Cc. Simulations with much smaller time steps show, however,
the same behaviour as in Figure 8.

5. Conclusions

We recommend the use of reliable numerical methods for simulation. This paper illustrates
how recent results of numerical analysis can be used for the practical application to the
simulation of SSTs. Applied mathematical research has led to several alternative methods,
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represented here by Method G and Method EO, which are both sound in the sense that they
converge to the solution of the PDE as the discretization tends to zero. For Method EO
this has been proved by Bürger et al. (2005) and the comparisons here indicate strongly that
this holds for Method G as well. The choice of method to be implemented in a simulator is
subject to several competing principles. As our results show, for a given value of N , Method
G produces a numerical solution faster than Method EO, but the value of this advantage is
questionable since Method EO is more efficient than Method G in reducing the numerical
error. In other words, the disadvantage of larger CPU times associated with Method EO
is more than compensated by the gain in quality of numerical solutions if compared with
Method G. This quality difference is a result of the application of the numerical flux formula
to the total flux and the batch settling flux, respectively, rather than the choice of numerical
flux formula (Engquist-Osher or Godunov). An aspect that speaks in favour of Method G
is its ease of implementation.

We have argued and demonstrated some pitfalls and unsuitable approaches when deriving
simulation models for SSTs. An erroneous but common approach is to try to formulate an
SST model in terms of a numerical method directly. In many cases found in the literature,
this has lead to unreliable simulations methods. The main reason for this is the nonlinear
behaviour of the continuous sedimentation process, which when consistently modelled, needs
PDE theory and advanced numerical analysis for the derivation of a reliable simulation
model.
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Nomenclature

A cross-sectional area of SST [m2]
B depth of thickening zone [m]
C concentration in SST [kg/m3]
Cc critical concentration [kg/m3]
Cj average of C over layer j [kg/m3]
Cmax maximum concentration [kg/m3]
D primitive of dcomp [kg/(ms)]
F (convective) flux function [kg/(m2s)]
G Godunov numerical flux [kg/(m2s)]
H height of clarification zone [m]
Jcomp compressive flux [kg/(m2s)]
Jdisp dispersive flux [kg/(m2s)]
N number of layers of SST [−]
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Q volumetric flow rate [m3/s]
dcomp compression function [m2/s]
ddisp dispersion function [m2/s]
fbk Kynch batch flux density function [kg/(m2s)]
g acceleration of gravity [m/s2]
j layer index [−]
r parameter in equation for fbk [m3/kg]
t time [s]
v0 settling velocity of a single particle in unbounded fluid [m/s]
vhs hindered settling velocity
z depth from feed level in SST [m]

Greek letters.

∆C stepsize of discretization of C-axis [kg/m3]
∆t time step of numerical method [s]
∆z layer width of numerical method [m]
∆ρ solid-fluid density difference [kg/m3]
Φ (total) flux [kg/(m2s)]
α parameter in compression function [Pa]
α1 parameter in dispersion coefficient [m−1]
α2 parameter in dispersion coefficient [s/m2]
β parameter in compression function [kg/m3]
γ characteristic function, equals 1 inside and 0 outside SST
δ Dirac delta distribution [m−1]
ρs density of solids [kg/m3]

Subscripts.

e effluent
f feed
u underflow

Superscripts.

num numerical (convective or diffusive) flux
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Verlag, Basel.

LeVeque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, Cambridge, UK.
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yarzúa: A priori error analysis of a fully-mixed finite element method for a two-
dimensional fluid-solid interaction problem

2011-26 Fabián Flores-Bazán, Sigifredo Laengle, Gino Loyola: Characterizing the
efficient points without closedness or free-disposability

2011-27 Jorge Clarke, Ciprian A. Tudor: Least squares estimator for the parameter of
the fractional Ornstein-Uhlenbeck sheet

2011-28 Anahi Gajardo, Jarkko Kari, Andres Moreira: On time-symmetry in cellular
automata

2011-29 Tomás Barrios, Rommel Bustinza, Galina C. Garćıa, Erwin Hernández:
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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