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Abstract

An update digraph corresponds to a labeled digraph that indicates a relative order
of its nodes introduced to de�ne equivalence classes of deterministic update sched-
ules yielding the same dynamical behavior of a Boolean network. In (Aracena et al.,
2011), the authors exhibited relationships between update digraphs and the feed-
back arc sets of a given digraph G. In this paper, we delve into the study of these
relations. Speci�cally, we show di�erences and similarities between both sets through
of increasing and decreasing monotony properties in terms of its structural charac-
teristics. Besides, we prove that these sets are equivalent if and only if all its circuits
are cycles. On the other hand, we characterize the minimal feedback arc sets of a
given digraph in terms of its update digraphs associated. In particular, for complete
digraphs, this characterization shows a close relation with acyclic tournaments. For
these latter, we show that the size of the associated equivalence classes is a power
of two. Finally, we determine exactly the number of update digraphs associated to
digraphs containing a tournament.
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1 Introduction

Boolean networks (BN) are the simplest models for genetic regulatory net-
works, as well as for other simple distributed dynamical systems. Despite their
simplicity, they provide a realistic model in which di�erent phenomena can be
reproduced and studied, and indeed, many regulatory models published in the
biological literature �t within this framework (Kau�man, 1969; Thomas, 1973;
Shmulevich et al., 2003).

A BN is de�ned by its connection digraph, its local activation functions, and
the update schedule used (see (Aracena et al., 2009) for more details). In (Sali-
nas, 2008) was de�ned equivalence classes of deterministic update schedules in
BN's according to the associated connection digraph with labels on its arcs,
named update digraph, which are of two types: an arc (a, b) has a negative
label if the state of a is updated strictly before than b, and a positive label
otherwise.

In (Salinas, 2008; Aracena et al., 2009), the authors showed that the elements
of such equivalence classes yield exactly the same dynamical behavior of the
network. This result was the starting point for the algorithmical and combi-
natorial study of the update digraphs done in (Aracena et al., 2011), where
was showed, among other things, a close relationship between update digraphs
and the feedback arc sets of a given digraph.

For a given digraph, a feedback arc set is a set of arcs which if removed leaves
the resultant digraph free of cycles. They have been extensively studied, mainly
concerning to the cardinality of a minimum feedback arc set (see (Bang-Jensen
and Gutin, 2010) for a good survey). One of these works showed that such a
minimum arcs set is determined by a sequential ordering of the nodes which
minimizes the number of positive arcs (Younger, 1963).

In this paper, we delve into the study of the relationships between update
digraphs and feedback arc sets showed in (Aracena et al., 2011) as well as their
relations with some particular digraphs such as complete digraphs, acyclic
digraphs and tournaments in order to determine exactly the number and size
of the associated equivalence classes.

2 Preliminaries

We begin this section giving some basic de�nitions and introducing the nec-
essary notations. Besides, we remember some known results that allow us to
develop the following sections.
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A digraph is an ordered pair of sets G = (V, A) where V = {1, . . . , n} is
a set of elements called vertices (or nodes) and A is a set of ordered pairs
(called arcs) of vertices of V . The vertex set of G is referred to as V (G),
its arc set as A(G). If more than one arc that connects a node i to a node j
are admissible, then we will say that G is a multidigraph. A subdigraph
of G is a digraph G′ = (V ′, A′) where V ′ ⊆ V and A′ ⊆ (V ′ × V ′) ∩ A. We
write G′ ⊆ G. If A′ = (V ′ × V ′) ∩ A, we say that G′ is induced by V ′ and
call G′ an induced subdigraph of G which is denoted by G′ = G[V ′]. If
V ′ ( V ∨ A′ ( A, then we write G′ ( G. We will often write G − U whose
meaning depends of the nature of U . Thus, if U ⊆ V , then G − U is the
subdigraph of G induced by V − U , i.e. G− U = G[V − U ]. If U ⊆ A, then
G− U = (V,A− U).

G is a complete digraph if A = {(u, v) : u, v ∈ V ∧ u 6= v}. G is a tourna-
ment if ∀x, y ∈ V , x 6= y, (x, y) ∈ A Y (y, x) ∈ A.

A walk from a vertex v1 to a vertex vm in a digraph G is a sequence of
vertices v1, v2, . . . , vm of V (G) such that ∀k = 1, . . . ,m− 1, (vk, vk+1) ∈ A(G)
or (vk+1, vk) ∈ A(G). The vertices v1 and vm are the initial and terminal vertex
of the walk. A walk is elementary if each vertex in the walk appears only
once with the possible exception that the �rst and last vertex may coincide. A
walk is closed if its initial and terminal vertices coincide. A circuit is a closed
elementary walk. A walk v1, v2 . . . , vm is a path if (vk, vk+1) ∈ A(G) for all
k = 1, . . . ,m − 1. A cycle is a directed circuit, that is a closed elementary
path. G is an acyclic digraph if G has no cycle.

An arc set U ⊆ A is a feedback arc set of G if G− U is an acyclic digraph.
U is said to be a minimal feedback arc set of G if U is a feedback arc set of
G and there is no other feedback arc set W ⊆ A of G such that W ( U . U is
said to be a minimum feedback arc set of G if U is a feedback arc set of G
and there is no other feedback arc set W ⊆ A of G such that |W | < |U |. The
sets of feedback arc sets, minimal feedback arc sets and non feedback arc sets
of G are denoted by FAS(G), MFAS(G) and NFAS(G) respectively.

A digraph G is said to be connected if there is a walk between every pair of
its vertices, and strongly connected if there is a path between every pair
of its vertices. G′ ⊆ G is a strongly connected component of G if G′ is
strongly connected and it is maximal for this property, i.e., there is no other
strongly connected subdigraph G′′ of G such that G′ ( G′′. If G′ is a strongly
connected component of G, composed by only one vertex, then G′ is called a
trivial component.

An undirected graph (or a graph) is an ordered pair G = (V, E) where V =
{1, . . . , n} is a non-empty �nite set of elements called vertices (or nodes) and
E is a �nite set of unordered pairs of distinct vertices of V called edges. The

3



vertex set of G is referred to as V (G), its arc set as E(G). An orientation
of G is a digraph G′ = (V ′, A) where V ′ = V , |A| = |E| and ∀{x, y} ∈ E,
either (x, y) ∈ A or (y, x) ∈ A.

Also, in the sequel, for any integers a and b with a ≤ b, we will write [[a, b]] =
{i ∈ Z : a ≤ i ≤ b}.

An update schedule of the vertices of a digraph G = (V, A), with |V | = n,
is a function s : V → [[1, n]] such that s(V ) = [[1,m]] for some m ≤ n. We
denote Sn the set of update schedules over [[1, n]]. A block of s is the set
Bi = {v ∈ V : s(v) = i}, 1 ≤ i ≤ m. The number of blocks of s is denoted
by nb(s) ≡ m. If nb(s) = 1, then s is said to be a parallel update schedule.
In this case, we will write s = sp. If s is a permutation over the set [[1, n]], i.e.
nb(s) = n, s is said to be a sequential update schedule. In all other cases, i.e.
when 2 ≤ nb(s) ≤ n− 1, s is said to be a block sequential update schedule.
Frequently, s will be denoted by s = (j ∈ B1)(j ∈ B2) · · · (j ∈ Bnb(s)) or more
compactly s = (Bi)

nb(s)
i=1 and Ps = {B1, ..., Bnb(s)} the partition associated to

s.

As mentioned in (Demongeot et al., 2008), the number of update schedules
associated to a digraph of n vertices, i.e. |Sn|, is equal to the number of ordered
partitions of a set of size n, that is

|Sn| = Tn ≡
n−1∑

k=0

(
n

k

)
Tk,

where T0 ≡ 1.

Let G be a digraph. A function lab : A(G) → { -©, +©} is called a label
function of G. An arc a ∈ A(G) such that lab(a) = +© is called a positive
arc and an arc a ∈ A(G) such that lab(a) = -© is called a negative arc. A
cycle C in G such that ∀a ∈ A(C), lab(a) = +© is called a positive cycle and
a cycle C in G such that ∀a ∈ A(C), lab(a) = -© is called a negative cycle.
(G, lab) is named a labeled digraph.

Let s be an update schedule of V (G), we denote by labs the label function
de�ned as follows (see Fig. 1):

∀(j, i) ∈ A(G), labs(j, i) =





+© if s(j) ≥ s(i)

-© if s(j) < s(i).

We de�ne equivalence classes with respect to labeled digraphs: if s is an
update schedule of the vertices of a digraph G, we write [s]G the set of update
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Fig. 1. A digraph G = (V, A) labeled by the function labs where ∀i ∈ V = {1, . . . , 4},
s(i) = i.

schedules s′ such that s
G∼ s′, that is

[s]G = {s′ : (G, labs) = (G, labs′)}.

In simple words, an equivalence class, [s]G, is a set of update schedules that all
yield the same labeled digraph, and consequently the same dynamical behavior
of the network (Aracena et al., 2009).

We will say that s has the maximum number of blocks if ∀s′ ∈ [s]G,
nb(s′) ≤ nb(s) and we will denote by S∗n the set of update schedules having
the maximum number of blocks.

A labeled digraph (G, lab) is said to be an update digraph if there exists an
update schedule s such that lab = labs, that is ∀a ∈ A(G), lab(a) = labs(a).
We denote by U(G) = {lab : A(G) → { -©, +©}| (G, lab) is an update digraph}
and NU(G) = {lab : A(G) → { -©, +©}| (G, lab) is a non update digraph}. An
update digraph (G, lab) has a maximal number of negative arcs if there
is no label function lab∗ ∈ U(G) with strictly more negative arcs that lab,
and where lab(u, v) = -© implies lab∗(u, v) = -© , for every (u, v) ∈ A(G) (see
example in Fig. 2).

a)
2

+

1

+

3
b)

2
+

1

3

Fig. 2. a) A labeled digraph (G, lab) which is an update digraph with a maximal
(but not maximum) number of negative arcs. b) A labeled digraph (G, lab′) which
is not an update digraph.

We de�ne the projection of (G, lab) onto G′ ⊆ G as being the labeled digraph
(G′, lab|G′), where lab|G′(a) = lab(a), ∀a ∈ A(G′).

Given an update digraph (G, lab), G′ ⊆ G is said to be a positive strongly
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connected component of (G, lab) if G′ is a strongly connected component
of G−{a ∈ A(G) : lab(a) = -©}. In particular, if G′ is an isolated vertex, G′ is
called a trivial positive component. Besides, any update digraph (G, lab)
has a unique decomposition into positive strongly connected components.

Let (G, lab) be a labeled digraph. The labeled reoriented multidigraph as-
sociated to (G, lab), denoted by (GR, labR), is the labeled multidigraph de�ned
by construction as follows:

• V (GR) = V (G).
• ∀(u, v) ∈ A(G) such that lab(u, v) = +©, (u, v) ∈ A(GR) and labR(u, v) = +©.
• ∀(u, v) ∈ A(G) such that lab(u, v) = -©, (v, u) ∈ A(GR) and labR(v, u) = -©.

Observe that if (G, lab) has no cycle of length two with a positive arc and
another negative, then (GR, labR) is simply a digraph. An example of labeled
reoriented multidigraph is shown in Fig. 3.

a)

ba

c

+
+

b)

ba

c

+
+

Fig. 3. a) A labeled digraph G = ({a, b, c}, A). b) (GR, labR) where the arcs drawn
in dotted lines are the ones that have been inverted.

A forbidden cycle in (GR, labR) is a cycle containing a negative arc.

In this context, the following characterization of update digraphs was proven
in (Aracena et al., 2011).

Theorem 1 A labeled digraph (G, lab) is an update digraph if and only if
(GR, labR) does not contain any forbidden cycle.

Observe that if (G, lab) has a negative cycle, then (G, lab) is not an update di-
graph. Besides, if G is a digraph without circuits, then for every label function
lab : A(G) → { -©, +©}, (G, lab) is an update digraph.

On the other hand, in (Aracena et al., 2011) was also shown that the property
of being update digraph can be extended or projected over update digraphs.
Speci�cally, the authors showed the following Theorem.

Theorem 2 Let G be a digraph and G′ ⊆ G. If (G′, lab′) is an update digraph,
then there exists a label function lab of A(G) such that (G, lab) is an update
digraph and lab|G′ = lab′.
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The above Theorem will be fundamental in the following section, to be more
explicit, in the relationships between the sizes of the sets U(G), MFAS(G)
and FAS(G) associated to a given digraph G.

3 Feedback arc sets and update digraphs

In this section we will investigate into the relationships that exist between the
feedback arc sets and the update digraphs associated to a given digraph, work
begun in (Aracena et al., 2011).

Next, we give a �rst result relating the sizes of the sets U(G), MFAS(G) and
FAS(G) that was shown in (Aracena et al., 2011).

Proposition 3 Let G be a digraph. Then,

|MFAS(G)| ≤ |U(G)| ≤ |FAS(G)|.

Basically, the proof of the Proposition 3 considers, on the one hand, an in-
jective function g : U(G) → FAS(G) such that for every lab ∈ U(G),
g(lab) = {a ∈ A(G) : lab(a) = +©} and on the other hand, an injective func-
tion h : MFAS(G) → U(G) such that for every F ∈ MFAS(G), h(F ) = labF ,
where labF (a) = +©⇔ a ∈ F .

Now, being a little bit more speci�c, it is easy to see that the label function
labp de�ned by labp(a) = +©, ∀a ∈ A(G) is in U(G) but there does not exist
F ∈ MFAS(G) such that h(F ) = labp, because for each arc in F there exists a
cycle in G which it does not contain another arc in F . Therefore, the function
h cannot be surjective and hence, we have the following result.

Proposition 4 Let G be a digraph. Then,

|MFAS(G)| < |U(G)| ≤ |FAS(G)|.

As shown in Proposition 4, there exist relationships between feedback arc sets
and update digraphs. Next, we will study in greater depth this relation.

Proposition 5 Let G be a digraph and G′ ( G where V (G) = V (G′). Then
|U(G′)| < |U(G)| and |FAS(G′)| < |FAS(G)|.

PROOF. Let G be a digraph with |V (G)| = n and G′ ( G where V (G) =
V (G′). Due to Theorem 2, there is a function f : U(G′) → U(G), lab′ →
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f(lab′) = lab, where lab|G′ = lab′. Thus, it is easy to see that f is injective.
Hence, |U(G′)| ≤ |U(G)|.

Besides, since G′ ( G and V (G) = V (G′), then ∃(a, b) ∈ A(G) − A(G′). Let
s1, s2 ∈ Sn such that s1(a) = s1(b) = s2(a) = 1, s2(b) = 2, s1(c) = 2 and
s2(c) = 3, ∀c ∈ V (G) − {a, b}. Then labs1|G′ = labs2|G′ , but labs1 6= labs2 .
De�ning lab′ = labs1|G′ and supposing w.l.o.g that f(lab′) = labs1 , we deduce
that f is not surjective because there is no lab′′ 6= lab′, lab′′ ∈ U(G′) such that
f(lab′′) = labs2 . Hence, |U(G′)| < |U(G)|.

On the other hand, the function g : FAS(G′) → FAS(G), F ′ → g(F ′) =
F ′∪(A(G)−A(G′)), is evidently injective and well-de�ned. Thus, |FAS(G′)| ≤
|FAS(G)|. But for a given (a, b) ∈ A(G) − A(G′), F = A(G) − {(a, b)} ∈
FAS(G), however, there is no F ′ ∈ FAS(G′) such that g(F ′) = F . Hence, g
is not surjective and in this way. |FAS(G′)| < |FAS(G)|. 2

Theorem 6 Let G be an undirected graph and G1 and G2 two orientations of
G such that every cycle of G1 is also a cycle of G2. Then |U(G1)| ≤ |U(G2)|
and |FAS(G2)| ≤ |FAS(G1)|.

PROOF. Let G, G1 and G2 as in the hypothesis of the proposition. We de�ne
the function f : NU(G2) −→ NU(G1), lab → f(lab) = lab′ by:

lab′(u, v) =





lab(u, v), if (u, v) ∈ A(G1) ∩ A(G2),

lab(u, v), in other case.
,∀(u, v) ∈ A(G1)

where lab : A(G1) −→ { -©, +©} is de�ned by:

lab(u, v) = +©⇔ lab(v, u) = -©

f is well de�ned. First, note from de�nition of lab′ that (G2)R = (G1)R, where
(G1)R and (G2)R are the reoriented multidigraphs associated to (G1, lab′) and
(G2, lab) respectively. In this way, if C is a cycle in ((G2)R, labR) with some
negative arc, then C is also a cycle in ((G1)R, lab′R) with some negative arc
(see Figure 4).

In fact, suppose on the contrary that C is a cycle in ((G1)R, lab′R) with all
the arcs positive. This is possible if and only if C is a cycle in (G1, lab′) with
all the arcs positive and by hypothesis of the proposition, C is also a cycle
in (G2, lab) with all the arcs positive, which is a contradiction. Therefore,
lab ∈ NU(G2) ⇒ f(lab) = lab′ ∈ NU(G1).

On the other hand, it is easy to see from the de�nition of lab′ that f is injective.
Therefore, |NU(G2)| ≤ |NU(G1)| and consequently |U(G1)| ≤ |U(G2)|.
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Finally, |NFAS(G1)| ≤ |NFAS(G2)| and consequently |FAS(G2)| ≤
|FAS(G1)|. In fact, if F ⊆ A(G1) is a non-feedback arc set of G1, then
F ′ = {(u, v) ∈ G2 : (u, v) ∈ F ∨ (v, u) ∈ F} is a non-feedback arc set of
G2. 2

a)
dc

ba

G b)
+

(G ,lab’)1

+

2(G  ,lab)

a b

c ddc

ba

f(lab) = lab’

c) 2 R R((G  )   , lab   )

a b

c d

+

d)
+

((G  )   , lab’   )1 R R

a b

c d

Fig. 4. a) An undirected graph G. b) Two orientations G1 and G2 of G and
the injective function f de�ned in the proof of Theorem 6. Observe that
|U(G1)| = 18 < 20 = |U(G2)| and |FAS(G2)| = 27 < 32 = |FAS(G1)|. c)
The labeled reoriented multidigraph ((G2)R, labR) associated to (G2, lab). d) The
labeled reoriented multidigraph ((G1)R, lab′R) associated to (G1, lab′).

Proposition 7 Let G be a digraph. Then, |U(G)| = |FAS(G)| if and only if
all the circuits of G are cycles.

PROOF. ⇒) Let us suppose that G has a circuit C which is not a cycle. We
will prove that |U(G)| < |FAS(G)|. Let (G, lab) be an update digraph, then
{a ∈ A(G) : lab(a) = +©} is a feedback arc set of G induced by the function
lab, and thus |U(G)| ≤ |FAS(G)|. We will show that there is another feedback
arc set F ′ of G not induced by any element of U(G). Indeed, there exists a
label function lab′ such that the circuit C is a forbidden circuit of (G, lab′)
with at least a positive arc and a negative arc in C. Let F ′ = A(G) − {a ∈
A(C) : lab′(a) = -©}. It is easy to check that F ′ is a feedback arc set of G
which is not induced by any element in U(G).

⇐) Let us suppose that all circuits of G are cycles. We want to prove that
|FAS(G)| ≤ |U(G)|.

We de�ne the following function TG : FAS(G) −→ U(G) such that for each
feedback arc set F ∈ FAS(G), TG(F ) is the label function:
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TG(F )(a) =





+©, if a ∈ F,

-©, if a /∈ F

Then, TG(F ) ∈ U(G). Indeed, if there exists a forbidden circuit C in
(G, TG(F )), there is at least an arc a ∈ A(C) such that TG(F )(a) = +©. Since,
if for all a ∈ C, TG(F )(a) = -© then A(C)∩F = ∅, which contradicts the fact:
F ∈ FAS(G). Besides, there exists a′ ∈ A(C), TG(F )(a′) = -©. Hence, C is
a circuit in G which is not a cycle, which is a contradiction. Therefore, TG is
well-de�ned and obviously injective. 2

Remark 8 Observe that in a strongly connected digraph G, every circuit in
G is a cycle if and only if all cycles are pairwise arc-disjoints.

From the proof of Proposition 3, we know that to each F ⊆ A(G), a mini-
mal feedback arc set of G, can be associated a label function labF such that
(G, labF ) is an update digraph. However, the opposite is not always possible.
Next, the following theorem shows a characterization of the update digraphs
(G, lab) induced by a minimal feedback arc set.

Theorem 9 Let G be a digraph with |V (G)| = n. Then, F ⊆ A(G) is a
minimal feedback arc set of G if and only if (G, labF ) is an update digraph
with a maximal number of negative arcs, where labF (u, v) = +©⇔ (u, v) ∈ F .

PROOF. ⇒) Let G be a digraph with |V (G)| = n and F a minimal feedback
arc set of G. From the proof of Proposition 3, we know that (G, labF ) is an
update digraph.

Suppose on the contrary that (G, labF ) has not a maximal number of negative
arcs, i.e., there exists a label function lab with strictly more negative arcs
than labF such that (G, lab) is an update digraph, and where labF (u, v) = -©
implies lab(u, v) = -©, for every (u, v) ∈ A(G). Then F ′ = {(u, v) ∈ A(G) :
lab(u, v) = +©} is a feedback arc set of G and veri�es that F ′ ( F , which
contradicts the minimality of F . Hence, (G, labF ) is an update digraph with
maximal number of negative arcs.

⇐) Let labF be a label function for which (G, labF ) is an update digraph with
maximal number of negative arcs. We know that F ⊆ A(G) is a feedback arc
set of G because (G, labF ) is an update digraph, which implies that G− F is
acyclic.

Now, suppose on the contrary that F is not minimal, i.e, there exists a minimal
feedback arc set F ′ ⊆ F of G and consequently a label function labF ′ with
which (G, labF ′) is also an update digraph, but having the same negative arcs
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as (G, labF ) and more. This contradicts the maximality of (G, lab). Therefore,
F is a minimal feedback arc set of G. 2

Remark 10 It is easy to see that a labeled digraph (G, lab) with all its arcs
negative is an update digraph if and only if G is an acyclic digraph (see
(Younger, 1963)). However, in the general case, we have the following result.

Proposition 11 An update digraph (G, lab) with maximum number of nega-
tive arcs has at least |A(G)|

2
negative arcs.

PROOF. Let (G, lab) be an update digraph and na(G, lab) = |{(u, v) ∈
A(G) : lab(u, v) = -©}| the number of negative arcs of (G, lab).

If G is an acyclic digraph, then (G, lab) with all its arcs negative is an update
digraph, i.e. na(G, lab) = |A(G)|.

If G has a cycle, then let sq1 = (v1)(v2) · · · (vn) and sq2 = (vn)(vn−1) · · · (v1) two
sequential update schedules with vi ∈ V (G), ∀i ∈ [[1, n]]. Then, ∀i, j ∈ [[1, n]]
such that (vi, vj) ∈ A(G),

labsq1
(vi, vj) = -©⇔ labsq2

(vi, vj) = +©

Thus, since (G, lab) has maximum number of negative arcs, must satisfy
na(G, lab) ≥ max{na(G, labsq1

), na(G, labsq2
)} ≥ |A(G)|

2
. 2

Proposition 12 Let (G, lab) be an update digraph with a maximal number of
negative arcs. Then, there is no positive cycle.

PROOF. Let (G, lab) be an update digraph with a maximal number of neg-
ative arcs, i.e, there is no positive arc that can be changed by a negative arc
holding the property of update digraph. Let s be an update schedule such that
(G, lab) = (G, labs) and suppose on the contrary that there is a positive cycle
C, then there exists (i, j) ∈ A(C) such that s(i) = s(j). De�ning s′ by:

s′(k) = s(k), ∀k, s(k) < s(i).
s′(i) = s(i)
s′(k) = s(k) + 1, ∀k 6= i, s(k) ≥ s(i).

we have that labs(u, v) = -©⇒ labs′(u, v) = -©, but labs(i, j) = +© 6= labs′(i, j)
which contradicts the maximality of (G, lab). 2

Proposition 13 Let (G, lab) be an update digraph. Then, there is a sequential
update schedule sq such that (G, lab) = (G, labsq) if and only if (G, lab) has no
positive cycle.

11



PROOF. ⇒) Straightforward.

⇐) Let (G, lab) be an update digraph with |V (G)| = n and without positive
cycles, then (GR, labR) has no cycles. Therefore, there exists a topological
order i1, . . . , in of the vertices, i.e., (ij, ik) ∈ A(GR) ⇒ k > j, such that
sq = (i1)(i2) . . . (in) is a sequential schedule satisfying (G, lab) = (G, labsq). 2

In general, the necessary condition of Proposition 12 is not su�cient. As a
counter-example, we can consider a simple labeled digraph (G, lab) composed
by only one positive arc (a, b) which is obviously an update digraph without
positive cycles, but not maximal. Nevertheless, Theorem 17 of the next section
shows that in update complete digraphs, the su�ciency holds.

3.1 Feedback arc sets in update complete digraphs

In the particular case of complete digraphs, we will see how many of the
properties of update digraphs and feedback arc sets previously mentioned are
equivalent between them, establishing an explicit form for determining the set
MFAS(G).

Remark 14 Let G be a complete digraph with |V (G)| = n and F a minimal
feedback arc set of G. Then, |F | =

(
n
2

)
and talk of minimum feedback arc set

it is equivalent to talk of minimal feedback arc set. In fact, suppose that |F | >(
n
2

)
, then necessarily there exist u, v in V (G) such that {(u, v), (v, u)} ⊆ F .

Since F is a feedback arc set, there exists path P1 = u1, ..., uk with u1 = v,
uk = u which does not contain any arc of F (in particular the arc (v, u)), for
some k ∈ [[2, n]] and ui ∈ V (G), ∀i ∈ [[1, k]]. Analogously, there exists path
P2 = v1, ..., vj with v1 = u, vj = v which does not contain any arc of F (in
particular the arc (u, v)), for some j ∈ [[2, n]] and vi ∈ V (G), ∀i ∈ [[1, j]].
Thus, joining the paths P1 and P2 we deduce the existence of a cycle which
does not contain any arc of F , a contradiction because F is a feedback arc set.
Hence |F | ≤

(
n
2

)
. On the other hand, |F | ≥

(
n
2

)
because G has

(
n
2

)
cycles of

length two.

The following Proposition is a simple characterization of update complete
digraphs.

Proposition 15 Let G be a complete digraph. Then, (G, lab) is a non update
digraph if and only if there exists a forbidden cycle of length either two or
three in GR.

PROOF. ⇐) It is straightforward.

12



⇒) Let (G, lab) be a non-update complete digraph. Then, there exists a for-
bidden cycle CR of smallest length in (GR, labR). Let suppose that the length
of CR is strictly greater than three.

Let C be the forbidden circuit associated to CR in G. If C has a path of the
form (a, b), (b, c) +©-labeled, then necessarily (a, c) is also positive in G because
otherwise, there would exist a forbidden cycle C ′ of length three strictly smaller
than CR in GR. Analogously, if C has a path of the form (a, b), (b, c) -©-labeled,
then necessarily (a, c) is negative (see Fig. 5: a) and b)).

Therefore, we can suppose that C does not have two consecutive arcs with
the same label. But when, for example, lab(b, a) = -© and lab(b, c) = +©,
necessarily the arc (c, a) is negative in G (i.e., (a, c) is negative in GR), because
on the contrary, there would exist a forbidden cycle C ′ of length three smaller
than CR in GR (see Fig. 5: c) and d)).

In this way, it is always possible to reduce the length of the forbidden cycle
CR up to obtain a length of three. 2

a)

a

b

c

+ +

a

b

c

+ +

C R

++

C

b)

a

b

c a

b

c

C RC

c)

a

b

c

+

a

b

c

+

C RC

d)

a

b

c

+

a

b

c

+

C RC

Fig. 5. Proof idea of Proposition 15. a) When the arcs (a, b) and (b, c) are positive
in C, then necessarily (a, c) is also positive in C. b) When the arcs (a, b) and (b, c)
are negative in C, then necessarily (a, c) is also negative in C. c) If lab(b, a) = -©
and lab(b, c) = +© in C, then necessarily lab(c, a) = -©. d) If lab(a, b) = -© and
lab(c, b) = +© in C, then necessarily lab(a, c) = -©.

Proposition 16 Let G be a complete digraph with |V (G)| = n. Then, F is
a minimal feedback arc set of G if and only if G′ = G − F is an acyclic
tournament.

PROOF. ⇒) Let F be a minimal feedback arc set of G, then G′ = G − F
represents an acyclic digraph. Besides, G′ is a tournament. In fact, suppose on
the contrary that G′ is not a tournament, i.e., there is a pair of vertices a, b
in V (G′) such that {(a, b), (b, a)} ∩A(G′) = ∅. That minds {(a, b), (b, a)} ⊆ F
and since F must have at least one arc for each pair of vertices of V (G), we

13



have that |F | ≥
(

n
2

)
+ 1, which is a contradiction because by Remark 14,

|F | =
(

n
2

)
.

⇐) Let G′ be an acyclic tournament, then F = A(G) − A(G′) is a minimal
feedback arc set of G, because |F | = |A(G)− A(G′)| =

(
n
2

)
. 2

Theorem 17 Let (G, lab) be an update complete digraph with |V (G)| = n.
The following statements are equivalent:

(i) (G, lab) has a maximal number of negative arcs.
(ii) The digraph induced by the negative arcs of (G, lab) is an acyclic tourna-

ment.
(iii) (G, lab) has no positive cycle.

PROOF. Let (G, lab) be an update complete digraph with |V (G)| = n.

(i) ⇒ (ii). If (G, lab) has a maximal number of negative arcs, then by Theorem
9, F = {(u, v) ∈ A(G) : lab(u, v) = +©} is a minimal feedback arc set of G.
Hence, by Proposition 16, G′ = G − F is an acyclic tournament, i.e., the
digraph induced by the negative arcs of (G, lab) is an acyclic tournament.

(ii) ⇒ (iii). If the digraph induced by the negative arcs of (G, lab) is an acyclic
tournament, then the digraph induced by the positive arcs of (G, lab) is also
an acyclic tournament because G is a complete digraph, i.e. (G, lab) has no
positive cycle.

(iii) ⇒ (i). If (G, lab) has no positive cycle, then all its cycles of length two
have only one negative arc. Since a complete digraph has

(
n
2

)
cycles of length

two, (G, lab) has at least
(

n
2

)
negative arcs, but this is the maximum num-

ber, and thus the maximal number of negative arcs that an update complete
digraph can have. 2

Corollary 18 Let G be a complete digraph with |V (G)| = n. Then,
|MFAS(G)| = |{lab : (G, lab) is an update digraph with maximal number of
negative arcs}| = n!

PROOF. It is easy to see that the number of acyclic tournaments of size n
is n!. Then, the Corollary 18 follows from Theorem 9 and Proposition 16. 2

Note also due to Theorem 9, Proposition 13 and Theorem 17 that �nding
all possible minimal feedback arc sets of a complete digraph can be made
considering the update digraphs associated with the n! di�erent sequential
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update schedules, where a minimal feedback arc set will consist of their positive
arcs. In other words, if G is a complete digraph, then,

MFAS(G) = {F ⊆ A(G) : labsq(a) = +©⇔ a ∈ F ∧ sq sequential}

4 Tournaments and update digraphs

In the previous sections, we found bounds for the sizes of the schedule equiva-
lence classes associated with a given update digraph G as well as relationships
between the sets U(G), MFAS(G) and FAS(G). In this section, we will re-
strict to classical families such as acyclic digraphs, complete digraphs and
tournaments in order to determine exactly the number and size of their sched-
ule equivalence classes. Also we will show how the number of negative arcs of
a given update digraph (G, lab) is related to these families and the feedback
arc sets.

Theorem 19 Let G be an acyclic digraph with |V (G)| = n. Then,

(a) |U(G)| ≤ n!.
(b) |U(G)| = n! ⇔ G is a tournament.
(c) If G is a tournament, then for each update schedule s of G, |[s]G| = 2k, for

some k ∈ N ∪ {0}.

PROOF. (a) For every lab ∈ U(G), (G, lab) has no positive cycle. Hence,
by Proposition 13 there exists a sequential schedule sq such that (G, lab) =
(G, labsq).

Therefore, since the number of di�erent sequential update schedules is n!, we
have that:

|U(G)| ≤ n!

(b) ⇐) Let G be a tournament with |V (G)| = n and let s1, s2 be two dif-
ferent sequential update schedules, then by tournament de�nition there is
(i, j) ∈ A(G) such that labs1(i, j) 6= labs2(i, j). Since every sequential up-
date schedule s de�ne a di�erent update digraph (G, labs) and the number of
di�erent sequential update schedules is n!, we have that:

|U(G)| ≥ n!

and due to (a), we conclude that |U(G)| = n!.
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⇒) Let G be an acyclic digraph with |V (G)| = n and |U(G)| = n!. Suppose
on the contrary that G is not a tournament, then necessarily there exist u, v
in V (G) without arcs between them (two arcs between them is not possible
because G is acyclic) which implies that there are two di�erent sequential
update schedules with the same update digraph. This contradicts the fact
that |U(G)| = n!. Therefore, G is also a tournament.

(c) Let T be an acyclic tournament. By induction on m = |V (T )|, we have:

Basis Step, m=2. There are two posibilities: the equivalence classes of the
parallel update schedule sp, where it is easy to see that |[sp]T | = 21 = 2, and
of the sequential update schedule sq /∈ [sp]T , where clearly |[sq]T | = 20 = 1.

Induction Hypothesis. T an acyclic tournament with m ≤ n − 1. Hence,
for each update schedule s over V (T ), |[s]T | = 2k, for some k ∈ N ∪ {0}.

Let G be an acyclic tournament with |V (G)| = n. First, note that the
proof of (b) implies the existence of a bijection f : U(G) → {s ∈ Sn :
s sequential update schedule on V (G)}. Let (G, labs) be an update digraph
with the sequential update schedule s = (i1)(i2) · · · (ij)(n)(ij+1) · · · (in−1),
where {i1, ..., in−1} = {1, . . . , n− 1}.

Let G′ = G− {n}. Clearly, G′ is an acyclic tournament with |V (G′)| = n− 1
and s′ = (i1) · · · (ij)(ij+1) · · · (in−1) is the sequential update schedule such
that (G′, labs′) is the labeled subdigraph of (G, lab) induced by {i1, . . . , in−1}.
De�ning Sdif = {s∗ ∈ [s′]G′ : s∗(ij) = s∗(ij+1)−1} 6= ∅ and Seq = {s∗ ∈ [s′]G′ :
s∗(ij) = s∗(ij+1)}, we can see that if Seq 6= ∅, then |Sdif | = |Seq| = 2k−1 for
some k ∈ N ∪ {0}.

There are the following 23 = 8 cases:

Case 1. labs(ij, n) = -© and labs(ij+1, n) = labs(ij+1, ij) = +© (see Figure 6
a)).
To obtain all the elements of [s]G, for every s∗ ∈ Sdif , it is enough to generate
s1 and s2 in [s]G where s1(p) = s2(p) = s∗(p), ∀p ∈ V (G′) such that s∗(p) ≤
s∗(ij); s1(n) = s2(n) = s∗(ij) + 1 and s2(q) = s1(q) − 1 = s∗(q), ∀q ∈ V (G′)
satisfying s∗(q) ≥ s∗(ij+1). In this way, |[s]G| = 2 · |Sdif | = 2k for some
k ∈ N ∪ {0}.

Case 2. labs(n, ij) = labs(ij+1, n) = labs(ij+1, ij) = +© (see Figure 6 b)).
To obtain all the elements of [s]G, for every s∗1 ∈ Sdif , we generate s1, s2

and s3 in [s]G where s1(p) = s2(p) = s3(p) = s∗1(p), ∀p ∈ V (G′) such that
s∗1(p) ≤ s∗1(ij); s1(n) = s3(n) = s2(n) + 1 = s∗1(ij) + 1 and s2(q) = s3(q) =
s1(q) − 1 = s∗1(q), ∀q ∈ V (G′) satisfying s∗1(q) ≥ s∗1(ij+1). And for every
s∗2 ∈ Seq, we generate s4 ∈ [s]G de�ned by s4(p) = s∗2(p), ∀p ∈ V (G′), p 6= n
and s4(n) = s∗2(ij). Therefore, |[s]G| = 3 · |Sdif |+ |Seq| = 3 · 2k−1 + 2k−1 = 2k+1
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for some k ∈ N ∪ {0}.

Case 3. labs(ij, n) = labs(ij, ij+1) = labs(n, ij+1) = -© (see Figure 6c)).
Here, for each s∗1 ∈ Sdif , we generate s1 ∈ [s]G where s1(p) = s∗(p), ∀p ∈
V (G′) such that s∗(p) ≤ s∗(ij); s1(n) = s∗(ij) + 1 and s1(q) = s∗(q) + 1,
∀q ∈ V (G′) satisfying s∗(q) ≥ s∗(ij+1). Therefore, |[s]G| = |Sdif | = 2k−1 for
some k ∈ N ∪ {0}.

Case 4. labs(ij, n) = labs(ij, ij+1) = -© and labs(ij+1, n) = +©.

Case 5. labs(n, ij) = labs(ij+1, ij) = +© and labs(n, ij+1) = -©.

Case 6. labs(n, ij+1) = labs(ij, ij+1) = -© and labs(n, ij) = +©.

Cases 4, 5 and 6 are similar to case 1. 2

b)

n
+

+

+
i j i j+1

i j i j+11s  =(...)...(...,   ,...)(   )(...,     ,...)...(...)ni j i j+11s*=(...)...(...,   ,...)(...,     ,...)...(...)

i j i j+12 ns  =(...)...(...,   ,   ,...)(...,     ,...)...(...)i j i j+1s*=(...)...(...,   ,     ,...)...(...)2

i j i j+14s  =(...)...(...,   ,   ,     ,...)...(...)n i j i j+13s  =(...)...(...,   ,...)(...,   ,     ,...)...(...)n

a)

i j n i j+1
+

+

1

2

s  =(...)...(...,i ,...)(  )(...,i    ,...)...(...)n

j

j+1j

s  =(...)...(...,i ,...)(...,  ,i    ,...)...(...)j+1j n

s*=(...)...(...,i ,...)(...,i    ,...)...(...)j+1

c)

ni j i j+1

i j i j+1s*=(...)...(...,   ,...)(...,     ,...)...(...)

i j i j+11s  =(...)...(...,   ,...)(   )(...,     ,...)...(...)n

Fig. 6. Proof idea of Theorem 19. a) Case 1. b) Case 2. c) Case 3.

Observe that the assertion (c) of Theorem 19 is not true for tournaments in
general (see Fig. 7 as a counter-example).

a

b

c

++

Fig. 7. An update digraph (G, labs) where
|[s]G| = |{(a)(b)(c), (a)(b, c), (a, b)(c)}| = 3.

Corollary 20 Let (G, lab) be an update digraph where G is an acyclic tour-
nament. Then, all arcs of (G, lab) are negative, if and only if there exists a
sequential update schedule sq such that (G, lab) = (G, labsq) and |[sq]G| = 1.
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PROOF. Let G be an acyclic tournament. First, observe that every acyclic
digraph (G, lab) with all its arcs negative is an update digraph.

⇒) Let (G, lab) with all its |A(G)| =
(

n
2

)
arcs negative. Hence, by Proposition

13, there exists a sequential update schedule sq such that (G, lab) = (G, labsq).
Now, suppose that there exists another update schedule s 6= sq such that
s ∈ [sq]G. By Theorem 19, we know that s can not be a sequential schedule.
If s is an update schedule but not sequential, then there is a block Bi of s,
1 ≤ i ≤ nb(s) < |V (G)|, such that |Bi| > 1, i.e., there exists u, v in Bi such
that the arc (u, v) ∈ A(G) is positive in (G, labs), but the same arc is negative
in (G, labsq), which is a contradiction. Therefore, |[sq]G| = 1.

⇐) Let sq = (v1)(v2) · · · (vn) be a sequential update schedule such that
(G, lab) = (G, labsq), |[sq]G| = 1 and V (G) = {v1, . . . , vn}. Since (G, lab)
is an update tournament, for every pair of vertices vi, vj in V (G), there is
only one arc between them, either the negative arc (vi, vj) or the positive arc
(vj, vi) with i, j ∈ {1, ..., n}. Observe that ∀i = 1, . . . , n − 1, (vi, vi+1) ∈
A(G), since otherwise there would be another update schedule s 6= sq,
s = (v1)(v2) · · · (vi−1)(vi, vi+1)(vi+2) · · · (vn) such that (G, lab) = (G, labsq) =
(G, labs), which contradicts that |[sq]G| = 1 (see Fig. 8 a)). Besides, for every
i 6= j ∈ {1, . . . , n} such that j > i + 1, (vi, vj) ∈ A(G) because if there exists
the positive arc (vj, vi), from the above mentioned, we would have the exis-
tence of the negative arcs (vi, vi+1), (vi+1, vi+2),...,(vj−1, vj) which implies the
existence of a cycle (see Fig. 8 b)). It would be a contradiction, because G is
acyclic. Therefore, all arcs of (G, lab) must be negative. 2

a)

vi
B i

vi+1
B i+1B 1 B n

1v vn+

B’i

b)
vi

B i

vi+1
B i+1B 1

1v vj
B j B n

vn

+

Fig. 8. Proof idea of Corollary 20. a) Case j = i + 1. If there is a positive arc
from the Bi+1 to Bi, it is possible to construct a new update schedule s 6= sq with
block B′

i = Bi ∪ Bi+1. b) Case j > i + 1. There is necessarily a cycle (vi, vi+1),
(vi+1, vi+2),...,(vj−1, vj), (vj , vi).

Observe that from previous proof, if G is a tournament with at least a cycle,
then there exists an update schedule s such that [s]G does not contain a
sequential schedule. Hence, |U(G)| > n!.

Theorem 21 Let G be a digraph with |V (G)| = n, P = {Bi}m
i=1 a partition
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of V (G), m ≤ n, and sπ = (Bπ(i))
m
i=1 ∈ Sn, where π is a permutation over

[[1, m]]. Then, the following statements are equivalents:

(1) sπ ∈ S∗n.
(2) ∀i ∈ [[1,m]], G[Bi] is a positive strongly connected component of (G, labsπ).
(3) ∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph of G.

PROOF. Let G be a digraph with |V (G)| = n, P = {Bi}m
i=1 a partition of

V (G), m ≤ n, and sπ = (Bπ(i))
m
i=1 ∈ Sn, where π is a permutation over [[1,m]].

(1) ⇒ (2) Suppose that sπ = (Bπ(i))
m
i=1 ∈ S∗n, i.e., sπ has the maximum

number of blocks. We note that P is the partition associated to sπ. Now, let
us prove that ∀i ∈ [[1, m]], G[Bi] is a positive strongly connected component
of (G, labsπ), i.e. G[Bi] is a strongly connected component of G′ = G − {a ∈
A(G) : labsπ(a) = -©}. If |Bi| = 1, then the proof is done. Hence, we can
assume w.l.o.g. that |Bi| ≥ 2. Suppose on the contrary that G[Bi] is not a
positive strongly connected component of (G, labsπ). Then, either G[Bi] is not
a subdigraph of G′, which means that ∃a ∈ A(G′)∩A(G), labsπ(a) = -©, but
this is impossible because (G, labsπ) is an update digraph, or G[Bi] is a strongly
connected subdigraph of G′, but not maximal for this property. i.e., ∃u /∈ Bi

strongly connected with the nodes of Bi by positive arcs, this means that
sπ(u) = sπ(j), ∀j ∈ Bi, which is a contradiction because u /∈ Bi, or G[Bi] is not
strongly connected, then there exists a strongly connected component U ⊆ Bi

which is a source, i.e. without incoming arc to U , having initial vertex in Bi−U .
Thus, since G[Bi] = G[Bπ(j)] for some j ∈ [[1,m]], there is another update
schedule s′ = (k ∈ Bπ(1)) · · · (k ∈ Bπ(j) − U)(k ∈ U)(k ∈ Bπ(j+1)) · · · (k ∈
Bπ(m)) on V (G) such that s′ ∈ [sπ]G and nb(s′) = nb(sπ) + 1 = m + 1, which
contradicts that sπ has the maximum number of blocks.

(2) ⇒ (3) If G[Bi] is a positive strongly connected component of (G, labsπ),
then G[Bi] is a strongly connected component of G′ = G − {a ∈ A(G) :
labsπ(a) = -©} ⊆ G, i.e., G[Bi] is a strongly connected subdigraph of G.

(3) ⇒ (1) Suppose that ∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph
of G. Let s′ ∈ [sπ]G, then (G, labs′) = (G, labsπ). Thus, s′ must satisfy that for
every i ∈ [[1,m]], s′(j) = s′(k), ∀j, k ∈ Bi, because s′ is an update schedule
on V (G) and ∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph of G with
all its arcs positive in (G, labsπ). Hence, P = {Bi}m

i=1 is also the partition of
V (G) associated to s′, then necessarily nb(s′) = nb(s) = m. Therefore, we
have showed that, ∀s′ ∈ [sπ]G, nb(s′) ≤ nb(sπ), i.e., sπ ∈ S∗n. 2

Lemma 22 Let G be a digraph with |V (G)| = n, containing a tournament of
n vertices as a subdigraph. Then, for every s1, s2 ∈ S∗n such that s1 6= s2, we
have: (G, labs1) 6= (G, labs2).
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PROOF. Let G be a digraph with |V (G)| = n containing a tournament
of n vertices as a subdigraph. Let s1, s2 ∈ S∗n, s1 6= s2 and suppose on the
contrary that (G, labs1) = (G, labs2). Let s1 = (B1

i )
nb(s1)
i=1 , s2 = (B2

i )
nb(s2)
i=1 and

j = min{i : B1
i 6= B2

i }. Hence, there are two cases:

Case 1: B1
j ∩ B2

j 6= ∅. Then, from (2) of Theorem 21, B1
j and B2

j are posi-
tive strongly connected components of (G, labs1). On the other hand, because
the decomposition of (G, labs1) in positive strongly connected components is
unique, then B1

j = B2
j , which is a contradiction.

Case 2: B1
j ∩B2

j = ∅. Then, ∃p ∈ B1
j , ∃q ∈ B2

j , p 6= q: s1(p) < s1(q)∧ s2(q) <
s2(p). Since G has a tournament of n vertices, then (p, q) ∈ A(G) ∨ (q, p) ∈
A(G), i.e., labs1(p, q) 6= labs2(p, q) ∨ labs1(q, p) 6= labs2(q, p), which contradicts
that (G, labs1) = (G, labs2).

Therefore, (G, labs1) 6= (G, labs2). 2

Theorem 23 Let G be a digraph with |V (G)| = n, containing a tournament
of n vertices as a subdigraph. Then, |U(G)| = |S∗n|.

PROOF. Let G be a digraph with |V (G)| = n, containing a tournament of
n vertices as a subdigraph.

Evidently, due to Lemma 22, we have that |U(G)| ≥ |S∗n|.

On the other hand, ∀lab ∈ U(G), ∃s ∈ Sn: (G, lab) = (G, labs). Hence, ∃s′ ∈
[s]G with the maximum number of blocks. Thus, |U(G)| ≤ |S∗n|. 2

Observe from Theorem 21 that:

S∗n = {(Bπ(i))
m
i=1 : P = {Bi}m

i=1 ∈ P∗n ∧ π is a permutation over [[1,m]]},

where P∗n is the set of partitions P = {Bi}m
i=1 of V (G) such that ∀i ∈ [[1,m]],

G[Bi] is a strongly connected subdigraph of G. Thus, we obtain straightforward
the following Corollary:

Corollary 24 Let G be a digraph with |V (G)| = n containing a tournament
of n vertices as a subdigraph. Then:

|U(G)| = ∑

P∈P∗n
card(P )!

Note that if G is an acyclic tournament of n vertices, the only strongly con-
nected subdigraphs are the trivial ones, i.e., P∗n = {{{1}, ..., {n}}} and there-
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fore,
|U(G)| = ∑

P∈P∗n
card(P )! = card({{1}, ..., {n}})! = n!,

giving the result (b) of Theorem 19.

On the other hand, if G is a complete digraph with |V (G)| = n, then every
subset of vertices de�nes a strongly connected subdigraph of G. In this way,
P∗n is the set of all the possible partitions over V (G) and therefore, |U(G)| =
Tn =

n−1∑

k=0

(
n

k

)
Tk, with T0 ≡ 1, since it was obtained in (Demongeot et al.,

2008; Aracena et al., 2011). Moreover, if G1 and G2 are two orientations of
a complete undirected graph satisfying the conditions of Theorem 6, then a
strongly connected subdigraph of G1 is also a strongly connected subdigraph
of G2. Therefore, Corollary 24 implies that |U(G1)| ≤ |U(G2)|, as established
in Theorem 6.
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