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Galina C. Garćıa, Erwin Hernández

PREPRINT 2011-29

SERIE DE PRE-PUBLICACIONES





A stabilized mixed method for generalized Stokes problem based on

the velocity-pseudostress formulation: A priori error estimates and an

optimal control problem∗

Tomás P. Barrios†, Rommel Bustinza‡,
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Abstract

In this paper we present an augmented mixed formulation applied to generalized Stokes problem
and uses it as state equation in an optimal control problem. The augmented scheme is obtained
adding suitable least squares terms to the corresponding velocity-pseudostress formulation of the
generalized Stokes problem. To ensure the existence and uniqueness of solution, at continuous
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1 Introduction

It is very well known that the success of mixed finite element methods for the numerical solution
of boundary value problems arising in continuum mechanics is mainly due to the possibility of the
introduction of auxiliary unknowns. However, the fact that the discrete spaces used for approximation
of different unknowns must satisfy the inf-sup condition leads to several difficulties of both theoretical
and practical nature (see [3], [4], [10], [17], [20]). As a result, in the last time, the formulation of
finite element methods that circumvent stability conditions, such as inf-sup condition, has become the
subject of intensive research efforts.

The augmented mixed finite element method is a particular case of stabilization techniques, where
usually least squares terms are added, locally or globally, to the dual mixed variational problems.
Normally, these additional terms come from the equations that results when the second order equation
is rewritten as first order system. The main advantage of these approaches is that it allows us to use any
combination of the subspaces associated to different unknowns.As a consequence, this technique has
been extended in different directions in the last years. In particular, an augmented mixed formulation
applied to elliptic problems with mixed boundary conditions is presented and analyzed in [2], while in
[19], [13], [12] and [11] the Darcy law, the elasticity problem, stationary Stokes as well as incompressible
flows problems are studied.

We point out that the interest in studying the generalized Stokes problems is motivated by the
fact that one has to deal with this kind of problem after applying a time discretization approach
(e.g., Euler method) to the non steady Stokes problem. Additionally, it also plays a fundamental role
in the numerical simulation of viscous incompressible flows (laminar and turbulent), since the most
expensive part of the solution procedure for the time-dependent Navier-Stokes equations reduces to
solve the generalized Stokes problem at each nonlinear iteration.

In order to describe the model of interest, we let Ω be a bounded open subset of R2 with Lipschitz
continuous boundary Γ. Then, given the source term f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for
the velocity u and the pressure p of the fluid occupying the region Ω, such that

αu− ν∆u+∇p = f in Ω,
div(u) = 0 in Ω,

u = g on Γ,
(1)

where ν is a positive constant called kinematic vistosity of the fluid, α is a positive parameter propor-
tional to the inverse of the time-step and the datum g satisfies the compatibility condition

∫
Γ g ·ν = 0,

with ν being the unit outward normal at Γ. In addition, and for uniqueness purposes, we assume that
the pressure p ∈ L2

0(Ω) := {q ∈ L2(Ω) :
∫

Ω q = 0}. We mention here that this problem has already
been analyzed by different techniques, so the list of references on its approximation is quite large,
and due to our current interest is the mixed formulation, we mention [6], where a dual-dual mixed
approach is presented and analyzed. Up to the authors’ knowledge, previous work for this problem
using the velocity-pseudostress formulation, as developed in [8] (see also [14], [16]) for the stationary
Stokes problem, are not available in the current literature.
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On the other hand, we also consider the optimal control problem for the pressure

minimize
1

2
‖p− p0‖2L2(Ω) +

η

2
‖zc‖2[L2(Ω)]2 (2)

where

• the state of the system p is the solution of (1), called state equation, with external source term
f + zc,

• zc is a finite control variable in the form zc =
∑m

i=1 zifi, for given functions fi ∈ [L2(Ω)]2,
i = 1, . . . ,m.

Note that p0 is the desired pressure and η > 0 is a given regularization (or control cost) parameter. The
optimal control problem (2) has been considered in the literature for the Stokes equations and Navier-
Stokes equations, under different optimization approach, including state and control constraints, (see
[5, 9, 21] and references therein), all of them use the adjoint state equation to solve the optimization
problem. Here, we consider a classical scheme, proposed and analyzed in [18], which do not use
properties for the adjoint equations.

Then the aims of this work are: to present and analyze the velocity-pseudostress formulation for
(1) at least for moderately large value of parameter α; to study the corresponding stabilization scheme
by applying augmented mixed method, obtaining optimal rate of convergence, and applied it to obtain
error estimate for the control variable in the corresponding optimal control problem.

The rest of the paper is organized as follows. In Section 2, we present an analysis of velocity-
pseudotress formulation. Its corresponding stabilization is developed in Section 3. In Section 4, the
Galerkin schemes as well as the associated a priori error estimates are established. In Section 5, the
optimal control problem concerning us is introduced and analyzed. An error estimate for the control
variable is presented, too. Finally, several numerical examples are reported in Section 6.

We end this section with some notations to be used throughout the paper. Given any Hilbert
space H, we denote by H2 the space of vectors of order 2 with entries in H, and by H2×2 the space
of square tensors of order 2 with entries in H. In particular, given τ := (τij), ζ := (ζij) ∈ R2×2, we
write, as usual, τ t := (τji), tr(τ ) := τ11 + τ22 and τ : ζ :=

∑2
i,j=1 τij ζij . We also use the standard

notations for Sobolev spaces and norms. We denote by [H1
0 (Ω)]2 := {v ∈ [H1(Ω)]2 : v = 0 on Γ },

by H(div; Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 }, and by H0 := {τ ∈ H(div; Ω) :∫
Ω tr(τ ) = 0}. Note that H(div; Ω) = H0 ⊕ R I, that is for any τ ∈ H there exist unique τ 0 ∈ H0

and d := 1
2|Ω|

∫
Ω tr(τ ) ∈ R such that τ = τ 0 +d I, where I is the identity matrix in R2×2. Finally, we

use C or c, with or without subscripts, to denote generic constants, independent of the discretization
parameters, which may take different values at different occurrences.

2 The dual-mixed formulation

We begin this section remarking that the dual-mixed formulation of (1) can be deduced from the ideas
developed in [1], where the authors propose a displacement-pressure formulation for an anisotropic

3



elasticity problem. In addition, studying least-squares methods for the numerical solution of linear,
stationary and incompressible Newtonian fluid flow, in [7] a new variable was introduced instead of
the stress tensor, the called pseudostress tensor. In the framework of mixed FEM, this approach
also have been used recently in [8], [14], [16] and [15], where the stationary Stokes equations and the
quasi-Newtonian fluid flow are studied.

With the aim to derive the dual-mixed formulation of (1), we first introduce the pseudostress
σ := ν∇u− pI in Ω. Using this new unknown, the first equation in (1) becomes

αu− div(σ) = f in Ω . (3)

In addition, noting that tr(σ) = tr(ν∇u− pI) = −2p, then by the uniqueness condition
∫

Ω p = 0,
we deduce that σ ∈ H0. Moreover, the deviator of tensor σ is denoted by σd := σ − 1

2tr(σ)I, which
clearly belongs to H0, and then the relation σ := ν∇u− pI is rewriting as

σd = ν∇u in Ω. (4)

Now, we are ready to introduce a new mixed formulation. Multiplying (3) and (4) by suitable
test functions, and after integrating in Ω, we obtain the following dual-mixed formulation of (1): Find
(σ,u) ∈ H0 × [L2(Ω)]2 such that∫

Ω
σd : τ d + ν

∫
Ω
u · div(τ ) = ν

∫
Γ
g · τν ∀τ ∈ H0 , (5)

ν

∫
Ω
v · div(σ)− αν

∫
Ω
u · v = −ν

∫
Ω
f · v ∀v ∈ [L2(Ω)]2 . (6)

In order to prove the unique solvability of the variational formulation (5)-(6), we write it now
as a system of operator equations with a saddle point structure. To this end, we first define the
spaces X := H0, M := [L2(Ω)]2. Then, we introduce the operators and functionals A : X → X ′,
B : X →M ′, S : M →M ′, G ∈ X ′ and F ∈M ′, as suggested by the structure of (5)-(6), so that this
problem can be stated as: Find (σ,u) ∈ X ×M such that

[A(σ), τ ] + [B(τ ),u] = [G, τ ] ∀τ ∈ X

[B(σ),v]− [S(u),v] = [F,v] ∀v ∈M,
(7)

where [·, ·] denotes the duality pairing induced by operators and functionals used in each case. The
next lemma will be used to prove the well-posedness of (7), and its proof can be seen in Proposition
3.1 of Chapter IV in [4].

Lemma 2.1 There exists c1 ∈ (0, 1], depending only on Ω, such that

c1 ‖τ‖2[L2(Ω)]2 ≤ ‖τ
d‖2[L2(Ω)]2 + ‖div(τ )‖2[L2(Ω)]2 ∀τ ∈ H0. (8)

Existence and uniqueness are establishes in the next theorem.
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Theorem 2.1 Problem (7) has a unique solution (σ,u) ∈ X ×M . Moreover, there exists a positive
constant C(ν, α), independent of the solution, such that

||(σ,u)||X×M ≤ C(ν, α)(‖F‖+ ‖G‖). (9)

Proof. Notice that the operators A, B and S, as well as the functionals F and G, are all linear and
bounded. In particular, it is easy to see that ||B|| = O(ν), ||S|| = O(α, ν) and ||A|| = O(c1).

Let us define

N(B) := kernel(B) := {τ ∈ X : div(τ ) = 0 in Ω}. (10)

Then, using Lemma 2.1 we deduce that A is such that

[A(τ ), τ ] = ‖τ d‖2[L2(Ω)]2×2 ≥ c1‖τ‖2X ∀τ ∈ N(B). (11)

In addition, since α ≥ 0 and ν ≥ 0, the linear operator S is positive semi-definite on M , that is

[S(v),v] = αν||v||2M ≥ 0 ∀v ∈M. (12)

It only remains to show that B satisfy the corresponding inf-sup condition on X ×M . Indeed, given
v ∈M we get lower bounds for

sup
τ∈X\{0}

[B(τ ),v]

||τ ||X
≥
ν

∫
Ω
v · div(τ̃ )

||τ̃ ||X

by introducing z weak solution of −∆z = v in Ω with z = 0 on Γ, and then setting τ̃ = −∇z, we
conclude the inf-sup condition for B. Finally, the result is consequence of Theorem II.1.2 in [4].

�
However, we remark that at first glance, this mixed formulation at the discrete level needs to

satisfy an inf-sup condition, which implies that it not possible to use any pair of the subspaces in
practice, we can only use a stable pair of discrete susbspaces for the standard Stokes problem for each
row of the tensor. To circumvent this difficult we propose, in the next section, to use a stabilization
method.

3 The stabilized mixed formulations

In this section we analyse two different approaches of the augmented mixed method for (5)-(6).

3.1 Velocity-pseudostress formulation

For the first approach, we proceed as in [2] and include the least-squares terms given by

κ1

∫
Ω

(ν∇u− σd) : (ν∇v + τ d) = 0 ∀(τ ,v) ∈ H0 × [H1(Ω)]2 , (13)

κ2

∫
Ω

(divσ − αu) · (divτ + αv) = −κ2

∫
Ω
f · (divτ + αv) ∀(τ , v) ∈ H0 × [H1(Ω)]2. (14)
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In this way, substracting the equations (5) and (6), and after adding (13) and (14), we derive the
following augmented mixed scheme: Find (σ,u) ∈H0 := H0 × [H1(Ω)]2 such that

a((σ,u), (τ ,v)) = F1(τ ,v) ∀(τ ,v) ∈H0, (15)

where the bilinear form a : H0 ×H0 → R, and the linear functional F1 : H0 → R are given by

a((ζ,w), (τ ,v)) :=

∫
Ω
ζd : τ d + ν

∫
Ω
w · div(τ )− ν

∫
Ω
v · div(ζ) + αν

∫
Ω
w · v

+κ1

∫
Ω

(ν∇w − ζd) : (ν∇v + τ d) + κ2

∫
Ω

(divζ − αw) · (divτ + αv) (16)

and

F1(τ ,v) := ν

∫
Ω
f · v + ν

∫
Γ
g · τν − κ2

∫
Ω
f · (αv + divτ ), (17)

for all (τ ,v), (ζ,w) ∈ H0, and κ1 and κ2 are real paremeters. At the begining, the idea is to choose
these parameters such that we can satisfy the hypotheses of Lax-Milgram’s Lemma. In addition, we
remark that the mixed scheme developed in [6] is well posed for α ≥ ν. This condition can be relaxed
using the augmented mixed approach by choosing appropriately κ1 and κ2, as we present in the next
lemma.

Lemma 3.1 We assume κ1 = 1− κ2/2.

1. If α ≤ ν and κ2 ∈ (0, 1) then there exists a positive constant C(α, κ2) = O(α2) such that

a((τ ,v), (τ ,v)) ≥ C(α, κ2)||(τ ,v)||2H0
.

In particular for κ2 = 1/2, we obtain C(α) = min

{
c1

4
,
α2

2

}
.

2. If α > ν and κ2 ∈
(

0,
ν

α

)
then there exists C(α, ν, κ2) > 0 such that

a((τ ,v), (τ ,v)) ≥ C(α, ν, κ2)||(τ ,v)||2H0
.

In particular for κ2 =
ν

2α
, we have C(α, ν) = min

{
c1ν

4α
,
ν2

2

}
.

where c1 ∈ (0, 1] is the constant of Lemma 2.1.

Proof. Let us first consider α ≤ ν. Using (16), we obtain

a((τ ,v), (τ ,v)) = (1− κ1)

∫
Ω
|τ d|2 + (αν − κ2α

2)

∫
Ω
|v|2 + κ1ν

2

∫
Ω
|∇v|2 + κ2

∫
Ω
|divτ |2,
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which, after algebraic manipulation and considering κ1 = 1− κ2/2, yields to

a((τ ,v), (τ ,v)) ≥ κ2

2

(∫
Ω
|τ d|2 +

∫
Ω
|divτ |2

)
+
κ2

2
||divτ ||2[L2(Ω)]2

+(1− κ2)α2

∫
Ω
|v|2 +

(
1− κ2

2

)
ν2

∫
Ω
|∇v|2.

Now, thanks to Lemma 2.1 and α ≤ ν, it follows that

a((τ ,v), (τ ,v)) ≥ c1κ2

2
||τ ||2H + C∗α

2||v||2[H1(Ω)]2

where C∗ = min

{
(1 − κ2), (1 − κ2

2
)

}
= 1 − κ2. Then, chosing C(α, κ2) = min

{
c1κ2

2
, C∗α

2

}
, we

prove the first case.
For the second one, α > ν, the proof follows the same ideas than in the previous case. We omit

further details. �
The well posedness is established in the next theorem.

Theorem 3.1 Under the same assumption of Lemma 3.1, the problem (15) has unique solution
(σ,u) ∈H0, and there holds p = −1

2tr(σ) in Ω. Moreover, there exists a positive constant C = C(α, ν)
such that

||(σ,u)||H ≤ C(α, ν)

(
‖f‖[L2(Ω)]2 + ‖g‖[H1/2(Γ)]2

)
. (18)

Proof. It is not difficult to see that the bilinear form a(·, ·) is continuous, that is there exists M > 0
such that

|a((σ,u), (τ ,v))| ≤M ||(σ,u)||H0 ||(τ ,v)||H0 .

Notice that M = 1 + 2ν + αν + κ1(1 + ν)2 + κ2(1 + α)2. Furthemore, from Lemma 3.1 the bilinear
form is coercive in H0, then by Lax-Milgram’s Lemma, the solution (σ,u) ∈H0 is unique and satisfy
the stability condition (18). �

3.2 Velocity-pressure-pseudostress formulation

In this subsection, for the sake of completeness, we describe another stabilized formulation which
allows us to approximate the velocity, the pressure and the pseudostress, simultaneously. To this end,
we first introduce the next least-square type term. Given κ3 > 0

κ3

∫
Ω

(
p+

1

2
tr(σ)

)(
q +

1

2
tr(τ )

)
= 0 ∀(τ , q) ∈H0 × L2(Ω). (19)

Then, by adding (19) to (15), we deduce the new augmented mixed scheme: Find (σ,u, p) ∈ H̃0 :=
H0 × L2(Ω) such that

b((σ,u, p), (τ ,v, q)) = F2(τ ,v, q) ∀(τ ,v, q) ∈ H̃0, (20)
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where the bilinear form b : H̃0 × H̃0 → R, and the functional F2 : H̃0 → R are given by

b((ζ,w, r), (τ ,v, q)) = a((ζ,w), (τ ,v)) + κ3

∫
Ω

(
p+

1

2
tr(σ)

)(
q +

1

2
tr(τ )

)
, (21)

and
F2(τ ,v, q) := F1(τ ,v), (22)

for all (τ ,v, q), (ζ,w, r) ∈ H̃0. Here a(·, ·) and F1(·) are defined in (16) and (17), respectively.

Lemma 3.2 We assume κ1 = 1− κ2/2 and 0 < κ3 < κ2c1.

1. If α ≤ ν and κ2 ∈ (0, 1), then there exists a positive constant C(α, κ2, κ3) = O(α2) such that

b((τ ,v, q), (τ ,v, q)) ≥ C(α, κ2, κ3)||(τ ,v, q)||2
H̃0
.

In particular for κ2 = 1/2 and κ3 = c1/4, we obtain C(α) = min

{
c1

8
,
α2

2

}
.

2. If α > ν and κ2 ∈
(

0,
ν

α

)
, then there exists C(α, ν, κ2, κ3) > 0 such that

b((τ ,v, q), (τ ,v, q)) ≥ C(α, ν, κ2, κ3)||(τ ,v, q)||2
H̃0
.

In particular for κ2 =
ν

2α
and κ3 =

κ2c1

2
, we have C(α, ν) = min

{
νc1

8α
,
ν2

2

}
.

Proof. Noting that ‖q + 1
2tr(τ )‖2L2(Ω) ≥

1
2‖q‖

2
L2(Ω) − ‖

1
2tr(τ )‖2L2(Ω) ≥

1
2‖q‖

2
L2(Ω) −

1
2‖τ‖

2
[L2(Ω)]2×2 for

all (q, τ ) ∈ L2(Ω) × [L2(Ω)]2×2. The proof of this lemma follows the same arguments of Lemma 2.1.
We omit further details. �

Existence and uniqueness of the solution is presented in the next theorem.

Theorem 3.2 Under the same assumptions of Lemma 3.2, problem (20) has unique solution (σ,u, p) ∈
H̃. Moreover, there exists a positive constant C = C(α, ν) such that

||(σ,u, p)||H̃0
≤ C(α, ν)‖f ||[L2(Ω)]2 . (23)

Proof. It is consequence of Lax-Milgram’s Lemma. �
In what follows, we develop the necessary tools to study the well-posedness and convergence of the

corresponding discrete approximations of these formulations. However, since in the first formulation
the approximation of the pressure can be computed by mean of the relation p = −1

2tr(σ) in Ω, in
our opinion, this is the most favourable approach. Therefore, throughout the rest of the paper, we
will just concentrate on the problem (15), the corresponding extension to the problem (20) should be
derived straightforwardly.
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4 The Galerkin schemes

In this section, we describe the Galerkin scheme associated to the continuous problem (15). Hereafter,
we assume that the parameters κ1 and κ2 satisfy the assumptions of Lemma 3.1. In addition, we
suppose that Ω is a polygonal region and h is a positive parameter. We consider finite element
subspaces Hσ0,h ⊂ H0 and Hu

h ⊂ [H1(Ω)]2. Then, a Galerkin scheme associated to the variational

problem (15) reads: Find (σh,uh) ∈ H0,h := Hσ0,h ×Hu
h such that

a((σh,uh), (τ h,vh)) = F1(τ h,vh) ∀ (τ h,vh) ∈H0,h . (24)

The well-posedness of this discrete problem follows from the Lax-Milgram’s Lemma for any subspace
H0,h ⊆ H0.

To describe a particular case of finite element subspaces, let {Th}h>0 be a regular family of trian-
gulations of Ω̄. We assume that Ω̄ = ∪{T : T ∈ Th }. Given a triangle T ∈ Th, we denote by hT
its diameter and define the mesh size h := max{hT : T ∈ Th }. In addition, given an integer ` ≥ 0
and a subset S of R2, we denote by P`(S) the space of polynomials in two variables defined in S of
total degree at most `, and for each T ∈ Th, we define the local Raviart-Thomas space of order zero

RT0(T ) := span

{(
1
0

)
,

(
0
1

)
,

(
x1

x2

)}
⊆ [P1(T )]2 ,

where

(
x1

x2

)
is a generic vector of R2. Then defining,

Hσh :=
{
τ h ∈ H : τ h|T ∈ [RT0(T )t]2 ∀T ∈ Th

}
,

Hσ0,h :=

{
τ h ∈ Hσh :

∫
Ω

tr(τ h) = 0

}
,

Xh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}
,

and
Hu
h := Xh ×Xh ,

we take
H0,h := Hσ0,h ×Hu

h . (25)

Next, we give the rate of convergence of the Galerkin schemes (24) when the finite element sub-
spaces (25) is used.

Theorem 4.1 Let (σ,u) ∈ H0 and (σh,uh) ∈ H0,h be the unique solutions of the continuous and
discrete augmented mixed formulations (15) and (24), respectively. Assume that σ ∈ [Hr(Ω)]2×2,
div(σ) ∈ [Hr(Ω)]2, and u ∈ [Hr+1(Ω)]2 for some r ∈ (0, 1]. Then there exists C1 > 0, independent of
h, such that

‖(σ,u)− (σh,uh)‖H0 ≤ C1 h
r
{
‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2

}
.
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Proof. The proof follow the classical Cea’s estimate and the corresponding approximation properties
of the subspaces. We note that the behaviour of the constant with respect to the parameter α is
similar to the one describe by the constant C in Theorem 3.1. �

Remark. We note that the behaviour of the constant in Theorem 4.1 is given by C1 = O(α2) if
α� ν with κ2 = ν

2α , and by C1 = O( 1
α2 ) if α� ν with κ2 = 1

2 . This constitutes a light improvement
with respect to the results given in [6] where the behaviour of the constant only is described when
α ≥ ν and its order is like O(α3/ν) �

5 Optimal control problem

In this section, we describe the optimization scheme used to solve the optimal control problem (2).
Since the solution of the state equation (1) has been discretized in the previous section, by considering
an augmented mixed Galerkin scheme associated to the velocity-pseudostress formulation (15), the
state of the system should be given by ph = −1

2tr(σh). Then, the solution of our optimal control
problem depends on the discrete parameter h. In fact, given the desired pressure p0, the optimal
control problem reads:

minimize
1

2
‖ph − p0‖2L2(Ω) +

η

2
‖zhc ‖2L2(Ω) (26)

where

• the state of the system ph is obtained from the solution of (24), called state equation, with
external source term f + zc,

• zc is a finite control variable in the form zc =
∑m

i=1 zifi, for given functions fi ∈ [L2(Ω)]2,
i = 1, . . . ,m.

On the other hand, from the linearity of (24), we can write the solution of the state equations as

(σh,uh) = (σ0h,u0h) +

m∑
i=1

zhi (σih,uih),

where (σ0h,u0h) is the solution of problem (24) without control, considering only the external force
f and (σih,uih) is the solution (24), considering as external force fi ∈ [L2(Ω)]2.

The global state of the system ph is written in terms of the control variable Zh ∈ Rm, Zh =
(zh1 , z

h
2 , . . . , z

h
m) and the pressures pih = −1

2tr(σih) in the following way:

ph := p0h +

m∑
i=1

zhi pih.

In order to compute the numerical approximation of the optimal control, i.e., Zop
h , we follow the

classical scheme used in [18], where the necessary and sufficient condition is given by the Euler equality,
which in our case reads

(Ph + ηI)Zop
h = −b, (27)
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with I denoting the identity matrix of order m and Ph ∈ Rm×m and b ∈ Rm are defined by

(Ph)ij :=
(∫

Ω
pihpjh

)
, i, j = 1, . . . ,m,

(bh)i :=
(∫

Ω
pihp0h

)
, i = 1, . . . ,m .

Notice that the optimal control Zop
h is expected to be a good approximation of the optimal control

Zop. This will be addressed in the numerical examples.

Theorem 5.1 Let Zop and Zop
h the optimal solutions of problems (2) and (26), respectively. Then

there exists C > 0, independent of h, such that

‖Zop
h −Z

op‖ ≤ Chr ,

with ‖ · ‖ denoting the Euclidean norm and r ∈ (0, 1] is the additional regularity of the exact solution.

Proof. We point out that the numerical scheme (26), proposed to solve (2), belongs to the optimal
control abstract setting described in [18] . Then, according with Theorem 3.9 in [18] and using the
result of Theorem 4.1, we have

‖Zop
h −Z

op‖ ≤ C‖p− ph‖L2(Ω)

≤ C

2
‖ − tr(σ) + tr(σh)‖L2(Ω)

≤ C

2
‖σ − σh‖[L2(Ω)]2×2

≤ Chr ,

which completes the proof. �

6 Numerical results

We begin this section by remarking that, for implementation purposes, it is very hard to find a suitable
basis of Hσ0,h due to the null media condition required by its elements. We circumvent this search by
imposing this requirement through a Lagrange multiplier, which yields to the following auxiliar discrete
scheme: Find (σh,uh, ϕh) ∈ Hh := Hσh ×Hu

h × R such that

a((σh,uh), (τ h,vh)) + ϕh

∫
Ω

tr(τ h) = F1(τ h,vh) ,

ψ

∫
Ω

tr(σh) = 0 ,

(28)

for all (τ ,v, ψ) ∈ Hh. The next theorem establishes the equivalence between the variational problems
(24) and (28).

11



Theorem 6.1

i) Let (σh,uh) ∈ H0,h be the solution of (24). Then (σh,uh, 0) is a solution of (28).

ii) Let (σh,uh, ϕh) ∈ Hh be a solution of (28). Then ϕh = 0 and (σh,uh) is the solution of (24).

Proof. We adapt the proof of Theorem 4.3 in [13]. We first observe, according to the definition of
a(·, ·), that for each (τ ,v) ∈ H(div; Ω)× [H1(Ω)]2 there holds

a((τ ,v), (I, 0)) = 0 ∀ (τ ,v) ∈ H(div; Ω)× [H1(Ω)]2 . (29)

Now, let (σh,uh) ∈ H0,h be the solution of (24), and let (τ h,vh) ∈ Hσh × Hu
h . We write τ =

τ 0,h + dhI, with τ 0,h ∈Hσ0,h and dh ∈ R, and observe that (τ 0,h,vh) ∈H0,h, whence the definition of
F1, (24) and (29) yield

F1(τ h,vh) = F1(τ 0,h,vh) = a((σh,uh), (τ 0,h,vh)) = a((σh,uh), (τ h,vh)) .

This identity and the fact that σh clearly satisfies the second equation of (28), show that (σh,uh, 0)
is indeed a solution of (28).

Conversely, let (σh,uh, ϕh) ∈ Hh be a solution of (28). Then taking (τ h,vh) = (I,0) in the first
equation of (28) and using the definition of F1 and (29), we find that ϕh = 0, whence (σh,uh) becomes
the solution of (24). �

We now specify the data of the two examples to be presented here. We take Ω as either the square
]−1, 1[2 (for Example 1) or the circular section Ω := {(x1, x2) ∈ R2 : x2

1 +x2
2 < 1} \ [0, 1]× [−1, 0] (for

Example 2). In both examples, the data f and g are chosen so that the exact solutions u and p are the
ones shown in Table 4.1, where s =

√
(x1 − 2)2 + (x2 − 2)2. We remind that in all cases, div(u) = 0

in Ω and σ = ν∇u−pI in Ω. We emphasize that the solution (u, p) of Example 1 is smooth, while the
exact pressure p in the solution of Example 2 lives in H1+2/3(Ω), since their derivatives are singular
at (0, 0). This implies that div(σ) ∈ [H2/3(Ω)]2 only, which, according to Theorem 4.1, yields 2/3 as
the expected rate of convergence for the uniform refinement.

In what follows, N stands for the total number of degrees of freedom (unknowns) of (28), that is,
N = 2*(Numbers of vertexes of Th) + 2*(Number of edges Th) +1, which leads asymptotically to 4
unknowns per triangle, which reflects the low computational cost, almost the same than the required
by considering the P1−isoP1 elements for the standard velocity-pressure formulation, whose degrees
of freedom are asymptotically 4.5 (unknowns) per triangle. In addition, by setting ph := −1

2tr(σh),
we obtain a reasonable piecewise-linear approximation of the pressure p := −1

2tr(σ). Hereafter, the
individual and total errors are denoted as follows

ε(u) := ‖u− uh‖[H1(Ω)]2 , ε(σ) := ‖σ − σh‖H , ε :=
(

[ε(u)]2 + [ε(σ)]2
)1/2

,

ε0(p) := ‖p+
1

2
tr(σh)‖L2(Ω) , ε0(σd) := ‖σd − σdh‖[L2(Ω)]2×2

and ε0(u) := ‖u− uh‖[L2(Ω)]2 ,
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where (σ,u) ∈ H0 × [H1(Ω)]2 and (σh,uh) ∈ H0,h ×Hu
h are the unique solutions of the continuous

and discrete formulations, respectively. In addition, if ε and ε̃ stand for the errors at two consecutive
triangulations with N and Ñ degrees of freedom, respectively, then the experimental rate of conver-

gence is given by r := −2
log(ε/ε̃)

log(N/Ñ)
. The definitions of r(u), r(σ), r0(σd), r0(u) and r0(p) are given

in analogous way.

Table 4.1. Summary of data for the three examples.
Ex. ν α Solution u Solution p

1 1.0 10−6

(
−ex1(x2 cos(x2) + sin(x2))

ex1x2 sin(x2)

)
2ex1 sin(x2)

1.0 10−4

1.0 1.0

1.0 100

1.0 1000

1.0 104

1.0 106

2 0.5 10−4 1

8πν

{
− ln(s)

(
1
0

)
+

1

s2

(
(x1 − 2)2

(x1 − 2)(x2 − 1)

)}
r2/3 sin

(
2

3
θ

)
− 3

2π
1.0 1.0
1.0 100

0.5 1000

0.5 104

0.5 106

In addition, with the aim of showing the good behaviour of the augmented method with respect to
the parameters α and ν, and thus for the parameters (κ1, κ2), included in the definition of the bilinear
form a(·, ·) (cf. (16)) as well as the linear functional F1(·) (cf. (17)), we choose different values, in
agreement with the feasible choices described in Lemma 3.1. All the considered choices are summary
in Table 4.1.

In Tables 4.2-4.14 we give the individual and global errors and the corresponding experimental
rates of convergence for the uniform refinements as applied to Examples 1 and 2. Hereafter, uniform
refinement means that, given a uniform initial triangulation, each subsequent mesh is obtained from
the previous one by dividing each triangle into the four ones arising when connecting the midpoints of
its sides. We remark that the errors are computed on each triangle using a 7 point-Gaussian quadrature
rule. Additionaly, using a strightforward postprocessing, we have computed the L2(Ω)-error behaviour
for approximations of σd and p, which are in relations with the ∇u and the pressure. We note that,
for these errors, we expect at least the same behaviour as ‖σ − σh‖L2(Ω).
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Table 4.2. Example 1 with α = 10−6 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.608e+00 —- 6.503e+00 —– 7.970e+00 —-
51 3.000e+00 0.8691 4.236e+00 0.8682 5.191e+00 0.8685
163 1.654e+00 1.0254 2.145e+00 1.1712 2.709e+00 1.1197
579 8.492e-01 1.0515 1.063e+00 1.1082 1.360e+00 1.0866
2179 4.278e-01 1.0346 5.290e-01 1.0529 6.803e-01 1.0458
8451 2.144e-01 1.0196 2.641e-01 1.0248 3.402e-01 1.0227
33283 1.072e-01 1.0104 1.320e-01 1.0118 1.701e-01 1.0113
132099 5.363e-02 1.0054 6.601e-02 1.0058 8.505e-02 1.0056

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 4.544e+00 —- 3.290e+00 —– 1.615e+00 —-
51 3.433e+00 0.5675 1.667e+00 1.3768 6.260e-01 1.9198
163 1.772e+00 1.1381 8.406e-01 1.1788 1.764e-01 2.1799
579 8.823e-01 1.1008 4.172e-01 1.1055 4.564e-02 2.1335
2179 4.395e-01 1.0515 2.079e-01 1.0511 1.152e-02 2.0770
8451 2.195e-01 1.0244 1.038e-01 1.0242 2.890e-03 2.0411
33283 1.097e-01 1.0117 5.191e-02 1.0117 7.231e-04 2.0213
132099 5.486e-02 1.0057 2.595e-02 1.0058 1.808e-04 2.0109

Table 4.3. Example 1 with α = 10−4 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.608e+00 —- 6.503e+00 —– 7.970e+00 —-
51 3.000e+00 0.8691 4.236e+00 0.8682 5.191e+00 0.8685
163 1.654e+00 1.0254 2.145e+00 1.1712 2.709e+00 1.1197
579 8.492e-01 1.0515 1.063e+00 1.1082 1.360e+00 1.0866
2179 4.278e-01 1.0346 5.290e-01 1.0529 6.803e-01 1.0458
8451 2.144e-01 1.0196 2.641e-01 1.0248 3.402e-01 1.0227
33283 1.072e-01 1.0104 1.320e-01 1.0118 1.701e-01 1.0113
132099 5.363e-02 1.0054 6.601e-02 1.0058 8.505e-02 1.0056

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 4.544e+00 —- 3.290e+00 —– 1.615e+00 —-
51 3.433e+00 0.5675 1.667e+00 1.3768 6.260e-01 1.9198
163 1.772e+00 1.1381 8.406e-01 1.1788 1.764e-01 2.1799
579 8.823e-01 1.1008 4.172e-01 1.1055 4.564e-02 2.1335
2179 4.395e-01 1.0515 2.079e-01 1.0511 1.152e-02 2.0770
8451 2.195e-01 1.0244 1.038e-01 1.0242 2.890e-03 2.0411
33283 1.097e-01 1.0117 5.191e-02 1.0117 7.231e-04 2.0213
132099 5.486e-02 1.0057 2.595e-02 1.0058 1.808e-04 2.0109
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Table 4.4. Example 1 with α = 1 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.4767e+00 —– 6.5849e+00 —– 7.9625 —–
51 2.9998e+00 0.8109 4.1794e+00 0.9209 5.1445 0.8848
163 1.6540e+00 1.0247 2.1395e+00 1.1525 2.7043 1.1069
579 8.4925e-01 1.0518 1.0622e+00 1.1049 1.3600 1.0846
2179 4.2781e-01 1.0347 5.2890e-01 1.0523 0.6803 1.0454
8451 2.1436e-01 1.0196 2.6412e-01 1.0246 0.3402 1.0226
33283 1.0725e-01 1.0104 1.3202e-01 1.0118 0.1701 1.0112
132099 5.3632e-02 1.0054 6.6005e-02 1.0057 0.0850 1.0056

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 4.395e+00 —– 3.4210e+00 —– 1.5358e+00 —–
51 3.421e+00 0.5078 1.6733e+00 1.4485 6.4107e-01 1.7697
163 1.772e+00 1.1326 8.4519e-01 1.1756 1.8363e-01 2.1519
579 8.822e-01 1.1001 4.1797e-01 1.1111 4.7742e-02 2.1256
2179 4.395e-01 1.0514 2.0800e-01 1.0531 1.2069e-02 2.0752
8451 2.195e-01 1.0244 1.0386e-01 1.0248 3.0274e-03 2.0406
33283 1.097e-01 1.0117 5.1909e-02 1.0119 7.5759e-04 2.0212
132099 5.486e-02 1.0057 2.5952e-02 1.0058 1.8945e-04 2.0109

Table 4.5. Example 1 with α = 100 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.132e+00 —– 2.208e+02 —– 2.209e+02 —–
51 3.928e+00 0.1027 1.463e+02 0.8337 1.464e+02 0.8333
163 1.842e+00 1.3036 2.299e+01 3.1860 2.306e+01 3.1811
579 8.823e-01 1.1611 4.829e+00 2.4620 4.909e+00 2.4411
2179 4.330e-01 1.0742 1.259e+00 2.0292 1.331e+00 1.9695
8451 2.151e-01 1.0322 3.888e-01 1.7331 4.444e-01 1.6187
33283 1.074e-01 1.0141 1.502e-01 1.3879 1.846e-01 1.2816
132099 5.365e-02 1.0064 6.841e-02 1.1409 8.694e-02 1.0926

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 2.101e+02 —– 1.538e+01 —– 1.240e+00 —–
51 1.284e+02 0.9981 3.242e+01 —– 7.607e-01 0.9897
163 1.926e+01 3.2648 3.595e+00 3.7853 1.612e-01 2.6708
579 4.124e+00 2.4321 7.982e-01 2.3745 3.543e-02 2.3908
2179 1.086e+00 2.0134 2.693e-01 1.6397 8.354e-03 2.1802
8451 3.323e-01 1.7476 1.126e-01 1.2862 2.051e-03 2.0726
33283 1.263e-01 1.4109 5.311e-02 1.0968 5.102e-04 2.0297
132099 5.707e-02 1.1531 2.611e-02 1.0301 1.274e-04 2.0131
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Table 4.6. Example 1 with α = 1000 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.151e+00 —– 2.211e+03 —– 2.211e+03 —–
51 4.029e+00 0.0601 1.414e+03 0.9060 1.414e+03 0.9059
163 1.876e+00 1.3155 2.116e+02 3.2694 2.116e+02 3.2694
579 8.958e-01 1.1668 3.966e+01 2.6417 3.967e+01 2.6414
2179 4.367e-01 1.0840 8.734e+00 2.2835 8.745e+00 2.2820
8451 2.158e-01 1.0404 2.115e+00 2.0928 2.126e+00 2.0870
33283 1.074e-01 1.0174 5.339e-01 2.0085 5.446e-01 1.9870
132099 5.366e-02 1.0074 1.449e-01 1.8920 1.545e-01 1.8276

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 2.108e+03 —– 1.280e+02 —– 1.236e+00 —–
51 1.235e+03 1.0832 2.922e+02 —– 7.849e-01 0.9198
163 1.691e+02 3.4221 2.900e+01 3.9760 1.661e-01 2.6729
579 3.172e+01 2.6407 3.804e+00 3.2052 3.647e-02 2.3922
2179 7.081e+00 2.2628 6.524e-01 2.6605 8.395e-03 2.2167
8451 1.734e+00 2.0758 1.659e-01 2.0205 2.015e-03 2.1059
33283 4.389e-01 2.0049 5.993e-02 1.4855 4.968e-04 2.0428
132099 1.194e-01 1.8887 2.698e-02 1.1579 1.237e-04 2.0166

Table 4.7. Example 1 with α = 104 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.153e+00 —- 2.212e+04 —– 2.212e+04 —-
51 4.041e+00 0.0555 1.409e+04 0.9136 1.409e+04 0.9136
163 1.882e+00 1.3156 2.098e+03 3.2783 2.098e+03 3.2783
579 8.999e-01 1.1639 3.856e+02 2.6723 3.856e+02 2.6723
2179 4.394e-01 1.0820 8.199e+01 2.3364 8.200e+01 2.3364
8451 2.169e-01 1.0416 1.870e+01 2.1813 1.870e+01 2.1813
33283 1.077e-01 1.0216 4.494e+00 2.0801 4.495e+00 2.0797
132099 5.370e-02 1.0096 1.107e+00 2.0321 1.109e+00 2.0308

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 2.108e+04 —- 1.256e+03 —– 1.236e+00 —-
51 1.230e+04 1.0923 2.887e+03 —- 7.876e-01 0.9125
163 1.664e+03 3.4424 2.840e+02 3.9915 1.669e-01 2.6713
579 3.021e+02 2.6924 3.457e+01 3.3228 3.684e-02 2.3835
2179 6.408e+01 2.3398 4.571e+00 3.0534 8.506e-03 2.2120
8451 1.443e+01 2.1998 6.747e-01 2.8230 2.031e-03 2.1134
33283 3.455e+00 2.0858 1.238e-01 2.4736 4.949e-04 2.0600
132099 8.495e-01 2.0355 3.495e-02 1.8354 1.225e-04 2.0258
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Table 4.8. Example 1 with α = 106 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

19 4.154e+00 —- 2.212e+06 —– 2.212e+06 —-
51 4.042e+00 0.0550 1.408e+06 0.9145 1.408e+06 0.9145
163 1.882e+00 1.3155 2.096e+05 3.2793 2.096e+05 3.2793
579 9.005e-01 1.1634 3.844e+04 2.6760 3.844e+04 2.6760
2179 4.399e-01 1.0810 8.129e+03 2.3444 8.129e+03 2.3444
8451 2.174e-01 1.0400 1.829e+03 2.2010 1.829e+03 2.2010
33283 1.080e-01 1.0211 4.312e+02 2.1083 4.312e+02 2.1083
132099 5.381e-02 1.0106 1.042e+02 2.0610 1.042e+02 2.0610

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

19 2.108e+06 —- 1.254e+05 —– 1.236e+00 —-
51 1.229e+06 1.0933 2.883e+05 —- 7.879e-01 0.9117
163 1.661e+05 3.4447 2.833e+04 3.9931 1.669e-01 2.6711
579 3.003e+04 2.6991 3.421e+03 3.3356 3.689e-02 2.3821
2179 6.310e+03 2.3540 4.374e+02 3.1039 8.531e-03 2.2095
8451 1.387e+03 2.2357 5.619e+01 3.0283 2.042e-03 2.1095
33283 3.211e+02 2.1345 7.163e+00 3.0053 4.979e-04 2.0594
132099 7.649e+01 2.0815 9.044e-01 3.0024 1.228e-04 2.0307

Table 4.9. Example 2 with α = 10−4 and ν = 0.5: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 6.607e-02 —- 4.105e-01 —– 4.158e-01 —-
131 2.035e-02 2.1145 2.466e-01 0.9148 2.475e-01 0.9316
451 6.298e-03 1.8971 1.442e-01 0.8679 1.444e-01 0.8719
1667 1.965e-03 1.7820 8.539e-02 0.8019 8.541e-02 0.8029
6403 6.765e-04 1.5844 5.138e-02 0.7548 5.139e-02 0.7551
25091 2.724e-04 1.3322 3.136e-02 0.7232 3.136e-02 0.7232
99331 1.242e-04 1.1412 1.934e-02 0.7025 1.934e-02 0.7025

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 2.431e-01 —- 1.589e-01 —– 3.522e-02 —-
131 1.374e-01 1.0247 8.307e-02 1.1639 9.877e-03 2.2828
451 7.176e-02 1.0505 4.131e-02 1.1300 2.670e-03 2.1160
1667 3.646e-02 1.0360 2.061e-02 1.0639 6.988e-04 2.0509
6403 1.833e-02 1.0219 1.030e-02 1.0314 1.792e-04 2.0229
25091 9.182e-03 1.0123 5.147e-03 1.0154 4.544e-05 2.0089
99331 4.594e-03 1.0066 2.573e-03 1.0076 1.146e-05 2.0022
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Table 4.10. Example 2 with α = 1 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 4.9985e-02 —– 4.0842e-01 —– 0.4115 —–
131 1.8825e-02 1.7532 2.4606e-01 0.9097 0.2468 0.9179
451 5.6672e-03 1.9422 1.4416e-01 0.8649 0.1443 0.8684
1667 1.8120e-03 1.7445 8.5378e-02 0.8014 0.0854 0.8022
6403 6.4212e-04 1.5417 5.1380e-02 0.7547 0.0514 0.7550
25091 2.6557e-04 1.2929 3.1357e-02 0.7231 0.0314 0.7232
99331 1.2298e-04 1.1190 1.9339e-02 0.7025 0.0193 0.7025

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 2.337e-01 —– 1.6309e-01 —– 1.5922e-02 —–
131 1.362e-01 0.9689 8.3149e-02 1.2095 4.7291e-03 2.1795
451 7.160e-02 1.0407 4.1347e-02 1.1302 1.2712e-03 2.1254
1667 3.643e-02 1.0338 2.0618e-02 1.0646 3.2995e-04 2.0635
6403 1.832e-02 1.0212 1.0298e-02 1.0317 8.4043e-05 2.0325
25091 9.181e-03 1.0121 5.1470e-03 1.0156 2.1211e-05 2.0162
99331 4.594e-03 1.0065 2.5732e-03 1.0077 5.3291e-06 2.0078

Table 4.11. Example 2 with α = 100 and ν = 1: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 8.140e-03 —– 5.438e-01 —– 5.438e-01 —–
131 4.132e-03 1.2173 2.542e-01 1.3653 2.542e-01 1.3653
451 2.010e-03 1.1658 1.456e-01 0.9009 1.457e-01 0.9010
1667 9.801e-04 1.0987 8.558e-02 0.8134 8.559e-02 0.8135
6403 4.788e-04 1.0647 5.141e-02 0.7574 5.141e-02 0.7574
25091 2.379e-04 1.0242 3.136e-02 0.7238 3.136e-02 0.7238
99331 1.187e-04 1.0105 1.934e-02 0.7027 1.934e-02 0.7027

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 3.744e-01 —– 2.096e-01 —– 1.241e-03 —–
131 1.513e-01 1.6271 8.131e-02 1.7001 3.096e-04 2.4933
451 7.472e-02 1.1410 4.103e-02 1.1066 7.728e-05 2.2450
1667 3.694e-02 1.0776 2.057e-02 1.0564 1.789e-05 2.2382
6403 1.842e-02 1.0342 1.029e-02 1.0292 4.214e-06 2.1489
25091 9.199e-03 1.0168 5.146e-03 1.0148 1.063e-06 2.0168
99331 4.597e-03 1.0083 2.573e-03 1.0074 2.734e-07 1.9740
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Table 4.12. Example 2 with α = 1000 and ν = 0.5: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 9.085e-03 —- 5.631e+00 —– 5.631e+00 —-
131 4.103e-03 1.4270 5.791e-01 4.0834 5.792e-01 4.0834
451 2.031e-03 1.1375 2.200e-01 1.5662 2.200e-01 1.5661
1667 9.925e-04 1.0956 1.009e-01 1.1926 1.009e-01 1.1926
6403 4.860e-04 1.0611 5.391e-02 0.9312 5.391e-02 0.9312
25091 2.400e-04 1.0333 3.174e-02 0.7755 3.175e-02 0.7755
99331 1.193e-04 1.0164 1.940e-02 0.7155 1.940e-02 0.7155

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 4.701e+00 —- 1.646e+00 —– 2.766e-03 —-
131 4.300e-01 4.2937 1.193e-01 4.7125 5.807e-04 2.8025
451 1.594e-01 1.6051 4.565e-02 1.5538 1.427e-04 2.2705
1667 6.206e-02 1.4437 2.100e-02 1.1879 3.223e-05 2.2761
6403 2.412e-02 1.4044 1.034e-02 1.0528 7.544e-06 2.1582
25091 1.036e-02 1.2371 5.154e-03 1.0197 1.856e-06 2.0536
99331 4.849e-03 1.1041 2.575e-03 1.0087 4.648e-07 2.0126

Table 4.13. Example 2 with α = 104 and ν = 0.5: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 9.127e-03 —- 5.561e+01 —– 5.561e+01 —-
131 4.105e-03 1.4344 5.196e+00 4.2558 5.196e+00 4.2558
451 2.047e-03 1.1259 1.613e+00 1.8925 1.613e+00 1.8925
1667 1.015e-03 1.0732 5.109e-01 1.7588 5.109e-01 1.7588
6403 5.018e-04 1.0467 1.541e-01 1.7811 1.541e-01 1.7811
25091 2.451e-04 1.0496 5.213e-02 1.5875 5.213e-02 1.5875
99331 1.208e-04 1.0282 2.288e-02 1.1969 2.288e-02 1.1969

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 4.662e+01 —- 1.584e+01 —– 2.785e-03 —-
131 4.021e+00 4.3994 8.576e-01 5.2351 5.812e-04 2.8129
451 1.362e+00 1.7519 1.918e-01 2.4226 1.442e-04 2.2550
1667 4.676e-01 1.6350 4.250e-02 2.3055 3.296e-05 2.2578
6403 1.398e-01 1.7946 1.253e-02 1.8152 7.671e-06 2.1667
25091 4.126e-02 1.7870 5.376e-03 1.2392 1.855e-06 2.0791
99331 1.278e-02 1.7039 2.606e-03 1.0527 4.581e-07 2.0326
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Table 4.14. Example 2 with α = 106 and ν = 0.5: uniform refinement.

N ε(u) r(u) ε(σ) r(σ) ε r

43 9.132e-03 —- 5.555e+03 —– 5.555e+03 —-
131 4.106e-03 1.4352 5.188e+02 4.2566 5.188e+02 4.2566
451 2.050e-03 1.1238 1.602e+02 1.9013 1.602e+02 1.9013
1667 1.023e-03 1.0632 5.004e+01 1.7799 5.004e+01 1.7799
6403 5.236e-04 0.9954 1.419e+01 1.8731 1.419e+01 1.8731
25091 2.724e-04 0.9568 3.918e+00 1.8846 3.918e+00 1.8846
99331 1.330e-04 1.0424 1.095e+00 1.8533 1.095e+00 1.8533

N ε0(σd) r0(σd) ε0(p) r0(p) ε0(u) r0(u)

43 4.658e+03 —- 1.577e+03 —– 2.787e-03 —-
131 4.017e+02 4.3997 8.514e+01 5.2411 5.813e-04 2.8140
451 1.354e+02 1.7595 1.858e+01 2.4625 1.444e-04 2.2529
1667 4.624e+01 1.6437 3.652e+00 2.4886 3.314e-05 2.2520
6403 1.349e+01 1.8306 6.780e-01 2.5028 7.773e-06 2.1549
25091 3.768e+00 1.8677 1.357e-01 2.3554 1.877e-06 2.0811
99331 1.062e+00 1.8405 3.075e-02 2.1582 4.595e-07 2.0451

We notice that the orders of convergence predicted by the theory are achieved for all examples.
Indeed, for Example 1, since we have a smooth solution in a convex region, the global orders behave
as O(h). In Example 2, div(σ) ∈ [H2/3(Ω)]2, which in accordance with Theorem 4.1, allows us to
expect O(h2/3) for its velocity of convergence, and thus for the total error. We also note a quadratic
convergence for the error ε0(u), whose theoretical proof should be deduced from the standard duality
argument. Furthermore, similarly to the examples described in [6], the numerical examples presented
here behave much better than what the previous theoretical results insinuated. In particular, the
order of the constant obtained in Theorem 4.1 indicates that the rates of convergence are affected for
large values of α, which, nevertheless, was not too severe in the examples. The above observations
yield the conjecture that these constants are overestimated and they could be improved.

6.1 Numerical examples of the associated control problem

Here we show the numerical results obtained using (27) to solve the control problem (26). We consider
one example defined in the convex domain Ω := (0, 1)2, The desired state, which we intend to get, is
the pressure p0 with the “controllers” functions p1, p2, p3 and p4, which is given in Table 4.15. The
external control forces fj ∈ [L2(Ω)]2, for j = 1, 2, 3 and 4, are obtained such that the pairs (uj , pj) in
Table 4.15 are the solution of (1) with right hand side fj ∈ [L2(Ω)]2, for j = 1, 2, 3 and 4. Hereafter,
p̄ denote the mean value of p in Ω. We present here two examples using zc as a finite control variable
of the form zc =

∑k
i=1 zifi, k ∈ {3, 4}, where the amplitudes zi are the unknown quantities of the

system, which should allow us to get the desired pressure p0.
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Table 4.15. Example 1: Summary of data for the control problem.
j Solution uj Solution pj

0
1

8πν

{
− ln(s)

(
1
0

)
+

1

s2

(
(x1 − 2)2

(x1 − 2)(x2 − 1)

)}
1

4πν

x1 − 2

(x1 − 2)2 + (x2 − 2)2
− 1

ν
p̄0

1

(
−(2.1− x1 − x2)−1/3

(2.1− x1 − x2)−1/3

)
2e2x1−1 sin(2x2 − 1)

2
[
(x1 + 0.1)2 + (x2 + 0.1)2

]−1/2
(

x2 + 0.1
−(x1 + 0.1)

)
1

1.1− x1
− log(11)

3

(
sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
x2

1 + x2
2 − 2/3

4

(
−ex1(x2 cos(x2) + sin(x2))

ex1x2 sin(x2)

)
(2− x1 + x2)1/2 − p̄4

As in the previous section, N stands for the number of degrees of freedom, while εC,k, k ∈ {3, 4},
denotes the control error with k-controllers, measured in the Euclidean norm. For this purpose,
we consider as exact solution the one obtained in the finest mesh. We denote by rC,k the respective
experimental rates of convergence associated to εC,k, k ∈ {3, 4}. We remark that by triangle inequality,
we have

‖Zop
H −Z

op‖ ≤ ‖Zop
h −Z

op‖+ ‖Zop
H −Z

op
h ‖ , (30)

where Zop
H and Zop

h denote discrete solutions of (26) using different meshes. Then, since the exact
solution is unknown, and in accordance with (30), we expect that the behaviour of the experimental
order of convergence rC,k, k ∈ {3, 4} will be at least as described in Theorem 5.1. In Tables 4.16-4.27,
we exhibit the numerical results for different values of the parameters α, ν and η. In all the cases,
we note that the rate of convergence is better than the expected O(h), which in virtue of (30) and
Theorem 5.1, allow us to deduce the expected O(h), since ‖Zop

h − Z
op‖ ≤ C‖p − ph‖L2(Ω) and the

behaviour of the error, as we had seen in the above subsection, is ‖p − ph‖L2(Ω) = O(h) for this
example. In addition, we can see the smooth effect of the control cost when η is increased for α fixed
and large.
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Table 4.16. Control example 1 (with 4 and 3 controllers) with α = 1, ν = 1 and η = 1: uniform
refinement.

N εC,4 rC,4 εC,3 rC,3
27 2.733e-03 —– 2.727e-03 —–
83 2.658e-04 4.1501 2.212e-04 4.4733
291 6.226e-05 2.3143 5.817e-05 2.1298
1091 1.653e-05 2.0068 1.677e-05 1.8820
4227 4.319e-06 1.9820 4.664e-06 1.8898
16643 1.026e-06 2.0971 1.143e-06 2.0527
66051 2.016e-07 2.3610 2.256e-07 2.3540

Table 4.17. Control example 1 (with 4 and 3 controllers) with α = 1, ν = 1 and η = 10: uniform
refinement.

N εC,4 rC,4 εC,3 rC,3
27 6.155e-04 —– 7.054e-04 —–
83 1.630e-04 2.3660 1.694e-04 2.5406
291 4.777e-05 1.9570 4.829e-05 2.0008
1091 1.240e-05 2.0411 1.247e-05 2.0489
4227 3.096e-06 2.0491 3.103e-06 2.0539
16643 7.374e-07 2.0938 7.384e-07 2.0951
66051 1.470e-07 2.3399 1.473e-07 2.3391

Table 4.18. Control example 1 (with 4 and 3 controllers) with α = 1, ν = 1 and η = 100: uniform
refinement.

N εC,4 rC,4 εC,3 rC,3
27 7.146e-05 —– 8.508e-05 —–
83 2.200e-05 2.0979 2.490e-05 2.1882
291 6.873e-06 1.8553 7.680e-06 1.8754
1091 1.790e-06 2.0358 1.999e-06 2.0373
4227 4.450e-07 2.0557 4.972e-07 2.0543
16643 1.061e-07 2.0922 1.186e-07 2.0911
66051 2.123e-08 2.3341 2.376e-08 2.3335
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Table 4.19. Control example 1 (with 4 and 3 controllers) with α = 100, ν = 0.5 and η = 1: uniform
refinement.

N εC,4 rC,4 εC,3 rC,3
27 3.841e-03 —– 2.136e-03 —–
83 8.301e-04 2.7285 8.381e-04 1.6662
291 5.573e-04 0.6353 4.703e-05 4.5921
1091 2.406e-04 1.2712 4.074e-05 0.2173
4227 2.291e-05 3.4723 3.638e-06 3.5675
16643 3.088e-06 2.9247 2.648e-07 3.8237
66051 4.135e-07 2.9174 8.361e-08 1.6725

Table 4.20. Control example 1 (with 4 and 3 controllers) with α = 100, ν = 0.5 and η = 10:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 8.553e-04 —– 1.369e-03 —–
83 4.265e-04 1.2394 2.839e-04 2.8023
291 1.156e-04 2.0817 4.086e-05 3.0907
1091 2.849e-05 2.1192 1.139e-05 1.9330
4227 2.299e-06 3.7168 1.318e-06 3.1846
16643 3.682e-07 2.6729 3.369e-07 1.9910
66051 5.927e-08 2.6502 7.553e-08 2.1692

Table 4.21. Control example 1 (with 4 and 3 controllers) with α = 100, ν = 0.5 and η = 100:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 1.411e-04 —– 4.348e-04 —–
83 7.165e-05 1.2072 8.570e-05 2.8923
291 2.114e-05 1.9463 3.237e-05 1.5523
1091 2.191e-06 3.4302 3.964e-06 3.1781
4227 2.175e-07 3.4110 5.550e-07 2.9030
16643 4.802e-08 2.2047 1.161e-07 2.2828
66051 9.481e-09 2.3538 2.236e-08 2.3905
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Table 4.22. Control example 1 (with 4 and 3 controllers) with α = 1000, ν = 0.5 and η = 1:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 1.413e-03 —– 2.715e-03 —–
83 1.463e-03 —– 1.451e-03 1.1156
291 1.956e-04 3.2078 2.284e-05 6.6193
1091 1.579e-04 0.3239 3.122e-05 —–
4227 9.828e-05 0.7005 2.262e-05 0.4759
16643 1.025e-05 3.2987 2.442e-06 3.2485
66051 1.382e-06 2.9071 3.321e-07 2.8946

Table 4.23. Control example 1 (with 4 and 3 controllers) with α = 1000, ν = 0.5 and η = 10:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 1.061e-03 —– 2.162e-03 —–
83 1.457e-03 —– 1.402e-03 0.7711
291 1.407e-04 3.7265 2.831e-05 6.2214
1091 1.031e-04 0.4711 1.740e-05 0.7368
4227 5.269e-05 0.9907 1.108e-05 0.6662
16643 4.131e-06 3.7154 8.309e-07 3.7804
66051 5.327e-07 2.9720 1.045e-07 3.0080

Table 4.24. Control example 1 (with 4 and 3 controllers) with α = 1000, ν = 0.5 and η = 100:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 4.230e-04 —– 1.349e-03 —–
83 1.185e-03 —– 1.091e-03 0.3776
291 6.294e-05 4.6793 4.283e-05 5.1615
1091 2.631e-05 1.3199 2.830e-06 4.1119
4227 4.783e-06 2.5177 6.882e-07 2.0878
16643 1.771e-07 4.8106 1.901e-07 1.8777
66051 2.155e-08 3.0555 3.385e-08 2.5034

24



Table 4.25. Control example 1 (with 4 and 3 controllers) with α = 10−4, ν = 0.5 and η = 1:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 2.790e-03 —– 2.835e-03 —–
83 3.132e-04 3.8952 2.935e-04 4.0391
291 7.999e-05 2.1758 7.523e-05 2.1704
1091 2.023e-05 2.0806 2.092e-05 1.9369
4227 5.198e-06 2.0067 5.517e-06 1.9681
16643 1.248e-06 2.0814 1.351e-06 2.0536
66051 2.491e-07 2.3386 2.731e-07 2.3193

Table 4.26. Control example 1 (with 4 and 3 controllers) with α = 10−4, ν = 0.5 and η = 10:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 5.923e-04 —– 6.853e-04 —–
83 1.341e-04 2.6452 1.421e-04 2.8020
291 4.213e-05 1.8461 4.373e-05 1.8790
1091 1.101e-05 2.0305 1.136e-05 2.0398
4227 2.769e-06 2.0389 2.849e-06 2.0427
16643 6.639e-07 2.0839 6.827e-07 2.0848
66051 1.331e-07 2.3316 1.369e-07 2.3313

Table 4.27. Control example 1 (with 4 and 3 controllers) with α = 10−4, ν = 0.5 and η = 100:
uniform refinement.

N εC,4 rC,4 εC,3 rC,3
27 6.785e-05 —– 8.215e-05 —–
83 1.736e-05 2.4277 2.011e-05 2.5060
291 5.626e-06 1.7963 6.438e-06 1.8162
1091 1.509e-06 1.9920 1.717e-06 1.9999
4227 3.821e-07 2.0277 4.341e-07 2.0309
16643 9.188e-08 2.0800 1.043e-07 2.0810
66051 1.845e-08 2.3289 2.094e-08 2.3292

7 Conclusions

We have analized the applicability of the velocity-pseudostress formulation, previously introduced in [8]
for the stationary Stokes problem, for the aproximation of solution of the generalized Stokes problem.
Furthermore, with the aim of circumventing the inf-sup condition, we have studied the corresponding
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augmented mixed scheme by applying a stabilization technique. We have obtained optimal rate of
convergence, with an improvement of the constant of the a-priori estimate with respect to the results
given in [6], at least for moderately large value of parameter α. Additionaly, we have applied it
to obtain an error estimate for the control variable in the optimal control problem that we have
considered.

Several numerical results are presented, which are in agreement with the theoretical results devel-
oped by us. We remark that they show also the robustness of the scheme, for small and large values
of parameter α. Finally, we point out that the a posteriori error analysis, as well as the corresponding
adaptivity algorithm, will be reported in a separate work.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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