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NUMERICAL APPROXIMATION OF THE SPECTRUM OF THE

CURL OPERATOR

RODOLFO RODRÍGUEZ AND PABLO VENEGAS

Abstract. The aim of this paper is to study the numerical approximation of

the eigenvalue problem for the curl operator. The three-dimensional divergence-
free eigensolutions of this problem are examples of the so-called Beltrami fields

or linear force-free fields, which arise in various physics areas such as solar

physics, plasma physics, and fluid mechanics. The present analysis is restricted
to bounded simply-connected domains. A finite element discretization of a con-
venient weak formulation of the spectral problem is proposed and analyzed.
Optimal-order spectral convergence is proved, as well as absence of spurious

modes. The results of some numerical tests are also reported.

1. Introduction

The aim of this paper is to study the numerical approximation of the spectrum
of the curl operator. More precisely, we focus on the following eigenvalue problem:
find λ ∈ C and u 6= 0 such that

curlu = λu in Ω,

divu = 0 in Ω,

u · n = 0 on Γ,

where Ω is a bounded domain with boundary Γ and outer unit normal vector n. To
analyze this problem, Yoshida and Giga studied in [25] the spectral properties of
the curl in various functions spaces. In particular, they show that if Ω is multiply-
connected, then the problem above has a nontrivial solution for any complex λ.
Because of this, we restrict our analysis to simply-connected domains.

The spectral problem for the curl operator has a longstanding tradition in math-
ematical physics. A large measure of the credit goes to Beltrami [2], who seems
to be the first who considered this problem in the context of fluid dynamics. This
is the reason why the corresponding eigenfunctions are called Beltrami fields (also
Trkalian fields [22]; we refer to [15] for a brief survey on the history of this sub-
ject). Such fields are useful in solar physics for testing theories on flares and coronal
heating, in fluid mechanics for the study of the static equilibrium of smectic liq-
uid crystals, and in superconducting materials, just to name a few; even particle
movement in tornadoes and waterspouts can be approximated by Beltrami fields.

On the other hand, the eigenfunctions of this spectral problem are particular
cases of the so-called force-free fields. These are vector fields which satisfy the first
equation of the eigenvalue problem above, with λ not necessarily a constant but a
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scalar function. The name arises from magnetohydrodynamics, since a magnetic
field H satisfying such an equation, induces a vanishing Lorentz force: F := J ×
B = curlH× (µH) = 0. In [23], Woltjer showed that the lowest state of magnetic
energy density within a closed system is attained when λ is spatially constant. In
such a case H is called a linear force-free field and its determination is naturally
related with the spectral problem for the curl operator. The eigenfunctions of this
problem are also known as free-decay fields or Taylor fields and play an important
role, for instance, in the study of turbulence in plasma physics [21].

The boundary condition u ·n = 0 is the most natural one for a bounded domain
and corresponds to a field confined within it. Analytical solutions of this problem
are only known under particular symmetry assumptions. The first one was obtained
by Chandrasekhar and Kendall for spherical domains in the context of astrophysical
plasmas arising in modeling of the solar crown [11] (see also [10, 23, 24]). More
recently, Morse [19] studied the problem on cylindrical bounded domains.

On general domains, Boulmezaud, Maday, and Amari studied in [7] different
boundary value problems whose solutions are linear force-free fields and they prove
existence, uniqueness, and regularity of the solution. Based on the analysis of that
paper, Boulmezaud and Amari proposed and analyzed finite element discretizations
for numerically solving various linear [5] and non-linear [6] force-free field problems.

In this paper, we focus on the spectral problem above. We consider a weak for-
mulation, which, after discretization, leads to a well-posed generalized eigenvalue
problem. We propose a method for its numerical solution based on Nédélec finite
elements of arbitrary order [20]. By using the spectral theory for non-compact
operators from [12, 13], we prove spectral convergence and establish optimal-order
error estimates. We also prove that the method is free of spurious modes. However,
although the method always allows approximating the eigenvalues, in case of differ-
ent eigenvalues with the same absolute value, it is not able to distinguish between
the respective eigenfunctions. Because of this, we propose and analyze in an appen-
dix an alternative numerical method based on the finite element discretization of
other weak formulation. Although this approach leads to a degenerate generalized
eigenvalue problem, we prove its well-posedness and spectral convergence.

The outline of the paper is as follows. In Section 2, we introduce some function
spaces that will be used in the sequel. Then, in Section 3, we give a first weak
formulation and prove that it is equivalent to the spectral problem for a self-adjoint
compact operator. This allows us to obtain a thorough characterization of the
solutions of the eigenproblem. However, a direct discretization of the given weak
formulation would lead to a degenerate generalized eigenvalue problem. To avoid
this, we propose a second weak formulation more amenable for numerical purposes.
In Section 4, we introduce a finite element discretization. We prove optimal-order
spectral convergence and absence of spurious modes. We describe how to efficiently
implement this methods in Section 5. In Section 6, we report the results of a couple
of numerical tests, which allow us to check the theoretical results and to assess the
performance of the method. Finally, in an appendix, we introduce and analyze a
finite element discretization of an alternative weak form.

2. Preliminaries

Let Ω ∈ R
3 be a bounded simply-connected domain with a Lipschitz continuous

boundary Γ. We assume that Ω is bounded and either Γ is smooth or Ω is a
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polyhedron. Let Γ0, . . . ,ΓI be the connected components of Γ, with Γ0 being the
boundary of the only unbounded connected component of R3/Ω̄.

We consider the space L2(Ω) with its corresponding norm ‖·‖0,Ω; for convenience,

we denote ‖·‖0,Ω the norm of L2(Ω)3, too. As usual, for all s > 0, we consider the

Hilbertian Sobolev space Hs(Ω) with norm ‖·‖s,Ω; we also denote by ‖·‖s,Ω the

norm of the space Hs(Ω)3.
Let D(Ω) be the space of infinitely differentiable functions with compact support

in Ω and D(Ω̄) :=
{
φ|Ω : φ ∈ D(R3)

}
.

Let H1/2(Γ) be the space of traces on Γ of functions in H1(Ω), with dual space
H−1/2(Γ) and dual pairing 〈·, ·〉Γ.

Throughout the paper, we will use the Hilbert spaces

H(curl; Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
,

H(div; Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω)

}
,

with their respective norms defined by ‖v‖2
curl,Ω := ‖v‖20,Ω + ‖curlv‖20,Ω and

‖v‖2div,Ω := ‖v‖20,Ω + ‖div v‖20,Ω, and the followings closed subspaces:

H0(div; Ω) := {v ∈ H(div; Ω) : v · n = 0 on Γ} ,

H0(curl; Ω) := {v ∈ H(curl; Ω) : v × n = 0 on Γ} ,

H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0 in Ω} ,

H(curl0; Ω) := {v ∈ H(curl; Ω) : curlv = 0 in Ω} ,

H0(div
0; Ω) := H0(div; Ω) ∩H(div0; Ω),

H0(curl
0; Ω) := H0(curl; Ω) ∩H(curl0; Ω).

Notice that the conditions v · n = 0 and v × n = 0 on Γ, must be understood in
the sense of H−1/2(Γ).

The spaces H(curl0; Ω) ∩ H0(div
0; Ω) and H0(curl

0; Ω) ∩ H(div0; Ω) will also
appear often in the sequel. Under the assumption of Ω being simply-connected the
former is trivial (see, for instance, [14, Remark I.2.2]):

H(curl0; Ω) ∩H0(div
0; Ω) = {0} .

This is not the case for the latter. The following characterization can be found in
[1, Proposition 3.18].

Lemma 2.1. The dimension of H0(curl
0; Ω) ∩ H(div0; Ω) is equal to I. It is

spanned by the functions ∇qi, 1 ≤ i ≤ I, where each qi ∈ H1(Ω) is the unique
solution of the problem





−∆qi = 0 in Ω,

qi|Γ0
= 0 and qi|Γk

= constant, 1 ≤ k ≤ I,

〈∂nqi, 1〉Γ0
= −1 and 〈∂nqi, 1〉Γk

= δik, 1 ≤ k ≤ I.

Finally, we will also use the space

Hs(curl; Ω) :=
{
v ∈ Hs(Ω)3 : curlv ∈ Hs(Ω)3

}
, s > 0.

Let us recall that there exists s > 1/2, only depending on the domain Ω, such that
the inclusions

(2.1) H0(curl; Ω) ∩H(div; Ω) →֒ Hs(Ω)3, H(curl; Ω) ∩H0(div; Ω) →֒ Hs(Ω)3
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are continuous (see, for instance, [1], Proposition 3.7, if Ω is a polyhedron, and
Theorems 2.9 and 2.12, if Γ is smooth).

Throughout the paper, C will denote a generic constant, not necessarily the same
at each occurrence.

3. Spectral problem for the curl operator

We consider the following problem:

Problem 1. Find λ ∈ C and u ∈ H(curl; Ω), u 6= 0, such that

curlu = λu in Ω,

divu = 0 in Ω,

u · n = 0 on Γ.

Notice that, for any solution of this problem, λ 6= 0. In fact, λ = 0 would imply
u ∈ H(curl0; Ω) ∩H0(div

0; Ω) and this space is trivial in our case.
The following is a mixed formulation of this problem.

Problem 2. Find λ ∈ C and (u, ϕ) ∈ H(curl; Ω)×H1(Ω)/C, (u, ϕ) 6= 0, such that
∫

Ω

curlu · curl v̄ +

∫

Ω

∇ϕ · v̄ = λ

∫

Ω

u · curl v̄ ∀v ∈ H(curl; Ω),

∫

Ω

u · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω)/C.

In order to establish the equivalence of these two problems, first note that the
last two equations of the former are equivalent to the last equation of the latter.
Hence, it is clear that if (λ,u) is a solution of Problem 1, then, (λ,u, 0) solves
Problem 2. Conversely, if (λ,u, ϕ) is a solution of Problem 2, by taking v = ∇ϕ in
its first equation, we conclude that ϕ = 0. Therefore, we only need to prove that
curlu = λu in Ω.

With this end, we test the first equation of Problem 2 with v ∈ D(Ω)3 and
integrate by parts to conclude that

curl (curlu− λu) = 0 in Ω.

Then, taking v ∈ H1(Ω)3, by integration by parts it follows that

(curlu− λu)× n = 0 on Γ.

Thus, we have that curlu − λu ∈ H0(curl
0; Ω) ∩ H(div0; Ω). Therefore, from

Lemma 2.1, it follows that there exists q ∈ H1(Ω), with q|Γ0
= 0 and q|Γk

= Ck
(constant), 1 ≤ k ≤ I, such that curlu− λu = ∇q. Then, integrating by parts we
have

‖∇q‖20,Ω =

∫

Ω

(curlu− λu) · ∇q̄ =

∫

Ω

curlu · ∇q̄

= 〈curlu · n, q〉Γ =
I∑

k=1

Ck 〈curlu · n, 1〉Γk
= 0.

Whence, ∇q = 0 and, consequently, curlu = λu in Ω. Thus we conclude the
following equivalence result.
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Proposition 3.1. If (λ,u) is a solution of Problem 1, then (λ,u, 0) is a solution
of Problem 2. Conversely, if (λ,u, ϕ) is a solution of Problem 2, then ϕ = 0 and
(λ,u) is a solution of Problem 1.

For the analysis of Problem 2, we consider the following solution operator:

S : H0(div
0; Ω) −→ H0(div

0; Ω),

f 7−→ Sf := w,

with w ∈ H(curl; Ω) such that there exists ξ ∈ H1(Ω)/C satisfying
∫

Ω

curlw · curl v̄ +

∫

Ω

∇ξ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ H(curl; Ω),(3.1)

∫

Ω

w · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω)/C.(3.2)

The Babuška-Brezzi conditions for this mixed problem are easy to check. In par-
ticular, the ellipticity in the kernel follows from the fact that, since Ω is simply-
connected, ‖v‖

curl,Ω ≤ C ‖curlv‖0,Ω for all v ∈ H(curl; Ω) ∩ H0(div
0; Ω); see [1,

Corollary 3.16]). Consequently, (3.1)–(3.2) has a unique solution (w, ξ), which sat-
isfies ξ = 0 and ‖w‖

curl,Ω ≤ C ‖f‖0,Ω. Moreover, (3.2) shows that w ∈ H0(div
0; Ω).

Hence, the operator S is well-defined and continuous.
Clearly, Su = µu, with µ 6= 0, if an only if (λ,u, 0) is a solution of Problem 2,

with λ = 1
µ . Thus, we focus on characterizing the spectrum of S.

We note that S
(
H0(div

0; Ω)
)
⊂ H(curl; Ω) ∩ H0(div

0; Ω). Since, according to
(2.1), there exists s > 1/2 such that

H(curl; Ω) ∩H0(div
0; Ω) →֒ Hs(Ω)3 ∩H0(div

0; Ω) →֒ H0(div
0; Ω),

the first inclusion being continuous and the second one compact (cf. [14, Theo-
rem I.1.3]), we conclude that S is compact.

Moreover, from (3.1), by proceeding as for Problem 2 we obtain

curl (curlw − f) = 0 in Ω and (curlw − f)× n = 0 on Γ.

Hence, using Lemma 2.1 again, it is straightforward to show that curlw = f in Ω.
Thus w belongs to the space

Z := {v ∈ H(curl; Ω) : curlv · n = 0 on Γ} .

We summarize these results in the following lemma.

Lemma 3.2. Operator S is compact. Moreover, S
(
H0(div

0; Ω)
)
⊂ Z and, for all

f ∈ H0(div
0; Ω), if w = Sf , then curlw = f in Ω.

Next step is to establish some properties of the space Z that will be used in
the sequel. The first one is the following result, which has been proved in [25,
Theorem 1] in a more general setting (see also [16, Proposition 2.3]). We include
here an elementary proof, for completeness.

Proposition 3.3. For all y, z ∈ Z
∫

Ω

(curly · z̄ − y · curl z̄) = 0.
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Proof. Let y ∈ Z. Then curly ∈ H0(div
0; Ω). Since Ω is simply-connected,

we know (cf. [14, Theorem I.3.6]) that there exists a unique Φ ∈ H0(curl; Ω) ∩
H(div0; Ω), such that

curly = curlΦ in Ω

and, consequently, there exists a unique ψ ∈ H1(Ω)/C, such that

y = ∇ψ +Φ in Ω.

Then, for z ∈ Z, we have
∫

Ω

(curly · z̄ − y · curl z̄) =

∫

Ω

(curlΦ · z̄ −Φ · curl z̄)−

∫

Ω

∇ψ · curl z̄.

Now, since for all v ∈ H1(Ω)3

∫

Ω

(curlΦ · v̄ −Φ · curl v̄) = 〈Φ× n,v〉Γ = 0

and H1(Ω)3 →֒ H(curl; Ω) densely, we obtain
∫

Ω

(curlΦ · z̄ −Φ · curl z̄) = 0.

On the other hand, using integration by parts we have that
∫

Ω

∇ψ · curl z̄ = 〈curl z · n, ψ〉Γ = 0.

Thus, we conclude the proof. �

A first consequence of the above proposition is the following density result for
the smooth functions of Z.

Proposition 3.4. Subspace D(Ω̄)3 ∩Z is dense in Z.

Proof. The proof is based on a classical property (see, for instance, [14, Section I,
(2.14)]), which in our case reads as follows: D(Ω̄)3 ∩Z is dense in Z if and only if
every element of Z ′ that vanish on D(Ω̄)3 ∩Z also vanishes on Z.

Let L ∈ Z ′. Since Z is a Hilbert space, there exists l ∈ Z such that

〈L,v〉 =

∫

Ω

(
l · v̄ + l̃ · curl v̄

)
∀v ∈ Z,

where 〈·, ·〉 denote the duality pairing between Z ′ and Z and l̃ := curl l. Now,
assume that L vanishes on D(Ω̄)3 ∩Z, namely,

〈L,v〉 =

∫

Ω

(
l · v̄ + l̃ · curl v̄

)
= 0 ∀v ∈ D(Ω̄)3 ∩Z.

We need to prove that L vanishes on Z, too. With this end, note that since
D(Ω)3 ⊂ D(Ω̄)3 ∩Z, it follows that

∫

Ω

l · v̄ +

∫

Ω

l̃ · curl v̄ = 0 ∀v ∈ D(Ω)3

and, hence, l = − curl l̃. On the other hand, given that ∇
(
D(Ω̄)

)
⊂ D(Ω̄)3 ∩ Z

too, we have ∫

Ω

l · ∇ψ̄ = 0 ∀ψ ∈ D(Ω̄).
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Then, curl l̃ = −l ∈ H0(div
0; Ω), so that l̃ ∈ Z. Therefore, using Proposition 3.3

we obtain

〈L,v〉 =

∫

Ω

(
l · v̄ + l̃ · curl v̄

)
=

∫

Ω

(
− curl l̃ · v̄ + l̃ · curl v̄

)
= 0 ∀v ∈ Z.

This proves the claimed density. �

Another consequence of Proposition 3.3 is the self-adjointness of the operator S
which, together with its compactness, will allow us to obtain a thorough character-
ization of its spectrum.

Proposition 3.5. S is self-adjoint.

Proof. Given f , g ∈ H0(div
0; Ω), let w := Sf and v := Sg. From Lemma 3.2,

curlw = f and curlv = g in Ω. Hence, by using Proposition 3.3, we have that
∫

Ω

(Sf) · ḡ =

∫

Ω

w · ḡ =

∫

Ω

w · curl v̄ =

∫

Ω

curlw · v̄ =

∫

Ω

f · v̄ =

∫

Ω

f ·
(
Sg

)

and we conclude the proof. �

Now, we are in a position to establish a spectral characterization of S.

Lemma 3.6. The spectrum of S is given by σ(S) = {µn}n∈N
∪ {0}, with {µn}

being a sequence of non-vanishing finite-multiplicity eigenvalues which converge to
zero. Moreover, µ = 0 is not an eigenvalue of S and there exists a Hilbertian basis
{un}n∈N

of H0(div
0; Ω) of eigenfunctions of S; i.e., such that Sun = µnun, n ∈ N.

Proof. The result is a consequence of the classical spectral characterization of com-
pact self-adjoint operators. There only remains to prove that µn 6= 0 ∀n ∈ N.
We proceed by contradiction. Assume µn = 0. Hence,

∫
Ω
un · curlv = 0 ∀v ∈

H(curl; Ω). Then, un ∈ H0(curl
0; Ω) ∩H0(div

0; Ω) = {0}. �

The above lemma and the relation between the spectrum of S and Problem 2,
yields a thorough characterization for the solutions of the latter and, consequently,
for the solutions of Problem 1.

Theorem 3.7. Problem 1 has a denumerable set of solutions (λn,un), n ∈ N, and
{un}n∈N

is a Hilbertian basis of H0(div
0; Ω).

One possible way to approximate the solutions of Problem 1 is to consider an
appropriate discretization of the variational form given in Problem 2. We pro-
pose and analyze in the appendix a finite element method based on this approach.
However, it leads to a generalized eigenvalue problem involving two non-definite
matrices. The numerical solution of such a generalized eigenvalue problem is sig-
nificantly more complicated due to its degenerate character. In what follows we
introduce an alternative formulation which overcomes this drawback and will lead,
after discretization, to a well posed generalized eigenvalue problem.

Notice that, for λ 6= 0, Problem 1 is equivalent to the following one: find λ ∈ C

and u ∈ H(curl; Ω), u 6= 0, such that

curlu = λu in Ω,

curlu · n = 0 on Γ.
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Clearly, the solution u of the above problem belongs to Z and satisfies
∫

Ω

curlu · curl v̄ = λ

∫

Ω

u · curl v̄ = λ

∫

Ω

curlu · v̄ = λ2
∫

Ω

u · v̄ ∀v ∈ Z,

where we have also used Proposition 3.3. Therefore, we are led to consider the
following problem:

Problem 3. Find λ ∈ C and u ∈ Z, u 6= 0, such that
∫

Ω

curlu · curl v̄ = λ2
∫

Ω

u · v̄ ∀v ∈ Z.

We have just proved the following result.

Lemma 3.8. If (λ,u) is a solution of Problem 1, then it is a solution of Problem 3.

The converse is partially true. To prove it, we consider the solution operator:

T : L2(Ω)3 −→ L2(Ω)3,

f 7−→ Tf := w,

with w ∈ Z such that

(3.3)

∫

Ω

curlw · curl v̄ +

∫

Ω

w · v̄ =

∫

Ω

f · v̄ ∀v ∈ Z.

The well-posedness of problem (3.3) is a direct consequence of Lax Milgram lemma,
whence T is well-defined and continuous. Note that Tu = µu, with µ 6= 0, if an
only if (λ,u) is a solution of Problem 3, with λ2 + 1 = 1

µ .

Clearly µ = 1 is an eigenvalue of T (correspondingly, λ = 0 is an eigenvalue of
Problem 3) with associated eigenspace

(3.4) K := {v ∈ Z : curlv = 0 in Ω} = ∇
(
H1(Ω)

)
.

Since T is clearly self-adjoint (cf. (3.3)), the orthogonal complement of K,

K
⊥L2(Ω)3 = H0(div

0; Ω)

is an invariant subspace for T . Therefore,

T̂ := T |H0(div0;Ω) : H0(div
0; Ω) −→ H0(div

0; Ω)

is a well-defined bounded operator and σ(T ) = σ(T̂ ) ∪ {1}. Moreover, since T
takes values in the space Z ⊂ H(curl; Ω) and, by virtue of (2.1), H(curl; Ω) ∩

H0(div
0; Ω) →֒ H0(div

0; Ω) compactly, we derive the compactness of T̂ .
The following theorem shows how the eigenpairs of T , with µ 6= 1, are related

with the solution of Problem 1.

Theorem 3.9. The following properties hold true:

a) The spectrum of T decomposes as follows:

σ(T ) = {1} ∪ {µn}n∈N
∪ {0} .

Moreover:
• µ = 1 is an eigenvalue of T with infinite-dimensional eigenspace K;
• {µn}n∈N

is a sequence of finite-multiplicity eigenvalues µn ∈ (0, 1),
n ∈ N, which converge to 0;

• µ = 0 is not an eigenvalue of T .
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b) If λ in an eigenvalue of Problem 1 with eigenspace E, then µ = 1
1+λ2 is an

eigenvalue of T and E is an invariant subspace of T .
c) If µ 6= 1 is an eigenvalue of T with eigenspace E, then there exists an eigen-

value λ of Problem 1 such that µ = 1
1+λ2 and E is an invariant subspace of

Problem 1.

Proof. We have already proved that µ = 1 is an eigenvalue of T with corresponding

eigenspace K and that σ(T ) = σ(T̂ ) ∪ {1}. Thus, the spectral characterization of

T is a consequence of the compactness of T̂ . On the other hand, µ = 0 is not an
eigenvalue of T ; in fact, if Tf = 0, then it follows from (3.3) that f ⊥ Z ⊃ D(Ω)3

dense in L2(Ω)3, so that f = 0. Moreover, for all the eigenvalues µn 6= 1, it is also
easy to show from (3.3) that µn ∈ (0, 1). Thus, we conclude (a).

In its turn, Lemma 3.8 and the arguments above lead to (b).

It remains to prove that all the eigenvalues of T̂ are of the form µ = 1
1+λ2 ,

with λ being an eigenvalue of Problem 1. In fact, according to Theorem 3.7, the
sequence of eigenfunctions of Problem 1 is a Hilbertian basis of H0(div

0; Ω). Since

we have already proved in (b) that all of them are eigenfunctions of T̂ , this operator
cannot have an additional eigenpair; otherwise, since T is self adjoint, the additional
eigenfunction would have to be orthogonal to the whole Hilbertian basis, which
cannot happen. Thus, we conclude (c). �

As a consequence of this theorem and the relation between the eigenpairs of
Problem 3 and those of the operator T , we obtain the following result.

Corollary 3.10. Let ν 6= 0 be an eigenvalue of Problem 3 and E the corresponding
eigenspace. Then, there exists an eigenvalue λ of Problem 1 such that ν = λ2 and
E is an invariant subspace of Problem 1.

Remark 3.11. Notice that the eigenfunctions of Problem 3 are not necessarily eigen-
functions of Problem 1. In fact, if λ and −λ were both eigenvalues of Problem 1,
then λ2 would be an eigenvalue of Problem 3, with multiplicity equal to the sum
of the multiplicities of λ and −λ. However, an eigenfunction of Problem 3 corre-
sponding to λ2 would be a linear combination of the eigenfunctions of λ and −λ,
but not necessarily an eigenfunction itself. As will be shown in Section 6.1, this is
something that always happens when the domain Ω is symmetric.

4. Finite element approximation

In this section, we introduce a Galerkin approximation of Problem 3 and prove
some convergence results. From now on, we assume that Ω is a polyhedral do-
main and {Th}h>0 is a regular family of partitions of Ω̄ in tetrahedra T , so that

Ω̄ =
⋃
T∈Th

T . We denote by T Γ
h the corresponding triangulation induced on the

boundary of Ω, namely, T Γ
h := {F face of T ∈ Th : F ⊂ Γ}.

For any T ∈ Th, let N k(T ) := Pk−1(T )
3 ⊕

{
p ∈ P̄k(T )

3 : p(x) · x = 0
}
, where

Pk is the set of polynomials of degree not greater than k and P̄k the subset of
homogeneous polynomials of degree k.

The corresponding global space to approximate H(curl; Ω) is the space of func-

tions that are locally in N k(T ) and have continuous tangential components across
the faces of the triangulation Th. This is the well-known Nédélec space:

N h :=
{
vh ∈ H(curl; Ω) : vh|T ∈ N k(T ) ∀T ∈ Th)

}
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(for further details see, for instance, [18, Section 5.5]). Whence, the natural ap-
proximation space for Z is

Zh := N h ∩Z = {vh ∈ N h : curlvh · n = 0 on Γ} .

The Galerkin approximation of Problem 3 reads as follows:

Problem 4. Find λh ∈ C and uh ∈ Zh, uh 6= 0, such that
∫

Ω

curluh · curl v̄h = λ2h

∫

Ω

uh · v̄h ∀vh ∈ Zh.

Notice that Problem 4 leads to a well-posed generalized matrix eigenvalue prob-
lem, because the sesquilinear form on the right hand side is Hermitian positive
definite. To solve this problem, it is necessary to impose somehow the constraint
curluh · n = 0 in the definition of Zh; we will address this point in Section 5.

Consider the corresponding discrete solution operator:

Th : L2(Ω)3 −→ L2(Ω)3,

f 7−→ Thf := wh,

with wh ∈ Zh such that∫

Ω

curlwh · curl v̄h +

∫

Ω

wh · v̄h =

∫

Ω

f · v̄h ∀vh ∈ Zh.

As a consequence of Lax Milgram lemma, Th is a well-defined bounded linear op-
erator. Clearly λh is an eigenvalue of Problem 4 if an only if 1

1+λ2
h

∈ σ(Th).

To prove convergence and error estimates for the proposed Galerkin scheme,
we will use the results on spectral approximation for non-compact operators from
[12, 13]. With this aim, we consider the restrictions of the operators T and Th to the
respective invariant subspaces Z and Zh. To avoid overburdening the notation,
from now on T and Th will denote T |Z and Th|Zh

, respectively. Note that the
spectral characterization of T given in Theorem 3.9 remains the same without the
need of any modification.

In order to use the theory from [12, 13] we need to prove the following properties:

P1: lim
h→0

‖(T − Th) |Zh
‖ = 0,

P2: ∀v ∈ Z lim
h→0

inf
vh∈Zh

‖v − vh‖curl,Ω = 0.

Property P2 follows immediately from Proposition 3.4 and standard interpolation
error estimates for Nédélec finite elements. In order to prove property P1, we
establish some preliminary results.

Let us define

(4.1) rk := min {s, k} ,

where k ≥ 1 is the degree of the Nédélec finite elements and s > 1/2 is a Sobolev
exponent such that (2.1) holds true.

Let us recall that K ⊂ Z is the eigenspace of T associated with the eigenvalue
µ = 1 and let V := K⊥Z . It is immediate to show from (3.4) that V = H0(div

0; Ω)∩
Z. Operator T restricted to K is the identity; instead, restricted to its orthogonal
complement is a regularizing operator, as shown in the following lemma.

Lemma 4.1. Let f ∈ V and w := Tf . Then, w ∈ Hs(curl; Ω) and

‖w‖s,Ω + ‖curlw‖s,Ω ≤ C ‖f‖0,Ω .
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Proof. From the definition of T , w and f are related by (3.3). Taking v = w in
this equation, we have

(4.2) ‖w‖
curl,Ω ≤ ‖f‖0,Ω .

Moreover, since ∇
(
H1(Ω)

)
⊂ Z, taking in (3.3) v = ∇ψ, ψ ∈ H1(Ω), it follows

that ∫

Ω

w · ∇ψ̄ =

∫

Ω

f · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω).

Hence, for f ∈ V ⊂ H0(div
0; Ω), we have that w ∈ H0(div

0; Ω), too. Consequently,
w ∈ H(curl; Ω)∩H0(div

0; Ω) →֒ Hs(Ω)3 (cf. (2.1)) and, using (4.2), it follows that

‖w‖s,Ω ≤ C ‖w‖
curl,Ω ≤ C ‖f‖0,Ω .

On the other hand, taking v ∈ D(Ω)3 ⊂ Z in (3.3), we obtain

(4.3) curl (curlw) +w = f in Ω.

Hence, curlw ∈ H(curl; Ω) and, since w ∈ Z, curlw ∈ H0(div
0; Ω), too. Then,

the same arguments as above allow us to conclude that curlw ∈ Hs(Ω)3 and

‖curlw‖s,Ω ≤ C ‖curlw‖
curl,Ω ≤ C ‖f‖0,Ω ,

the last inequality because of (4.3) and (4.2). Thus, we conclude the proof. �

Clearly µh = 1 is an eigenvalue of Th with associated eigenspace

Kh := {vh ∈ Zh : curlvh = 0} ⊂ K,

so that Th restricted to Kh is the identity, too. Let Vh := K
⊥Zh

h . Notice that
Vh 6⊂ V . However, the following lemma shows that the curl-free terms in the
Helmholtz decomposition of Vh are asymptotically negligible.

Lemma 4.2. For fh ∈ Vh, there exist χ ∈ V and η ∈ K such that fh = χ + η

and there hold:

a) χ ∈ Hs(Ω)3 with ‖χ‖s,Ω ≤ C ‖curlfh‖0,Ω,

b) ‖η‖0,Ω ≤ Chr1 ‖curlfh‖0,Ω, with r1 as defined in (4.1).

Proof. Since fh ∈ Vh ⊂ Z, the decomposition fh = χ+η follows from the fact that

V = K⊥Z . Now, since V ⊂ H(curl; Ω)∩H0(div
0; Ω), we have that χ ∈ Hs(Ω)3 (cf.

(2.1), again). Moreover, because of the definition of K, curlχ = curlfh. Hence,

‖χ‖s,Ω ≤ C ‖χ‖
curl,Ω ≤ C ‖curlχ‖0,Ω = C ‖curlfh‖0,Ω ,

the last inequality because, for Ω simply-connected, ‖χ‖0,Ω ≤ C ‖curlχ‖0,Ω for all

χ ∈ H(curl; Ω) ∩H0(div
0; Ω) (cf. [1, Corollary 3.16]). Thus we conclude (a).

To prove (b), we will use the Nédélec interpolant INh . According to [18, Theo-
rem 5.41(2)], since curlχ = curlfh, we have that

(4.4)
∥∥χ− INh χ

∥∥
0,Ω

≤ C
(
hr1 ‖χ‖s,Ω + h ‖curlfh‖0,Ω

)
≤ Chr1 ‖curlfh‖0,Ω .

On the other hand, let IRh be the divergence-conforming Raviart-Thomas inter-
polant (see [18, Section 5.4]). Since curlχ = curlfh ∈ Hε(Ω)3 for all ε ∈

(
0, 12

)
,

according to Remark 5.16 and Lemma 5.40 from [18], it follows that

(4.5) curl
(
INh χ

)
= IRh (curlχ) = IRh (curlfh) = curlfh.
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Now, we write

(4.6) ‖η‖20,Ω =

∫

Ω

η · (fh − χ) =

∫

Ω

η ·
(
fh − INh χ

)
+

∫

Ω

η ·
(
INh χ− χ

)
.

By virtue of (4.5) we have that fh − INh χ ∈ Kh ⊂ K, so that χ ⊥
(
fh − INh χ

)
in

L2(Ω)3 and, since fh ∈ Vh = K
⊥Zh

h , it follows that
∫

Ω

η ·
(
fh − INh χ

)
=

∫

Ω

fh ·
(
fh − INh χ

)
−

∫

Ω

χ ·
(
fh − INh χ

)
= 0.

Hence, from (4.6) and (4.4), we conclude that

‖η‖0,Ω ≤
∥∥INh χ− χ

∥∥
0,Ω

≤ Chr1 ‖curlfh‖0,Ω .

Thus, we end the proof. �

Now we are ready to prove the following result, from which we will derive prop-
erty P1.

Lemma 4.3. There exists C > 0 such that, for all fh ∈ Vh,

‖(T − Th)fh‖curl,Ω ≤ Chr1 ‖fh‖curl,Ω ,

with r1 as defined in (4.1).

Proof. Given fh ∈ Vh, let χ ∈ V and η ∈ K be as in Lemma 4.2. Let z := Tχ and
zh := Thχ. The following Cea estimate follows immediately from the definitions of
T and Th:

‖z − zh‖curl,Ω ≤ C inf
vh∈Zh

‖z − vh‖curl,Ω .

Then, using the Nédélec interpolant and standard error estimates (cf. [18, Theo-
rem 5.41(1)]), it follows that

‖z − zh‖curl,Ω ≤ C
∥∥z − INh z

∥∥
curl,Ω

≤ Chrk
(
‖z‖s,Ω + ‖curl z‖s,Ω

)
.

Thus, from Lemma 4.1, and the fact that K ⊥ V in L2(Ω), we have

‖(T − Th)χ‖curl,Ω = ‖z − zh‖curl,Ω ≤ Chrk ‖χ‖0,Ω ≤ Chrk ‖fh‖0,Ω .

On the other hand, for η ∈ K, since Tη = η and Thη is the Galerkin projection
of η onto Zh, using Lemma 4.2(b) we can write

‖(T − Th)η‖curl,Ω ≤ ‖η‖
curl,Ω = ‖η‖0,Ω ≤ Chr1 ‖fh‖curl,Ω .

Therefore,

‖(T − Th)fh‖curl,Ω ≤ ‖(T − Th)χ‖curl,Ω + ‖(T − Th)η‖curl,Ω ≤ Chr1 ‖fh‖curl,Ω

and we conclude the proof. �

Property P1 clearly follows from the above lemma and the fact that T and Th
coincide on Kh. As a first consequence, we have the next result, which was proved
to follow from property P1 in [12, Theorem 1].

Theorem 4.4. Let J ⊂ R be an open set containing σ(T ). Then, there exists
h0 > 0 such that σ(Th) ⊂ J ∀h < h0.
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As a consequence of the above theorem, we know that the proposed numerical
method does not introduce spurious modes (which would be the case, for instance,
if Lagrangian finite elements were used; see [4]).

Now, we are in a position to write the main result of this paper related to the
convergence of the proposed scheme.

Theorem 4.5. Let µ ∈ σ(T ) be an eigenvalue of finite-multiplicity m. Let E

be the corresponding eigenspace. There exists h0 > 0 such that, for all h < h0,

σ(Th) contains m eigenvalues µ
(1)
h , . . . , µ

(m)
h (repeated accordingly to their respective

multiplicities) such that

µ
(i)
h −→

h→0
µ, i = 1, . . . ,m.

Let Eh be the direct sum of the corresponding eigenspaces. Then,

δ̂ (E ,Eh) ≤ Cγh,

and

max
1≤i≤m

∣∣∣µ− µ
(i)
h

∣∣∣ ≤ Cγ2h,

where

γh := δ (E ,Zh) := sup
v∈E

‖v‖
curl,Ω=1

inf
vh∈Zh

‖v − vh‖curl,Ω

and

δ̂ (E ,Eh) := max {δ (E ,Eh) , δ (Eh,E)} .

Proof. Since we have already proved that properties P1 and P2 hold true, the results
are direct consequences of [12, Section 2] and Theorems 1 and 3 from [13]. �

To conclude spectral convergence with an optimal order of approximation from
the previous theorem, we only need an appropriate estimate for the term γh.

Theorem 4.6. Let γh be as in Theorem 4.5. Then, there exists C > 0 such that

γh ≤ Chrk ,

with rk as defined in (4.1).

Proof. Let v ∈ E be such that ‖v‖
curl,Ω = 1. Since Tv = µv, from Lemma 4.1 it

follows that v ∈ Hs(curl; Ω) and

‖v‖s,Ω + ‖curlv‖s,Ω ≤
C

µ
‖v‖0,Ω ≤

C

µ
.

Let INh v ∈ N h be the Nédélec interpolant of v; in what follows, we show that
INh v ∈ Zh (this has been proved in [16, Proposition 4.3] and [3, Lemma 2.2], but
only for lowest-order Nédélec elements and under different topological assumptions).
Let IRh be the divergence-conforming Raviart-Thomas interpolant. Since v ∈ E ⊂
Z, we have that curlv ·n = 0 on Γ. Hence, curl

(
INh v

)
·n =

(
IRh curlv

)
·n = 0 on

Γ, too, the first equality because of [18, Lemma 5.40] and the second one because of
the well known property that the Raviart-Thomas interpolant preserves vanishing
normal components on the boundary. Thus, INh v ∈ Z ∩N h = Zh.
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Therefore, using again the standard error estimate for the Nédélec interpolant
(cf. [18, Theorem 5.41(1)]), we obtain

δ (E ,Zh) ≤ sup
v∈E

‖v‖
curl,Ω=1

∥∥v − INh v
∥∥
curl,Ω

≤ Chrk
(
‖v‖s,Ω + ‖curlv‖s,Ω

)
≤
C

µ
hrk .

Thus, we end the proof. �

As a consequence of the two previous theorems we conclude that the eigenvalues
and eigenfunctions of Problem 4 converge with optimal order to those of Problem 3.

5. Implementation issues

For the implementation of Problem 4, it is necessary to impose the condition
curluh · n = 0 on Γ. To do this, we follow a similar approach to that used in [16]
and [3] for lowest-order Nédélec elements.

Since we have assumed that the domain Ω is simply-connected, each connected
component of its boundary is simply-connected, too. In such a case, curluh ·n = 0
on Γ if and only if the tangential component of uh satisfies

(5.1) n× uh × n = ∇Γϕh on Γ,

where ϕh ∈ LΓ
h :=

{
ψh ∈ C(Γ) : ψh|F ∈ Pk(F ) ∀F ∈ T Γ

h

}
and ∇Γ denotes the

surface gradient (i.e., the two-dimensional gradient on each plane face of Γ; see [8]
for its proper definition). In fact, it is shown in [8, Section 4] that curluh · n =
curlΓ (n× uh × n) on Γ, where curlΓ denotes the scalar surface curl. Hence, from
[8, Theorem 5.1], we know that there exists ϕh ∈ H1(Γ) such that n×uh×n = ∇Γϕh
on Γ. Moreover, by using [18, Remark 5.29], it is easy to show that ϕh ∈ LΓ

h.
Let

Lh := {ψh ∈ C(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th} .

Let {ϕj}
K
j=1 be the nodal basis of Lh. Without loss of generality we order these

basis functions so that the first J of them correspond to all the nodal values on

the boundary Γ. Therefore {ϕj |Γ}
J
j=1 is a basis of LΓ

h. Moreover,
〈
{∇Γϕj}

J
j=1

〉
=

∇Γ(L
Γ
h). However, these functions are not linearly independent. To obtain a basis

of ∇Γ(L
Γ
h), we must choose one vertex on each connected component Γ0, . . . ,ΓI of

Γ and drop out the basis function corresponding to these vertices. Let us assume
for simplicity that these basis function are the last ones. Then, it is straightforward

to show that {∇Γϕj}
L
j=1 (L := J − I − 1) is a basis of ∇Γ(L

Γ
h).

Let {φm}Mm=1 be the nodal basis ofN h; without loss of generality we also assume

that the last ones, {φm}Mm=N+1, are those corresponding to the degrees of freedom
related to the faces or edges on Γ. Notice that all the other basis functions lie
in Zh. Thus, we have the following proposition that characterizes a basis of this
space.

Proposition 5.1. The set {φm}Nm=1 ∪ {∇ϕj}
L
j=1 is a basis of Zh.

Proof. It is essentially identical to that of Proposition 4.2 from [16], where a similar
result is proved in the case that Γ is connected for lowest-order Nédélec elements.
We include it for completeness.
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First we prove that {φm}Nm=1∪{∇ϕj}
L
j=1, which is clearly a subset of Zh, spans

this space. Let φh ∈ Zh. Because of (5.1), n × φh|Γ × n ∈ ∇Γ(L
Γ
h) and, hence,

there exist βj , j = 1, . . . , L, such that

n× φh|Γ × n =
L∑

j=1

βj∇Γϕj .

Then, the degrees of freedom of φh −
∑L
j=1 βj∇ϕj ∈ N h corresponding to edges

or faces lying on the boundary vanish. Therefore,

φh −
L∑

j=1

βj∇ϕj ∈ 〈φ1, . . . ,φN 〉 .

It only remains to prove that {φm}Nm=1 ∪ {∇ϕj}
L
j=1 is a linearly independent

set. Let us assume that
N∑

m=1

αmφm +

L∑

j=1

βj∇ϕj = 0.

Since n × φm|Γ × n vanish for all m = 1, . . . , N and n ×∇ϕj |Γ × n = ∇Γϕj is a
basis of ∇Γ(L

Γ
h), we have that β1 = · · · = βL = 0. Thus the result follows from the

linear independence of {φm}Nm=1. �

Actually, the constraint curluh · n = 0 on Γ in the definition of Zh can be

imposed without the need of using the basis functions {∇ϕj}
L
j=1. We illustrate

this in the case of lowest-order Nédélec elements, which are the ones that we have
implemented in the code used for the numerical tests reported in the next section.

Let {e1, . . . , eM} be the set of all edges in Th and {φm}Mm=1 be the associated
nodal basis of N h. Then, for any uh ∈ N h,

uh =

M∑

m=1

αmφm.

where αm :=
∫
em

uh · tm, with tm a unit tangent to em, m = 1, . . . ,M . We assume

as above that the edges lying on Γ are the last ones: eN+1, . . . , eM .

Let {Pj}
J
j=1 be the set of vertices of Th lying on Γ, where the last I+1 have been

chosen one on each connected component of Γ, also as above. Let {ϕj}
J
j=1 be the

corresponding nodal basis of LΓ
h. In such a case, according to the Proposition 5.1,

for uh ∈ Zh, there exist complex numbers α′
1, . . . , α

′
N and β1, . . . , βJ such that

uh =

N∑

m=1

α′
mφm +

J∑

j=1

βj∇ϕj ,

where βL+1 = · · · = βJ = 0. Then, from the definition of αm and the above
relation, we obtain:

αm =





α′
m, if em ∩ Γ = ∅,

α′
m ± βj , if em ∩ Γ = {Pj} ,

α′
m ± (βj − βk) , if em ∩ Γ = {Pj , Pk} (em 6⊂ Γ),

± (βj − βk) , if em ⊂ Γ, with end points Pj , Pk,
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the signs above depend on the chosen orientation of the tangent vector tm.
These relations allow us to define a matrix C ∈ R

M×(N+L) such that α = Cα̂,
where α := (α1, . . . , αM )t and α̂ := (α′

1, . . . , α
′
N , β1, . . . , βL)

t. Notice that most of
the entries of this matrix vanish and the others are ±1.

Let A := (Aij) and B := (Bij) be the M ×M matrices defined by

Aij :=

∫

Ω

curlφj · curl φ̄i and Bij :=

∫

Ω

φj · φ̄i, i, j = 1, . . . ,M.

Then, using the basis of Zh from Proposition 5.1, the matrix form of Problem 4
reads as follows:

Âα̂ = λ2hB̂α̂,

with Hermitian matrices Â := CtBC and B̂ := CtAC, which are positive semi-
definite and positive definite, respectively. Thus, this is a well-posed generalized
matrix eigenvalue problem.

6. Numerical experiments

We have developed a Matlab code based on lowest-order Nédélec elements
(k = 1) to solve Problem 4. We report in this section some numerical experiments
which confirm the theoretical results proved in the previous sections.

6.1. Validation. As a first numerical test, we have solved a particular problem
with a known analytical solution, which allowed us to validate the computer code
and to check the performance and convergence properties of the scheme. When the
domain Ω is the unit sphere, the least positive eigenvalue is the smallest positive
solution of the equation λ = tanλ, namely, λ = 4.493409... Moreover, λ is an
eigenvalue of multiplicity three (for further details see [9, Theorem A]).

Because of the symmetry of the domain, it is easy to check that (λ,u(x)) is a
solution of Problem 1 if and only if (−λ,u(−x)) is a solution, too. Therefore, λ2

is an eigenvalue of Problem 3 with multiplicity six. Whence, by virtue of Theo-
rem 4.5, we know that, for h small enough, there exist six eigenvalues λ2h,1, . . . , λ

2
h,6

of Problem 4 (repeated accordingly to their respective multiplicities) such that

λ2h,i −→
h→0

λ2, i = 1, . . . , 6.

The code has been used on several meshes Th with different levels of refinement;
we identify each mesh by its respective number of tetrahedraNh. We have compared

the average λ̂h := (λh,1 + . . .+ λh,6) /6 with the analytical eigenvalue λ. Table 1
shows the obtained results. The table also includes an estimate of the order of
convergence, the so-called experimental rate of convergence:

erc := −3
log

(
|λ− λ̂h|/|λ− λ̂h′ |

)

log (Nh/Nh′)
.

Since the domain is smooth, the theoretical order of convergence for the eigen-
values is in this case O(h2r1), with r1 := min {s, 1} = 1. It can be seen from
Table 1 that the obtained results show an estimated order of convergence close to
the theoretical one. Figure 1 shows a log-log plot of the errors versus the number
of tetrahedra Nh. The slope of the line shows a clear quadratic dependence on the
mesh-size.



NUMERICAL APPROXIMATION OF THE SPECTRUM OF THE CURL OPERATOR 17

Table 1. Unit sphere. Computed and exact eigenvalues, errors,
and experimental rates of convergence.

Nh λ̂h λ |λ− λ̂h| erc

53506 4.495885 4.493409 0.002475 —

91286 4.495117 4.493409 0.001708 2.08

157765 4.494620 4.493409 0.001210 1.89

259404 4.494283 4.493409 0.000874 1.96
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Figure 1. Unit sphere. Error |λ−λ̂h| versus number of tetrahedra
Nh (log-log scale).

According to the theoretical results, the invariant subspace spanned by the six
eigenfunctions of Problem 4 corresponding to λh,1, . . . , λh,6 yields an approxima-
tion of the eigenspace of λ2 in Problem 3. However, the latter is the direct sum of
two three-dimensional eigenspaces of Problem 1, those corresponding to λ and −λ.
Therefore, the eigenfunctions of Problem 4 are not in general eigenfunctions of Prob-
lem 1, but linear combination of eigenfunctions corresponding to both eigenvalues,
λ and −λ. Because of this, the present method does not necessarily furnish ap-
proximations of the eigenfunctions. To compute the eigenfunctions we have solved
numerically Problem 2. With this aim, we have used the finite element discretiza-
tion given in Problem 6. More details about this numerical method, including the
corresponding convergence analysis, are reported in the appendix.

Figure 2 shows the vector field and some integral curves for one of the eigen-
functions. This minimum-eigenvalue field is the well-known spheromak introduced
in [11] (see also [10, 23, 24]) and reported in [9].

We have also applied our method to a problem in which the boundary of the
domain is not connected: a spherical shell

{
x ∈ R

3 : a ≤ |x| ≤ b
}
. In this case, two

basis functions of LΓ
h has to be eliminated for the implementation, each of them

corresponding to a vertex on each connected component.
We have compared the obtained results with the analytical ones reported in

[9] for the spherical shell
{
x ∈ R

3 : 0.540183 ≤ |x| ≤ 1.05
}
. Table 2 shows results
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Figure 2. The spheromak.

similar to those reported in Table 1 for the eigenvalue of least absolute value of this
problem. Once more, the estimated rates of convergence are close to O(h2).

Table 2. Spherical shell. Computed and exact eigenvalues, errors,
and experimental rates of convergence.

Nh λ̂h λ |λ− λ̂h| erc

11875 6.369146 6.423856 0.054711 —

31969 6.394034 6.423856 0.029823 1.84

63693 6.404705 6.423856 0.019151 1.92

131470 6.412565 6.423856 0.011291 2.19

6.2. Eigenvalues of the curl on a rectangular box. For the last test, we have
chosen a simple geometry for which, to the best of the authors’ knowledge, there is
no known analytical solution: a rectangular box. In particular, we have considered
the hexahedron Ω := (−0.5, 0.5) × (−0.4, 0.4) × (−0.6, 0.6). Notice that, as in
the previous tests, because of the symmetry of the domain, λ is an eigenvalue of
Problem 1 is and only if −λ is another eigenvalue of the same problem. Therefore
each eigenvalue λ2 of Problem 3 has multiplicity at least two.

We have used several regular meshes as those shown in Figure 3.
On each mesh we have computed the six smallest eigenvalues λ2h,1 ≤ . . . ≤ λ2h,6.

In this case, λ2h,2k−1 and λ2h,2k converge to a same limit λ2k, k = 1, 2, 3, which is a
double eigenvalue of Problem 3.

In absence of an analytical solution, we have estimated the order of convergence
by means of a least-squares fitting of the model

λ̂h,k ≈ λex + Cht,
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Figure 3. Meshes on the rectangular box.

where λ̂h,k := (λh,2k−1 + λh,2k) /2.
Table 3 shows the three smallest eigenvalues computed on several meshes. As in

the previous examples, Nh denotes the corresponding number of tetrahedra. For
each eigenvalue, the table also includes the extrapolated more accurate approxima-
tion λex and the estimated order of convergence t obtained with this fitting. The
obtained orders of convergence are again close to O(h2), as predicted by the theory.

Table 3. Rectangular box. Computed and extrapolated eigenval-
ues and computed orders of convergence.

Nh = 10368 Nh = 34992 Nh = 82944 Nh = 162000 λex order

λ̂h,1 7.4360 7.4337 7.4329 7.4325 7.4319 2.02

λ̂h,2 7.7666 7.7724 7.7741 7.7751 7.7763 2.19

λ̂h,3 8.0530 8.0726 8.0802 8.0836 8.0909 1.81

To compute the eigenfunctions, we have used Problem 6 as in the previous test.
Figure 4 shows the eigenfunction corresponding to the third smallest positive eigen-
value. Those corresponding to the first and the second one are essentially similar to
rotations of this. Finally, the eigenfunctions corresponding to the negative eigen-
values are obtained from those of the positive ones by means of a symmetry.

Appendix

In this appendix, we consider a finite element approximation of Problem 2. The
simplest minded approach would consist of using the finite element spaces N h ⊂
H(curl; Ω) and Lh ⊂ H1(Ω) for a direct discretization of this problem. However,
such a procedure leads to a spectral problem for an operator which is not compact
and a property analogous to P1 (typical for the spectral approximation of non-
compact operators) does not seem to hold, either. To circumvent this drawback,
we consider the following problem, which only differs from Problem 2 in that the
space H(curl; Ω) has been substituted by Z.

Problem 5. Find λ ∈ C and (u, ϕ) ∈ Z ×H1(Ω)/C, (u, ϕ) 6= 0, such that
∫

Ω

curlu · curl v̄ +

∫

Ω

∇ϕ · v̄ = λ

∫

Ω

u · curl v̄ ∀v ∈ Z,

∫

Ω

u · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω)/C.
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Figure 4. Eigenfunction of the curl on a rectangular box.

The following result shows that this is actually equivalent to Problem 2.

Proposition 7.1. Problems 2 and 5 have the same set of solutions.

Proof. Let (λ,u, ϕ) be a solution of Problem 2. By virtue of Proposition 3.1,
curlu · n = λu · n = 0 on Γ, so that u ∈ Z. Hence, (λ,u, ϕ) solves Problem 5.

Conversely, let (λ,u, ϕ) be a solution of Problem 5. Proceeding as done to prove
Proposition 3.1, we obtain ϕ = 0, u ∈ H0(div

0; Ω), and curl (curlu− λu) = 0 in
Ω. Hence, for u ∈ Z, we have that curlu−λu ∈ H(curl0; Ω)∩H0(div

0; Ω) = {0}.
Consequently, curlu = λu, and, whence, (λ,u, ϕ) solves Problem 2. �

Let Zh ⊂ Z and Lh ⊂ H1(Ω) be the finite element spaces defined in Sections 4
and 5, respectively. We consider the following discretization of Problem 5:

Problem 6. Find λh ∈ C and (uh, ϕh) ∈ Zh × Lh/C, (uh, ϕh) 6= 0, such that
∫

Ω

curluh · curl v̄h +

∫

Ω

∇ϕh · v̄h = λh

∫

Ω

uh · curl v̄h ∀vh ∈ Zh,

∫

Ω

uh · ∇ψ̄h = 0 ∀ψh ∈ Lh/C.

Our aim is to prove that the eigenvalues and eigenfunction of Problem 5 are well
approximated by those of Problem 6. With this end, we will apply the classical
theory for mixed eigenvalue problems of the so-called type Q1 reported in [17, Sec-
tion 3]. The first step is to show that all the following properties, which correspond
to assumptions (3.12)–(3.16) from this reference, are fulfilled in our case:



NUMERICAL APPROXIMATION OF THE SPECTRUM OF THE CURL OPERATOR 21

• there exists α1 > 0 such that

(7.1)

∫

Ω

|curlv|2 ≥ α1 ‖v‖
2
curl,Ω ∀v ∈ V ,

where, we recall, V =
{
v ∈ Z :

∫
Ω
v · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω)/C

}
;

• there exists β1 > 0 such that

(7.2) sup
v∈Z

∣∣∫
Ω
v · ∇ψ̄

∣∣
‖v‖

curl,Ω

≥ β1 |ψ|1,Ω ∀ψ ∈ H1(Ω)/C;

• there exists α2 > 0, independent of h, such that

(7.3)

∫

Ω

|curlvh|
2 ≥ α2 ‖vh‖

2
curl,Ω ∀vh ∈ Vh,

where, we recall, Vh =
{
vh ∈ Zh :

∫
Ω
vh · ∇ψ̄h = 0 ∀ψh ∈ Lh/C

}
;

• there exists β2 > 0, independent of h, such that

(7.4) sup
vh∈Zh

∣∣∫
Ω
vh · ∇ψ̄h

∣∣
‖vh‖curl,Ω

≥ β2 |ψh|1,Ω ∀ψh ∈ Lh/C;

• for each (v, ψ) ∈ Z ×H1(Ω)/C,

(7.5) lim
h→0

inf
(vh,ψh)∈Zh×Lh/C

(
‖v − vh‖curl,Ω + |ψ − ψh|1,Ω

)
= 0.

The ellipticity in the kernels (7.1) and (7.3) follow from [1, Corollary 3.16] and
[1, Proposition 4.6], respectively. The inf-sup conditions (7.2) and (7.4) are easily
checked by taking v = ∇ψ and vh = ∇ψh, respectively. Finally, the density result
(7.5) follows immediately from Proposition 3.4, the fact that for a smooth v ∈ Z

its Nédélec interpolant satisfies INh v ∈ Zh (cf. the proof of Theorem 4.6), and
standard approximation properties of the Nédélec and the Lagrange interpolants.

The solution operator for Problem 5 is defined as follows:

G : Z ×H1(Ω)/C −→ Z ×H1(Ω)/C,

(f , g) 7−→ G(f , g) := (w, ξ),

with (w, ξ) ∈ Z ×H1(Ω)/C such that
∫

Ω

curlw · curl v̄ +

∫

Ω

∇ξ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ Z,

∫

Ω

w · ∇ψ̄ = 0 ∀ψ ∈ H1(Ω)/C.

Once more, λ is an eigenvalue of Problem 5 if and only if µ = 1
λ is a non-zero

eigenvalue of G, with the same eigenfunctions. An additional assumption needed
to apply the approximation results for mixed eigenvalue problems of type Q1 from
[17, Section 3] is that G has to be compact. This and other properties of this
operator are established in the following lemma.

Lemma 7.2. For all (f , g) ∈ Z×H1(Ω)/C, G(f , g) = (w, 0), with w ∈ H0(div
0; Ω).

Moreover, w ∈ Hs(curl; Ω) and G is compact.

Proof. Let (f , g) ∈ Z × H1(Ω)/C. Proceeding again as done to prove Proposi-
tion 3.1, we obtain G(f , g) = (w, 0), with w ∈ H0(div

0; Ω) and curl (curlw) =
curlf in Ω. Therefore, w, curlw ∈ H(curl; Ω) ∩ H0(div

0; Ω) →֒ Hs(Ω)3. Hence,
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w ∈ Hs(curl; Ω), which is compactly included in H(curl; Ω), and we end the
proof. �

The spectral approximation theory for mixed problems of type Q1 from [17,
Section 3] also involves a formal adjoint operator G∗. In the present case, this op-
erator is defined for (f , g) ∈ Z ×H1(Ω)/C by G∗(f , g) := (w∗, ξ∗), with (w∗, ξ∗) ∈
Z ×H1(Ω)/C being the solution of the adjoint problem:

∫

Ω

curlv · curl w̄∗ +

∫

Ω

v · ∇ξ̄∗ =

∫

Ω

v · curl f̄ ∀v ∈ Z,

∫

Ω

∇ψ · w̄∗ = 0 ∀ψ ∈ H1(Ω)/C.

In general, for each eigenvalue µ of G, µ̄ is an eigenvalue of G∗ with the same ascent
α and with invariant subspace E∗ := Ker ((µ̄I −G∗)

α
). In our case, µ ∈ R and, as

an immediate consequence of Proposition 3.3, we have that G∗ = G. However, since
G∗ is just a formal adjoint, we cannot claim that G is self-adjoint. Nevertheless,
we prove in the following lemma that its eigenvalues are non-defective.

Lemma 7.3. The ascent of any non-zero eigenvalue of G is one.

Proof. By contradiction. Let (µ, (u, ϕ)) be an eigenpair of G, µ 6= 0, and let us
assume that G has a corresponding generalized eigenfunction; namely, G(u, ϕ) =
µ(u, ϕ), (u, ϕ) 6= 0, and there exists (ũ, ϕ̃) such that G(ũ, ϕ̃) = µ(ũ, ϕ̃) + (u, ϕ).
Hence, ϕ = ϕ̃ = 0 and, by using the definition of G for f = u with test function
v = ũ and for f = ũ with test function v = u, we respectively obtain

µ

∫

Ω

curlu · curl ¯̃u =

∫

Ω

u · curl ¯̃u,

µ

∫

Ω

curl ũ · curl ū+

∫

Ω

curlu · curl ū =

∫

Ω

ũ · curl ū.

Subtracting the conjugate of the first equation from the second one and using that
µ ∈ R, we have that

µ

∫

Ω

|curlu|2 =

∫

Ω

(ũ · curl ū− ū · curl ũ) = 0,

the last equality because of Proposition 3.3. Therefore, for µ 6= 0, by virtue of (7.1),
u = 0. Since ϕ = 0, too, this leads to a contradiction and we end the proof. �

Now, we are in a position to write the following convergence result, which is a
direct consequence of [17, Theorem 3.1].

Theorem 7.4. Let λ be an eigenvalue of Problem 5 of finite-multiplicity m. Let
E ⊂ Z × H1(Ω)/C be the corresponding eigenspace. Then, there exist exactly m

eigenvalues λ
(1)
h , . . . , λ

(m)
h of Problem 6 (repeated accordingly to their respective mul-

tiplicities) which converge to λ as h goes to zero.

Let Eh be the direct sum of the eigenspaces corresponding to λ
(1)
h , . . . , λ

(m)
h and

γ̂h := δ (E ,Zh × Lh/C). Then,

δ̂ (E ,Eh) ≤ Cγ̂h

and ∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Cγ̂2h, i = 1, . . . ,m.
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Lemma 7.2 and the same arguments used in the proof of Theorem 4.6 allow us
to show that there exists C > 0, independent of h, such that γ̂h ≤ Chrk , with rk as
defined in (4.1). This, together with Theorem 7.4, imply that the eigenvalues and
eigenfunctions of Problem 6 converge to those of Problem 5 with an optimal order.

The matrix form of Problem 6 is a generalized eigenvalue problem which involves
two non-definite matrices. However, in spite of this, it is well-posed. In fact, it is
easy to check that (λh,uh, ϕh) is a solution of Problem 6 if and only if ϕh = 0 and
(λh,uh) is a solution of the following one: find λh ∈ C and uh ∈ Vh, uh 6= 0, such
that

(7.6)

∫

Ω

curluh · curl v̄h = λh

∫

Ω

uh · curl v̄h ∀vh ∈ Vh.

The matrix form of the above problem involves two Hermitian matrices, that of
the right hand side being so because of Proposition 3.3. Moreover, the matrix on
the left hand side is positive definite because of (7.3). Therefore, the eigenvalues
of this discrete problem are real and non-defective.

Problem 6 is equivalent to the well-posed generalized eigenvalue problem (7.6).
However, since there is no basis available for Vh, its computer implementation
requires dealing with Problem 6, in spite of its degeneracy, rather than with (7.6).
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24 RODOLFO RODRÍGUEZ AND PABLO VENEGAS

[15] A. Lakhtakia, Victor Trkal, Beltrami fields and Trkalian flows, Czech J. Phys., 44 (1994)
89–96.

[16] S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy

current problem, M2AN Math. Model. Numer. Anal., 37 (2003) 291–318.
[17] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, Eigenvalue approximation by mixed

and hybrid methods, Math. Comp., 36 (1981) 427–453.

[18] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New
York, 2003.

[19] E.C. Morse, Eigenfunctions of the curl in cylindrical geometry, J. Math. Phys., 46 (2005)

113511, 13pp.
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