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Abstract

The notion of reversibility has been intensively studied in the field of cellular
automata (CA), for several reasons. However, a related notion found in physical
theories has been so far neglected, not only in CA, but generally in discrete
dynamical systems. This is the notion of time-symmetry, which refers to the
inability of distinguishing between backward and forward time directions. Here
we formalize it in the context of CA, and study some of its basic properties. We
also show how some well-known CA fit into the class of time-symmetric CA,
and provide a number of results on the relation between this and other classes
of CA. The existence of an intrinsically universal time-symmetric CA within the
class of reversible CA is proved. Finally, we show the undecidability of time-
symmetry for CA of dimension 2 or higher, even within the class of reversible
CA. The case of dimension 1 is one of several open questions discussed in the
conclusions.

Keywords: Cellular Automata, Time-symmetry, Reversibility, Universality,
Decidability.

1. Introduction

An important property that may be present or not in physical or abstract
dynamical systems is reversibility; consequently, it has also been an active topic
of research in the context of cellular automata [1]. At least two particular
reasons for this interest are often mentioned: on one hand, if CA are seen as
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models for massive distributed computation, then Landauer’s principle suggests
that we should focus on reversible cases. On the other hand, reversibility is
often observed in real systems; it is therefore desirable in models of them [2].
Furthermore, a number of interesting results (like the dimension-sensitive dif-
ficulty of deciding reversibility [3]) have kept reversible CA in sight over the
years.

However, there is one aspect of reversibility, as seen in real systems, which
has been mostly neglected when considering cellular automata (in fact, for dis-
crete dynamics in general): the dynamical laws governing physical reality seem
to be not only reversible, but time-symmetric. For Newtonian mechanics, rel-
ativity or quantum mechanics, we can go back in time by applying the same
dynamics, provided that we change the sense of time’s arrow through a specific
transformation of phase-space. In the simplest example, Newtonian mechanics,
the transformation leaves masses and positions unchanged, but reverses the sign
of momenta.

In the most general sense, we say that a dynamical system (X,T ) is time-
symmetric if there exists a reversible R : X → X such that R ◦ T ◦ R−1 =
T−1 [4](notice that this applies to systems with discrete or continuous time).
However, time-symmetries observed in physical systems follow usually a more
restricted definition, in which R−1 = R, and therefore R is an involution on X.
This is a natural restriction, which follows whenever there is no way to distin-
guish where the arrow of time is heading. Apparent irreversibility (Loschmidt’s
paradox) comes only from macroscopic (i.e., coarse-grained) differences in en-
tropy.

Here we study time-symmetric cellular automata, defined as those CA F
for which there exists an involution H (which is a CA itself) such that

F−1 = H ◦ F ◦H (1)

Requiring H to be a CA is somewhat arbitrary, since for other systems the time-
reversing transformation is not necessarily of the same nature as the dynamics
(in fact, the physical theories discussed above are continuous in time). The
reason for this restriction is that we expect reversibility (including the particular
case of time-symmetry) to be a local property. The case when H is not a CA
may be an interesting direction for future studies.

1.1. Elementary definitions

A cellular automaton (CA) is a function F : SZd → SZd

, for some finite set
of states S and some dimension d, which is defined through a local function f :
SN → S for some finite neighborhood N ⊆ Zd, so that F (x)i = f(xi+N )∀i ∈ Zd;
the function F is then referred to as the global function. A particular kind of
CA are the shifts, for which |N | = 1 and f is the identity; when d = 1 the term
“shift” refers by default to σ(x)i = xi+1. If we put the product topology on
Zd, then CA can alternatively be defined as those continuous functions which

commute with the shifts. A subshift is a closed set A ⊆ SZd

which is stable
under the shifts.
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For d = 1 we may assume a neighborhood of the form {−r, . . . , r}; r is
then called the radius of the CA. Radius 0 CA are called autarkic. Common
neighborhood choices for d = 2 are Moore’s neighborhood {−1, 0, 1}2 and von
Neumann’s neighborhood {(−1, 0), (0, 1), (1, 0), (0,−1), (0, 0)}.

We will denote with w∞ the bi-infinite repetition of a finite word w ∈
S∗; semi-infinite repetitions will be denoted with ωw or wω, according to their
direction.

Definition 1. Given two CA F and G on SZd

F and SZd

G , respectively, we will
distinguish three notions of conjugation.

• F and G are conjugated if there exists a continuous bijection φ : SZd

G →
SZd

F such that F ◦ φ = φ ◦G.

• If in addition φ commutes with a power of the shifts, i. e., if there exist
n, m such that φ ◦ σn = σm ◦ φ, then we say that F and G are block
conjugated.

• If F and G are block conjugated with n = m = 1, we say that they are CA
conjugated.

A technical note: CA are usually defined over a full shift SZ, but they
can also be studied over (stable) subshifts. We remark that in this case, for
time-symmetry to apply, the subshift must be stable for both F and H. This
may cause some problems, since subsystems of a time-symmetric CA cannot be
assumed to be time-symmetric too, even if they are stable for F .

2. Some motivating examples

Not only our models of physical reality turn out to exhibit time-symmetry;
it is also found in some well known reversible discrete dynamical systems. We
show in this section how it applies to a couple of 2D systems, Margolus’ billiard
and Langton’s ant. As a technical note, notice that in both cases the system
is not originally described as a cellular automaton in the strict sense; therefore,
we describe for each of them a CA that contains them as particular case for
a subshift of valid configurations. This should -in principle- be followed by an
extension of the rule to the full shift, and such that the system remains time-
symmetric; however, doing that is not really required, since we want to show the
time-symmetry of the original system; we hence restrict ourselves to the valid
subshift.

Margolus’ billiard ball CA. A well known example of time-symmetric CA
is the Billiard ball model of Margolus [5]. It is not a proper CA, but rather a
so-called partitioned CA, where the space Z2 is partitioned in 2 × 2 blocks of
cells in two different ways (see Figure 1(a)). A transformation is applied to each
block of each partition alternately. It is easy to see that such an automaton is
reversible if and only if its local transformation is one-to-one. The rule used
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by Margolus is shown in Figure 1(b). It tries to emulate balls that move in
straight lines, colliding elastically with each other or with static obstacles. The
importance of this model comes from its Turing-universality [5].

We can express Margolus’ system in terms of a CA with alphabet
{white, black} × {↗,↘,↙,↖} and Moore neighborhood. Here the first layer
(the white/black component) represents the states of the original Margolus
model, and the other represents the current partition, along with the relative
position of the cell within its current block. This layer must be initialized in an
appropriate way in order to work correctly (see Figure 1)(c).

Notice that reversing the arrows makes the partition flip to the alternative
one. At each time step, each cell computes its next white/black state by applying
Margolus’ rule to the quadrant indicated by its arrow, and then reverses its
arrow. Each of this actions -the first on the first layer, the second on the
second- is an involution. Furthermore, if at one time step we omit any of them,
further iterations will make the automaton evolve back in time.

Langton’s ant. Langton’s ant was introduced in [6] together with several
models emulating different life properties. It was also defined in physics as a
model for particles presenting self correlated trajectories [7]. The model can be
seen as a Turing machine working on a 2-dimensional tape. Its internal state
is an arrow that represents its last movement direction. At each step, the ant
turns to the left or to the right depending on the cell color (white or black),
it flips this color and moves one cell forward (see Figure 2(a)). Besides being
Turing-universal [8], its celebrity is due mostly to its particular behavior over
finite initial configurations. Simulations show that it always falls eventually into
a repetitive movement -of period 104- that makes it propagate unboundedly (see
Figure 2(b)); this assertion has not been proved, and appears to be very difficult
despite the simplicity of the transition rule.

Langton’s ant can also be described in terms of a CA with Moore neigh-
borhood and state set {head, tail, empty} × {white, black}. We represent the
arrow through two adjacent cells, one in state head and the other in state tail.
The cell in state tail always becomes empty, while the cell in state head always
becomes tail and flip its color. Cells adjacent to a head can decide to become
head themselves by looking at the tail position and the color of the head cell.
The system simulates Langton’s ant only if it starts with only one ant.

Here again, we can define the involution consisting in exchanging tails and
heads. This immediately makes the ant come back to the cell it just had left,
which it finds in the color opposite to the one it had found before, causing
the ant to turn in the opposite direction, which in turn makes it again go to
a previously visited cell, and so on: the ant will forever retrace (and undo) its
past trajectory.

3. Preliminary remarks

We begin with some basic observations.

Proposition 1. Let F be a CA. Then the following are equivalent:
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(i) F is time-symmetric.

(ii) There exists an involution H such that (F ◦H) is an involution.

(iii) F is the composition of two involutions.

Proof.
1 =⇒ 2 : Let F and H be the CA satisfying (1). Then

(F ◦H)2 = F ◦H ◦ F ◦H = F ◦ F−1 = id

2 =⇒ 3 : Take H from (ii) and let G = F ◦H which is an involution. We have

F = F ◦ id = F ◦ (H ◦H) = (F ◦H) ◦H = G ◦H

3 =⇒ 1 : Let G and H be involutions such that F = G ◦H. Then

F−1 = (G ◦H)−1 = H−1 ◦G−1 = H ◦G = H ◦G ◦H ◦H = H ◦ F ◦H

Remarks 1. The following additional facts are noteworthy:

1. If F is time-symmetric, then so is its inverse F−1. Moreover, if F = G◦H
is a decomposition into involutions, then F−1 = H ◦G is a decomposition
for the inverse. If H was the involution verifying (1), then G plays that
role for F−1.

2. If H and G are involutions and F = H ◦G, then F is an involution if and
only if H and G commute.

3. For any i ∈ Z, F i is also time-symmetric with the same H, and H =
F i ◦H ◦ F i.

4. The identity is a (trivial) involution; from there and the third condition
we have that any involution is trivially time-symmetric.

5. Not every reversible CA is time-symmetric. For example, σ (the shift): if
for some H, (σ ◦H)◦ (σ ◦H) = id, since any CA commutes with the shift,
we would have σ2 = id, which is a contradiction.

The following diagram commutes:

X
H←−−−→ X

F
yxF−1 F−1

yxF
X

H←−−−→ X

Moreover, if we use F = G ◦H to decompose the dynamics into the alternate
applications of the involutions, so that successive configurations are computed

5



as c′t = H(ct), ct+1 = G(c′t), we get a dynamics c0, c′0, c1, c′1, . . . , where both
F and F−1 are being iterated: ct+1 = F (ct) and c′t+1 = F−1(c′t). This curious
situation is represented in Figure 3.

It is important to notice here the preservation of time-symmetry under CA
conjugacy. For weaker notions of conjugacy time-symmetry is probably not
preserved.

Proposition 2. If F is CA conjugated to T and T is time-symmetric, then F
is also time-symmetric.

Proof. From time-symmetry, there is an involution H such that T−1 = H◦T ◦H.
From conjugacy, there is a bijective, continuous, shift-commuting φ such that
T = φ ◦ F ◦ φ−1. Then we have (removing the composition symbol, for clarity)
that

F−1 = φ−1T−1φ = φ−1HTHφ = φ−1HφFφ−1Hφ = GFG

and G = φ−1Hφ is clearly an involution, making F time-symmetric.

4. Universality

The examples given in Section 2 correspond to Turing-complete systems.
The following results show that, indeed, the whole range of reversible dynamical
behaviors can be observed in time-symmetric CA.

Theorem 1. Let F be a reversible CA. Then there exists a CA F̃ which is
time-symmetric and simulates F in real time.

Proof. Let f be the local rule of F and denote with f−1 the local rule of its
inverse F−1; let N ⊂ Zd be large enough to encompass both the neighborhoods
of f and f−1; finally, let S be the set of states. We define the CA F̃ with
neighborhood N and states S2, through the local rule

F̃ ((x, y))i =
(
f (xi+N ) , f−1 (yi+N )

)
where we abuse notation by denoting configurations in (S2)Z

d

as pairs (x, y) ∈
(SZd

)2. F̃ simulates F in real time: to project the space-time diagram of F̃
into that of F , we just discard the second component of the ordered pairs. By
discarding the first component instead, we note that F̃ simulates F−1 as well.

Let H be the autarkic involution given by the local rule h(x, y) = (y, x).
Then we have

F̃ ◦H(x, y) = F̃ (y, x) = (F (y), F−1(x))

and

(F̃ ◦H)2(x, y) = F̃ ◦H(F (y), F−1(x)) = F̃ (F−1(x), F (y)) = (x, y)

which is condition (ii) in Proposition 1; thus, F̃ is time-symmetric.
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Cellular automata are said to be intrinsically universal if they are able
to simulate any other CA. The details vary according to the accepted notion
of simulation, from which there is a variety. Delorme et al [9] have recently
reviewed and completed the study of three of these, surjective, injective and
mixed simulation, and shown that for every pair of CA F and G, the product
F ×G simulates both F and G in all three senses.

Corollary 1. There exist time-symmetric CA which are intrinsically universal
within the class of reversible CA.

Proof. This follows from the previous results and comment, and from the exis-
tence of reversible intrinsically universal CA (see for example [10]).

Notice that reversible CA cannot simulate arbitrary CA: intrinsic univer-
sality is therefore limited to the reversible class, and time-symmetric CA are as
general as reversible CA can get. Turing-universality is not limited by reversibil-
ity (information can be “swept away” to preserve it and maintain reversibility)
and hence is implied by reversible intrinsic universality.

5. Relations with other CA classes

In Section 3 we gave the shift as an example of a reversible CA which
is not time-symmetric. The proof was straightforward; in the general case,
however, proving non-time-symmetry seems (so far) to be quite difficult. One
possible route is to consider the group (Aut(A), ◦) of reversible CA over the
state set A under the composition ◦, and define some group homomorphism
ϕ : (Aut(A), ◦) −→ (G, ·) into a group (G, ·) all of whose elements g 6= 1G have
infinite order. Then it is clear that all periodic CA are in the kernel of ϕ, and
therefore all time-symmetric CA are in the kernel as well.

One such homomorphism ϕA : (Aut(A), ◦) −→ (Q, ·) into the multiplicative
group of rational numbers was defined for one dimensional CA in [11], for any
state set A. We will not reproduce here the construction, but just remark that
it has the properties that ϕA(σ) = |A| and ϕA×B(F × G) = ϕA(F )ϕB(G) for
any reversible CA F and G over the state sets A and B, respectively.

The kernel of ϕA contains all time-symmetric CA, but also some CA that
are not time-symmetric. We see an example in Proposition 2 where we show that
there are periodic CA that are not time-symmetric. Another, simpler example is
the product of three shifts F = σ−2×σ×σ. Its state set is A = {0, 1}3. This CA
is in the kernel of ϕA because it is the composition of three componentwise shifts
with ϕA values equal to 2−2, 2 and 2 respectively. But it is not time-symmetric:
Let us suppose that an involution H exists such that F−1 = H ◦ F ◦ H. Let
H be defined by a radius-r local rule. Then, for every i ∈ N, the composition
H ◦ F i ◦ H can be defined using a neighborhood whose maximum element is
r + i+ r. But for i > 2r this contradicts the facts that H ◦ F i ◦H = F−i and
that the neighborhood of F−i necessarily contains element 2i.

This example, incidentally, shows that time-symmetric CA are not closed
under composition: σ−2 × σ × σ = (σ−1 × id × σ) ◦ (σ−1 × σ × id), and these
are time-symmetric by using the involution that swaps the shifting layers.
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Proposition 3. Every reversible autarkic CA is time-symmetric.

Proof. Let f be the local rule of a reversible autarkic CA, and let S be its set
of states. Suppose first that f : S → S is a cyclic permutation and, without
loss of generality, that S = {0, .., n−1} and f(i) = i+ 1 mod n. Let us remark
first that any function of the form ha(i) = a− i mod n is an involution. Now if
ga = ha ◦f , then ga(i) = ha(i+ 1) = a− i−1 = ha−1(i), it is also an involution.
Therefore, by Proposition 1, f is time-symmetric and any of the ha works.

If f decomposes into more than one cycle, we define h and g as before over
each of them, obtaining again a decomposition into involutions.

Since reversible autarkic CA (which are necessarily periodic) are time-
symmetric, a natural question is whether every periodic CA is time-symmetric.
Something similar happens: every periodic CA is conjugated to a reversible
autarkic CA over a subshift. To see this, let F be a p-periodic CA with states
S and define ϕ : SZ → (Sp)Z as ϕ(x)i = (xi, F (x)i, .., F

p−1(x)i). This ϕ is
continuous and injective, and the induced CA F ′ in X ⊆ (Sp)Z is autarkic
and period p; its local rule is f ′(a0, a1, .., ap−1) = (a1, a2, .., ap−1, a0). However,
this subshift is in general not stable for the involution constructed in the proof,
and time-symmetry cannot be concluded. And it could not, as the following
proposition attests.

Theorem 2. There exists a one-dimensional periodic CA F such that F and
F−1 are not CA conjugated. In particular, F is not time-symmetric.

Proof. CA F has the state set (A∪A)×B, where A = {0, 1.., 6}, A = {0, 1, .., 6}
and B = {odd , even}. We think of it as having two layers, the first with states in
A∪A and the second in B. The action of F on the first layer ignores the second
and is autarkic: it just rotates the states cyclically, a 7→ a + 1 and a 7→ a+ 1,
for all a ∈ A. Additions and subtractions here and in the rest of the proof are
modulo 7.

Given a configuration, we say that a cell i is inactive if the first layer
states at cells i and i + 1 are in one of the following combinations, for some
a ∈ {0, 1, ..., 6}:

a, a or a, a or a, a or a, a+ 1 or a, a+ 3.

Otherwise a cell is called active. A whole configuration is called inactive if all
the cells are inactive. Notice that activity of cells (and hence, of configurations)
is preserved by F .

The rule for the second layer is the following: the second layer state is not
changed at inactive cells, but it alternates (odd ↔ even) at active ones. Inactive
configurations have therefore period 7, while configurations that contain an
active cell do not have period 7 but they have period 14.

Consider the following configurations, for any p ∈ {odd , even} and a ∈ A:

x(a, p) =
(ωa.aω

ωp.pω

)
and y(a, p) =

(ωa.aω

ωp.pω

)
.
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Notice that x(a, p) and y(a, p) are uniform and inactive, and that they are the
only uniform and inactive configurations.

Suppose that F is conjugated to F−1, and let H be a reversible CA that
carries the conjugacy, that is, F−1 = H ◦ F ◦H−1. Because H must preserve
periods of configurations, it must map inactive configurations into inactive ones.
Since H also preserved uniformity, we see that H act as a permutation among
configurations of type x(a, p) and y(a, p).

Claim 1. H(x(a, p)) 6= y(b, q), for every a, b, p and q.
Proof. Suppose H(x(a, p)) = y(b, q). By the pigeon hole principle, there are
also a′, p′, b′ and q′ such that H(y(a′, p′)) = x(b′, q′).

From H = F i ◦H ◦ F i we obtain, with i = a− a′, that

H(x(a′, p)) = F a−a′(H(F a−a′(x(a′, p))))

= F a−a′(H(x(a, p)))

= F a−a′(y(b, q))
= y(b+ a− a′, q).

Let us now consider the configuration

g =

(ω
a′.a′

ω

ωp.p′ω

)
.

It is inactive and therefore H(g) should be inactive, too; however, H(g) is
left-asymptotic with y(b + a − a′, q) and right-asymptotic with x(b′, q′). This
contradicts its inactivity, because no inactive configuration can have elements
of A to the left of A on its first layer.

Claim 2. There exist constants ax ∈ A and px ∈ {odd , even} such that for all
a ∈ A it holds H(x(a, odd)) = x(ax − a, px). Analogously, there exist constants
ay and py such that for all a ∈ A we have H(y(a, odd)) = y(ay − a, py).
Proof. From Claim 1 we know that H(x(0, odd)) = x(ax, px) for some ax ∈ A
and px. Applying H = F i ◦H ◦ F i with i = −a we obtain that

H(x(a, odd)) = F 0−a(H(F 0−a(x(a, odd))))
= F 0−a(H(x(0, odd)))
= F 0−a(x(ax, px))
= x(ax − a, px),

for all a ∈ A. Analogously for y(a, odd).

Now we are ready to finish the proof of the proposition. Denote a = 0 and
p = odd , and consider the following three inactive configurations

z0 =

(
ωa.aω

ωp.pω

)
, z1 =

(
ωa.a+ 1

ω

ωp.pω

)
and z3 =

(
ωa.a+ 3

ω

ωp.pω

)
.

Consider first the configuration z0. It is left asymptotic with x(0, odd) and right
asymptotic with y(0, odd). According to Claim 2, H(z0) is left-asymptotic with
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x(ax, px) and right-asymptotic with y(ay, py), and since it should be inactive,
either ay = ax or ay = ax +1 or ay = ax +3. Therefore, ay−ax ∈ {0, 1, 3}. The
analogous reasoning using z1 shows that, because H(z1) is left-asymptotic with
x(ax, px) and right-asymptotic with y(ay − 1, py), we must have (ay − 1)− ax ∈
{0, 1, 3}, so that ay − ax ∈ {1, 2, 4}. Finally, using configuration z3 we see that
ay − ax ∈ {3, 4, 6}. Since no value of ay − ax satisfies the three cases, H cannot
exist.

With some more technical work this last proof can be extended to the
case where H is a block conjugation. For the weakest notion of conjugacy,
however, the result is no longer true: F is conjugated to F−1 through H(r, s)i =
(ri−2r0, si), for every r ∈ (A∪A)Z and s ∈ BZ. Here the operation ri−2r0 acts
only on the “numerical” aspect of ri, preserving the “overline” (or its absence)
in each cell.

6. Decidability

Reversibility of CA is decidable in dimension one [12] but undecidable in
dimension two or higher [3, 13]. This last result is obtained by reducing the
tiling problem [14] to the problem of non-reversibility. In what follows we show
how the construction in [13] can be easily adapted to the undecidability of time-
symmetry in dimension 2; a further (and less trivial) variation on the idea will
show that this extends even to the case when the CA is known to be reversible.

6.1. Tiling definitions and general constructions for the proofs

Definition 2. A tile set T = (T ;N ;R) consists of a finite set T whose elements
are the tiles, a neighborhood N ⊂ Z2, and a local matching rule R ⊂ TN

which gives a relation specifying which tilings are considered valid. Tilings are
configurations x ∈ TZ2

. A tiling is valid at cell (i, j) ∈ Z2 if and only if
x(i,j)+N ∈ R, that is, the neighborhood of (i, j) contains a matching combination
of tiles. A tiling x is called valid if it is valid at all positions in Z2, and we say
that the tile set T then admits tiling x.

It is undecidable whether a given set of tiles can tile the plane [14]. It is
important to remark that, by compacity, if a set of tiles cannot tile the plane,
then neither can it tile arbitrarily large squares, that is, there is a constant M
such that no square larger that M can be tiled.

The notion of paths on a tiling has been very useful in proving undecid-
ability of several CA properties.

Definition 3. A tile set with paths is a tuple D = (T ;N ;R;S;P ) where
(T ;N ;R) is a tile set, and S, P : T → N are functions defining for each tile
a follower and a predecessor within the neigborhood, and every pattern x in R
satisfies P (b) = −S(a) where a = x(0) and b = x(S(a)).

A given tiling x defines the follower relation in Z2 by saying that a cell n
is the follower of m if n = S(x(m)) + m; the predecessor relation is defined
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analogously. In a valid tiling, the predecessor relation is the inverse of the
follower relation.

We talk about paths in a tiling x when referring to sequences p0p1p2... of
cells pi ∈ Z2 such that pi+1 is the follower of pi, for all i. Paths are used to
embed a one dimensional CA rule into a tiling, but this cannot be related with
tilability without the plane filling property.

Definition 4. A tile set with paths is said to have the plane filling property if
it satisfies the following two conditions:

• There exists x ∈ TZ2

and a one-way infinite path p0p1p2... such that the
tiling x is valid at pi for all i ∈ N.

• For all such x and p0p1p2..., there are arbitrarily large squares of cells
such that all cells of the squares are on the path.

A set of tiles T0 that has the plane filling property is constructed in [13].
This tile set forces some additional properties on the space-filling path, which
will be used below:

• Every cell on an infinite path belongs to squares of size 2n which the path
completely covers in contiguous steps; this happens for arbitrarily large n.

• These squares can be described recursively and within them the path
follows the Hilbert curve. (More details follow in the proof of Lemma 1.)

• An infinite path is infinite in both directions.

For the proofs that follow, a state from some 1D CA F is appended to each
tile in T0, obtaining in this way a new set of tiles, say A0. To reduce tilability
to non-reversibility the idea is to define, for a given set of tiles T , a 2D CA FT

with states T ×A0 whose rule consists of iterating the one dimensional CA rule
F on the paths running through valid cells. Let us call a cell active if the tilings
by T and A0 are valid at the cell. In FT , all active cells apply the local rule of
F along the path. Cells that see a tiling error in the T - or A0-tiling are inactive
and they do not change their state.

6.2. Undecidability of time-symmetry in 2D

Theorem 3. The following two classes of 2D CA are recursively inseparable:

• periodic and time-symmetric, and

• non-reversible

Proof. Here we will consider F as the addition modulo 2 with 1D neighborhood
{0, 1}, as in [13]. It is easy to see that F (1∞) = F (0∞). If a valid tiling in T
exists, there will be two configurations in T × A0 with an infinite valid path,
one with 1 in each tile and the other with 0. They both lead to the same image,
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proving the non-reversibility of FT . This proves that tilability by T implies
non-reversibility of FT .

Now let us see what happens when FT works on a finite path of active cells
that ends in an inactive cell. On such paths, the rule evolves as F would over a
finite segment with fixed boundary states. But the dynamics of F in such a case
is reversible, even periodic. If T cannot tile the plane, then the size of tilable
squares is bounded, and no infinite valid path can appear. In fact, there is a
global constant bound on the lengths of valid paths that depends only on T (if
arbitrarily long paths could appear, by compacity infinite paths would also be
possible).

We see that if T does not admit a tiling of the plane then the FT is reversible,
and even periodic. Moreover, the dynamics within paths are independent, so
they can be considered as independent finite and periodic subsystems, and using
the technique in the proof of Proposition 3, an involution can be defined that
makes the CA time-symmetric within each path. This involution is local because
each cell can find the limits of its path within a fixed neighborhood. Thus the
CA is time-symmetric and periodic.

6.3. Undecidability of time-symmetry in reversible 2D CA

Theorem 4. The following two classes of CA are recursively inseparable:

• periodic and time-symmetric, and

• reversible but non-time-symmetric

Proof. We consider now an adaptation of the 1D CA rule F = σ−2×σ×σ shown
in the previous section to be non-time-symmetric. The behavior is the same as
then, except at cells at the boundary of the active path, where a different rule
is used that makes the information “bounce back”: depending on the direction
of the path interruption, the bits will be copied from the fast layer into the slow
ones, or vice versa (see Figure 4).

Formally, the rule is defined as follows. First, each cell determines whether
it is active by verifying the correctness of both tilings. The validity is tested
inside a radius-2 neighborhood around the cell, so that for all active cells at
least two consecutive followers and successors are uniquely defined. If a cell
is inactive, it does not change its state. Otherwise, for i ∈ {−2,−1, 0, 1}, let
(ai, bi, ci) ∈ {0, 1}3 be the CA F states in the two predecessor tiles, in the tile
itself and in its follower, respectively; in addition, let boolean value vi be true if
the corresponding cell is active, and false otherwise. Then the new state in the
cell is

(a′, b′, c′) =



(a−2, b1, c1) if v−2 ∧ v−1 ∧ v1;
(a−2, a−1, a0) if v−2 ∧ v−1 ∧ ¬v1;
(b−1, b1, c1) if ¬v−2 ∧ v−1 ∧ v1;
(c0, b1, c1) if ¬v−1 ∧ v1;
(b−1, a−1, a0) if ¬v−2 ∧ v−1 ∧ ¬v1;
(c0, b0, a0) if ¬v−1 ∧ ¬v1

12



Notice that on a finite active path segment, bordered by inactive cells, the
bits cycle within the segment. Thus, if T cannot tile the plane, the involution
that symmetrically swaps the bits within each such finite path makes the 2D CA
time-symmetric. As in the previous theorem, it is important to notice that these
paths have bounded length, so that a T -fixed bounded neighborhood completely
encloses the path.

On the other hand, if T can tile the plane, we will prove that FT cannot be
time-symmetric. By contradiction, let us suppose that FT is time-symmetric,
and let H be its corresponding involution. Let x1 be a valid tiling of T , x2 a
valid tiling of T0, and x3 equal to (0, 0, 0) on every cell. Now let xp be equal
to x = (x1, x2, x3) except at position p where its numeric component is (0, 1, 0),
and let (pt)t∈Z be the infinite path of x2. We have that F t

T (xp0) = xp−t , which
combined with time-symmetry (which states H ◦ F t

T = F−tT ◦H) we get

H(xp−t) = F−tT (H(xp0)) (2)

Since the difference between x and xp is only at position p, the difference
between H(x) and H(xp) is only within a neighborhood of radius, say r, of p.
Thus, from equation (2), H(xp0) has a valid path that passes at distance r from
every cell in {pt}t∈Z. Such a path needs to be infinite, and therefore, it must
be a Hilbert plane filling path, thus H(xp0) is active on all of its cells. Notice
also that the locality of differences at time t implies that the differences between
H(x) and H(xp0) around p0 are removed by the iteration of FT ; therefore, they
must be located in the third component.

We may then choose q0 as a cell where configurations H(x) and H(xp0)
differ. H(x) and H(xp0) have both a plane filling path, which thus can be
written as (qt)t∈Z. The difference at q0 cannot be simultaneously on the fast
and on the slow layers of the numerical component: FT would then shift the
differences in opposite directions along the path, making the local difference
noticed above impossible. Hence, we have only two cases:

Case 1. The difference between H(xp0)(q0) and H(x)(q0) lies on the first
layer of the numeric component (the fast layer).

In this case, equation (2) tell us that d(q2t, pt) ≤ r for every t ∈ Z. From
the plane filling property, for every n a square of side 2n can be found around
p0 that corresponds exactly to consecutive tiles p−j to pl along the path. Thus
cells (qt)

2l
t=−2j must be contained in a square of side n+ 2r, which is impossible

if we pick n large enough: if (n + 2r)2 < 2n2, we get a contradiction with the
injectivity of the paths.

Case 2. The difference between H(xp0)(q0) and H(x)(q0) lies on the last
two layers of the numeric component (the slow layers).

In this case, equation (2) tell us that d(q−t, pt) ≤ r for every t ∈ Z. Here the
particular properties of T0 become crucial: it has directed paths, and they fill
squares according to one of four patterns, none of which is the reverse of another.
Thus, the path (q−t)t∈Z cannot draw a Hilbert curve like (qt)t∈Z and (pt)t∈Z, but
rather, it must follow the reverse patterns, which for large enough squares turn
out to be incompatible with following the forward patterns of (pt)t∈Z within a
distance r. This is proved in the next lemma, and completes this proof.
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Lemma 1. Let (pt)t∈Z and (qt)t∈Z be two Hilbert curves built with tile set T0.
Then ∀r > 0, ∃m : d(pm, q−m) > r.

Proof. By contradiction. Hilbert curves satisfy that in every infinite path, for
every natural n, every cell is contained in a square of side 2n which the path
completely covers in contiguous steps. These squares can be described recur-
sively, and are traversed in one of four possible ways. Using the first step of
recursion we can describe the four cases as a sequence of sixteen smaller squares,
visited according to their indices as shown in Figure 5.

Let us choose n such that 2n > 8r and let us consider a square of side
2n, say A, filled by (pt)

2m
t=1, for m = 22n−1. Without loss of generality, we will

assume that A is in the leftmost case of Figure 5; p1 and p2m correspond to the
grey and black cells. Notice that pm is exactly the last cell of square 8 before
entering square 9. Consider q−m, which lies at distance at most r from pm. It
must belong to some square B of side 2n in the (qt) path; since 2m cells are
needed to fill B, either q−1 or q−2m must be in B too. We will suppose that
q−1 is in B (the other case is analogous).

A first observation is that squares A and B must overlap horizontally up to
a margin of size r on each side. This follows from the fact that (q−t)

m
t=1 shadows

(from a distance bounded by r) the path (pt)
m
t=1, which spans A horizontally.

The path (q−t)
m
t=1 contains m = 22n−1 cells, and hence must cover at least

one complete quarter of B. Let C be this square of side 2n−1, and let q−l be
its first cell. Since −m ≤ −l and −l+ 22n−2 − 1 ≤ −1, pl must be in one of the
squares 8, 7, 6 or 5. The different cases are illustrated in Figure 6.

• If pl is in square 8 (Figure 6, left): For C to shadow (from a distance r)
the squares 5, 6 and 7, the only corner of C which could correspond to
q−l would be the upper right one. However, none of the ways to visit a
square starts there.

• If pl is in square 5 (Figure 6, center): Similar to the previous case; here
the visit to C would have to start at the bottom left corner, which is
impossible.

• If pl is in square 7 or 6 (Figure 6, right): The horizontal overlap of A and
B (up to a margin r), along with the fact that C is either on the left or
the right of B, makes it impossible for C to shadow either the leftmost
cells of square 4, or the rightmost cells of square 5. �

7. A note on involutions

Most of the easy examples of involutive CA that one can imagine are of
radius 0, or nearly so; like any periodic CA, information cannot travel far, and
a suspicion arises that perhaps all involutions are, in a sense, radius 0 CA. The
following example goes against this intuition.
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Example. A CA involution H which is not block conjugated to any radius
0 CA can be defined for the alphabet A = {0, 1, 2} as follows:

h(ab) =

 a if b 6= 0 ∨ a = 0
2 if b = 0 ∨ a = 1
1 if b = 0 ∨ a = 2

Proof. Let φ : AZ → BZ be a continuous, bijective function such that σn ◦ φ =
φ ◦ σm for some n and m. Clearly, φ−1 commutes with the same shifts and is
continuous too.

Mirroring Hedlund’s argument we can see that φ is determined by a local
function: continuity implies the existence of r such that the image in cells [0, n[
depends only on cells [−r, r[ –furthermore, we can assume that r is a multiple
of m. We have then φ(x)[0,n[ = f(x−r, .., xr) for some f , which along with
commutativity gives, for any k, φ(x)[kn,(k+1)n[ = f(xkm−r, .., xkm+r).

Suppose now that φ is a conjugacy between H and a radius 0 CA Π:
φ ◦ H = Π ◦ φ. Let π : B → B be the local function of Π, which must be
an involutive permutation of B.

Notice that the homogeneous configurations ωa.aω are fixed points of H
for all a ∈ A. Thus ua defined through ua = f(a2r+1) ∈ Bn verify ωua.u

ω
a =

φ(ωa.aω), for each a. Since they are fixed points for Π, each character in them
is a fixed point for π.

It follows that y = ωu1.u
ω
0 must be a fixed point for Π and hence x = φ−1(y)

must be one for H. However, x is left-asymptotic with 1 and right-asymptotic
with 0, and must therefore contain the a0 combination, with a 6= 0, which gives
it period 2 under H.

8. Conclusions

As shown by the examples in Section 2, time-symmetric CA are actually
quite familiar to CA researchers, and have appeared in different contexts. Some
cases are very explicit, like the automata constructed in the proof of undecid-
ability of periodicity [15], which actually include an “arrow of time” toggle.
Moreover, there are ways of constructing CA rules that make the construction
of time-symmetric CA straightforward. For instance, Margolus’ billiard is an
example of a block automata, i.e., a system which is a composition of two func-
tions applied to independent blocks of the configuration. By incorporating the
current function and block to be applied into the configuration, a block automa-
ton can always be expressed as a CA. Defining an involution that toggles the
current block is a good idea to prove time-symmetry, but it only works if both
block functions are also involutions. What must be stressed is that this is only a
sufficient condition; the system may be time-symmetric by means of an entirely
different involution.

Likewise, partitioned CA (in the sense of Morita [16]) can easily give birth
to time-symmetric CA. In that case, cells are partitioned into sub-cells, one
for each neighbors; iteration proceeds by the alternation between an exchange

15



step, where cells exchange the contents of the sub-cells associated to each other,
and a step which applies a block transformation on the cell. This scheme was
succesfully used to construct reversible CA (all we need is a reversible block
transformation), and can produce time-symmetric CA as well if the block trans-
formation is chosen as an involution: the exchange step already is one. Again,
what we want to stress is that this is a sufficient condition: we could have a
partitioned CA which is time-symmetric while having a non-involutive block
transformation, if the decomposition happens to be another one.

There are several interesting questions that should probably be addressed
next, and have appeared along this text. Two of them are:

• Is there a constructive characterization of CA involutions that can make
their enumeration practical? Right now the only way we have to find the
involutions is to test all CA exhaustively; some trivial necessary conditions
can be used to reduce the search, but they are not enough to make it
efficient.

• Is time-symmetry a decidable property in 1D? Since the definition calls
for the existence of an involution that verifies a condition, a computable
bound on the necessary neighborhood for the involution would be enough
to ensure decidability.

The answers to these questions may be related: a better understanding of the
structure of involutions may be useful for bounding the required neighborhood
and thus deciding time-symmetry.

Another natural couple of questions arises when considering the result of
composing, not just 2, but any number of involutions. Since time-symmetric
CAs were shown not to be closed under composition, we know that the com-
position of involutions can go beyond them. On the other hand, the result will
always be within the kernel of Kari’s ϕA homomorphism (see Section 5). Is
every CA in that kernel a composition of involutions? If not, then: is perhaps
every periodic CA a composition of involutions?

A different line to explore was suggested in personal communication by G.
Theyssier, and is related to the “Open Problem 1” formulated in [9]. There
he and his coauthors considered several notions of CA simulation, each one of
them defining a partial order and equivalence classes among CA. They show
that two equivalent reversible CA will have equivalent inverse CA; the classes
of equivalence of the direct and inverse CA can, in principle, be different. The
question they ask is: What reversible CA are equivalent to their inverses?. The
class of time-symmetric CA may be a good starting point towards answering
this question, even if the existence of an involutive CA that alternates between
the space-time diagrams of F and F−1 does not imply (at least not directly) the
equivalence of F and F−1 in the sense of [9], where only autarkic transformations
between CA are considered. On the other hand, periodic CA are all in the same
equivalence class for [9], while we have proved that some of them are not even
CA conjugated with their inverse. Delorme et al remark that so far no example
of non-equivalence between a CA and its inverse has been found. Generally
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speaking, the relation between time-symmetry and other notions of equivalence
between a CA and its inverse is unknown territory.

A further direction for future work may be the study of time-symmetry in
other discrete dynamical systems. In each case, an important issue is to precise
what kind of involution is to be applied. Generally speaking, what we need is
an involutive and hopefully local transformation of the system’s configuration.
That transformation may not be, in general, an object of the same kind as the
dynamics itself: that was the case for CA because of the special nature of CA,
which transform the whole configuration in discrete time too, and will be the
case for automata networks in general. In other cases, like for instance Turing
machines, it is not only difficult (the composition of two Turing machines moves
the head two steps, and is no longer a Turing machine unless we extend the
definitions) but also not expected; rather, for Turing machines, the involution
would likely be a transformation on the tape (a CA involution?) along with a
change in the current state of the machine. Finally, the locality of the time-
reversing involution is not completely granted either: even in CA, it would be
interesting to see what happens if that requirement is removed.
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(a) (b) (c)

Figure 1: (a) The two partitions of the Margolus model are shown, one with solid lines and
the other with dashed lines. (b) The Billiard Ball Model is defined through a permutation
over 2× 2 blocks of cells. (c) The current partition is obtained by grouping the four cells that
point to the same point; reversing the arrows gives the alternate partition.

(a) (b)

Figure 2: (a) Langton’s ant rule. (b) Space configuration at iteration 10,837 after starting
with every cell in white color.
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Figure 3: The decomposition of time-symmetric CA into alternating involutions creates a
situation where both F and its inverse can be read from the space-time diagram as time
moves forward (or backward).

Figure 4: The adapted rule on a doubly bounded path of length 6.
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Figure 5: The path must start at the grey corner, visit the small squares in the indicated
order by passing from one to the next though their corners as indicated by the arrows, to
finally exit through the black corner.
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Figure 6: The grey squares are completely covered by path (pt)
l−22n−2+1
t=l . Square C is

marked with thick black lines. Three cases appear depending on the location of pl, none of
which admits a valid C within a r neighborhood of the grey area.
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