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Abstract 
A consistent model for the settling-compression-dispersion process in the secondary settling tank (SST) 
can be expressed as a partial differential equation (PDE). Reliable numerical methods for simulation 
produce approximate solutions that converge to the physically relevant solution of the PDE as the 
discretization is refined. We focus on two methods and assess their performance via simulations for 
two scenarios. One method is provably convergent and is used as a reference method. The other 
method is less efficient in reducing numerical errors, but faster and more easily implemented. 
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INTRODUCTION 
The sedimentation process in the secondary settling tank (SST) is still a challenge in modelling the 
full-scale operation of wastewater treatment plants (WWTPs). In the modelling of the activated 
sludge process, biological reactors have traditionally received more attention than the SSTs. This 
was mainly due to the wish to predict the effluent quality and the role of the SST model was to 
create a reasonable sludge balance. The main commercial simulators, however, do not provide 
reliable simulation methods in the sense that there is no guarantee that the simulations satisfy 
fundamental physical properties. From a practical point of view, current SST models tend to fail 
under wet weather conditions where a significant amount of sludge mass is recycled within the 
plant. Recent efforts to improve SST models are presented by Verdickt et al. (2005), Nocoń (2006), 
Plósz et al. (2007, 2011), De Clercq et al. (2008), Abusam and Keesman (2009), David et al. 
(2009a, 2009b). From a consistent modelling point of view, the commonly used simulation models 
have no proved connection to the underlying physical principles. These principles can be captured 
by a mathematical model on integral form or as a partial differential equation (PDE). The model 
equation cannot be expected to have a closed-form solution. Hence, a numerical method is needed. 
The core of the paper by Bürger et al. (2011a) is that such a method should be derived from the 
model equation and produce approximate solutions that converge to the exact solution as the 
discretization is refined. They propose a one-dimensional (1D) model that captures most of the 
phenomena addressed by previously published 1D models: hindered settling, compression at high 
concentrations and dispersion due to turbulence. As a reference method, denoted Method EO, we 
use the robust numerical method for such a PDE (without dispersion) by Bürger et al. (2005), which 
is the only publication with a convergence proof. This method was also used by De Clercq et 
al. (2008). A simplified and more easily implemented method – here called Method G – is launched 
by Bürger et al. (2011b). The purpose of the current work is to compare these two methods 
regarding accuracy and required CPU times. 
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THE MODEL ON PDE FORM 
Suppose that the sludge concentration ܥ is horizontally homogenous. Then it can be treated as a 
function of depth ݖ and time ݐ only. Let ܣ be the (constant) cross-sectional area of the tank and ܳ 
and ܥ the volumetric flow rate and concentration of the feed inlet, respectively. The conservation of 
mass yields a model equation in integral form (see (1) below), which is equivalent to the following 
PDE, interpreted in the weak sense: 
 
ܥ߲
ݐ߲


߲

ݖ߲
,ܥሺܨ ,ݖ ሻݐ ൌ

߲
ݖ߲

൭ቀߛሺݖሻ݀compሺܥሻ  ݀disp൫ݖ, ܳ൯ቁ
ܥ߲
ݖ߲

൱ 
ܳfሺݐሻܥfሺݐሻ

ܣ
 . ሻݖሺߜ

 
Here, ߛሺݖሻ is a characteristic function which is equal to 1 inside the tank and zero outside. The last 
term is a point source where δ is the Dirac delta distribution. Dispersion (turbulence), e.g. near the 
feed inlet, is modelled by ݀ୢ୧ୱ୮ and compression by ݀ୡ୭୫୮. The latter function is assumed to be 
nonzero for concentrations above a critical concentration ܥୡ at which the flocs begin to form a 
compressible network. If ୠ݂  denotes the batch flux function (the product of the concentration and 
the Kynch hindered settling velocity), then the flux function ܨ depends discontinuously on ݖ in the 
following way: 
 

,ܥሺܨ ,ݖ ሻݐ ൌ ൞

െܳeሺݐሻܣ/ܥ for ݖ ൏ െܪ ሺEffluent zoneሻ
b݂ሺܥሻ െ ܳeሺݐሻܣ/ܥ for െܪ ൏ ݖ ൏ 0 ሺClarification zoneሻ

b݂ሺܥሻ  ܳuሺݐሻܣ/ܥ for 0 ൏ ݖ ൏ ܤ ሺThickening zoneሻ
ܳuሺݐሻܣ/ܥ for ݖ  ܤ ሺUnderflow zoneሻ,

 

 
where ܪ is the height of the clarification zone and ܤ is the depth of the thickening zone. The 
volumetric flow rates in the effluent and the underflow are given by ܳୣ and ܳ୳, respectively. 
 
 
THE MODEL ON INTEGRAL FORM AND NUMERICAL METHODS 
The derivation of a reliable numerical method starts from the integral form of the conservation law: 
 
݀
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where ሺݖଵ,  axis (a layer in the method) and the flux Ф is-ݖ ଶሻ is an arbitrary interval of theݖ
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ܥ߲
ݖ߲

, ,ݖ ൰ݐ ൌ ,ܥሺܨ ,ݖ ሻݐ െ ൫ߛሺݖሻ݀compሺܥሻ  ݀dispሺݖ, ܳሻ൯
ܥ߲
ݖ߲

.  

 
The ݖ-axis is divided into a finite number of layers and a method-of-lines formulation of the 
numerical method is possible, i.e. a system of ordinary differential equations. This system is 
discretized in time with explicit Euler steps constrained by a CFL condition to assure stability. In 
the spatial discretization, F demands some extra care and this is precisely where the most important 
difference between Method G and Method EO occurs. The short discussion here is therefore 
focused on this part and we refer to Bürger et al. (2005, 2011b) for further details. Let ܥሺݐሻ and 
݆ in two neighbouring layers ݆ and ݐ ሻ denote the average concentrations at timeݐାଵሺܥ  1 within 
the SST. Furthermore, if ݖ is the depth of the boundary between the two layers, then ܨ

୬୳୫ denotes 
the numerical flux that approximates ܨ across ݖ. There are several reasonable techniques to 
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compute ܨ
୬୳୫ (LeVeque, 2002). We use here the formulas by Engquist and Osher (1981) and 

Godunov (1959). Each of these formulas can be applied in two consistent ways. For simplicity of 
description, consider only the thickening zone (0 ൏ ݖ ൏  the clarification-zone case is) (ܤ
analogous). The flux in the thickening zone ݂ is given by the superposition of the nonlinear function 

ୠ݂ and a linear term due to the downward bulk flow: ݂ሺܥ, ሻݐ ൌ ୠ݂ሺܥሻ  ܳ୳ሺݐሻܣ/ܥ. One way is to 
apply the Engquist-Osher (or Godunov) formula directly on the total flux ݂. This was done with the 
Engquist-Osher formula by Bürger et al. (2005), whereas Diehl and Jeppsson (1998) used the 
Godunov formula.  Another way is to apply the chosen formula on the batch flux ୠ݂ alone, while the 
linear term is discretized in an upwind fashion by replacing ܳuܣ/ܥ  with ܳuܥ/ܣ. This leads to a 
simpler implementation but at the cost of extra numerical viscosity. We have thus four possible 
ways of computing the numerical flux ܨ

୬୳୫. In light of the convergence results by Bürger et 
al. (2005), we choose as the numerical flux in Method EO the Engquist-Osher formula on ݂: 
 

ܨ
num, EO ൌ

1
2

൭݂൫ܥ, ൯ݐ  ݂൫ܥାଵ, ൯ݐ െ න ฬ
߲݂
ܥ߲

ሺܥ, ሻฬݐ ܥ݀
ೕశభ

ೕ

൱ . 

 
In Method G, we choose instead the numerical flux 
 

ܨ
num, G ൌ

ܳuሺݐሻ
ܣ

ܥ  ቐ
min

ೕஸஸೕశభ
b݂ሺܥሻ for ܥ ൏ ାଵܥ

max
ೕశభஸஸೕ

b݂ሺܥሻ for ܥ   ,ାଵܥ

 
where the bracketed term is the Godunov formula applied to ୠ݂. Jeppsson and Diehl (1996) have 
demonstrated the advantages of the Godunov formula compared with the minimum-flux formula by 
Vitasovic (1989) in the well-known method by Takács et al. (1991). Another example of failure of 
the Vitasovic-Takács formula is provided by Bürger et al. (2011a). Our algorithm for the 
implementation of Method G (Bürger et al., 2011b) has the feature that it can be seen as an 
extension of the Vitasovic-Takács formula. 
 
 
SIMULATIONS 
In order to compare Method G with EO properly, it is necessary to use the same division of the ݖ-
axis for both. Therefore, we choose ܪ ൌ 1, ܤ ൌ 3 and let the number of internal layers (within the 
SST) be ܰ ൌ 10 · 3 for  ൌ 0,1, … , 5. The comparison is performed by simulations of two 
scenarios starting at the same steady state (computed with Method EO). In both scenarios, ܣ ൌ 400 
m2 is used and the constitutive functions ୠ݂ and ݀ୡ୭୫୮ are chosen according to De Clercq et al. 
(2008) but with some changes of the parameters: 
 

b݂ሺܥሻ ൌ ሻܥ    and    ݀compሺି݁ܥݒ ൌ  ቐ
ߪsߩ b݂ሺܥሻ

ܥሺܥ݃ ߩ∆ െ cܥ  ݇ሻ
for ܥ  cܥ

0 for ܥ ൏ ,cܥ
 

 
where ݒ ൌ 3.47 m/h, ݎ ൌ 0.37 m3/kg, ߪ ൌ 4.00 Pa and ݇ ൌ 4.00 kg/m3. The density of the solids 
is ߩ௦ ൌ 1050 kg/m3, the density difference between the solids and water is ∆ߩ ൌ 52 kg/m3, the 
acceleration of gravity is ݃ ൌ 9.81 m/s2 and the critical concentration is ܥୡ ൌ 6.00 kg/m3. The third 
constitutive function ݀ୢ୧ୱ୮ is set to be increasing with the feed flow rate ܳ and assumed to be 
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Figure 1: Graphs of functions used in the simulations of Scenario 1 and 2. Left: The dispersion 
coefficient ݀dispሺݖ, ܳfሻ. Right: The mass flow rate ܳfሺݐሻܥfሺݐሻ in the feed inlet. 
 
nonzero around the inlet only: 
 

݀dispሺݖ, ܳfሻ ൌ  ቐ
ଵߙ fܳexp ቆ

െݖଶ/ሺߙଶܳfሻଶ

1 െ ଶߙሺ/|ݖ| fܳሻ
ቇ for |ݖ| ൏ ଶܳfߙ

0 for |ݖ|  ,ଶܳfߙ
 

 
where ߙଵ ൌ 0.0023 m-1 and ߙଶ ൌ 0.0025 h/m2, see Figure 1 (left).  
 
To illustrate the convergence and define suitable error measures, a reference solution was generated 
with Method EO using ܰ ൌ 2430 ሺ ൌ 5ሻ for each scenario. Subsequently, solutions for ܰ ൌ
10, 30, 90, 270 and 810 were produced with both methods. The scenarios are constructed to 
demonstrate and compare the two methods and to show their robustness. Therefore, extreme 
variations in the concentrations and flow rates have been imposed. 
 
Scenario 1  
We start in a steady state with the feed flow rate ܳ ൌ 230 m3/h, the feed concentration ܥ ൌ
4.5 kg/m3, the underflow rate ܳ୳ ൌ 100 m3/h and with a sludge blanket in the thickening zone. At 
ݐ ൌ 5 h, we impose a step increase in the mass flow rate in the feed inlet constructed by changing 
ܳ to 360 m3/h, decreasing ܥ by 10% and keeping the underflow rate constant, see Figure 1 (right). 
At ݐ ൌ 20 h all variables are returned to their initial values. The total simulation time is ܶ ൌ 48 h. 
 
Scenario 2  
The same initial state as in Scenario 1 is used. Throughout the simulation, the underflow and 
effluent flow rates are kept proportional to the feed flow rate: ܳ୳ ൌ ୣܳ  andܳߚ ൌ ሺ1 െ  ሻܳ whereߚ
ߚ ൌ 10/23 (i.e. the same ratio as in the initial state). The mass flow rate in the feed inlet is changed 
according to Figure 1 (right) with the feed flow rate ܳ oscillating around its initial value with 
period 24 h and amplitude 50 m3/h. The total simulation time is ܶ ൌ 96 h. 
 
System specification and implementation details 
The implementations were done in Matlab mex-files (written in C) and were run on a Unix platform 
(Ubuntu 11.01) using an Intel Core i7 processor (2.8 GHz) with a single thread only. 
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Figure 2: Four approximate solutions for Scenario 1. The reference solution in the lower right plot 
is computed with Method EO for ܰ ൌ 2430 internal layers, while the others are computed with 
Method G for 10, 30 and 90 internal layers. 
 
 
RESULTS 
A selection of numerical solutions generated by Method G for Scenario 1 is presented in Figure 2. 
The corresponding reference solution is shown in the lower right figure. It is evident how the 
solution for N=10 layers deviates from the reference solution, but as the number of layers increases 
the solutions clearly converge. The solutions for Scenario 2 are presented in a slightly different way 
in Figure 3. 
 
Motivated by the convergence analysis for Method EO in Bürger et al. (2005), it is reasonable to 
assume that the reference solutions for ܰ ൌ 2430 internal layers are the ones closest to the true 
solution for the given input data in each scenario. In order to quantify the performance of Method G 
compared with Method EO, the following error measures are used in Table 1: 
 

݁ ൌ
  ,ݖேሺܥ| ሻݐ െ ,ݖrefሺܥ |ሻݐ ݖ݀ ݐ݀


ିு

்


  ,ݖrefሺܥ ሻݐ ݖ݀ ݐ݀


ିு
்



    and    ݁ ൌ  
 |݉ேሺݐሻ െ ݉refሺݐሻ| ݐ݀

்


 ݉୰ୣሺݐሻ ݐ݀
்



 . 
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Figure 3: Scenario 2. Top: A simulation produced with Method G for ܰ ൌ 90 internal layers (left) 
and the reference solution (right). Bottom: Concentration profiles from the solutions produced with 
Method G (left) and Method EO (right) for ܰ ൌ 10, 30 and 90 internal layers. 
 

 
 

Figure 4: Masses for Scenario 2. The mass ݉ேሺݐሻ for different number of internal layers are plotted 
together with ݉୰ୣሺݐሻ. Left: The underlying solutions are produced with Method G. Right: The 
underlying solutions are produced with Method EO. 
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In the relative error ݁, ܥே is a piecewise constant representation of the solution generated over ܰ 
internal layers by any of the two methods and  ܥ୰ୣ is the reference solution restricted to the same 
grid. In the relative mass error ݁, ݉ேሺݐሻ and ݉୰ୣሺݐሻ are the masses in the SST at time ݐ derived 
from ܥே and ܥ୰ୣ, respectively. Figure 4 shows the time variations for the masses in Scenario 2. 
 
From the columns containing the CPU times in Table 1, it is seen that Method G is faster than 
Method EO for any fixed ܰ. However, this comes at the cost of less accurate solutions, which is 
clear from both error measures. On the other hand, comparing the required CPU times to reach an 
error below a certain threshold value reveals that Method EO is more efficient for both scenarios. 
This point is emphasized in Figure 5, where ݁ is plotted against the corresponding CPU time for 
each simulation. 
 
Table 1: Errors and CPU times for Method G and Method EO applied to Scenario 1 and Scenario 2. 

  Scenario 1 Scenario 2 

ܰ 
݁  
[-] 

݁  
[-] 

CPU time 
[s] 

݁  
[-] 

݁ 
[-] 

CPU time 
[s] 

Method 
G 

 
 

10 1.68·10-1 1.30·10-1 3.13·10-3 1.29·10-1 1.09·10-1 3.15·10-3 

30 8.30·10-2 7.26·10-2 1.97·10-2 5.43·10-2 4.71·10-2 4.37·10-2 

90 3.06·10-2 2.72·10-2 4.06·10-1 1.98·10-2 1.73·10-2 8.49·10-1 

270 1.04·10-2 9.36·10-3 9.63·100 6.85·10-3 6.07·10-3 2.03·101 

810 3.49·10-3 3.24·10-3 2.53·102 2.35·10-3 2.17·10-3 5.34·102 

Method 
EO 

10 5.13·10-2 4.03·10-2 4.28·10-3 4.62·10-2 3.21·10-2 1.42·10-2 

30 1.56·10-2 7.61·10-3 3.55·10-2 1.39·10-2 6.27·10-3 1.07·10-1 

90 5.36·10-3 1.06·10-3 9.75·10-1 5.18·10-3 2.48·10-3 2.04·100 

270 1.69·10-3 8.00·10-4 2.43·101 1.84·10-3 1.23·10-3 5.01·101 

810 4.60·10-4 3.04·10-4 6.71·102 4.89·10-4 3.46·10-4 1.34·103 

 

 
 

Figure 5: The error ݁ versus CPU time for Scenario 1 (left) and Scenario 2 (right). 
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CONCLUSIONS 
We recommend the use of reliable numerical methods for simulation. The number of layers ܰ 
should only be a parameter that controls the quality of approximation of the exact solution of the 
model PDE. The number of layers is not a parameter to be adjusted to a particular physical reality. 
This paper illustrates how recent results of numerical analysis can be used for the practical 
application to the simulation of SSTs. Applied mathematical research has led to several alternative 
methods, represented here by Method G and Method EO, which are both sound in the sense that 
they converge to the solution of the PDE. The choice of method to be implemented in a simulator is 
subject to several competing principles. As our results show, for a given value of ܰ, Method G 
produces a numerical solution faster than Method EO, but the value of this advantage is 
questionable since Method EO is more efficient than Method G in reducing the numerical error. In 
other words, the disadvantage of larger CPU times associated with Method EO is more than 
compensated by the gain in quality of numerical solutions if compared with Method G. This quality 
difference is a result of the application of the numerical flux formula to the total flux and the batch 
settling flux, respectively, rather than the choice of numerical flux formula (Engquist-Osher or 
Godunov). An aspect that speaks in favour of Method G is its ease of implementation. 
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