
UNIVERSIDAD DE CONCEPCIÓN
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Abstract

We study a worthwhile to change model by using reference-dependent preference
relations. We prove an existence result for maximal elements of the model which
generalizes the well known Bronsted maximum principle and apply it to the problems
of behavioral traps, satisficing change and Nash equilibrium in games with worthwhile
to change payoff relations. In our study no compactness assumption is required.

1 Introduction

Theories of stability and change consider two related problems. The first problem deals
with the question of static character: “should I stay” for which an anwser could be an
optimal solution or an equilibrium state of a model. The second problem treats the
question of dynamic character “should I go” that produces improving processes. In the
latter consideration agents improve their actions with respect to a current preference and
generate a new preference for next actions. Thus, preferences change with the history of
past actions, experience, inertia and learning. In economics theoreticians advocate for very
clever agents who optimize their daily decisions. But there is more and more empirical
evidence that preferences are context and reference dependent. They forbid a global view
of a situation and push agents to act locally, not globally in order to improve their state
step by step. This is a central idea of change theory.

Today change problems attract attention of a big number of researchers and the list
of works devoted to them is impressive. They concern almost every economic activity
including among others, consumer, producer, worker, health, social, cultural activities
and belief’s formation. According to Schumpeter, 1934 [40], the only thing that does not
change is that all things change. For Hayek, 1945 [19], economic problems arise always
and only in consequence of change; while for Williamson, 1991 [52], continuous or discrete
adaptation is the central economic problem. Here are some known approaches to theory
of change:
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1) Lewin’s theory of resistance to change (Lewin, 1951 [26]). In his work Lewin, an
alter-ego of Freud in Psychology, has developed, without any mathematical model-
ing, a “force field analysis” which refers to any current level of performance or being
as a temporary equilibrium between driving forces and restraining forces, push-
ing upward and downward. Driving forces or motivations to change are usually
“positive, reasonable, logical, conscious and economic”, while restraining forces or
resistances to change are usually “negative, emotional, illogical, unconscious and
social-psychologic”. He suggested that “change would be easier and longer lasting
if the forces against change were reduced, rather than the forces for change being
increased”, and developed a model of change composed of three stages: “unfreez-
ing stage” (reducing resistances to change from the statu quo), moving stage, and
refreezing stage (stabilizing after change has been made).

2) Lindblom’s muddling through approach (Lindblom 1959, [27]). According to Lind-
blom agents improve step by step, from time to time, making limited comparisons
between gains and losses, bracketing more or less their choices and actions, making
small steps. In this case compensation rules between losses and gains are local, not
global.

3) Simon’s satisficing approach (Simon 1955,1967, 1982 [41, 43, 45]. In this approach,
agents “explore enough” to “improve enough”, which means that an agent, instead
of optimizing over the whole space, sets a satisficing level and explores locally to
improve. If he succeeds he will set a new and higher satisficing level and try again
to reach a better position; otherwise he lowers his initial satisficing level and repeats
his action.

4) Schumpeter’s intuition concept (see Schumpeter, 1934 [40], Witt 2002, [53]). Here
the entrepreneur is the agent who breaks habits and resistance to change to innovate
and drive change.

5) Learning theories on the development of abilities-capabilities-competence-skills-knowledge
(see the resource based theory of the firm, Mahoney, 2004 [32]). These approaches
focus on the dynamics of organizations and emphasize the importance of developing
inside the firm both general and specific resources and capabilities. The main point
is to understand how organizations succeed to generate and protect rents (value
creation, profits), and to appropriate them (value capture). In this context inertia
(routines) and innovations (breaking old routines, knowledge creation and imple-
mentation, and the formation of new routines) play a major role.

Change theories do not suppose that agents always optimize. For instance, habits (for
one agent, see Prendergrast et al. 2008 [36]), routines (for agents within an organiza-
tion, see Nelson-Winter, 1982 [35]; Becker, 2001 [10]), norms of behavior and behavioral
traps for interacting agents of a game (see Heifetz-Minelli, 2006 [21]; Ray, 2003 [37]) are
present in all aspects of our individual and social life, but certainly have little to do with
optimization. There are two basic concepts related to the theory of change: motivation
and resistance to change. Motivation to change includes, among others, emotional, goal
setting and expectancy-valence aspects (Anderson, 2007 [2], Heath-Larrick-Wu, 1999 [20],
Vroom, 1964 [51], Locke-Latham, 1990 [28]). Resistance to change has its root in the
psychology of group dynamics (Lewin, 1947, 1951 [25, 26]) which is considered as inertia
in Management Sciences (Hannan-Freeman, 1984 [18]; Rumelt, 1995 [38]). Resistance to

2



change incorporates both learning (exploration, capability building) and inertia aspects.
To model and unify several approaches to the theory of change, Soubeyran, 2009, 2010[48,
49] has developed a theory of “worthwhile changes” where each agent uses a numerical
representation of a “worthwhile to change preference” to balance his motivation and resis-
tance to change (see also Attouch-Soubeyran, 2006, 2010 [3, 7], for more specific cases). In
this context, starting from an initial state, bounded rational agents, based on their variable
preferences, improve or “improve enough” (satisfice) or eventually optimize his situation,
depending of the context. They eventually reach a final state, known as a behavioral trap,
where they prefer to stop than to move again. The question is to know when agents,
starting from an initial situation and following a path of worthwhile changes, will stop
to change, reaching a behavioral trap in a finite number of steps. Behavioral traps are
important empirically because they model habits, routines, norms, and equilibria which
can be reached from an initial situation following a finite habituation, routinization or
“learning to play Nash” process. In this paper we examine the “should I go” problem,
by using reference-dependent “worthwhile to change preferences”, for both isolated agents
and interactive agents (a game situation). We emphasize that our aim is not only to
establish conditions of existence of behavioral traps but to give also conditions for their
reachability in a finite number of steps, which is one of the goal of a theory of change. An
equilibrium which is not reachable in a finite number of steps has little practical contents.

The paper is organized as follows. In Section 2 we present a “worthwhile to change
preference” model along with some concrete instances. In section 3 we give a construc-
tion of worthwhile to change functions in production theory. In Section 4 we establish
general conditions for existence and reachability of maximal actions in a finite number of
worthwhile steps for the worthwhile to change problem. The main result of this section is
a generalized version of a famous theorem of Brondsted, 1974 [14] on existence of maxi-
mal elements in a uniform space. Section 5 deals with behavioral traps and conditions for
their existence. In Section 6 we briefly show a link of worthwhile to change with satisficing
processes. In Section 7 we consider interacting agents (games) equipped with worthwhile
to change variable preferences. A short conclusion is given in the final section.

2 Worthwhile to change preferences

In this section we develop a worthwhile to change model of Soubeyran [48, 49] in the
context of reference-dependent preferences. Let X denote a space of actions of an agent or
a space of states of an economic system. In production theory elements of X are actions
of producing some quantity of a final good of a given quality. In consumption theory
elements of X represent actions of consuming bundles of goods. Let ∆ be a real function
on X ×X. Given a reference point z ∈ X and two points x, y ∈ X, we say that an agent
prefers y to x with respect to the reference point z if

∆(z, y) ≥ ∆(z, x) (1)

and write x ≤z y. The preference “≤z” is a particular case of reference-dependant pref-
erences or variable preferences studied in Luc-Soubeyran [31]. In the change theory it is
common that the reference point z coincides with x a current position of the agent. In
other words, being at x the agent uses his criteria to decide whether to move to y or not.
Thus, the preference will be given as

x ≤x y ⇔ ∆(x, y) ≥ ∆(x, x). (2)
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As we have already discussed in the introduction any change depends on motivation to
change and resistance to change. In [48, 49], the author quantifies motivation to change
and resistance to change by real functions M(x, y) and R(x, y) defined on X × X. The
worthwhile to change function is then given by

∆(x, y) = M(x, y)−R(x, y). (3)

Intuitively it is worthwhile to change from x to y if the motivation is higher than the
resistance, or equivalently x ≤x y ⇔ ∆(x, y) ≥ 0. This, of course, is in concordance with
(1) when M(x, x) = R(x, x) that is the motivation and the resistance to stay at x are of
equal value. In section 3 we give an example of a production model to understand the
construction of worthwhile to change functions in a particular situation. In our paper
we pay attention to the worthwhile to change preference given by (2) and (3) which are
directly related to the theory of change. Here are some elementary properties of the
preference given by (3):

i) The preference “≤x” is reflexive, i.e., x ≤x x for all x ∈ X. It is straightforward
from (1).

ii) The preference “≤x” is not transitive in general, in the sense that x ≤x y and
y ≤y z does imply x ≤x z. A sufficient condition for the preference to be transitive
is that a) ∆(x, x) = 0 for every x ∈ X, and b) ∆(x, y) is superlinear (that is
∆(x, y) + ∆(y, z) ≤ ∆(x, z) for all x, y, z ∈ X). The latter condition is true if the
motivation to change function is superlinear and the resistance to change function
is sublinear, that is for all x, y, z from X one has

M(x, y) +M(y, z) ≤ M(x, z)

R(x, y) +R(y, z) ≥ R(x, z).

iii) The preference “≤x” is not antisymmetric in general. A sufficient condition for its
anti-symmetry is that a) R(x, y) > 0 if and only if x 6= y; and b) the motivation to
change function is determined by a potential function, that is M(x, y) = Φ(y)−Φ(x)
where Φ is a real function on X. Indeed, for x, y ∈ X, one has x ≤x y and y ≤y x if
and only if

Φ(y)− Φ(x) ≥ R(x, y)−R(x, x)

Φ(x)− Φ(y) ≥ R(y, x)−R(y, y)

which implies
R(x, y) +R(y, x) ≤ 0.

By the hypothesis, the latter inequality holds if and only if x = y.

A particular case of worthwhile to change preferences is the so-called threshold pref-
erence in the theory of choice (see [1], page 33). We recall that a real function ε(·, ·) :
X ×X → IR is a threshold function on X if ε(x, y) = ε(y, x) ≥ 0 and ε(x, x) = 0 for all
x, y ∈ X. Given a utility function u(.) and a threshold function ε(·, ·) on X we define a
worthwhile to change preference “≤x” by

x ≤x y if and only if either x = y or u(y)− u(x) > ε(x, y).
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This preference corresponds to the case where the resistance function is given by

R(x, y) =

{
ε(x, y) if y 6= x
0 if y = x

and the motivation function is defined by

M(x, y) = u(y)− u(x).

Notice that even in this particular case the worthwhile preference is not necessarily tran-
sitive.

3 A construction of worthwhile to change functions in pro-
duction theory

To understand the construction of worthwhile to change functions let us consider a model
of production ( Soubeyran [48, 49]). Given an action x ∈ X representing a process of
producing an outcome (a good for instance). It is characterized by (i) an outcome ϕx from
a space Φ of products; (ii) means to carry out the action x, including a list of resources
hx ∈ H and a list of ingredients ux ∈ U ; and (iii) a transformation process τx ∈ Υ
and an operating system ex ∈ E (efforts) which mobilizes the means and transforms the
ingredients into a final outcome ϕx. A productive action x = (hx, ux, τx, ex, ϕx) models the
fact that to produce a final outcome ϕx, one exploits resources hx and ingredients ux, by
using a transformation process τx and an operating system (efforts) ex to transform and
mix ingredients. Every action generates a revenue, denoted r(x) ∈ IR+, and requires a total
cost. The total cost includes (i) the cost to carry out action x, denoted c(x) ∈ IR+ (costs
to use resources to mix and transform ingredients as well as costs of operating efforts);
(ii) the maintenance cost for the capability to carry out action x, denoted m̃(x, χx), where
χx ∈ χ(x) is the capacity of carrying out action x and χ(x) a set of capabilities to carry out
this action. The maintenance cost at x can be defined as the infimum of the maintenance
costs over the set of feasible capabilities to do action x, m(x) = inf {m̃(x, χx), χx ∈ χ(x)}.
An other solution is to take m(x) = m̃(x, χx), for some given choice of a capability
to do action x ∈ X, χx ∈ χ(x). This means that the agent can use a decision rule
x ∈ X 7−→ χx ∈ χ(x). It is important to notice that to carry out an action is not the same
as to be able to do it. The capability to do an action x requires to have physical access to
tangible resources (like machines, to be close to them, and to have the right to use them),
and to own or acquire intangible resources to know how to activate these resources, using
operating efforts, to be able to do these operating efforts, to know how to mix step by
step ingredients, in which order, how long and when for each mixing operation, which
succession of intermediate states of the final good to choose to follow.
The net payoff over a period is the difference between the revenue and the total cost,

g(x) = r(x)− c(x)−m(x).

All functions r(x), c(x) and m(x) depend on the model under consideration. For instance,
if x is an action to produce a quantity ϕx of a good or a service, then, for a worker, the cost
to do x is the cost of his effort c(x) = δ(ex), the maintenance cost is the cost to recover the
same capability to do that action, given that he has done it just before, and the revenue
is his wage. For a producer, his revenue is given by the expression r(x) = pxϕx −wx − kx
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where px is the unit price of the good, wx is the wage paid to workers and kx is the cost
to use resources and ingredients. His cost c(x) to do x represents costs for monitoring and
selling ϕx, and his maintenance cost is the cost to be able to monitor workers and to sell
the final good once again. With help of the net payoff it is now easy to define a worthwhile
to change function

∆(x, y) = M(x, y) = g(y)− g(x), (4)

where, in a static context, there is no resistance to change, that is R(x, y) = 0, and the
motivation to change is the usual marginal gain, M(x, y) = g(y)− g(x).

In a dynamic setting we do not consider actions as isolated elements but in their inter-
relations. Worthwhile to change functions are more complicated and cannot be expressed
by a potential function of one variable such as in (4). For instance a payoff of action y
after having done an action x often depends on x too, say g(y|x). The worthwile to change
model of production defines a so-called advantage to change function

A(x, y) = g(y|x)− g(x|x)

and considers the motivation to change function as a utility of the advantage to change

M(x, y) = u(A(x, y)), (5)

where u is a strictly increasing function taking the null value at zero. If the total cost of
doing y after having done x, which is a function of both x and y, is C(x, y), the model
defines the resistance to change function as a desutility of the cost function, that is

R(x, y) = d(C(x, y)), (6)

where d is an increasing function taking the null value at zero as u does. Determination
of the total cost is sometimes a difficult task in the dynamic setting. This is because in
addition to the costs of performing x and y, there is a cost of passing from x to y. The
most relevant part of that cost is the cost to pass from the capability of performing action
x to a capability of performing action y. It depends on the path chosen to acquire, step
by step, the capability χy of doing action y from the capability χx of doing action x. Let
P [χx, χy] denote the space of paths from χx to χy. Then, the cost to change capabilities
is a function, denoted Ψ(χx, χy, p) ≥ 0, of the following variables: a capability χx of doing
action x, a capability χy of doing action y, and a path p of getting χy from χx. This cost
includes inertia costs to break some habits, and learning costs to acquire new habits, costs
to stop doing some old activities and costs to start doing new activities. For example for
a consumer capability costs include (i) stopping costs (to decide to stop consuming some
goods within the initial bundle, which break temporary habits), (ii) searching costs (to find
new goods to be included in the new bundle of goods), (iii) costs to be able to continue to
consume some goods, and finally (iv) starting costs (to learn how to consume new goods).
In the literature capabilities are defined as abilities, skills and competence. For instance
in Management Sciences the resource based theory of the firm (Barney [8]), including the
evolutionary theory of the firm (Nelson-Winter [35]) considers dynamic capabilities as the
abilities to change his capabilities (see the survey of Menon-Mohanty [33]). In Economics
human capital and education theories (Becker [9]) consider costs of construction of skills.
Sen [39] uses capabilities to built his theory of development and inequalities.

For simplification, the model supposes that there is a decision rule x ∈ X 7−→ χx ∈ χ(x)
which, for each action x ∈ X, helps the agent to choose one capability among all the feasible
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capabilities to do this action. This is the case if there is only one capability to do an action,
ie χ(x) = {χx} for all x ∈ X. Or, one can suppose that i) there is only one capability to do
each action which minimizes its maintenance costs, ie χx = arg min {m̃(x, χ′x), χ′x ∈ χ(x)}
and, ii) m̃(x, χ′x) > m̃(x, χx), for all χ′x ∈ χ(x), χ′x 6= χ′x. Let

C(x, y) = inf {Ψ(χx, χy, p) : p ∈ P [χx, χy]} ≥ 0. (7)

This function on X ×X represents the minimum cost to be able to do an action y ∈ X,
being able to do an action x. It is not symmetric; however it has some nice properties.
A first observation is that C(x, x) = 0, which means that the minimum cost to be able
to repeat an action x is zero. This is because the maintenance cost that is exactly the
cost of being able to do x, having done it just before, is already included in the payoff
g(x). Another important property of the minimum cost to change is the usual triangle
inequality:

C(x, z) ≤ C(x, y) + C(y, z) (8)

for all triple actions x, y and z from X. In fact, if p is a path from capability χx to χy,
and q is a path from capability χy to χz, then the joint path q ◦ p is a path from χx to χz.
Moreover the cost to change is split into a sum

Ψ(χx, χz, q ◦ p) = Ψ(χx, χy, p) + Ψ(χy, χz, q).

From (7) we deduce that

C(x, z) ≤ Ψ(χx, χz, q ◦ p) = Ψ(χx, χy, p) + Ψ(χy, χz, q)

for all p ∈ P [χx, χy] , q ∈ P [χy, χz] .
Then, given x, y, z, χx, χy, and p ∈ P [χx, χy], we have

C(x, z)−Ψ(χx, χy, p) ≤ Ψ(χy, χz, q) for all q ∈ P [χy, χz] .

It follows that C(x, z)−Ψ(χx, χy, p) ≤ C(y, z) = inf {Ψ(χy, χz, q), q ∈ P [χy, χz]} .
This implies C(x, z)− C(y, z) ≤ Ψ(χx, χy, p) for all p ∈ P [χx, χy].
Then, C(x, z)−C(y, z) ≤ C(x, y) = inf {Ψ(χx, χy, p), p ∈ P [χx, χy]} implying (8), that

is, C(x, y) is a quasi-distance on X.
A more general cost to change can be obtained as follows. Define

C(x, y) = sup
{
C̃(χx, χz, x, z), χx ∈ χ(x), χz ∈ χ(z)

}
,

where
C̃(χx, χz, x, z) = inf {ψ(χx, χz, γ) : γ ∈ P [χx, χz]} .

Then

C̃(χx, χz, x, z) ≤ inf {ψ(χx, χz, q ◦ p) : p ∈ P [χx, χy], q ∈ P [χy, χz]}
≤ inf {ψ(χx, χy, p) + ψ(χy, χz, q) : p ∈ P [χx, χy], q ∈ P [χy, χz]}
= inf {ψ(χx, χy, p) : p ∈ P [χx, χy]}+ inf {ψ(χy, χz, q) : q ∈ P [χy, χz]}
≤ C̃(χx, χy, x, y) + C̃(χy, χz, y, z)

and yields
C(x, z) ≤ C(x, y) + C(y, z) ∀ x, y, z ∈ X.
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A problem with this more general definition of costs to change is the increased difficulty
of the agent to solve the cost to change problem. A satisficing resolution of this problem
works in two steps. For given actions x and z,

i) find feasible capabilities χx and χz to be able to do actions x and z. Given a mini-
mizing cost to change satisficing ratio 0 < ξ < 1 and given the actions x and z, the agent
can always find feasible capabilities χx ∈ χ(x), χz ∈ χ(z) such that 0 ≤ C̃(χx, χz, x, z) ≤
ξC(x, z).

ii) find a way γ ∈ P [χx, χz] to move from one capability to the other. Given the ratio
0 < ξ < 1, and given the feasible capabilities χx ∈ χ(x), χz ∈ χ(z) the agent can always
find a feasible way γ ∈ P [χx, χz] to move from χx to χz such that 0 ≤ ψ(χx, χz, γ) ≤
ξC̃(χx, χz, x, z).

Then, for a given minimizing satisficing ratio 0 < ξ < 1, and for given actions x and z,
the agent can always find feasible capabilities χx, χz to do these actions and a way γ to
move from the first to the second capability such that 0 ≤ ψ(χx, χz, γ) ≤ ξC̃(χx, χz, x, z) ≤
ξ2C(x, z).

For simplification take R(x, z) = d(C(x, z)) = C(x, z) for the resistance to change
function. Then, if the agent is able to find a worthwhile change from x to z such that
M(x, z) ≥ R(x, z) = d(C(x, z)), the agent can find feasible capabilities χx, χz to do these
actions and a way γ to move from the first to the second such that M(x, z) ≥ C(x, z) ≥
(1/ξ2)ψ(χx, χz, γ).

4 Maximal actions

The aim of this section is to establish existence of actions called maximal actions, from
which it is not worthwhile to pass to other actions. We need some definitions concerning
reference-dependent preference relations (already introduced in Luc-Soubeyran [31]). As-
sume that “≤x” is a variable preference on X. An action x∗ ∈ X is said to be (ex ante)
maximal if there is no action y ∈ X such that x∗ ≤x∗ y and y �y x∗ where “�y” means
negation of ≤y .

Improving paths. Let {x0, x1, . . . , xn} be a finite subset of X. We say that it forms an
improving path or an upward path from x0 to xn if

x0 ≤x0 x1 ≤x1 x2 . . . xn−1 ≤xn−1 xn. (9)

When n = 1 we say that the path is direct (i.e., x0 ≤x0 xn) from x0 to xn. It is indirect if
n > 1.

Acyclic preferences. The preference “≤x” is acyclic if for any improving path (9) from
x0 to xn in X, equality xn = x0 implies xi = x0 for all 1 ≤ i ≤ n. Improving paths are
used to construct a transitive preference when the given preference is not transitive. Let
us define the upper transitive closure of “≤x” to be a preference, denoted “≤u” in which
x ≤u y if and only if there is an improving path from x to y. It is known (see Luc-
Soubeyran [31, Proposition 4]) that the upper transitive closure “ ≤u” is a partial order
on X if and only if the preference “≤x” is acyclic. A strict upper transitive closure “ <u”
is understood as “x <u y” if and only if x ≤u y and y �u x.
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Weak consistency. We say that preference “≤x” is weak consistent if there is a direct
path from x to y and an indirect path from y to x, then, there is a direct path from y
to x. The concept of weak consistency has been introduced in Luc-Soubeyran [31] which
generalizes some classical notions of consistency such as path consistency and Suzumura’s
consistency (see Bossert-Suzumura [12]). The importance of weak consistency is seen from
the following fact. When the variable preference “≤x” is not acyclic, the upper transitive
closure “≤u” is not anti-symmetric, hence it is not a partial order on X. However, the
induced preference “�u” on equivalent classes of X is a partial order. If in addition “≤x” is
weak consistent, then every element of a “�u”-maximal class is also maximal with respect
to the preference “≤x” on X (see [31, Proposition 6]). Intuitively weak consistency means
that if, ex ante, an agent prefers to move directly from x to y and then, following an
indirect improving path, to move from y to x, ex post he will immediately regret to have
directly moved from x to y, preferring, at y, to come back directly to x.

Preference-complete sets. Given an element a of X, the upper section of X at a is
the set

S(a) = {x ∈ X : a ≤u x} .

A subset of X is called preference-complete (or P−complete for short) if it has no covering
of type {X \ S(xα) : α ∈ I} with {xα}α∈I a strictly increasing net in that subset, i.e.,
xα <

u xβ for α < β. This hypothesis is equivalent to the following more intuitive property
( see Luc-Soubeyran[31]). First, we say that an element x∗ ∈ X is called an aspiration
point of a net {xα, α ∈ I} if x∗ ∈ S(xα) for all α ∈ I. Then, a subset of X is called
preference-complete if it contains an aspiration point for any strictly increasing net.

The lemma below is a key argument to obtain further results.

Lemma 4.1 Assume that X is a Hausdorff topological space equipped with a variable
preference “≤x” and that G is a real function on X ×X. Assume further that for every
element a ∈ X the following conditions hold:

(i) S(a) is a complete subspace of X;

(ii) G(a, ·) is increasing with respect to the transitive closure “≤u” and bounded above
on S(a);

(iii) A net {xα}α∈I in S(a) is Cauchy if it is increasing and the real net {G(a, xα)}α∈I
is convergent.

Then starting from any point a ∈ X there is an improving path from a to a maximal
element of X.

Proof. We wish to apply a recent result by Luc and Soubeyran (Theorem 9, [31]) which
says that every P-complete subset of a space equipped with a weakly consistent reference-
dependent preference has maximal elements. First we show that this preference “≤x” is
weak consistent. In fact, let x and y be two elements of X with x ≤x y ≤u x. By (ii), we
have

G(x, x) ≤ G(x, y) ≤ G(x, x)

which yields equality G(x, x) = G(x, y). Consider a net {xα}α∈I by choosing xα ∈ {x, y}
so that for every α ∈ I there are β and γ ∈ I such that xβ = x and xγ = y. Then the real
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net {G(x, xα)}α∈I is constant, hence convergent. By (iii), the net {xα}α∈I is Cauchy, by
which x = y. This proves that the preference is acyclic and weak consistent as well. Now
we prove that for an element a ∈ X, the upper section S(a) is P -complete. To this end let
{xα}α∈I be a strictly increasing net in S(a). By (ii), the net {G(a, xα)}α∈I is increasing
and bounded above, hence it converges. By (iii) the net {xα}α∈I is Cauchy, and by (i) it
converges to some limit in S(a). It is clear that that limit belongs to S(xα) for all α ∈ I
by the same hypothesis (i). Hence the family {X \ S(xα) : α ∈ I} does not cover S(a)
which proves that S(a) is P -complete. It remains to apply Theorem 9 in [31] to complete
the proof. 2

The conclusion of the lemma is important: it shows not only the existence of a maximal
element, but also that, starting from any point a (action, state) some improving path ends
in a maximal element (called also a behavioral trap, see Section 4) where agents prefer to
stay than to move.

Let us derive a generalized version of a theorem by Brondsted [14, Theorem 1] on
existence of maximal elements in uniform spaces. Recall that (X,Γ) where Γ is a family
of subsets of the product space X × X is a uniform space if Γ is a uniformity on X,
that is, (i) every element of Γ contains the diagonal {(x, x) : x ∈ X} ; (ii) If U and V
are elements of Γ, their intersection U ∩ V belongs to Γ; (iii) For every U ∈ Γ, there
is V ∈ Γ such that (x, y), (y, z) ∈ V =⇒ (x, z) ∈ U ; (iv) If U ∈ Γ, then U−1 ∈ Γ,
where U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U} ; and (v) If U ∈ Γ, then, any set V ⊂ X ×X
containing U belongs to Γ.

Theorem 4.2 Assume that (X,Γ) is a uniform Hausdorff space of actions equipped with
a worthwhile to change preference “ ≤x ” generated by a real function ∆ on X×X. Suppose
further that for every action a ∈ X the following conditions hold:

(i) The function x ∈ X 7−→ ∆(a, x) ∈ IR is bounded above on X;

(ii) The upper section S(a) is a complete set of (X,Γ);

(iii) The function ∆ has decreasing returns: ∆(x, z)−∆(x, y) ≥ k(∆(y, z)−∆(y, y)) for
all x, y, z ∈ X, y ≤y z, and some k, with 0 < k ≤ 1;

(iv) For every U ∈ Γ there is a positive δ > 0 such that x ≤u y and ∆(a, y)−∆(a, x) < δ
imply (x, y) ∈ U.

Then, starting from a ∈ X, there exists an improving path from a to a maximal action
a∗ of X.

Proof. We wish to apply Lemma 4.1 to G(a, ·) = ∆(a, ·). It suffices to prove that for
a given action a ∈ X the function ∆(a, ·) is increasing with respect to the transitive
closure “ ≤u ” and that condition (iii) of Lemma 4.1 is satisfied. Let x ≤u y, say
x = x0 ≤x0 x1 · · · ≤xn−1 xn = y for some x1, . . . , xn−1 ∈ X. One has

∆(a, y)−∆(a, x) = ∆(a, y)−∆(a, xn−1) + ∆(a, xn−1)−∆(a, xn−2) + · · ·+ ∆(a, x1)−∆(a, x)

≥ k(∆(xn−1, xn)−∆(xn−1, xn−1) + · · ·+ ∆(x0, x1)−∆(x0, x0))

≥ 0

in which the latter inequalities are obtained from (iii) and from the definition of the
worthwhile to change preference. Hence ∆(a, ·) is increasing. Furthermore, if {xα}α∈I is
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an increasing net in S(a) and the net {∆(a, xα)}α∈I converges, then for a small positive
number δ, one can find α ∈ I sufficiently large such that

∆(a, xβ)−∆(a, xγ) < δ

for all β > γ > α. By (iv), for every element U of the uniformity Γ, there is α ∈ I such
that (xβ, xγ) ∈ U whenever β > γ are large. This proves that {xα}α∈I is Cauchy. It
remains to apply Lemma 4.1 to complete the proof. 2

Let us make a short discussion on the assumptions (iii) and (iv) of Theorem 4.2. As-
sumption (iii) is a weak superlinearity assumption, which means that the marginal payoff
∆(x, z)−∆(x, y), to move from y to z, from the point of view of x, is larger than a portion
k of the marginal payoff ∆(y, z)−∆(y, y), to move from y to z, from the point of view of y.
In other words, let the new function Λx(y, z) = ∆(x, z)−∆(x, y) which defines the variable
preference y ≤x z where x = xn is the current statu quo point. Assumption (iii) yields
Λx(y, z) ≥ kΛy(y, z), 0 < k ≤ 1 for all x, y, z ∈ X. We obtain Λy(y, z) ≥ 0 =⇒ Λx(y, z) ≥ 0
for all x ∈ X. Then, if x = xn, y = xn+1, this means that, along an improving path {xn},
the agent experiences no regret. If he prefers now z to y from the point of view of his new
statu quo position y = xn+1, he would have prefered z to y from the old point of view of
x = xn, and more generally from any other past point of view.
Assumption (iv) is a satisficing hypothesis (more explanation is given in Section 5). We
underline that no compactness assumption is required for the existence of maximal ele-
ments in the above theorem which offers a wide range of its application.

We close up this section by presenting a concept of optimizing paths in relation with
improving paths. Let x0 ∈ X be given. We say a finite collection {x1, ..., xn} of elements
of X is an optimizing path starting from x0 if for every i = 1, . . . , n one has xi−1 ≤xi−1 xi
and xi is a maximal element with respect to the preference “≤xi−1”. The element x0 is
said to be self-maximal if the solitary collection {x0} is an optimizing path starting from
x0.
It is clear that any optimizing path is improving, and that the converse is not always
true. Moreover, if an improving path ends at a maximal point x∗ whose preference agrees
with preferences of its dominant elements in the sense that x∗ ≤x∗ y and y ≤y x∗ imply
y ≤x∗ x∗, then this maximal element is self-maximal. In particular when an improving
path ends at a unique maximal element, it ends at a self-maximal element.

In many economic models improving paths are more economizing than optimizing
paths because the latter ones are generally very costly because of the necessity of repeated
full exploration of the state space each step, to discover the new preference, using current
limited resources which become not available for current exploitation (the current benefits
for having optimized the current step.) Moreover, most existing optimizing techniques
allow to find local optima only, which may greatly improve the current state, but are
not guaranteed to be globally optimal. On the other hand being at a current state,
because of lacking knowledge, resources, time, energy and other factors, the agents are
unable to explore the whole space to find a maximal element, and so they are happy with
exploring neighboring points to improve. Improving step by step with small sacrifices is
essential for a worthwhile to change model and in full concord with the idea of “muddling
through” processes by Lindblom or satisficing processes by Simon we have mentioned in
the introduction.
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5 Behavioral traps

Let X be a space of action equipped with a worthwhile to change preference “≤x” that is
defined by the function ∆ as given in (3). We assume just for simplicity that ∆(x, x) = 0
for all x ∈ X. It follows from the definition that an action x∗ is maximal if for every y ∈ X
either of the following inequalities holds

∆(y, x∗) ≥ 0 (10)

∆(x∗, y) < 0. (11)

Definition 5.1 An action x∗ is called ideal maximal if (10) is true for all y ∈ X, and it
is called a behavioral trap if (11) is true for all y ∈ X, y 6= x∗.

An action is ideal if it is worthwhile to change to it from every action of the space;
and an action is a behavioral trap if from there it is not worthwhile to change to other
actions. It is clear that ideal actions and behavioral traps are maximal, but the converse
is not true. The concept of behavioral trap is widely used in psychology.

Consider the case when X is a metric space. The metric µ(x, y) between two actions
represents an index of dissimilarity between them. It can be a minimum number of ele-
mentary operations that are necessary to perform y instead of x. Then the cost to change
from x to y depends on this distance. For instance, if e > 0 is the cost of doing an elemen-
tary operation, the cost C(x, y) to change from x to y must be larger than the amount
eµ(x, y). In many situations the disutility function is linear, say D(t) = αt for some α > 0,
one has R(x, y) ≥ αeµ(x, y). Without loss of generality one may assume that αe = 1.

We now derive an existence result for behavioral traps that can be reached by a path
of worthwhile changes.

Corollary 5.2 Assume that (X,µ) is a metric space and that a worthwhile to change
relation “≤x” on X is determined by a function ∆(x, y) = M(x, y)−R(x, y) with R(x, y) ≥
µ(x, y) for all x, y ∈ X. Suppose further that for each action a ∈ X the following conditions
hold

(i) The motivation to change function M(·, ·) is superlinear with M(x, x) = 0 for every
x ∈ X and M(a, ·) is bounded above;

(ii) The resistance to change function R(·, ·) satisfies R(x, y) = 0 if and only if x = y;

(iii) The upper section S(a) is a complete subspace.

Then from any initial action a ∈ X there is an improving path from a to a behavioral
trap of X.

Proof. We wish to apply Lemma 4.1 to obtain a maximal element in S(a) and then
show that it is a behavioral trap. To this end, set G(x, y) = M(x, y) and prove that
conditions (ii) and (iii) of that lemma are satisfied. For (ii) let x ≤u y, that is x = x0 ≤x0
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x1 · · ·xn−1 ≤xn−1 xn = y for some x1, . . . , xn−1 ∈ X. As M is superlinear, one has

M(a, y)−M(a, x) = M(a, y)−M(a, xn−1) +M(a, xn−1) + · · ·+M(a, x1)−M(a.x)

≥ M(xn−1, xn) +M(xn−2, xn−1) + · · ·+M(x0, x1)

≥ R(xn−1, xn) +R(xn−2, xn−1) + · · ·+R(x0, x1)

≥ µ(xn−1, xn) + µ(xn−2, xn−1) + · · ·+ µ(x0, x1)

≥ µ(x, y)

using the fact that R(x, y) ≥ µ(x, y) ≥ 0 for all x, y ∈ X, which shows that M(a, ·) is
increasing with respect to “ ≤u ”. The boundedness above of M(a, ·) is by hypothesis. To
prove (iii) of Lemma 4.1 let {xi}i∈I be an increasing net in S(a) such that {M(a, xi)}i∈I
converges to some limit. Then for any ε > 0 there is some index i0 ∈ I such that

|M(a, xα)−M(a, xβ)| < ε for all α, β > i0.

For all β > α > i0, we have xα = y0 ≤y0 y1 · · · ≤yn−1 yn = xβ for some y1, . . . , yn−1 ∈ X.
We proceed as above to conclude that

ε > M(a, xβ)−M(a, xα) ≥ µ(xα, xβ),

showing that {xα}α∈I is Cauchy. By applying Lemma 4.1 we obtain a maximal element
a∗ ∈ S(a). Suppose to the contrary that a∗ is not a behavioral trap, that is for some
y ∈ X with y 6= a∗ one has ∆(a∗, y) ≥ 0. Since a∗ is maximal, it follows that ∆(y, a∗) ≥ 0
too. Both inequalities yield

M(a∗, y) ≥ R(a∗, y) ≥ µ(a∗, y)

M(y, a∗) ≥ R(y, a∗) ≥ µ(y, a∗)

which implyies
0 = M(a∗, a∗) ≥M(a∗, y) +M(y, a∗) ≥ 2µ(a∗, y).

By this a∗ = y, a contradiction. 2

An application to personal equilibrium. Koszegi [24] and Koszegi-Rabin [23] have
defined a personal equilibrium. They consider an agent equipped with a variable preference
V (y|x) ∈ IR which is the utility the agent derives from consuming the bundle of good y ∈ X
(a consumption action), given the reference consumption bundle x ∈ X. Then, x∗ ∈ X
is a (strict) personal equilibrium if V (y|x∗) < V (x∗|x∗) for all y 6= x∗ (Gul-Pesendorfer
[16]). Our result shows how, including motivation and resistance to change functions,
a personal equilibrium can emerge in a finite number of steps, following a sequence of
worthwhile changes from an initial consumption bundle. This is a model of habits and
routines formation (Moreno-Oliveira-Soubeyran [34]).

6 Satisficing change

In this section we analyze, in a new way, the concept of satisficing introduced by Simon
[42, 43, 44, 46] and its links with the theory of change (see Soubeyran [47] for a model of
“satisficing by rejection”, and Attouch-Soubeyran [6] for an initial modelization in term
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of worthwhile changes). What is striking here is that the Brondsted hypothesis (iv) is a
multicriteria satisficing concept relative to the motivation and resistance to change criteria
(“exploring enough” to be able to “improve enough”). To our knowledge it is the first
time the Brondsted theorem [14, Theorem 1] finds a direct economic application, and even
more in term of satisficing. Let us show this point.

Let X be a space of actions and let G : X → R be a payoff function which is a measure
for a utility, profit, pleasure or life happiness. A given threshold level G̃ ∈ R is satisfied if
there is an action x ∈ X whose payoff G(x) is higher that the level G̃. Such an element
always exists if the level G̃ is less than the supremum of G on X. In a dynamic setting at
a given action x one sets a threshold level G̃(x) > G(x) and looks for an action y, called
satisficing change, such that G(y) ≥ G̃(x) > G(x). The amount α(x) := G̃(x) − G(x)
is called satisficing gap. When a cost function is given, satisficing change is defined by
reversing inequalities. Assume now that X is equipped with a worthwhile to change
preference relation “≤x ” which is defined by the function ∆(x, y) = M(x, y)−R(x, y) as
described in Section 2. Assume further that M(x, y) = u(A(x, y)) and R(x, y) = d(C(x, y))
where A(·, ·) is an advantage to change function, C(·, ·) is a cost function, u and d are
strictly increasing functions taking the null value at 0. It follows from the definition that
it is worthwhile to change from x to y if both motivation and resistance to change are
satisficing.

Proposition 6.1 It is worthwhile to change from x to y if and only if there exists a level
ρ ≥ 0 such that the cost to change satisfices that level and the advantage to change A(x, y)
satisfices the level u−1(d(ρ)), that is C(x, y) ≤ ρ and A(x, y) ≥ u−1(d(ρ)).

Proof. By definition x ≤x y if and only if M(x, y) ≥ R(x, y). Choosing a positive number
λ between M(x, y) and R(x, y) we have A(x, y) ≥ u−1(λ) and C(x, y) ≤ d−1(λ). It remains
to set ρ = d−1(λ) to complete the proof. 2

By considering ρ as a variable the function u−1(d(ρ)) is represented by a curve starting
from the origin of the space R+ × R+ and divides it into two parts. The upper part is
exactly the domain containing all points (C,A) of worthwhile to change couples of actions.
The shape of the curve u−1(d(ρ)) shows how much advantage to change must increase in
response to an increase in the cost in order to remain in the worthwhile to change domain.
When X is a metric space the cost function depends on the distance, and so the farer y
from x is, the greater the advantage to change must be to make the change worthwhile.
This explains the strategy that “exploring enough” (when µ(x, y) is large) must imply
“improving enough” (A(x, y) is large).

When u is a concave function (favoring risk aversion) and d is a convex function
(favoring risk seeking), the function ρ 7→ u−1(d(ρ)) is convex (we are assuming d and u
strictly increasing). If in addition both of them are sharply kinked at 0, we obtain the
famous concept of “loss aversion effect” by Tversky and Kahneman [22, 50] that explains
people’s tendency to strongly prefers avoiding losses to acquiring gains. Except for the
case in which both u and d are linear, the degree of loss aversion increases as the loss
increases. For instance when d(t) = t2, u(t) = ln(1 + t) one has

u−1(d(ρ)) = exp(ρ2)− 1.

For a couple of actions (x, y) with C(x, y) = 1 and A(x, y) = 2 it is worthwhile to change
from x to y, but tripling the cost and the gain, i.e., C(x, y) = 3, A(x, y) = 6, leads to
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unworthy change.

7 Games with worthwhile to change preference relations

Consider a noncooperative game G = (Xi, “ ≤ix ”)i∈I where I = {1, . . . , k} is a finite list
of players, Xi is the strategy set and “≤ix” is a reference-dependent preference relation of
the player i on the set X =

∏
i∈I X

i. As usually for i ∈ I, the set X−i is the product∏
j∈I,j 6=iX

j . If x ∈ X, then x−i is obtained from x by removing the ith component xi

and belongs to X−i, and we write also x = (xi, x−i).

Definition 7.1 An element x∗ of X is called a Nash equilibrium of the game G if it is
≤ix-maximal on the set Xi × {x−i∗ } for all i ∈ I.

This is a generalized version of the classical Nash equilibrium when the preferences
“ ≤ix ” are defined by real payoff functions (see also Luc [29, 30] for the case of vector
payoff functions). In fact, if each player i has a payoff function Gi defined on X, then the
preference relation x ≤ix y holds if and only if Gi(y) − Gi(x) ≥ 0. Then a strategy x∗ of
X is a Nash equilibrium if and only if

Gi(x∗) = max
yi∈Xi

Gi(yi, x−i∗ ), i ∈ I.

Inertial games. Definition 7.1 includes also the case of inertial games recently studied
by Attouch et al. [4, 5]. In an inertial game there is a cost Ci[(yi, xi)|x] of unilateral
change from a strategy xi to a strategy yi by the player i assuming other players do not
move. The function

P i[y|x] := Gi(y)− Ci[(yi, xi)|x],

called an inertial payoff of the player i, expresses the gain the player i earns at y by passing
from x to y, taking into account his cost (resistance) to change. This payoff deletes from
each usual normal form game payoff Gi(yi, y−i) the cost Ci[(yi, xi)|x] of unilateral change
of player i from xi to yi, starting from x. Thus, the preference relation x ≤ix y holds if
and only if P i[y|x] − P i[x|x] ≥ 0. In this game a strategy x∗ of X is an inertial Nash
equilibrium if and only if

P i[x∗|x∗] = max
yi∈Xi

P i[(yi, x−i∗ )|x∗] i ∈ I.

The individual preferences of players induce a global preference, called a Nash preference
and defined by

x ≤Nx y if and only if there is some i ∈ I such that , x−i = y−i, x ≤ix y.

Games with worthwhile to change preferences. In this section we assume that
each reference-dependent preference “≤ix” is a worthwhile to change preference, that is,
x ≤ix y if and only if ∆i(x, y) ≥ 0, where ∆i(x, y) = M i(x, y) − Ri(x, y) as presented in
Section 2. We define a global worthwhile to change function, called a Nash function, by

∆N (x, y) =
∑
i∈I

∆i((xi, x−i), (yi, x−i)) = MN (x, y)−RN (x, y),
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whereMN (x, y) =
∑

i∈IM
i((xi, x−i), (yi, x−i)) andRN (x, y) =

∑
i∈I R

i((xi, x−i), (yi, x−i)).
This function represents the sum of all worthwhile to change payoffs when each player
changes unilaterally. Our global worthwhile to change function generalizes the well known
Nikaido Yosida function of a normal form game Gi(xi, x−i), i ∈ I,

Ω(x, y) =
∑
i∈I

[
Gi(yi, x−i)−Gi(xi, x−i)

]
.

In this simpler case, MN (x, y) = Ω(x, y) and RN (x, y) = 0. Nash equilibrium can be
expressed by Nash preference and Nash worthwhile function.

Lemma 7.2 Assume the reference-dependent preference relations “≤ix” of the game G are
reflexive. The following assertions hold.

i) x∗ is a Nash equilibrium if and only if it is a maximal element of X with respect to
the Nash preference relation “ ≤Nx ”.

Assume further that the relations “ ≤ix ” are determined by worthwhile to change
functions ∆i with ∆i(x, x) = 0 for all x ∈ X, i ∈ I. Then,

ii) if x∗ is a Nash equilibrium then ∆N (x∗, y) ≤ 0 for all y ∈ X, provided that

i ∈ I, yi ∈ Xi, x∗ ≤ix∗ (yi, x−i∗ ) ≤i
(yi,x−i

∗ )
x∗ ⇒ ∆i(x∗, (y

i, x−i∗ )) = 0;

iii) if ∆N (x∗, y) ≤ 0 for all y ∈ X then x∗ is a Nash equilibrium, provided that

i ∈ I, yi ∈ Xi, ∆i(x∗, (y
i, x−i∗ )) = 0⇒ ∆i((yi, x−i∗ ), x∗) ≥ 0.

In particular, if ∆i, i ∈ I are anti-symmetric at x∗ (that is ∆(x∗, y) = −∆(y, x∗)),
then x∗ is a Nash equilibrium if and only if ∆N (x∗, y) ≤ 0 for all y ∈ X.

Proof. The first part of the lemma is clear from the definition. We prove the second part.
Assume that x∗ is a Nash equilibrium and let y ∈ Y . For every i ∈ I, either x∗ ≤ix∗
(yi, x−i∗ ) is not true, which yields ∆i(x∗, (y

i, x−i∗ )) < 0, or x∗ ≤ix∗ (yi, x−i∗ ), which implies
(yi, x−i∗ ) ≤i

(yi,x−i
∗ )

x∗ by hypothesis. By assumption, it follows that ∆i(x∗, (y
i, x−i∗ )) = 0

and hence ∆N (x∗, y) ≤ 0.
Conversely, assume that ∆N (x∗, y) ≤ 0 for all y ∈ X. If for some i ∈ I and yi ∈ Xi

one has x∗ ≤ix∗ (yi, x−i∗ ), then ∆i(x∗, (y
i, x−i∗ )) = 0. The hypothesis of the lemma yields

∆i((yi, x−i∗ ), x∗) ≥ 0 by which (yi, x−i∗ ) ≤i
(yi,x−i

∗ )
x∗. Hence x∗ is a Nash equilibrium. 2

From now on we consider (Xi, di) to be metric spaces which induces the metric
d(x, y)

.
=
∑

i∈I di(x
i, yi) on the space X. Further, X is equipped with the Nash pref-

erence relation “≤Nx ”. The upper section S(a) at a strategy a ∈ X is understood as an
upper section with respect to the transitive closure of the Nash preference relation.

The next theorem establishes the existence of a strict (or sharp) “worthwhile to change
Nash equilibrium” under very mild assumptions. A usual Nash equilibrium being obtained
in the limit, when resistances to change disappear (defining a sequence of worthwhile to
change games with strictly positive weights on the resistance to change functions which
tend to zero, see Corollary 6.5 in Bianchi-Kassay-Pini [11]). We also obtains the striking
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result that, starting from an initial profile of actions, players, using, each step, worthwhile
to change response functions (optimizing each step being a very special case), can reach a
worthwhile to change Nash equilibrium in a finite number of steps. Hence we have a result
about a “learning how to play a Nash process”, using only worthwhile moves, see Chen-
Gazzale [17]. Furthermore the result shows that it is worthwhile to directly unilaterally
change from the initial situation to the worthwhile to change Nash equilibrium.

Theorem 7.3 Assume that the preference relations “≤ix” of the game G are determined by
the worthwhile to change functions ∆i with M i(x, x) = 0 for all x ∈ X, i ∈ I; Ri(x, y) = 0
if and only if x = y, and that the space (X, d) is a metric space. Assume further that for
every a ∈ X the following conditions hold.

(i) S(a) is a complete subspace of X;

(ii) The motivation to change functions M i are superlinear and the functions xi 7→
M i(a, (xi, a−i)) are bounded above on Xi;

(iii) The resistance to change functions Ri are bounded below by the distance: Ri(x, y) ≥
di(x

i, yi) for all x, y ∈ X.

Then, for every strategy a ∈ X there is an improving path from a to a Nash equilibrium
of the game, x∗, such that ∆N (x∗, y) < 0 for all y ∈ X, y 6= x∗. Consequently, for every
i ∈ I, yi ∈ Xi, yi 6= xi∗, one has ∆i(a, x∗) ≥ 0 and ∆i(x∗, (y

i, x−i∗ )) < 0.

Proof. Let us fix a strategy a ∈ X and consider the complete space S(a) equipped with
a new reflexive preference relation x ≤∗x y if and only if ∆N (x, y) ≥ 0. We wish to apply
Corollary 5.2 by setting M(x, y) = MN (x, y) and R(x, y) = RN (x, y). Clearly M(a, ·) is
superlinear; M(x, x) = 0 for every x ∈ X, and R(x, y) = 0 if and only if x = y. Obviously,
M(a, ·) is bounded above on X because so are the functions on Xi. Thus, according to
Corollary 5.2 there is a behavioral trap, x∗ in S(a) with respect to the preference relation
“ ≤∗x ”. This means that ∆N (x∗, y) < 0 for all y ∈ X, y 6= x∗. From this the conclusions
follow. This also proves that x∗ is actually a Nash equilibrium. 2

Remark 7.4 Theorem 7.3 shows that, 1) starting from a ∈ X, all agents prefer to uni-
laterally change from a to x∗ and 2) being at x∗, all agents do not prefer to unilaterally
change. This is a “worthwhile to change” Nash equilibrium.

Remark 7.5 In Theorem 7.3, assumption (iii) means that resistance to change functions
must be higher than distance functions which are polar cases of costs to change: they are
high enough for small changes (higher than the square of the distance) and low enough for
big changes (lower than the square of the distance); whereas assumption (ii) supposes that
motivation to change functions are superlinear. This is the case when motivation to change
functions are equal to advantages to change functions M(x, y) = Ai(x, y) = Gi(y)−Gi(x),
where Gi(x) is the normal form game payoff of player i. Notice that resistance to change
functions are not required to be sublinear. This is a particular case. If, for example
desutility of costs to change are linear, D(C) = δC, δ > 0, resistance to change functions
are sublinear, costs to change being sublinear defined by an infimum of costs to change along
paths of change (following Soubeyran [49]). As for the existence of maximal elements, no
compactness assumption is required. Resistance to change functions do the job.
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The previous theorem is a generalization of the interesting criteria for existence of
equilibria via Ekeland’s variational principle established in Bianch-Kassay-Pini [11].

Let Xi, i ∈ I be closed sets of Banach spaces and f i : X ×Xi → R. One is interested
in finding a point x∗ ∈ X such that

f i(x∗, y
i) ≥ 0 ∀ i ∈ I, yi ∈ Xi.

This is a system of equilibrium problems, denoted (SEP). To study (SEP) let us define for
each positive ε worthwhile to change functions

∆i
ε(x, y) = M i(x, y)−Riε(x, y)

with M i(x, y) = −f(x, yi) and Riε(x, y) = ε‖xi − yi‖i (here ‖ · ‖i is a norm in Xi). The
game with the worthwhile to change functions ∆i

ε is denoted by Gε. We obtain Theorem
2.2 of Bianchi-Kassay-Pini [11] in the next corollary.

Corollary 7.6 Assume that the following conditions hold

(i) for every x ∈ X, the functions f i(x, ·), i ∈ I are bounded below and lower semi-
continuous;

(ii) for every x ∈ X, one has f i(x, xi) = 0, i ∈ I;

(iii) for every x, y and z from X on has f i(z, xi) ≤ f i(z, yi) + f i(y, xi), i ∈ I.

Then for every ε > 0 and every a in X there is x∗ such that for every i ∈ I and every
xi ∈ Xi, xi 6= xi∗ one has

f i(a, xi∗) + ε‖ai − xi∗‖i ≤ 0 (12)

f i(x∗, x
i) + ε‖xi∗ − xi‖i > 0. (13)

Proof. It is a consequence of the preceding theorem. 2

It is now quite standard to obtain a solution to (SEP) when the set X is compact
and the functions f i(·, yi) are upper semi-continuous for every fixed yi ∈ Xi (see Bianchi-
Kassay-Pini [11, Proposition 3.2]) by using a sequence of Nash equilibria of the games
G1/n, n = 1, 2, . . .

8 Conclusion

In this paper we have studied a behavioral problem, that is a question on the behavior
of bounded rational agents which are not required to optimize each step but make worth-
while to change moves by balancing motivation and resistance to change. Motivation and
resistance to change functions cover a lot of situations including emotions, goal setting,
goal striving, exploration (editing, evaluation), exploitation, learning, capability building,
inertia, habits, routines and norms formation, and learning to play Nash processes. We
have established general conditions for existence and reachability of maximal actions in a
finite number of worthwhile steps for the worthwhile to change problem. In particular we
have obtained conditions of existence of behavioral traps and shown how worthwhile to
change processes can be related to satisficing processes. Passing from one isolated agent
to interacting agents we have considered a game in which agents are equipped with worth-
while to change variable preferences and proved the existence of Nash equilibrium. It is to
underline that no compactness assumption is needed in our approach, resistance to change
function doing the job.
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