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Abstract

The three-dimensional eddy current time-dependent problem is considered.
We formulate it in terms of new variables lying only on the conducting domain
and on its boundary. We combine finite elements (FEM) and boundary
elements (BEM), to obtain a FEM-BEM coupled variational formulation.
We prove existence and uniqueness of the solution in the continuous and the
fully discrete case. Finally, we investigate the convergence order of the fully
discrete scheme.
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1. Introduction

The eddy current model is commonly used in many problems in sciences
and industry, for example, in induction heating, electromagnetic braking,
electric generation, etc. An overview of the mathematical analysis of the
eddy current model and its numerical solution in harmonic regime can be
found in the recent book by Alonso and Valli [3], which provides a large list
of references on this subject.
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In this paper, we deal with the numerical solution of the time-dependent
eddy current problem, which is naturally formulated in the whole space, with
adequate decay conditions at infinity. The literature on the numerical anal-
ysis of this kind of problems is more scarce. Among the few papers devoted
to this subject, both in bounded and unbounded domains, by using finite
element (FEM), boundary element methods (BEM) and coupled FEM-BEM
methods, we can mention [1, 2, 8, 9, 10, 11, 16]. These articles differ from
each other by the physical quantities chosen for the formulation (magnetic
field, electric field or different kind of potentials) and by the way of treating
the decay condition to reduce the problem to a bounded domain.

We consider a FEM-BEM method to compute the eddy currents gener-
ated in a three-dimensional conductor ΩC by a time-dependent source cur-
rent. The problem is reformulated by expressing the magnetic and the electric
fields in terms of convenient new variables. We use FEM only on the con-
ducting domain ΩC , the integral conditions being imposed on its boundary
∂ΩC . Therefore, the domain where FEM is used results as small as possible,
leading to a more efficient method as compared, for instance, with [1] and
[2], where similar formulations are considered. Another important feature
of this approach is that it preserves the coercivity of the original problem.
The purpose of the paper is to analyze the convergence of a fully discrete
finite element scheme for this formulation and to investigate the convergence
order.

The paper is organized as follows. In Section 2 we give some basic def-
initions. In Section 3 we present the model problem with the necessary
assumptions over the data and introduce a new variable, the time-primitive
of the electric field, which plays the role of a vector potential for the mag-
netic field. In Section 4 we introduce the integral operators and recall their
properties. Then, we derive the FEM-BEM formulation and show existence
and uniqueness of the solution to the problem. In Section 5, we introduce
a space-discretization of the problem based on Nédélec edge elements in ΩC

and piecewise linear continuous elements for the variable on ∂ΩC arising from
the integral equations. Then, a backward Euler method is employed to ob-
tain a time discretization. Finally, the results presented in Section 6 prove
that the proposed fully discrete scheme is convergent with optimal order.
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2. Preliminaries

In the sequel we deal with real valued functions. Boldface letters will de-
note vectors (in R

n) or vector-valued functions. The symbol | · | will represent
the 2-norm for vectors:

|v|2 = v · v :=
n∑

i=1

v2i .

In all the paper the conductor ΩC ⊂ R
3 is a bounded connected polyhe-

dron, with a connected boundary Γ := ∂ΩC such that the insulator ΩI :=
R

3\ΩC is connected.
We remark that, under the above conditions, ΩC and ΩI have the same

number of non-bounding cycles L. There exists L disjoint connected open
surfaces Σint

j ⊂ ΩC (respectively Σext
j ⊂ ΩI), j = 1, ..., L, such that Ω̃C :=

ΩC\
⋃L
j=1Σ

int
j (respectively Ω̃I := ΩI\

⋃L
j=1Σ

ext
j ) is simply connected. The

boundary curves ∂Σint
j and ∂Σext

j lie on Γ.
We denote by

(f, g)0,Ω∗
:=

∫

Ω∗

fg dx

the inner product in L2(Ω∗) and ‖ · ‖0,Ω∗
the corresponding norm with ∗ ∈

{C, I}. As usual, ‖·‖s,ΩC
stands for the norm of the Hilbertian Sobolev space

Hs(ΩC) for all s ∈ R. We also recall that, for any the space H t(Γ) has an
intrinsic definition (by localization) on the Lipschitz surface Γ due to their
invariance under Lipschitz coordinate transformations. We denote by ‖ · ‖t,Γ
the norm in Ht(Γ).

In this paper, the spaces that are product forms of the previous function
spaces are endowed with the natural product norm and duality pairing with-
out changing the notations since it will be clear from the context when scalar
or vector functions are used.

We introduce the functional space

H(curl ; ΩC) := {v ∈ (L2(ΩC))
3 : curl v ∈ (L2(ΩC))

3},

endowed with the natural norm: ‖v‖2
H(curl ; ΩC) := ‖v‖20,ΩC

+ ‖curl v‖20,ΩC
.

We will also need to define H(div ; ΩC) := {v ∈ (L2(ΩC))
3 : div v ∈

L2(ΩC)}, endowed with the norm ‖v‖2
H(div ; ΩC) := ‖v‖20,ΩC

+ ‖div v‖20,ΩC
.
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2.1. Basic spaces for time dependent problems
As we shall deal with an evolutionary problem, we need to introduce

spaces of functions defined on a bounded interval [0, T ] and with values in
a separable Hilbert space V whose norm is denoted here by ‖ · ‖V . We use
the notation C0([0, T ];V ) for the Banach space consisting of all continuous
functions f : [0, T ] → V . More generally, for any k ∈ N, Ck([0, T ];V )
denotes the subspace of C0([0, T ];V ) of all functions f with (strong) deriva-
tives djf/dtj in C0([0, T ];V ) for all 1 ≤ j ≤ k. In the following, we will use
indistinctly the notations

d

dt
f = ∂tf

to express the derivative with respect to the variable t.
We also consider the space L2(0, T ;V ) of classes of functions f : (0, T ) →

V that are Böchner-measurable and such that

‖f‖2L2(0,T ;V ) :=

∫ T

0

‖f(t)‖2V dt < +∞.

Furthermore, we will work with

H1(0, T ;V ) :=
{
f ∈ L2(0, T ;V ) :

d

dt
f ∈ L2(0, T ;V )

}
.

Analogously, we define Hk(0, T ;V ), for all k ∈ N.

3. The model problem

The unit normal vector on Γ that points from ΩC to ΩI (respectively from
ΩI to ΩC) is denoted by nC (respectively nI = −nC).

Let E(x, t) the electric field and H(x, t) the magnetic field. Given a time-
dependent compactly supported current density J, our aim is to furnish an
approximate solution to the problem below:

∂t (µH) + curlE = 0 in R
3 × (0, T ),

curlH − σE = J in R
3 × [0, T ],

div (εE) = 0 in ΩI × [0, T ],
∫

Γ

εE · n dζ = 0, in [0, T ],

H(x, t) = O(|x|−1) and E(x, t) = O(|x|−1) as |x| → ∞,

H(x, 0) = H0(x) in R
3,

(1)
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where the asymptotic behavior (1)5 holds uniformly in [0, T ]. The initial data
H0 in (1)6 has to satisfy div (µH0) = 0 in R

3. The electric permittivity ε,
the electric conductivity σ, and the magnetic permeability µ are symmetric
and uniformly positive definite matrices in ΩC , with entries belonging to
L∞(ΩC). Moreover, ε = ε0I, µ = µ0I and σ = 0, bf. in ΩI (I is the identity
matrix).

It is important to notice that, since σ = 0 in ΩI , (1)2 implies that the
data J satisfies the compatibility conditions

div J = 0 in ΩI and

∫

Γ

J · n dζ = 0, (2)

for all t ∈ [0, T ].
For the sake of simplicity, we consider that supp(J) ⊂ ΩC , namely, J = 0

in ΩI . Moreover we consider J ∈ L2(0, T ; (L2(ΩC))
3).

We define HC := H|ΩC
and HI := H|ΩI

. Analogously, HC,0 := H0|ΩC
,

HI,0 := H0|ΩI
, EC := E|ΩC

and EI := E|ΩI
. Moreover, we consider the space

H(ΩC), defined as

H(ΩC) := {v ∈ (L2(ΩC))
3 : curl v = 0, div (σ v) = 0, σ v · n = 0 on Γ}.

We recall that each “cutting” surface Σint
j , j = 1, ..., L, “cuts” an independent

non-bounding cycle in ΩC . They are connected orientable Lipschitz surfaces
with ∂Σint

j ⊂ Γ, such that every curl-free vector field in ΩC has a global

potential in Ω̃C . The basis functions ωj are the (L
2(ΩC))

3-extension of ∇pj,
where pj ∈ H1(ΩC\Σ

int
j ) is the solution of the problem

div (σ∇pj) = 0 in ΩC\Σ
int
j ,

σ∇pj · nC = 0 on Γ\∂Σint
j ,

[[σ∇pj · nj]]Σint
j

= 0, j = 1, ..., L,

[[pj ]]Σint
j

= 1, j = 1, ..., L,

having denoted by [[ · ]]Σint
j

the jump across the surface Σint
j and by nj the unit

normal vector on Σint
j .

In order to obtain a suitable formulation for the problem (1), we introduce
the variable
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AC(x, t) := −

∫ t

0

EC(x, s) ds + AC,0(x) (3)

where AC,0 is the solution of this problem:

curlAC,0 = µCHC,0 in ΩC ,

div (σAC,0) = 0 in ΩC ,

σAC,0 · nC = 0 on Γ.
∫

ΩC

σAC,0 · ωj dx = 0, j = 1, ..., L.

(4)

This problem has a unique solution, because div (µCHC,0) = 0 in ΩC .
(See [3]).

We obtain directly from (3) that EC = −∂tAC in ΩC × (0, T ). Moreover,
if we apply curl to (3) and use (1)1 and (4)1 we also deduce that µCHC =
curlAC in ΩC × [0, T ] and, replacing the new equalities in (1)2, we obtain

σ ∂tAC + curl (µ−1
C curlAC) = J in ΩC × (0, T ).

We need some other tools to continue.
We introduce the Beppo-Levi space:

W 1(ΩI) :=
{
ϕ ∈ D

′(ΩI) ;
ϕ√

1 + |x|2
∈ L2(ΩI) , ∇ϕ ∈ (L2(ΩI))

3
}
,

and recall that the seminorm ‖∇(·)‖0,ΩI
is a norm in W 1(ΩI) equivalent to

the natural norm; i.e., there exists a constant C > 0 such that (see [14]) :

∥∥∥∥∥
ϕ√

1 + |x|2

∥∥∥∥∥

2

0,ΩI

≤ C‖∇ϕ‖20,ΩI
∀ϕ ∈ W 1(ΩI). (5)

Moreover we define the harmonic Neumann vector-fields associated with
ΩI by

H(ΩI) := {v ∈ (L2(ΩI))
3 : curl v = 0, div v = 0, v · n = 0 on Γ}.

We will need a basis of the finite dimensional space H(ΩI). To this end,
we consider the set {Σext

j : j = 1, ..., L} of orientable cutting surfaces in ΩI

introduced above. We fix a unit normal nj on each Σext
j .
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Theorem 3.1. For any j = 1, ..., L, the following problems admit unique
solutions: Find zj ∈ W 1(ΩI\Σ

ext
j ) such that

△zj = 0 in ΩI\Σ
ext
j ,

∇zj · nI = 0 on Γ\∂Σext
j ,

[[∇zj · nj]]Σext
j

= 0, ,

[[zj ]]Σext
j

= 1.

(6)

Moreover the set {∇̃ zj : j = 1, ..., L}, where ∇̃ zj are the (L
2(ΩI))

3-extension
of ∇zj, is a basis of H(ΩI).

We have the following representation of rotational free vector-fields in ΩI ,
see Remark 7 in [6].

Lemma 3.1. There holds

{u ∈ (L2(ΩI))
3 : curl u = 0 in ΩI} = ∇(W 1(ΩI))⊕H(ΩI).

Moreover this is an L2(ΩI)-orthogonal decomposition.

We know of (1)2 that curlHI = 0 in ΩI at each time t ∈ [0, T ]. Then,
the previous lemma ensures the existence at each time t ∈ [0, T ], of a function
ψI(t) in W

1(ΩI) and real constants {αj(t)}
L
j=1 such that

HI(x, t) = ∇ψI(x, t) +
L∑

j=1

αj(t)∇̃ zj(x) in ΩI × [0, T ]. (7)

On the other hand, taking divergence in the equation (1)1 and using that
µ = µ0I in ΩI , we obtain that ∂t(divHI) = 0 in ΩI × (0, T ). Hence, as we
know that divHI(x, 0) = divHI,0 = 0 in ΩI , we conclude that divHI = 0 in
ΩI × [0, T ]. Then, using (7), the last equality and (6)1, we obtain that

△ψI = 0 in ΩI × [0, T ].

On the other hand, multiplying (1)1 by ∇̃ zi, using a Green’s formula and
the fact that EI × nI = −EC × nC , we obtain

∫

ΩI

∂t(µ0HI) · ∇̃ zi dx = −

∫

Γ

EC × nC · ∇̃ zi dζ i = 1, ..., L.
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Replacing HI by ∇ψI +
∑L

j=1 αj∇̃ zj and EC by −∂tAC , using the or-

thogonality between ∇W 1(ΩI) and H(ΩI) and integrating by parts in ΩI , we
obtain

µ0

L∑

j=1

α′
j(t)

∫

ΩI

∇̃ zj(x) · ∇̃ zi(x) dx =

∫

Γ

∂tAC(x, t)× nC(x) · ∇̃ zi(x) dζ,

i = 1, ..., L. Next, integrating in time between 0 and s, with s ∈ (0, T ) and
recalling that AC(x, 0) = AC,0(x), we obtain

µ0

L∑

j=1

αj(s)

∫

ΩI

∇̃ zj(x) · ∇̃ zi(x) dx −

∫

Γ

AC(x, s)× nC(x) · ∇̃ zi(x) dζ

= µ0

L∑

j=1

αj(0)

∫

ΩI

∇̃ zj(x) · ∇̃ zi(x) dx −

∫

Γ

AC,0(x)× nC(x) · ∇̃ zi(x) dζ,

(8)
with i = 1, ..., L. From (6), Green’s formula yields

∫

ΩI

∇̃ zj · ∇̃ zi dx =

∫

Σext
j

∂zi
∂nj

dζ,

for all 1 ≤ i, j ≤ L. Then, we introduce the matrix

N :=

(∫

Σext
j

∂zk
∂nj

dζ

)

1≤k,j≤L

. (9)

It is clear that N is symmetric and positive definite. We also define the
matrix Z and the vector α by

Z := [∇̃ z1 · · · ∇̃ zL]
t, αt := [α1 · · · αL]. (10)

Thus, we can write equation (8) as follows:

µ0 Nα −

∫

Γ

Z (AC × nC) dζ = µ0 Nα0 −

∫

Γ

Z (AC,0 × nC) dζ, (11)

where α0 := α(0) is known.
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Finally, we also impose that

|ψI(x, t)| = O(|x|−1) as |x| → ∞.

In conclusion, we are led to the following problem in terms of the variables
(AC , ψI ,α):

σ∂tAC + curl (µ−1
C curlAC) = J in ΩC × (0, T ),

µ0Nα −

∫

Γ

Z (AC × nC) dζ

= µ0 Nα0 −
∫
Γ
Z (AC,0 × nC) dζ,

∆ψI = 0 in ΩI × [0, T ],

(µ−1
C curlAC)× nC + (∇ψI + Ztα)× nI = 0 on Γ× [0, T ],

curlAC · nC + µ0∇ψI · nI = 0 on Γ× [0, T ],

|ψI(x)| + |∇ψI(x)| = O(|x|−1) as |x| → ∞.

AC(x, 0) = AC,0 in ΩC ,

(12)

Notice that equations (12)4 and (12)5 come from the fact HC × nC =
−HI × nI and µCHC · nC = −µ0HI · nI on Γ, respectively.

4. A FEM-BEM coupling variational formulation

It is well-known from potential theory (see, e.g. McLean [13], Nédélec
[14]) that we can introduce on Γ the single layer and double layer potentials,
which satisfy

S : H−1/2(Γ) → H1/2(Γ), S(ξ)(x) :=

∫

Γ

1

4π|x− y|
ξ(y) dζy,

D : H1/2(Γ) → H1/2(Γ), D(η)(x) :=

∫

Γ

x− y

4π|x− y|3
· η(y)nC(y) dζy,

and the hypersingular operator H : H1/2(Γ) → H−1/2(Γ), which is defined
as follows:

H(η)(x) := −∇
(∫

Γ

x− y

4π|x− y|3
· η(y)nC(y) dζy

)
· nC(x).
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The three operators are linear and bounded. We also recall that the adjoint
operator D′ : H−1/2(Γ) → H−1/2(Γ) reads

D′(ξ)(x) :=
(∫

Γ

y− x

4π|x− y|3
· ξ(y)nC(y) dζy

)
· nC(x).

In what follows we recall some basics properties of these operators. See, e.g.
McLean [13], Nédélec [14] for the corresponding proofs.

Theorem 4.1. Let ϕ ∈ W 1(ΩI) be a harmonic function. Then

(
1

2
I − D

)(
ϕ
)
+ S

(
∂ϕ

∂nC

)
= 0 and

(
1

2
I +D′

)(
∂ϕ

∂nC

)
+ H

(
ϕ
)
= 0

on Γ.

Lemma 4.1. (i) There exists k1 >0 such that

∫

Γ

S(η) η dζ ≥ k1‖η‖
2
−1/2,Γ ∀η ∈ H−1/2(Γ).

(ii) There exists a constant k2 > 0 such that

∫

Γ

H(ϕ)ϕ dζ ≥ k2‖ϕ‖
2
1/2,Γ

for all ϕ ∈ H
1/2
0 (Γ) where,

H
1/2
0 (Γ) :=

{
ϕ ∈ H1/2(Γ) :

∫

Γ

ϕ = 0

}
.

Lemma 4.2. H(1) = 0, D(1) = −1/2 and
∫
Γ
H(η) = 0, for all η ∈ H1/2(Γ).

Theorem 4.2. The linear operator H : H1/2(Γ)/R → H
−1/2
0 (Γ) defines an

isomorphism.

Let (AC , ψI ,α) satisfying (12). Let ψ(t) := ψI(t)−c(t), where c : [0, T ] →

R such that ψ(t) ∈ H
1/2
0 (Γ). By using (12)3 and (12)5, according to Theorem

4.1 and Lemma 4.2, for all t ∈ [0, T ], we have
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−
1

2
ψ − D(ψ) +

1

µ0

S(curlAC · nC) = −ψI on Γ, (13)

1

2µ0

curlAC · nC +
1

µ0

D′(curlAC · nC) +H(ψ) = 0 on Γ. (14)

The following is a variational formulation of problem (12), where V :=
H(curl ; ΩC). For the ease of notation, we write the integration symbol on
Γ instead of the pairing between H−1/2(Γ) and H1/2(Γ), as usual:

Problem P. FindAC ∈ L2(0, T ;V)∩H1(0, T ; (L2(ΩC))
3), ψ ∈ L2(0, T ;H

1/2
0 (Γ))

and α ∈ C0(0, T ;RL) such that

d

dt

∫

ΩC

σAC ·wC dx +

∫

ΩC

µ−1
C curlAC · curlwC dx

+

∫

Γ

[
−

1

2
ψ − D(ψ) +

1

µ0

S(curlAC · nC)
]
curlwC · nC dζ

+

∫

Γ

(wC × nC) · (Z
tα) dζ =

∫

ΩC

J ·wC dx,

∫

Γ

[1
2
curlAC · nC + D′(curlAC · nC) + µ0 H(ψ)

]
η dζ = 0,

µ0 β
tNα− βt

∫

Γ

Z (AC × nC) dζ

= µ0 β
tNα0 − βt

∫
Γ
Z (AC,0 × nC) dζ,

(15)

for all wC ∈ V , η ∈ H
1/2
0 (Γ), β ∈ R

L with

AC(0) = AC,0 in ΩC .

In fact, to derive (15)1, we have multiplied (12), by wC , integrated by
parts in ΩC and used that

∫

Γ

nI ×∇ψI ·wC dζ =

∫

Γ

ψI curlwC · nC dζ, (16)

which follows by integration by parts too. In its turn, equations (15)2 and
(15)3 follows directly from (14) and (12)2, respectively.
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For the theoretical analysis it is convenient to eliminate α and ψ from
the previous formulation. With this aim, we introduce the linear operator
T : V → R

L defined by

T (wC) :=

∫

Γ

Z(wC × nC) dζ.

We can eliminate easily α from (15)3 and replace it in (15)1. Then, the
fourth term of this equation reads

∫

Γ

(wC × nC) · (Z
tα) dζ =

(
T (wC)

)t
α

= µ0

(
T (wC)

)t
N−1

T (AC) +
(
T (wC)

)t
α0

−µ0

(
T (wC)

)t
N−1

T (AC,0).

Moreover, we introduce the operator R : H
−1/2
0 (Γ) → H

1/2
0 (Γ) given by

∫

Γ

H(R(ξ)) η dζ =

∫

Γ

ξ η dζ ∀ η ∈ H
1/2
0 (Γ), ∀ ξ ∈ H

−1/2
0 (Γ), (17)

where H
−1/2
0 (Γ) := {η ∈ H−1/2(Γ) :

∫
Γ
η dζ = 0}. It is straightforward to

show from Lemma 4.1 and the Lax-Milgram lemma that R is well defined
and bounded. Therefore, the second equation of (15) may be equivalently

written ψ = −µ−1
0 R

(
1
2
curlAC ·nC+D′(curlAC ·nC)

)
. Note thatR is a self-

adjoint and non-negative operator. Consequently, (15) admits the following
equivalent reduced form:

Find AC ∈ L2(0, T ;V) ∩H1(0, T ; (L2(ΩC))
3) such that

d
dt
(AC(t),wC)σ + A(AC(t),wC) + B(AC(t),wC)

= (J(t),wC)0,ΩC
+ g(wC),

(18)

for all wC ∈ V , with
AC(0) = AC,0 in ΩC ,

where

(H,G)σ :=

∫

ΩC

σH ·G dx, ∀ H,G ∈ (L2(ΩC))
3,
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K : V → H
−1/2
0 (Γ), K (H) :=

1

2
curlH · nC +D′(curlH · nC),

A : V × V → R, A (H,G) :=

∫

ΩC

µ−1
C curlH · curlG dx

+µ−1
0

∫

Γ

S(curlH · nC) curlG · nC dζ,

B : V × V → R, B (H,G) : = µ−1
0

∫

Γ

K(G)R(K(H)) dζ

+ µ0

(
T (G)

)t
N−1

T (H),

g : V → R, g (H) := µ−1
0

(
T (H)

)t
N−1

T (AC,0)−
(
T (H)

)t
α0.

Note that A and B are bounded, symmetric and non-negative definite
bilinear forms.

Remark 4.1. Note that ‖ · ‖0,ΩC
is equivalent to ‖ · ‖σ in ΩC, and therefore,

‖ · ‖V is equivalent to ‖ · ‖σ + ‖curl (·)‖0,ΩC
in ΩC.

4.1. Existence and Uniqueness.

Lemma 4.3. There exists a unique solution to (18) and

sup
t∈[0,T ]

‖AC(t)‖
2
σ
≤ C

{
‖J‖2L2(0,T ; (L2(ΩC))3) + ‖AC,0‖

2
V + |α0|

2
}

(19)

for some constant C > 0.

Proof. Uniqueness. First, we prove that any solution to (18) has to satisfy
(19). To this end, we replace wC by AC in (18), recall that the bilinear forms
A and B are non-negative definite and moreover,

A(AC ,AC) ≥ µ−1
1 ‖curlAC‖

2
0,ΩC

, (20)

where µ1 is a uniform upper bound in ΩC for the maximum eigenvalues of
µ(x).

Then we apply the Cauchy-Schwarz inequality and obtain

1

2
∂t‖AC‖

2
σ
+ µ−1

1 ‖curlAC‖
2
0,ΩC

≤ ‖J‖0,ΩC
‖AC‖0,ΩC

+ C1‖AC‖V‖AC,0‖V

+C2‖AC‖V |α0|.

13



Now, using Remark 4.1 and a Young’s inequality, we obtain

1

2
∂t‖AC‖

2
σ
≤ C

{
‖J‖20,ΩC

+ ‖AC,0‖
2
V + |α0|

2
}

+ ‖AC‖
2
σ
.

Hence, integrating in time and using Gronwall’s inequality, we obtain

‖AC(t)‖
2
σ

≤ C

{∫ T

0

‖J‖20,ΩC
ds + ‖AC,0‖

2
V + |α0|

2

}
∀t ∈ [0, T ],

from which we conclude the uniqueness.
Existence. We fix N ∈ N and consider a uniform partition {tn := n△t :

n = 0, ..., N} of [0, T ] with step size △t := T
N
. For any finite sequence

{θn : n = 0, ..., N}, let

∂θn :=
θn − θn−1

△t
, n = 1, ..., N. (21)

Moreover, we define

JnN(x) :=
1

△t

∫ n△t

(n−1)△t

J(x, t) dt a.e. in ΩC , n = 1, ..., N. (22)

We approximate our problem by an implicit time discretization scheme.
Find An

CN ∈ V for n = 1, ..., N , such that

(∂An
CN ,wC)σ + A(An

CN ,wC) + B(An
CN ,wC)

= (JnN ,wC)0,ΩC
+ g(wC),

(23)

for all wC ∈ V , with
A0
CN := AC,0.

For any n ∈ {1, ..., N}, we assume that A1
CN , ...,A

n−1
CN ∈ V are known, and

consider the problem of determining An
CN . It is clear that the Lax-Milgram

theorem ensures existence and uniqueness of the solution for n = 1, ..., N .
Replacing wC by An

CN in (23), using that A and B are non-negative
definite, (20), a Young’s inequality and the fact that

(∂Ak
CN ,A

k
CN)σ ≥

1

2△t

(
‖Ak

CN‖
2
σ
− ‖Ak−1

CN ‖2
σ

)
, (24)

14



we obtain

1

2△t

(
‖Ak

CN‖
2
σ

− ‖Ak−1
CN ‖2

σ

)
+

µ−1

1

2
‖curlAk

CN‖
2
0,ΩC

≤
1

4T
‖Ak

CN‖
2
σ
+ C

{
‖JkN‖

2
0,ΩC

+ ‖AC,0‖
2
V + |α0|

2
}
.

In particular, we have

‖Ak
CN‖

2
σ
− ‖Ak−1

CN ‖2
σ
≤

△t

2T
‖Ak

CN‖
2
σ
+ C△t

{
‖JkN‖

2
0,ΩC

+ ‖AC,0‖
2
V + |α0|

2
}
.

Then, summing over k, the discrete Gronwall’s Lemma (see, for instance,
Lemma 1.4.2 from Quarteroni & Valli, 1994) leads to

‖An
CN‖

2
σ
≤ C

{
‖A0

CN‖
2
σ
+ △t

n∑

k=1

‖JkN‖
2
0,ΩC

+ ‖AC,0‖
2
V + |α0|

2

}
. (25)

Thus, from (22) since

△t
n∑

k=1

‖JkN‖
2
0,ΩC

≤

∫ T

0

‖J(t)‖20,ΩC
dt,

we obtain that ‖An
CN‖

2
σ
≤ C, with C independent of N .

Note that being A non-negative and symmetric, it is easy to check that

A(Ak
CN ,A

k
CN −Ak−1

CN ) ≥
1

2

(
A(Ak

CN ,A
k
CN)−A(Ak−1

CN ,A
k−1
CN )

)
(26)

and similarly for B. Let us now take wC = Ak
CN−Ak−1

CN in (23). Summing for
k = 1, ..., n, for any n ∈ {1, ..., N}, recalling that B is non-negative definite
and A satisfies (20), we obtain

△t
n∑

k=1

∥∥∂Ak
CN

∥∥2
σ

+
1

2
µ−1
1 ‖curlAn

CN , ‖0,ΩC

≤

(
△t

n∑

k=1

‖JkN‖
2
0,ΩC

) 1

2

(
△t

n∑

k=1

∥∥∂Ak
CN

∥∥2
0,ΩC

) 1

2

+µ−1
0

(
T (An

CN −A0
CN)

)t
N−1

T (A0
CN)−

(
T (An

CN −A0
CN)

)t
α0

+A(A0
CN ,A

0
CN) + B(A0

CN ,A
0
CN).

15



Applying Young’s inequalities, recalling that T is continuous and Remark
4.1, we obtain that

△t
n∑

k=1

∥∥∂Ak
CN

∥∥2
σ

+ µ−1
1 ‖curlAn

CN , ‖
2
0,ΩC

≤ C

{
△t

n∑

k=1

‖JkN‖
2
0,ΩC

+ ‖A0
CN‖

2
V + |α0|

2

}
+ ‖An

CN‖
2
σ
.

Hence, using (25), we conclude that

△t
N∑

k=1

∥∥∂Ak
CN

∥∥
σ

+ max
n=1,...,N

‖An
CN‖V ≤ C, (27)

where C is independent of N .
Let us introduce some further notation. Let ACN(x, t) be the piecewise

constant in time function defined by

ACN(x, t) := An
CN(x) if (n− 1)△t < t ≤ n△t, for n = 1, ..., N.

We define JN similarly. Let ÂCN(x, t) be the piecewise linear and continuous

time intepolant of the values An
CN(x), n = 0, ..., N (namely, ÂCN(x, tn) =

An
CN(x), n = 0, ..., N). Thus, we can write (23) and (27) as follows:

(∂tÂCN ,wC)σ + A(ACN ,wC) + B(ACN ,wC)
= (JN ,wC)0,ΩC

+ g(wC)
(28)

and

‖ÂCN‖H1(0,T ; (L2(ΩC))3)∩L∞(0,T ;V) ≤ C and ‖ACN‖L∞(0,T ;V) ≤ C (29)

a.e. in [0, T ]. From these estimates, we conclude that there exists AC such
that, possibly taking N → ∞ along a subsequence,

ÂCN → AC weakly star in H1(0, T ; (L2(ΩC))
3) ∩ L∞(0, T ;V),

ACN → AC weakly star in L∞(0, T ;V).

So, by taking N → ∞ in (28), since JN → J in (L2(ΩC))
3, we obtain (18) in

the sense of L2(0, T ; (L2(ΩC))
3). 2
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Remark 4.2. Problem (15) and (23) are actually equivalent. In fact, for
AC solution of (23), if we define ψ = −µ−1

0 R(K(AC)) and α = α0 +
µ−1
0 N−1 (T(AC)− T(AC,0)), then (AC , ψ,α) is a solution of (15). Moreover

this problem has a unique solution, because AC has to be the unique solution
of (18) and ψ and α are determined via (15)2 and (15)3, respectively.

Theorem 4.3. Let (AC , ψ,α) be the solution of problem (15). Then there
exists ψI ∈ L2(0, T ;W 1(ΩI)) and a function c : [0, T ] → R such that ψ =
ψI |Γ − c and (AC , ψ,α) satisfies (12).

Proof. Testing (15)1 with wC ∈ (C∞
0 (ΩC))

3 we obtain

σ∂tAC + curl (µ−1
C curlAC) = J in ΩC .

Testing (15)2 with η ∈ H1/2(Γ) and using Lemma 4.1 we recover

1

2
curlAC · nC + D′(curlAC · nC) + µ0H(ψ) = 0 on Γ. (30)

Now, let ψI ∈ W 1(ΩI) be the solution of this problem:

△ψI = 0 in ΩI ,

µ0∇ψI · nI = −curlAC · nC on Γ,

|ψI(x)|+ |∇ψI(x)| = O(|x|−1) as |x| → ∞.

(31)

Since ψI ∈ W 1(ΩI) is a harmonic function, then Theorem 4.1 ensures that
1
2
ψI |Γ − D(ψI |Γ) + S(curlAC · nC) = 0 and

1
2
curlAC · nC + D′(curlAC · nC) + H(ψI |Γ) = 0 on Γ.

(32)

Now, subtracting (30) to (32)2 we obtain H(ψ − ψI) = 0 on Γ. Therefore,
we conclude from Theorem 4.2 that ψI(t) = ψ(t) + c(t) on Γ, where c(t) is
a constant. As a consequence,

−1
2
ψ −D(ψ) +

1

µ0

S(curlAC · nC)

= −
1

2
(ψI |Γ − c) − D(ψI |Γ − c) +

1

µ0

S(curlAC · nC)

= −ψI |Γ.

(33)

Now replacing this equality in (15)1, using (16) and testing (15)1 with wC ∈
H(curl ; ΩC), then we obtain

(µ−1
C curlAC)× nC + (∇ψI + Ztα)× nI = 0 on Γ.

2
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5. Analysis of a fully-discrete scheme

Let {Th(ΩC)}h be a regular family of tetrahedral meshes of ΩC . As usual,
h stands for the largest diameter of the tetrahedraK in Th(ΩC). Furthermore,
we consider the family of triangulations induced on Γ, {Th(Γ)}h.

We define a fully-discrete version of (15) by means of Nédélec finite el-
ements. The local representation on K of the lowest order Nédélec finite
element is given by

ND(K) := {a× x+ b : a,b ∈ R
3}.

The corresponding global space Vh is the space of vector fields that are locally
in ND(K) for all K in ΩC , and globally in V = H(curl ; ΩC). Moreover,
we define

Lh(Γ) := {η ∈ H
1/2
0 (Γ) : η|T ∈ P1(K) ∀K ∈ Th(Γ)}

which approximates the space H
1/2
0 (Γ), where P1(K) is the set of polynomials

of degree not greater than one.
Since ΩC is not simply connected, problem (15) involve the matrices N

and Z defined by (11) and (10), respectively. To compute these matrices

we need to approximate numerically the basis {∇̃zk}
L
k=1 of the harmonic

Neumann vector-fields H(ΩI). A similar need arose in [11], where the authors
proposed a coupled BEM-FEM method to compute the entries of a matrix
Nh approximating N. For the sake of completeness, in what follows we
describe briefly the method introduced in [11] to approximate N and the
corresponding error estimates proved in this reference.

Consider a connected and simply connected polyhedron Ω with a con-

nected boundary such that ΩC ∪
(⋃L

k=1Σ
ext

k

)
⊂ Ω. Set

Q0 := Ω \
{
ΩC ∪

( L⋃

k=1

Σk
ext
)}
, Q := Ω \ΩC and Λ := ∂Ω.

From (6), pk := ∇̃ zk|Q belongs to the closed subspace of H(div; Q)

Y := {q ∈ (L2(Q))3 : div q = 0 in Q and q|Γ · nI = 0 in H−1/2(Γ)}
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and satisfies the variational equation

∫

Q

pk · q dx =

∫

Σext
k

q · nk dζ +

∫

Λ

q · n zk dζ ∀q ∈ Y ,

where n correspond to the normal vector on Λ outer to Q. Furthermore, as
zk is harmonic in R

3 \Ω, the last equation may be coupled with boundary
integral equations relating zk and its normal derivative pk · n on Λ. This
leads to the following weak formulation (see [12] for more details)

Find pk ∈ Y and φk ∈ H1/2(Λ)/R such that

∫

Q

pk · q dx +

∫

Λ

S(pk · n)q · n dζ −

∫

Λ

[1
2
φk +D(φk)

]
q · n dζ

=

∫

Σext
k

q · nk dζ,
∫

Λ

[1
2
pk · n+D′(pk · n)

]
χ dζ +

∫

Λ

H(φk)χ dζ = 0,

(34)

for all functions q ∈ Y and χ ∈ H1/2(Λ)/R. The variable φk represents (up
to and additive constant) the trace of zk on Λ. Now, consider a regular family
of triangulations {Th(Q)}h of Q by tetrahedra K of diameter no greater than
h > 0. Assume that, for any h, the set Th(ΩC) ∪ Th(Q) is a triangulation of
Ω. This implies that the triangulation induced by Th(Q) on Γ is identical to
Th(Γ). It can be assumed, without loss of generality, that the cutting surfaces
Σext
k are union of faces of tetrahedra T ∈ Th(Q) for each mesh Th(Q). Finally,

denote by Th(Λ) the triangulation induced by Th(Q) on Λ.
Consider a conforming discretization of H(div ; Ω)

RT h(Q) := {q ∈ H(div ; Ω) : q|T ∈ RT (K) ∀K ∈ Th(Q)}

where RT (K) := {ax+ b : a ∈ R, b ∈ R
3}.

The following is a convenient way of discretizing problem (34) (for more
details, see [11]):
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Find pkh ∈ RT 0
h(Q), φkh ∈ Φh/R and βkh ∈Mh such that

∫

Q

pkh · q dx +

∫

Λ

S(pkh · n)q · n dζ −

∫

Λ

[1
2
φkh +D(φkh)

]
q · n dζ

+

∫

Q

βkhdivq =

∫

Σext
k

q · nk dζ,

∫

Λ

[1
2
χ+D(χ)

]
pkh · n dζ +

∫

Λ

S(curlτφkh) curlτχ dζ = 0,

∫

Q

divpkh v dx = 0,

(35)

for all functions q ∈ RT 0
h(Q), χ ∈ Φh/R, and v ∈Mh, where

RT 0
h(Q) := {q ∈ RT h(Q) : q|Γ · n = 0},

Φh := {η ∈ C0(Λ) : η|K ∈ P1(K) ∀K ∈ Th(Λ)},
Mh := {v ∈ L2(Q) : v|Q ∈ P0(Q) ∀K ∈ Th(Q)}.

We know from [12] that (35) is a well posed problem. Once the function pkh
computed for 1 ≤ k ≤ L, the matrix N can be approximated by

Nh :=

(∫

Σext
j

pkh · nj dζ

)

1≤k,j≤L

. (36)

Note that this matrix is symmetric and positive definite. Error estimates
for the approximation Nh of N has been obtained in [11]. With this end,
the following additional regularity result has been proved in [11]; here and
thereafter.

In the sequel, we denote by sQ ∈ (1/2, 1] the exponent of maximal regu-
larity in Q of the solution of Laplace operators with L2(Q) right-hand side
and homogeneous Neumann boundary datum.

Theorem 5.1. Let (pk, φk) be the solution to problem (34). There exists
1/2 < s < sQ such that pk ∈ (Hs(Q))3, k = 1, ..., L.

Proof. See [11, Theorem 7.1]. 2

Finally we recall the error estimates obtained in [11]:
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Theorem 5.2. Problems (34) and (35) are well posed and there exists a
constant C > 0 independent of h such that

‖pk − pkh‖0,Q + ‖φk − φkh‖H1/2(Λ)/R ≤ C hs
{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}

for all 1/2 < s < sQ.

Proof. See [11, Theorem 7.2]. 2

Theorem 5.3. There exists h0 > 0 such that Nh is invertible for all 0 <
h ≤ h0. Moreover, we have the error estimate

‖N−Nh‖ + ‖N−1 −N−1
h ‖ ≤ C hs max

1≤k≤L

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
,

for some constant C independent of h.

Proof. See [11, Corollary 7.3]. 2

Notice that ‖φk‖s+1/2,Λ is clearly bounded, since φk is the trace on Λ of
the harmonic function zk. To compute an approximation of the entries of Z,
we need to resort to a different strategy. In fact, the previous methods yields
good approximation of pk|Γ · nI = ∇̃zk|Γ · nI , but not of ∇̃zk|Γ × nI (which
are the terms defining the entries of Z). A similar situation happened in [11],
too. However, in this case, we follow an alternative approach that we think
is simpler.

One can see that the solution of (6) satisfies the variational formulation:
Find zk ∈ H1(Q\Σext

k )/R such that

[[zk]]Σext
k

= 1 and

∫

Q\Σext
k

∇zk · ∇ϕ dx =

∫

Λ

pk · nϕ dζ, (37)

for all ϕ ∈ H1(Q)/R.
We introduce

Lh(Q) := {θ ∈ H1(Q) : θ|K ∈ P1(K), ∀K ∈ Th(Q)},
Lh(Q\Σext

k ) := {θ ∈ H1(Q\Σext
k ) : θ|K ∈ P1(K), ∀K ∈ Th(Q)}.

Consider the following discrete version of problem (37):
Find zkh ∈ Lh(Q\Σext

k )/R such that

[[zkh]]Σext
k

= 1 and

∫

Q\Σext
k

∇zkh · ∇ϕ dx =

∫

Λ

pkh · nϕ dζ, (38)

for all ϕ ∈ Lh(Q)/R.
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Lemma 5.1. Let zk and zkh be the solutions to problems (37) and (38),
respectively. Then

‖∇̃zk − ∇̃zkh‖0,Q ≤ Chs

for all k = 1, ..., L, with C independent of h and s as in Theorem 5.1.

Proof. Let ẑk ∈ C∞(Q\Σext
k ) such that [[ẑk]]Σext

k
= 1. Let ẑIk be the Lagrange

intepolant of ẑk in Q\Σext
k . Notice that [[ẑIk]]Σext

k
= 1, too. We write

zk = ẑk + zk and zkh = ẑIk + zkh,

with zk ∈ H1(Q)/R and zkh ∈ Lh(Q)/R. Substituting these expressions in
(37) and (38), using the first Strang Lemma (see [5, Theorem 4.4.1] ) for
these new problems, we have that we obtain new problems for zk and zkh
respectively.

‖∇zk − ∇zkh‖0,Q ≤ C inf
ϕ∈Lh(Q)/R

‖∇zk −∇ϕ‖0,Q

+C sup
ϕ∈Lh(Q)/R

∣∣∣∣∣

∫

Q\Σext
k

∇(ẑk − ẑIk) · ∇ϕ dx +

∫

Λ

(pk − pkh) · nϕ dζ

∣∣∣∣∣
‖∇ϕ‖0,Q

.

The second term on the right-hand side of the last inequality is bounded as
follows:

∣∣∣
∫

Q\Σext
k

∇(ẑk − ẑIk) · ∇ϕ dx +

∫

Λ

(pk − pkh) · nϕ dζ
∣∣∣

≤ ‖∇ẑk −∇ẑIk‖0,Q\Σext
j
‖∇ϕ‖0,Q + C‖pk − pkh‖0,Q‖∇ϕ‖0,Q,

(39)

where we have used that divpk = divpkh = 0 in Q and the fact that
‖∇(·)‖0,Q is equivalent to ‖ · ‖1,Q on H1(Q)/R.

From Theorem 5.1, we know that ∇zk|Q ∈ (Hs(Q))3. Hence

inf
ϕ∈Lh(Q)/R

‖∇zk −∇ϕ‖0,Q ≤ ‖∇zk −∇zIk‖0,Q ≤ Chs‖∇zk‖s,Q.

Using the last two estimates and Theorem 5.2, we obtain

‖∇zk −∇zkh‖0,Q ≤ Chs{‖∇ẑk‖s,Q\Σext
k

+ ‖pk‖s,Q + ‖φk‖s+1/2,Λ + ‖∇zk‖s,Q}
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for all k = 1, ..., L. Therefore, as a consequence of Theorem 5.1,

‖∇̃zk − ∇̃zkh‖0,Q ≤ Chs

for all k = 1, ..., L.
2

Now, we are in a position to introduce the following fully-discretization
of Problem P :

Problem P n
h . Find (An

Ch, ψ
n
h ,α

n
h) ∈ Vh × Lh(Γ) × R

L, n = 1, ..., N , such
that
∫

ΩC

σ∂An
Ch ·wC dx +

∫

ΩC

µ−1
C curlAn

Ch · curlwC dx

+

∫

Γ

[
−

1

2
ψnh − D(ψnh) +

1

µ0

S(curlAn
Ch · nC)

]
curlwC · nC dζ

+

∫

Γ

(wC × nC) · (Z
t
hα

n
h) dζ =

∫

ΩC

J(tn) ·wC dx,

∫

Γ

[1
2
curlAn

Ch · nC + D′(curlAn
Ch · nC) + µ0H(ψnh)

]
η dζ = 0,

µ0 β
t
hNhα

n
h − βth Th (A

n
Ch) = µ0 β

t
hNhα0 − βth Th (AC,0),

(40)

for all (wC , η,β) ∈ Vh × Lh(Γ)× R
L, with

A0
Ch = ACh,0 in ΩC ,

where ACh,0 is an approximation of AC,0, ∂A
n
Ch is defined in (21) and the

linear and continuous operator Th : V → R
L is defined by Th(w) :=∫

Γ
Zh(w × nC) dζ, with Zh := [∇̃z1h · · · ∇̃zLh]

t.
We proceed as in the continuous case to prove existence and uniqueness

of solution to (40). Indeed, let Rh : H
−1/2
0 (Γ) → Lh(Γ) be the operator

defined by
∫

Γ

H(Rh(ξ)) η dζ =

∫

Γ

ξ η dζ ∀ η ∈ Lh(Γ), ∀ ξ ∈ H
−1/2
0 (Γ). (41)

Note that (41) is a Galerkin discretization of the elliptic problem (17).
Consequently, using the Galerkin orthogonality and the continuity and coer-
civity of H (cf. Lemma 4.1 (ii)), we have the following Céa estimate:

‖Rξ −Rhξ‖1/2,Γ ≤ C inf
η∈Lh(Γ)

‖Rξ − η‖1/2,Γ ∀ξ ∈ H
−1/2
0 (Γ). (42)
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It is important to note thatRh is a self-adjoint and non-negative operator.
Here again using that ψnh := −µ−1

0 Rh (K(An
Ch)) (cf. (40)2) we deduce the

following equivalent formulation of (40):
Find An

Ch ∈ Vh such that

(∂An
Ch,wC)σ + A(An

Ch,wC) + Bh(A
n
Ch,wC)

= (J(tn),wC)0,ΩC
+ gh(wC)

(43)

for all wC ∈ Vh, with
A0
Ch = ACh,0 in ΩC ,

where

Bh : Vh × Vh → R, Bh (H,G) : = µ−1
0

∫

Γ

K(G)Rh(K(H)) dζ

+µ0

(
Th (G)

)t
N−1
h Th (H),

gh : Vh → R, gh (H) := µ−1
0

(
Th (H)

)t
N−1
h Th (AC,0)

−
(
Th (H)

)t
α0.

Hence, at each iteration, we have to find An
Ch ∈ Vh such that

(An
Ch,wC)σ + △t[A(An

Ch,wC) + Bh(A
n
Ch,wC) ]

= △t[(J(tn),wC)0,ΩC
+ gh(wC)] + (An−1

Ch ,wC)σ.
(44)

Since Bh and A are non-negative definite, the existence and uniqueness
of An

Ch, n = 1, ..., N , is immediate.

Remark 5.1. It is easy to prove that if we define ψnh := −µ−1
0 Rh(K(An

Ch))
and αn

h := α0 + µ−1
0 N−1

h (Th(A
n
Ch) − Th(AC,0)), then (An

Ch, ψ
n
h ,α

n
h) is a so-

lution of (40). This solution is unique, because H is coercive in Lh(Γ) ⊂

H
1/2
0 (Γ) and Nh is a symmetric and positive definite matrix.

6. Error estimates

For any s ≥ 0, we consider the Sobolev space

Hs(curl ; ΩC) := {v ∈ (Hs(ΩC))
3 : curl v ∈ (Hs(ΩC))

3}
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endowed with the norm ‖v‖2
H

s(curl ; ΩC) := ‖v‖2s,ΩC
+ ‖curl v‖2s,ΩC

. It is well

known that the Nédélec operator interpolation IN
h v ∈ Vh is well defined for

any v ∈ Hs(curl ; ΩC) with s > 1/2; see, for instance, Lemma 4.7 of [4].
Moreover, for 1/2 < s ≤ 1, the following interpolation error estimate holds
true (see Proposition 5.6 of [? ]).

‖v− IN
h v‖V ≤ Chs‖v‖Hs(curl ; ΩC), ∀v ∈ Hs(curl ; ΩC). (45)

To simplify the notation, we introduce

Gh(w) := ‖(R−Rh)K(w)‖1/2,Γ.

Lemma 6.1. Let AC and An
Ch be solutions of problems (15) and (40), re-

spectively the latter with initial data A0
Ch := IN

h (AC,0). Assume that AC ∈
H2(0, T ;Hs(curl ; ΩC)), with s > 1/2. Moreover, let ρn := AC(tn)−IN

h AC(tn),
δn := IN

h AC(tn) −An
Ch and τ n := ∂AC(tn) − ∂tAC(tn). Then, there exists

C > 0 independent of h and △t such that

max
1≤k≤n

‖δk‖2V + △t
n∑

k=1

‖∂δk‖2
σ

≤ C

{
△t

n∑

k=1

[
‖∂ρk‖2V + ‖τ k‖2V + Gh(∂tAC(tk))

2

+
(
‖AC(tk)‖

2
V + ‖∂tAC(tk)‖

2
V

)(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]

+
(
‖AC,0‖

2
V + |α0‖

2
V

)(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)

+ max
0≤k≤n

‖ρk‖2V + max
0≤k≤n

Gh(AC(tk))
2

}
.

(46)

Proof. It is straightforward to show that

(∂δk,v)σ + A(δk,v) + Bh(δ
k,v)

= −(∂ρk,v)σ + (τ k,v)σ − A(ρk,v) − Bh(ρ
k,v)

+Bh(AC(tk),v) − B(AC(tk),v)

+g(v)− gh(v), ∀v ∈ Vh.

(47)
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as well as the following inequalities:

(∂δk, δk)σ ≥
1

2△t
(‖δk‖2

σ
− ‖δk−1‖2

σ
),

A(δk, δk) ≥ µ−1
1 ‖curl δk‖20,ΩC

,

B(AC(tk), δ
k)− Bh(AC(tk), δ

k)

≤ k3‖AC(tk)‖V‖δ
k‖V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖0,Q + ‖N−1 −N−1
h ‖

)

+ k4‖curl δ
k‖0,ΩC

Gh(AC(tk)),

g(δk)− gh(δ
k)

≤ k5

(
‖AC,0‖V + |α0|

)
‖δk‖V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖0,Q + ‖N−1 −N−1
h ‖

)
.

Hence, choose v = δk in (47), recall that Bh is non-negative, the Cauchy-
Schwarz inequality, Remark 4.1 and Young inequality lead us to the following
estimate:

‖δk‖2
σ
− ‖δk−1‖2

σ
+△tµ−1

1 ‖curl δk‖20,ΩC

≤
△t

2T
‖δk‖2

σ
+ C△t

[
‖∂ρk‖2

σ
+ ‖τ k‖2

σ
+ ‖ρk‖2V + Gh(AC(tk))

2

+ ‖AC(tk)‖
2
V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)

+(‖AC,0‖
2
V + |α0|

2)
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]
.

(48)

Then, summing over k, using the discrete Gronwall’s Lemma (see[15,
Lemma 1.4.2]) and taking into account that δ0 = 0, we obtain

‖δn‖2σ ≤ C

{
△t

n∑

k=1

[
‖∂ρk‖2

σ
+ ‖τ k‖2

σ
+ ‖ρk‖2V + Gh(AC(tk))

2

+‖AC(tk)‖
2
V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]

+ (‖AC,0‖
2
V + |α0|

2)
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)}

.

for n = 1, ..., N . Inserting the last inequality in (48) and summing over k we
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have the estimate

‖δn‖2
σ
+ △t

n∑

k=1

‖curl δk‖20,ΩC

≤ C

{
△t

n∑

k=1

[
‖∂ρk‖2

σ
+ ‖τ k‖2

σ
+ ‖ρk‖2V + Gh(AC(tk))

2

+‖AC(tk)‖
2
V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]

+ (‖AC,0‖
2
V + |α0|

2)
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)}

.

(49)

Let us now take v = ∂δk in (47):

‖∂δk‖2
σ
+ A(δk, ∂δk) + Bh(δ

k, ∂δk)

= −(∂ρk, ∂δk)σ + (τ k, ∂δk)σ + A(∂ρk, δk−1) + Bh(∂ρ
k, δk−1)

+B(τ k, δk−1)− Bh(τ
k, δk−1) + B(∂tAC(tk), δ

k−1)

−Bh(∂tAC(tk), δ
k−1) + g(∂δk)− gh(∂δ

k)− 1
△t
[γk − γk−1],

(50)

where γk := A(ρk, δk) + Bh(ρ
k, δk)− Bh(AC(tk), δ

k) + B(AC(tk), δ
k).

On the other hand, as A is non-negative definite and symmetric, it is easy
to check that

A(δk, ∂δk) ≥
1

2△t

[
A(δk, δk)−A(δk−1, δk−1)

]

and similarly for Bh. Using these inequalities in (50) together with the
Cauchy-Schwarz inequality, and then, summing over k and recalling that
Bh is non-negative, we deduce that

1

2

n∑

k=1

‖∂δk‖2
σ
+

1

2△t
µ−1
1 ‖curl δn‖20,ΩC

≤ C

n∑

k=1

[
‖∂ρk‖2

σ
+ ‖τ k‖2

σ

]
+

n∑

k=1

[∣∣A(∂ρk, δk−1)
∣∣

+
∣∣Bh(∂ρk, δk−1)

∣∣+
∣∣B(τ k, δk−1)− Bh(τ

k, δk−1)
∣∣

+
∣∣B(∂tAC(tk), δ

k−1)− Bh(∂tAC(tk), δ
k−1)

∣∣
]

+
1

△t
|g(δn)− gh(δ

n)| −
1

△t
|γn|.

(51)
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It is easy to obtain from Young’s inequality and Remark 4.1 the following
bounds:

n∑

k=1

|A(∂ρk, δk−1)|

≤
n∑

k=1

‖curl δk−1‖20,ΩC
+ C1

n∑

k=1

‖curl ∂ρk‖20,ΩC
,

n∑

k=1

|Bh(∂ρ
k, δk−1)|

≤
n∑

k=1

‖curl δk−1‖20,ΩC
+

n∑

k=1

‖δk−1‖2
σ
+ C2

n∑

k=1

‖curl ∂ρk‖20,ΩC
,

n∑

k=1

|B(τ k, δk−1)− Bh(τ
k, δk−1)|

≤
n∑

k=1

‖curl δk−1‖20,ΩC
+

n∑

k=1

‖δk−1‖2
σ
+ C3

n∑

k=1

‖τ k‖2V ,

n∑

k=1

|B(∂tAC(tk), δ
k−1)− Bh(∂tAC(tk), δ

k−1)|

≤
n∑

k=1

‖curl δk−1‖20,ΩC
+

n∑

k=1

‖δk−1‖2
σ
+ C4

n∑

k=1

Gh(∂tAC(tk))
2

+C5

n∑

k=1

‖∂tAC(tk)‖
2
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)
,

and

|g(δn)− gh(δ
n)|

≤ C6(‖AC,0‖
2
V + |α0|

2)
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)

+
1

8
µ−1
1 ‖curl δn‖20,ΩC

+ ‖δn‖2
σ
,

|γn| ≤
1

8
µ−1
1 ‖curl δn‖20,ΩC

+ ‖δn‖2
σ

+C7

[
‖ρn‖2V + ‖AC(tn)‖

2
V

(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]
.

Substituting all these inequalities in (51), using (49) and Remark 4.1, we
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obtain

△t
n∑

k=1

‖∂δkC‖
2
σ
+ ‖curl δnC‖

2
0,ΩC

≤ C

{
△t

n∑

k=1

[
‖∂ρk‖2V + ‖τ k‖2V + Gh(∂t(AC(tk)))

2 + ‖ρk‖2V

+‖AC(tk)‖
2
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)
.

+‖∂tAC(tk)‖
2
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)]

+(‖AC,0‖
2
V + |α0|

2)
(
max
1≤i≤L

‖∇̃zi − ∇̃zih‖
2
0,Q + ‖N−1 −N−1

h ‖2
)

+ ‖ρn‖2V + Gh(AC(tn))
2

}

Combining this last inequality with (49) and Remark 4.1 we conclude
(46). 2

Lemma 6.2. Let (AC , ψ,α) be the solution of (15). If we assume that AC ∈
H1(0, T ;Hs(curl ; ΩC)), 1/2 < s < sQ, then ψ ∈ H1(0, T ;Hs+1/2(Γ)),

inf
η∈Lh(Γ)

‖ψ(t)− η‖1/2,Γ ≤ Chs‖curlAC(t)‖s,ΩC
(52)

and

inf
η ∈Lh(Γ)

‖∂tψ(t)− η‖21/2,Γ ≤ Chs‖∂t(curlAC(t))‖s,ΩC
. (53)

Proof. Since (AC , ψ,α) is the unique solution of (15), then by Theorem
4.3, we know that there exists ψI ∈ W 1(ΩI) harmonic and for all t ∈ [0, T ],
ψI(t) = ψ(t) + c(t), with c(t) ∈ R such that

∫
Γ
ψ(t) dt = 0; namely c(t) =

1
|Γ|

∫
Γ
ψI(t) dt. Therefore, ψI |Q is the solution to

−△ψI = 0 in Q,

µ0
∂ψI

∂nI
= −curlAC · nC on Γ,

ψI |Λ ∈ C∞(Λ).

(54)

with 1/2 < s < sQ. Thus, applying classical results for the Laplace equation
(see [7]), we have that ψI ∈ Hs+1(Q) and

‖ψI‖s+1,Q ≤ C‖curlAC · nC‖s+1/2,Γ ≤ C‖curlAC‖s,ΩC
. (55)
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Since s > 1/2, the Lagrange interpolant ψII of ψI is well defined. More-
over,

(ψI − ψII )|Γ = ψ − ψIΓ ,

where ψIΓ ∈ Lh(Γ) denotes the 2D Lagrange surface intepolant on Γ. There-
fore, because of the trace theorem, standard estimates for the 3D Lagrange
interpolant and (55)

‖ψ − ψIΓ‖1/2,Γ ≤ C‖ψI − ψII‖1,Q

≤ Chs‖ψI‖s+1,Q

≤ Chs‖curlAC‖s,ΩC
.

Thus, we conclude (52). To prove (53), first we differentiate each equation in
(54). Since AC ∈ H1(0, T ;Hs(curl ; ΩC)), we obtain an estimate analogous
to (55) for ∂ψI

∂t
. Moreover

∂tψ(t) = ∂tψI(t)−
1

|Γ|

∫

Γ

∂tψI(t) dt.

Hence, the rest of the proof follows identically as above.
2

Finally, with the aid of previous lemma, Corollary 5.3, Corollary 5.1 and
the interpolation error estimate (45), we deduce the following asymptotic
error estimate for our fully discrete scheme.

Theorem 6.1. Let (AC , ψ,α) and (An
Ch, ψ

n
h ,α

n
h), n = 1, ..., N , be the so-

lutions to problem (15) and (40), respectively. Let us assume that AC ∈
H2(0, T ;Hs(curl ; ΩC)) with 1/2 < s < sQ. Then, there exists h0 > 0 such
that, for all 0 < h ≤ h0, the following estimate holds:

max
1≤n≤N

‖AC(tn)−An
Ch‖

2
V +△t

N∑

n=1

‖∂(AC(tn)−An
Ch)‖

2
σ

≤ Ch2s
{∫ T

0

‖∂tAC(t)‖
2
Hs(curl ; ΩC) dt+ max

1≤n≤N
‖∂t(curlAC(tn))‖

2
s,ΩC

+ max
1≤n≤N

(
‖AC(tn)‖

2
V + ‖∂tAC(tn)‖

2
V

)(
max
1≤k≤L

‖∇̃zk‖
2
s,Q + ‖zk‖

2
s+1/2,Λ

)

+
(
‖AC,0‖

2
V + |α0|

2
V

)(
max
1≤k≤L

‖∇̃zk‖
2
s,Q + ‖zk‖

2
s+1/2,Λ

)

+ max
1≤n≤N

‖AC(tn)‖
2
Hs(curl ; ΩC)

}
+ (△t)2

∫ T

0

‖∂ttAC(t)‖
2
V dt

≤ C
(
(△t))2 + h2s

)
‖AC‖H2(0,T ;Hs(curl ΩC)).

(56)
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with C > 0 independent of h and △t, where zk, k = 1, .., L are the solutions
of problem (6).

Proof.
A Taylor expansion shows that

∂AC(tk) = ∂tAC(tk) +
1

△t

∫ tk

tk−1

(tk−1 − t)∂ttAC(t) dt.

Consequently,

n∑

k=1

‖τ kC‖
2
V ≤ △t

∫ T

0

‖∂ttAC(t)‖
2
V dt.

Moreover, we have from (45)

n∑

k=1

‖∂ρk‖2V ≤
1

△t

n∑

k=1

∫ tk

tk−1

‖∂t(I − IN
h )AC(t)‖

2
V dt

≤
C

△t
h2s
∫ T

0

‖∂tAC(t)‖
2
H

s(curl ; ΩC) dt.

We recall that ψ(t) = −µ−1
0 R(K(AC(t))) (cf. Remark 4.2). Hence,

the regularity assumption on AC implies that ψ ∈ H2(0, T ;H
s+1/2
0 (Γ)) and

∂tψ(t) = −µ−1
0 R(K(∂tAC(t))). It follows from (42) that

Gh(AC(tn)) ≤ inf
η ∈Lh(Γ)

‖ψ(tn)− η‖21/2,Γ,

Gh(∂tAC(tn)) ≤ inf
η∈Lh(Γ)

‖∂tψ(tn)− η‖21/2,Γ.

Thus, using the previous lemma, we obtain

Gh(AC(tn)) ≤ Chs‖curlAC(tn)‖s,ΩC
,

Gh(∂tAC(tn)) ≤ Chs‖∂t(curlAC(tn))‖s,ΩC
.

(57)

Hence, the results follows by writing AC(tn)−An
Ch = δn + ρn and using

Lemma 6.1, Lemma 5.1, Theorem 5.3 and (45). 2
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Remark 6.1. Let us recall that ψ(tn) = −µ−1
0 R(K(AC(tn))) and ψnh =

−µ−1
0 Rh(K(An

Ch)). Therefore, using (57) and the uniform boundedness of
Rh, we obtain

‖ψ(tn)− ψnh‖1/2,Γ ≤ Gh(AC(tn)) + ‖Rh(K(AC(tn)−An
Ch))‖1/2,Γ

≤ C {hs‖curlAC(tn)‖s,ΩC
+ ‖AC(tn)−An

Ch‖V} .

Then, using Lemma 6.2 and Theorem 6.1 we conclude

△t
N∑

n=1

‖ψ(tn)− ψnh‖
2
1/2,Γ ≤ C[h2s + (△t)2].

Moreover, since α(tn) = α0 − µ−1
0 N−1(T (AC(tn) − AC,0)) and αn

h =
α0 − µ−1

0 N−1
h (Th (A

n
Ch − AC,0)), then from Theorem 5.3, Lemma 5.1 and

Theorem 6.1 we also conclude that

max
1≤n≤N

|α(tn)−αn
h|

2 ≤ C[h2s + (△t)2].
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