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CONVERGENCE ANALYSIS OF A RESIDUAL LOCAL PROJECTION

FINITE ELEMENT METHOD FOR THE NAVIER–STOKES EQUATIONS

RODOLFO ARAYA, GABRIEL R. BARRENECHEA, ABNER H. POZA, AND FRÉDÉRIC VALENTIN

Abstract. This work presents and analyzes a new Residual Local Projection stabilized

finite element method (RELP) for the non-linear incompressible Navier–Stokes equations.

Stokes problems defined element–wisely drive the construction of the residual-based terms

which make the present method stable for the finite element pairs P1/Pl, l = 0, 1. Numerical

upwinding is incorporated through an extra control on the advective derivative and on the

residual of the divergence equation. Existence of the discrete solution and uniqueness of

a non–singular branch of solutions, as well as optimal error estimates in natural norms

are proved under standard assumptions. Next, a divergence-free velocity field is provided

by a simple post-processing of the computed velocity and pressure using the lowest order

Raviart–Thomas basis functions. This updated velocity is proved to converge optimally to

the exact solution. Numerics asses the theoretical results and validate the RELP method.

1. Introduction

The numerical solution of the incompressible Navier–Stokes equations by standard finite

element methods demands the selection of inf–sup stable pairs of interpolation spaces for

the velocity and the pressure [17]. This condition prevents the most desirable choices of

spaces to be adopted, such as the simplest and lowest equal order elements [12]. Also,

numerical methods should include upwinding strategies to avoid spurious oscillations when

the exact solution develops boundary layers [20], behavior that appears for high Reynold

numbers flows.
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In the quest of bypassing these issues, a branch of new stabilized finite element methods,

called Local Projection Stabilized (LPS) methods, have been recently introduced for mixed

problems (see [4, 11]). Like classical stabilized methods, the main idea lies on the addition

of extra terms to the Galerkin method but with the difference that they are no longer

dependent on residuals, but rather constructed using the fluctuation between the variables

(or their derivatives) and their projection onto a given finite dimensional space (see [15]

for an interesting overview). LPS methods have been extended to the Oseen model in

[6, 7], although their capacity to handle singularly perturbed models still deserves more

investigations [18].

Also recently, a relationship between enriching polynomial spaces with the solution of local

problems and LPS methods has been established (see [14, 1]). The resulting methods, called

Residual Local Projection (RELP) stabilized methods, reintroduced residuals as the main

ingredient in their construction but now they are included through fluctuation operators.

Thereby, some of the standard LPS extra terms can be seen as a consequence of an enriching

space procedure. Next, a new RELP method [2] has been proposed for the Oseen equation

and validated for advection dominated flows. Also, a simplified version of the method,

specially suited for lower order methods, was presented in [3]. Well-posedness and optimal

error estimates were obtained for both methods which were extensively validated through

singularly perturbed benchmarks.

In this work, we extend the RELP method to the non-linear incompressible Navier–Stokes

equations. We seek the method bearing in mind a certain set of desired characteristics.

Among these we can quote:

• Be stable and achieve optimal convergent in natural norms for P1/Pl, l = 0, 1;

• Bring balanced numerical diffusion;

• Be easily post-processed such as the discrete solution is divergence-free.

To face these requirements, the method is developed within the framework proposed in [1] in

which boundary value problems account for residuals at the element level, which ultimately,

are responsible for stabilizing the Galerkin method. In particular, we choose to set up

a Stokes model element wisely. This accounts for diffusive processes that dominate flows

at small scales and might be modeled through the residuals at large scales. Now, since

no analytical solution is available for this local problem, a two-level numerical strategy is

needed to implement the method which makes the approach more involved. In view of

making the present method attractive for practitioners, we project the residual onto the

space of piecewise constant functions before solving the local problem. This simplification
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makes the local problem analytically solvable and provides an alternative RELP method

that does not undermine the convergence of the method. In the process, a way to construct

an exactly divergence-free velocity field is also set up.

The stability and convergence analysis of the RELP method is based on the fixed point theory

presented in [8, 17], and used in [23] to analyze the SDFEM method originally proposed

in [13] in the case diffusion dominates, and in [10] for a pressure-stabilized finite element

method. Here, we extend that idea and prove that the original RELP method is well-posed

and achieve optimal convergence in natural norms. Due to the particular structure of the

method, the proof requests the construction of a new stabilized finite element method for the

Stokes equation, related to the one given in [1], which is also analyzed. Finally, we establish

that the post-processed divergence-free velocity field is also optimally convergent.

The paper is outlined as follows: we end this section with some notations and definitions

to be used throughout this manuscript. Next section is devoted to the presentation of the

RELP methods. Section 3 includes a well-posedness result and error estimates, and the

post-processing to get a divergence-free velocity field is described in Section 4. Numerical

validations are in Section 5 and some conclusions are drawn in Section 6. In Appendix A we

investigate numerical aspects of a new stabilized method for the Stokes model.

1.1. Notations and preliminaries. Let Ω ⊆ R
2 be a polygonal open domain. The steady

incompressible Navier–Stokes equations consists of finding the velocity and pressure (u, p̃)

as the solution of

−ν∆u + (∇u)u + ∇p̃ = f̃ , ∇·u = 0 in Ω , (1)

u = 0 on ∂Ω ,

where ν ∈ R
+ is the fluid viscosity and f̃ ∈ L2(Ω)2. Adopting standard notations for Sobolev

spaces, the weak form associated to (1) reads: Find (u, p̃) ∈ V×Q :=H1
0 (Ω)

2 ×L2
0(Ω) such

that:

ν (∇u,∇v) + ((∇u)u, v)− (p̃,∇ · v) + (q,∇ · u) = (f̃ , v) for all (v, q) ∈ V ×Q, (2)

where (·, ·) stands for the L2(Ω)-inner product (or L2(Ω)2 if necessary). We place the con-

tinuous problem (2) in the case in which the hypothesis of Theorem 2.4, Chap. 4 from [17]

are satisfied such that (2) has a unique solution.

Let D be an open subset of Ω, we denote by ‖ · ‖m,D the norm in Hm(D), and by ‖ · ‖m,q,D

the norm in Wm,q(D) with m ≥ 0 and 1 ≤ q ≤ ∞. We denote, as usual, H−1(Ω) the dual

space of H1
0 (Ω) equipped with the dual norm ‖ · ‖−1,Ω and the duality product 〈·, ·〉, and
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H0(Ω) = L2(Ω) and W 0,q(Ω) = Lq(Ω). Also, we define the norm ||| · |||, in V ×Q, by

|||(v, q)||| :=
{

|v|21,Ω + ‖q‖20,Ω
}1/2

, (3)

and the norm ‖ · ‖(V×Q)′ in (V ×Q)′, the dual space of V ×Q, by

‖(v, q)‖(V×Q)′ := sup
|||(w,r)|||≤1

{〈v,w〉+ (q, r)} . (4)

Let {Th}h>0 be a family of regular, quasi-uniform triangulations of Ω, built up using triangles

K with boundary ∂K and characteristic length hK := diam(K), and h := max{hK : K ∈
Th}. The set of internal edges F of the triangulation is denoted Eh with hF = |F |. We denote

by n the normal outward vector on ∂K; also, JvK stands for the jump of v across F . In

addition, for K ∈ Th and F ∈ Eh, we define the neighborhoods ωK = {K ′ ∈ Th : K ′∩K 6= ∅}
and ωF = {K ∈ Th : F ∩K 6= ∅}. Finally, we denote by ΠS, where S ⊂ R

2, the orthogonal

projection onto the constant space, i.e., ΠS(q) :=
(q,1)S
|S|

, and by Hm(Th), m ≥ 1 we denote

the space of functions whose restriction to K ∈ Th belongs to Hm(K).

Associated to the triangulation Th, the discrete space for the velocity Vh is the usual space of

vector-valued piecewise linear continuous functions with zero trace on ∂Ω. To approximate

the pressure we use Qh, the space of piecewise polynomial functions of degree l, (l = 0, 1)

with zero mean value on Ω. If l = 1, the space of pressures may contain continuous or

discontinuous functions. Analogous to (4) we introduce the following norm in the dual of

the discrete space

‖(v, q)‖(Vh×Qh)′ := sup
|||(wh,rh)|||≤1

{〈v,wh〉+ (q, rh)} . (5)

In what follows, we will employ the differential of a mapping F : V × Q → V × Q with

respect to (u, q) at (v, q) ∈ V × Q denoted by Du,pF (v, q) ∈ L(V × Q), where L(V × Q)

represents the space of linear mappings acting on elements of V ×Q with values in V × Q

and equipped with the usual norm ‖ · ‖L(V×Q).

Finally, in the forthcoming analysis we will use the following classical result.

Lemma 1. For all v,w ∈ V and q ∈ Q, we have

sup
v ∈V

(q,∇ · v)
|v|1,Ω

≥ β ‖q‖0,Ω, (6)

((∇u)w, v) ≤ α |u|1,Ω|w|1,Ω|v|1,Ω, (7)
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where α and β are positive constants depending only on Ω. Moreover, for all u, v,w ∈ V,

it holds

((∇u)w, v) = −((∇v)w,u)− (∇ ·w,u · v), (8)

((∇v)w, v) = −1

2
(∇ ·w, v · v). (9)

Proof. See [17] and [21]. �

2. The residual local projection method

The finite element method that we analyze in this work reads: Find (uh, p̃h) ∈ Vh×Qh such

that

ν(∇uh,∇vh) + ((∇uh)uh, vh)− (p̃h,∇ · vh) + (q̃h,∇ · uh)

+
∑

K∈Th

[αK

ν

(

pMe (−f̃ −∆uh + (∇uh)uh +∇p̃h), p
M
e ((∇vh)uh +∇q̃h)

)

K
(10)

+
γK
ν

(χh(x ∇ · uh), χh(x ∇ · vh))K

]

+
∑

F∈Eh

τF (Jν ∂nuh + p̃hnK, Jν ∂nvh + q̃h nK)F = (f̃ , vh),

for all (vh, q̃h) ∈ Vh ×Qh, where χh := I −ΠK is the fluctuation operator.

Here, for a function v ∈ L2(K)2, (uM
e (v), pMe (v)) stands for the solution of the local Stokes

problem

−ν∆uM
e (v) +∇pMe (v) = v, ∇ · uM

e (v) = 0 inK, (11)

uM
e (v) = 0 on ∂K.

Also, the stabilization parameters are given by

αK :=
1

max {1, P eK}
and γK :=

1

max
{

1, PeK
24

} , (12)

where

PeK :=
|uh|KhK

18 ν
with |uh|K :=

‖uh‖0,K
|K| 12

,

and

τF :=























hF

12 ν
if |uh|F = 0,

1

2 |uh|F
− 1

|uh|F (1− exp(PeF ))

(

1 +
1

PeF
(1− exp(PeF ))

)

otherwise.

(13)

Here

PeF :=
|uh|F hF

ν
with |uh|F :=

‖uh‖0,F
h
1/2
F

.
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In general (10) requests a two-level discretization since problem (11) can not be exactly

solved. On the other hand, a closer inspection of problem (11) reveals that some terms in

(10) can indeed be exactly computed, thus simplifying the implementation. In particular,

we realize that, for all q ∈ H1(K) it holds

uM
e (∇q) = 0 and pMe (∇q) = χh(q) . (14)

As for the remaining terms, we replace pMe (−f̃+(∇uh)uh+∇p̃h) by pMe (ΠK(−f̃+(∇uh)uh+

∇p̃h)), and pMe ((∇vh)uh + ∇qh) by pMe (ΠK((∇vh)uh + ∇qh)) in (10) to get the following

simplified method: Find (uh, p̃h) ∈ Vh ×Qh such that

ν(∇uh,∇vh) + ((∇uh)uh, vh)− (p̃h,∇ · vh) + (qh,∇ · uh)

+
∑

K∈Th

αK

ν

(

pMe (ΠK(−f̃ + (∇uh)uh +∇p̃h)), p
M
e (ΠK((∇vh)uh +∇qh))

)

K

+
∑

K∈Th

γK
ν

(χh(x ∇ · uh), χh(x ∇ · vh))K

+
∑

F∈Eh

τF (Jν ∂nuh + p̃hnK, Jν ∂nvh + qhnK)F = (f̃ , vh) .

Finally, noting that every constant is a gradient, we apply (14) to recast the final form of

the simplified RELP method: Find (uh, p̃h) ∈ Vh ×Qh such that

ν(∇uh,∇vh) + ((∇uh)uh, vh)− (p̃h,∇ · vh) + (qh,∇ · uh)

+
∑

K∈Th

αK

ν
(χh(x · (∇uh)ΠKuh + p̃h), χh(x · (∇vh)ΠKuh + qh))K

+
∑

K∈Th

γK
ν

(χh(x ∇ · uh), χh(x ∇ · vh))K +
∑

F∈Eh

τF (Jν ∂nuh + p̃h nK, Jν ∂nvh + qh nK)F

= (f̃ , vh) +
∑

K∈Th

αK

ν

(

χh(x · ΠKf̃ ), χh(x · (∇vh)ΠKuh + qh)
)

K
. (15)

Remark. The method (15) is the one we will implement since it is not a two-level method.

The next section deals with the error analysis for the original RELP method (10), as the

analysis can be extended, with minor differences, to the simplified RELP method (15). The

reason to analyze method (10) is its generality, which opens the door to different solution

strategies for the local problem (11), and it can be seen as the first steps toward the analysis

of general two-level finite element methods for the Navier–Stokes equations.
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3. Error analysis

We consider a scaled form of (1) by setting p̃ = ν p, f̃ = ν f , and λ = ν−1

−∆uλ + λ (∇uλ)uλ + ∇pλ = f , ∇·uλ = 0 in Ω , (16)

uλ = 0 on ∂Ω .

The standard weak formulation of problem (16) is given by the following: Find (uλ, pλ) ∈
V ×Q such that

(∇uλ,∇v) + λ ((∇uλ)uλ, v)− (pλ,∇ · v) + (q,∇ · uλ) = (f , v) ∀(v, q) ∈ V ×Q . (17)

We assume in this work that problem (17) admits at least one solution, which is unique

provided λ is sufficiently small. Also, (17) can be written in the operator form as follows

F (λ,uλ, pλ) := (uλ, pλ) + TG(λ,uλ, pλ) = 0, (18)

where G(λ,uλ, pλ) ∈ V′ ×Q is given by

〈G(λ,uλ, pλ), (v, q)〉 :=λ ((∇uλ)uλ, v)− (f , v) ∀(v, q) ∈ V ×Q, (19)

and T : V′ × Q −→ V × Q denotes the Stokes operator, which associates for each (w, r) ∈
V′ ×Q the unique solution (u, p) ∈ V ×Q of

(∇u,∇v)− (p,∇ · v) + (q,∇ · u) = 〈w, v〉+ (r, q), (20)

for all (v, q) ∈ V ×Q.

The stabilized method for problem (16) reads as follows: Find (uh,λ, ph,λ) ∈ Vh × Qh such

that for all (vh, qh) ∈ Vh ×Qh,

(∇uh,λ,∇vh) + λ ((∇uh,λ)uh,λ, vh)− (ph,λ,∇ · vh) + (qh,∇ · uh,λ) (21)

+
∑

K∈Th

αK

(

pMe (−∆uh,λ + λ(∇uh,λ)uh,λ +∇ph,λ), p
M
e (λ(∇vh)uh,λ +∇qh)

)

K

+
∑

K∈Th

γK (λχh(x∇ · uh,λ), λ χh(x∇ · vh))K +
∑

F∈Eh

τ̃F (J∂nuh,λ + ph,λnK, J∂nvh + qhnK)F

= (f , vh) +
∑

K∈Th

αK

(

pMe (f), pMe (λ(∇vh)uh,λ +∇qh)
)

K
,

where τ̃F =
τF
λ

and pMe solves the Stokes local problem (11). Multiplying (21) by ν, and

substituting p̃h = ν ph, f̃ = ν f , and q̃h = ν qh, we recover the RELP method (10) for the

original, unscaled Navier–Stokes equations.
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3.1. Technical Preliminaries.

We first state the following local trace theorem [22].

Lemma 2. There exists a constant C > 0, independent of h, such that for all v ∈ H1(K)

‖v‖20,∂K ≤ C
{

h−1
K ‖v‖20,K + hK |v|21,K

}

. (22)

The following inverse estimates are satisfied for Vh and Qh.

Lemma 3. There exists a constant C > 0, independent of h, such for all vh ∈ Vh and all

qh ∈ Qh we have

‖vh‖∞,Ω ≤ C h−κ|vh|1,Ω, (23)

‖vh‖∞,K ≤ C h−1
K ‖vh‖0,K , (24)

‖JqhK‖0,F ≤ C h
−1/2
F ‖qh‖0,ωF

, (25)

hK |vh|1,K ≤ C ‖vh‖0,K , (26)

for all κ with 0 < κ ≤ 1
2
.

Proof. The first estimate is a direct consequence of global inverse inequalities and Sobolev’s

embedding Theorem (cf. [12]). For the remaining estimates, see [12]. �

The properties of the orthogonal projection ΠK onto the constant space are summarized in

the following result.

Lemma 4. There exists a constant C > 0, independent of h, such that

‖v − ΠKv‖0,K ≤ C hK |v|1,K ∀v ∈ H1(K) , (27)

‖ΠKv‖0,K ≤ ‖v‖0,K ∀v ∈ L2(K), (28)

‖ΠKv‖∞,K ≤ C h−1
K ‖v‖0,K ∀v ∈ L2(K). (29)

Proof. For estimates (27) and (28), see [12]. Finally, (29) follows from (24) and (28). �

We introduce the Lagrange interpolation operator Ih : V ∩ H2(Ω)2 −→ Vh and the op-

erator Jh : Q −→ Qh, for the velocity and pressure, respectively, where Jh is a modified

Clément operator for continuous pressures (l = 1) or the orthogonal projection onto Qh for

discontinuous pressures. These interpolation operators satisfy (see [9, 12])
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|v − Ihv|m,K ≤ C h2−m
K |v|2,K ∀v ∈ H2(K)2, (30)

|Ihv|1,K ≤ C ‖v‖2,K ∀v ∈ H2(K)2, (31)

‖v − Ihv‖i,F ≤ C h
3/2−i
F ‖v‖2,ωF

∀v ∈ H2(ωF )
2, (32)

‖v − Ihv‖1,r,K ≤ C ‖v‖1,r,K ∀v ∈ W 1,r(K)2 , ∀r ∈ (2,∞] , (33)

‖v − Ihv‖∞,K ≤ C ‖v‖∞,K ∀v ∈ C0(K)2 , (34)

|q − Jhq|i,K ≤ C hj−i
K |q|j,ωK

∀q ∈ Hj(ωK), (35)

‖q −Jhq‖0,F ≤ C h
j−1/2
F ‖q‖j,ωF

∀q ∈ Hj(ωF ), (36)

where 0 ≤ m ≤ 2, and 0 ≤ i ≤ 1, 1 ≤ j ≤ l + 1 and C > 0 independent of h.

Before heading to well-posedness results, we give the following technical result whose proof

can be found in [1] (see Lemma 3.2 for (37) and (38), and equation (3.18) for (39)).

Lemma 5. Let v ∈ L2(K)2 and let (uM
e (v), pMe (v)) be the solution of problem (11). Then,

there exists C > 0, independent of hK , such that

|uM
e (v)|1,K ≤ λ hK ‖v‖0,K , (37)

‖pMe (v)‖0,K ≤ C hK ‖v‖0,K . (38)

Moreover, there exists a constant C > 0, independent of h, such that for all q ∈ P1(K) we

have

ChK ‖∇q‖0,K ≤ ‖pMe (∇q)‖0,K ≤ hK ‖∇q‖0,K . (39)

3.2. Existence of a discrete solution. We start defining the operator P : Vh −→ Qh by

∑

K∈Th

αK

(

pMe (∇P(uh)), p
M
e (∇qh)

)

K
+
∑

F∈Eh

τ̃F
(

JP(uh)K, JqhK
)

F
(40)

= −(qh,∇ · uh)−
∑

K∈Th

αK

(

pMe (λ(∇uh)uh − f ), pMe (∇qh)
)

K
−
∑

F∈Eh

τ̃F (J∂nuhK, Jqh nK)F ,

for all uh ∈ Vh, qh ∈ Qh. The operator P is well defined due to Lax Milgram’s Theorem

with the norm

‖qh‖∗ :=
{

∑

K∈Th

αK‖pMe (∇qh)‖20,K +
∑

F∈Eh

τ̃F ‖JqhK‖20,F

}1/2

.
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Also, we define the mapping N : Vh −→ Vh by

(N (uh), vh) = (∇uh,∇vh) + (λ(∇uh)uh, vh)− (P(uh),∇ · vh)− (f , vh) (41)

+
∑

K∈Th

γK (λχh(x∇ · uh), λχh(x∇ · vh))K

+
∑

K∈Th

αK

(

pMe (λ(∇uh)uh − f +∇P(uh)), p
M
e (λ(∇vh)uh)

)

K

+
∑

F∈Eh

τ̃F (J∂nuh + P(uh)nK, J∂nvhK)F ,

for all uh, vh ∈ Vh.

The following result provides a characterization of the solution of (21) in terms of the map-

pings P and N .

Lemma 6. The pair (uh,λ, ph,λ) ∈ Vh × Qh is a solution of problem (21) if and only if

N (uh,λ) = 0 and ph,λ = P(uh,λ).

Proof. IfN (uh,λ) = 0 and ph,λ = P(uh,λ), then adding (40) and (41) we see that (uh,λ, ph,λ) ∈
Vh ×Qh is a solution of problem (21). Moreover, let (uh,λ, ph,λ) ∈ Vh ×Qh be a solution of

(21). If vh = 0 in (21), we have

∑

K∈Th

αK

(

pMe (∇ph,λ), p
M
e (∇qh)

)

K
+
∑

F∈Eh

τ̃F (Jph,λK, JqhK)F =

−(qh,∇ · uh,λ)−
∑

K∈Th

αK

(

pMe (−f + λ(∇uh,λ)uh,λ), p
M
e (∇qh)

)

K
−
∑

F∈Eh

τ̃F (J∂nuh,λK, JqhnK)F

and hence, since P is well defined, ph,λ = P(uh,λ). Finally, if qh = 0 in (21), we have

N (uh,λ) = 0 and the result follows. �

We are now in position of proving the well-posedeness of the discrete problem (21).

Theorem 7. There is a positive constant C, which is independent of h and λ, such that

problem (21) admits at least one solution (uh,λ, ph,λ) provided

λ h1−κ

{

‖f‖2−1,Ω +
∑

K∈Th

αK‖pMe (f)‖20,K

}1/2

≤ C.
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Proof. Let R > 0 and uh ∈ Vh, with |uh|1,Ω = R, be arbitrary and for abbreviation let

x :=

{

∑

K∈Th

αK‖pMe (λ(∇uh)uh + P(uh))‖20,K

}1/2

, y :=

{

∑

F∈Eh

τ̃F ‖J∂nuh,λ + P(uh)nK‖20,F

}1/2

,

z :=

{

‖f‖2−1,Ω +
∑

K∈Th

αK‖pMe (f )‖20,K

}1/2

, w :=

{

∑

K∈Th

γK‖λχh(x∇ · uh)‖20,K

}1/2

.

Taking qh = P(uh) in (40) gives

−(P(uh),∇ · uh) =
∑

K∈Th

αK

(

pMe (λ(∇uh)uh +∇P(uh)− f), pMe (∇P(uh))
)

K

+
∑

F∈Eh

τ̃F (J∂nuh + P(uh)nK, JP(uh)nK)F .

Then, using Cauchy-Schwarz’s inequality and (9) we have

(N (uh),uh)

= |uh|21,Ω + λ((∇uh)uh,uh)− (f ,uh)

+
∑

K∈Th

αK

(

pMe (λ(∇uh)uh +∇P(uh)− f ), pMe (λ(∇uh)uh +∇P(uh))
)

K

+
∑

K∈Th

γK‖λχh(x∇ · uh)‖20,K +
∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖20,F

≥ |uh|21,Ω + λ((∇uh)uh,uh)− ‖f‖−1,Ω|uh|1,Ω +
∑

K∈Th

αK‖pMe (λ(∇uh)uh +∇P(uh))‖20,K

−
∑

K∈Th

αK

(

pMe (f), pMe (λ(∇uh)uh +∇P(uh))
)

K

+
∑

K∈Th

γK‖λχh(x∇ · uh)‖20,K +
∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖20,F

≥ 1

2
|uh|21,Ω + λ((∇uh)uh,uh) +

1

2

∑

K∈Th

αK‖pMe (λ(∇uh)uh +∇P(uh))‖20,K

+
∑

K∈Th

γK‖λχh(x∇ · uh)‖20,K +
∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖20,F

−1

2

∑

K∈Th

αK‖pMe (f)‖20,K − 1

2
‖f‖2−1,Ω

≥ 1

2
R2 +

1

2
x2 + y2 + w2 − 1

2
z2 − λ

2
(∇ · uh,uh · uh). (42)
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Now, if we use the definition of the method with a test function given by (0,Jh(uh · uh)),

Cauchy–Schwarz’s inequality, Lemma 5, the fact that αK ≤ 1 and (35), we get

|(∇ · uh,uh · uh)| ≤ |(∇ · uh,uh · uh − Jh(uh · uh))|+ |(∇ · uh,Jh(uh · uh))|
≤

√
2|uh|1,Ω ‖uh · uh − Jh(uh · uh)‖0,Ω

+

∣

∣

∣

∣

∣

∑

K∈Th

αK(p
M
e (λ(∇uh)uh +∇P(uh)− f ), pMe (∇Jh(uh · uh)))K

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖0,F ‖JJh(uh · uh)K‖0,F
∣

∣

∣

∣

∣

≤ CRh |uh · uh|1,Ω +
∑

K∈Th

αK‖pMe (λ(∇uh)uh +∇P(uh)− f )‖0,K ‖pMe (∇Jh(uh · uh))‖0,K

+
∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖0,F ‖JJh(uh · uh)K‖0,F

≤ CRh |uh · uh|1,Ω + C
∑

K∈Th

αK‖pMe (λ(∇uh)uh +∇P(uh))‖0,K hK |Jh(uh · uh)|1,K

+ C
∑

K∈Th

αK‖pMe (f )‖0,K hK |Jh(uh · uh)|1,K +
∑

F∈Eh

τ̃F ‖J∂nuh + P(uh)nK‖0,F ‖JJh(uh · uh)K‖0,F

≤ CRh |uh · uh|1,Ω + Cx

{

∑

K∈Th

αKh
2
K |uh · uh|21,ωK

}1/2

+C

{

∑

K∈Th

αK‖pMe (f )‖20,K

}1/2 {
∑

K∈Th

αKh
2
K |uh · uh|21,ωK

}1/2

+

{

∑

F∈Eh

τ̃F‖J∂nuh + P(uh)nK‖20,F

}1/2 {
∑

F∈Eh

τ̃F‖JJh(uh · uh)K‖20,F

}1/2

≤ C{R + x+ y + z}
{

h2|uh · uh|21,Ω +
∑

F∈Eh

τ̃F‖JJh(uh · uh)− uh · uhK‖20,F

}1/2

. (43)

But, in [2], Lemma 2, it is proved that

τ̃F =
1

λ
τF ≤ Cν

hF

ν
= ChF ,

and then, applying (36) and the mesh regularity, we arrive at

|(∇ · uh,uh · uh)| ≤ C{R + x+ y + z} h |uh · uh|1,Ω.
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Moreover, using (23) we get

|uh · uh|1,Ω = ‖∇(uh · uh)‖0,Ω
= 2‖∇(uh)uh‖0,Ω
≤ C|uh|1,Ω ‖uh‖∞,Ω

≤ Ch−κ|uh|21,Ω,

and then from (42) and (43) we arrive at

(N (uh),uh)

≥ 1

2
R2 +

1

2
x2 + w2 + y2 − 1

2
z2 − λ

2
(∇ · uh,uh · uh)

≥ 1

2
R2 +

1

2
x2 + w2 + y2 − 1

2
z2 − Ch1−κλ{R + x+ y + z}R2

≥ 1

2
R2 +

1

2
x2 + w2 + y2 − 1

2
z2 − Ch1−κλR3 − Ch1−κλ{x+ y + z}R2

≥ 1

2
R2 +

1

2
x2 + w2 + y2 − 1

2
z2 − Ch1−κλR3 − 1

2
x2 − 1

2
y2 − 1

2
z2 − 3

2
C2h2(1−κ)λ2R4

≥ 1

2
R2 + w2 +

1

2
y2 − z2 − Ch1−κλR3 − 3

2
C2h2(1−κ)λ2R4.

Let us define

R :=
1

MCλh1−κ
,

with M ∈ N sufficiently large such that

1

2
R2 − 1

M
R2 − 3

2M2
R2 ≥ 1

4
R2.

Next, imposing the following hypothesis on h:

2MCλh1−κz ≤ 1,

we conclude that

(N (uh),uh) ≥ 1

2
R2 − z2 − 1

M
R2 − 3

2M2
R2 +

1

2
y2 + w2

≥ 1

4
R2 − z2 +

1

2
y2 + w2

≥ 1

2
y2 + w2 > 0 .

Hence, Brouwer’s fixed point theorem implies that there is a uh ∈ Vh with |uh|1,Ω ≤ R and

N (uh) = 0. �
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3.3. A priori error analysis. We place the method in the case existence is assured, i.e., at

the diffusion dominated regime. To this end, we suppose that αK = γK = 1 on every element

and τF =
hF

12
on each edge. Then, method (21) simplifies to: Find (uh,λ, ph,λ) ∈ Vh × Qh

such that

(∇uh,λ,∇vh) + λ ((∇uh,λ)uh,λ, vh)− (ph,λ,∇ · vh) + (qh,∇ · uh,λ) (44)

−
∑

K∈Th

(

pMe (f +∆uh,λ − λ (∇uh,λ)uh,λ −∇ph,λ), p
M
e (∇qh + λ (∇vh)uh,λ)

)

K

+
∑

K∈Th

(λχh(x∇ · uh,λ), λ χh(x∇ · vh))K +
∑

F∈Eh

hF

12
(J∂nuh,λ + ph,λnK, J∂nvh + qhnK)F

= (f , vh), ∀(vh, qh) ∈ Vh ×Qh.

Next, we denote by Th : V′ ×Q −→ Vh ×Qh the discrete Stokes operator, which associates

with each (w, r) ∈ V′ ×Q the unique solution (uh, ph) ∈ Vh ×Qh of

(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh) +
∑

K∈Th

(

pMe (∇ph), p
M
e (∇qh)

)

K
(45)

+(λχh(x∇ · uh), λχh(x∇ · vh))K +
∑

F∈Eh

hF

12
(J∂nuh + phnK, J∂nvh + qhnK)F = 〈w, vh〉+ (r, qh),

for all (vh, qh) ∈ Vh ×Qh. This discrete Stokes operator, to the best of our knowledge, does

not coincide with any stabilized method available in the literature, although it might be seen

as a variation of the PPS method (cf. [11]) if the pressure space is the continuous piecewise

linear functions, or the RELP method (cf. [1]), if the pressures are discontinuous. Adapting

the analysis presented in [5, 1] we obtain the following result (see Appendix A for a sketch

of the analysis).

Lemma 8. There exist constants C,C ′ > 0, independent of h and λ, such that it holds

|||(T − Th)(w, 0)||| ≤ C h (1 + λ h)2 ‖w‖0,Ω ∀w ∈ L2(Ω) , (46)

|||Th(w, q)||| ≤ C ′ (1 + λ h)2 ‖(w, q)‖(Vh×Qh)′ ∀(w, q) ∈ (V ×Q)′ . (47)

To write the discrete method as a fixed point equation we also introduce the mapping

Gh : Λ×H2(Th)
2 ×H1(Th) −→ Vh ×Qh by Gh(λ, z, t) = (wh, rh) where

(wh, vh) + (rh, qh) = −(f − λ(∇z)z, vh)

−
∑

K∈Th

(

pMe (f +∆z − λ (∇z)z −∇t), pMe (λ (∇vh)z)
)

K
−
∑

K∈Th

(

pMe (f − λ (∇z)z), pMe (∇qh)
)

K
,

(48)
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for all (vh, qh) ∈ Vh ×Qh.

Using these operators, problem (44) can be written in a form analogous to (18):

Fh(λ,uh,λ, ph,λ) := (uh,λ, ph,λ) + ThGh(λ,uh,λ, ph,λ) = 0. (49)

The next result states some properties of Fh and its derivatives, and will be fundamental

for the error analysis carried out below. The first one proves that the differential operator

Du,pFh(λ, Ihuλ,Jhpλ) is an isomorphism under appropriate conditions on h and λ.

Lemma 9. Assume that on a given compact interval Λ ⊂ R a regular branch λ → (uλ, pλ) of

solutions of problem (18) exists and that (uλ, pλ) belongs to the space H2(Ω)2×H1(Ω). There-

fore, there exists a constant h0 > 0 such that, for all h ≤ h0, the mappingDu,pFh(λ, Ihuλ,Jhpλ)

is an isomorphism on Vh ×Qh.

Proof. We start noting that, since T is a linear and continuous operator, and using (7) and

(30), we arrive at

‖Du,pF (λ,uλ, pλ)−Du,pF (λ, Ihuλ,Jhpλ)‖L(V×Q)

= sup
|||(v,q)|||≤1

|||T
(

(Du,pG(λ,uλ, pλ)−Du,pG(λ, Ihuλ,Jhpλ))[v, q]
)

|||

≤ C sup
|||(v,q)|||≤1

‖(Du,pG(λ,uλ, pλ)−Du,pG(λ, Ihuλ,Jhpλ))[v, q]‖(V×Q)′

≤ Cλ sup
|||(w,t)|||≤1

sup
|||(v,q)|||≤1

((∇uλ)v + (∇v)uλ − (∇Ihuλ)v − (∇v)Ihuλ,w)

= Cλ sup
|||(w,t)|||≤1

sup
|||(v,q)|||≤1

((∇(uλ − Ihuλ))v + (∇v)(uλ − Ihuλ),w)

≤ Cλ sup
|||(w,t)|||≤1

sup
|||(v,q)|||≤1

2|uλ − Ihuλ|1,Ω |v|1,Ω |w|1,Ω

≤ CλhL, (50)

where L := supλ∈Λ max{‖f‖0,Ω, ‖uλ‖2,Ω, ‖pλ‖1,Ω}. Then, since the set of isomorphisms on

V × Q is open, there exists h2 > 0 such that Du,pF (λ, Ihuλ,Jhpλ) is an isomorphism on

V ×Q for all h ≤ h2.

Next, we define the mapping A1 := I +ThDu,pG(λ, Ihuλ,Jhpλ), which belongs to L(V×Q),

but also to L(Vh × Qh). Then, we use Lemma 8, Hölder’s inequality, (33), (34), and the
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inclusions H2(Ω) →֒ L∞(Ω) and H1(Ω) →֒ L4(Ω), to obtain

‖A1 −Du,pF (λ, Ihuλ,Jhpλ)‖L(V×Q) = sup
|||(v,q)|||≤1

|||(Th − T )Du,pG(λ, Ihuλ,Jhpλ)[v, q]|||

≤ C (1 + λh)2λ h sup
‖w‖0,Ω≤1

sup
|||(v,q)|||≤1

((∇Ihuλ)v + (∇v)Ihuλ,w)

≤ C (1 + λh)2λ h sup
‖w‖0,Ω≤1

sup
|||(v,q)|||≤1

{‖∇Ihuλ‖0,4,Ω‖v‖0,4,Ω‖w‖0,Ω + ‖∇v‖0,Ω‖Ihuλ‖∞,Ω‖w‖0,Ω}

≤ C (1 + λh)2λ h sup
‖w‖0,Ω≤1

sup
|||(v,q)|||≤1

{‖∇uλ‖0,4,Ω‖v‖0,4,Ω‖w‖0,Ω + ‖uλ‖∞,Ω‖∇v‖0,Ω‖w‖0,Ω}

≤ C (1 + λh)2λ h sup
‖w‖0,Ω≤1

sup
|||(v,q)|||≤1

{‖uλ‖2,Ω|v|1,Ω‖w‖0,Ω + ‖uλ‖2,Ω|v|1,Ω‖w‖0,Ω}

≤ C (1 + λh)2 λ hL , (51)

and then there exists h1 ≤ h2 such that for all h ≤ h1 the mapping A1 is an isomorphism in

V×Q. Also, since A1 also maps Vh×Qh onto itself, and is injective, is also an isomorphism

on Vh ×Qh.

Finally, using Lemma 8, it holds

‖A1 −Du,pFh(λ, Ihuλ,Jhpλ)‖L(Vh×Qh)

= sup
|||(vh,qh)|||≤1

|||Th(Du,pGh(λ, Ihuλ,Jhpλ)−Du,pG(λ, Ihuλ,Jhpλ))[vh, qh]|||

≤ C (1 + λ h)2 sup
|||(vh,qh)|||≤1

‖(Du,pGh(λ, Ihuλ,Jhpλ)−Du,pG(λ, Ihuλ,Jhpλ))[vh, qh]‖(Vh×Qh)′

≤ C (1 + λ h)2 sup
|||(wh,th)|||≤1

sup
|||(vh,qh)|||≤1

{

∑

K∈Th

(

pMe (f − λ(∇Ihuλ)Ihuλ −∇Jhpλ), p
M
e (λ(∇wh)vh)

)

K

−
∑

K∈Th

(

pMe (λ(∇vh)Ihuλ + λ(∇Ihuλ)vh +∇qh), p
M
e (λ(∇wh)Ihuλ)

)

K

−
∑

K∈Th

(

pMe (λ(∇vh)Ihuλ + λ(∇Ihuλ)vh), p
M
e (∇th)

)

K

}

= C (1 + λ h)2 sup
|||(wh,th)|||≤1

sup
|||(vh,qh)|||≤1

{I + II + III} .

Now, using (24), (30), (31) and the embedding H2(Ω) →֒ L∞(Ω), we obtain

‖(∇uλ)uλ − (∇Ihuλ)Ihuλ‖0,K ≤ ‖(∇(uλ − Ihuλ))uλ‖0,K + ‖(∇Ihuλ)(uλ − Ihuλ)‖0,K
≤ ‖uλ‖∞,K |uλ − Ihuλ|1,K + ‖∇Ihuλ‖∞,K ‖uλ − Ihuλ‖0,K
≤ ‖uλ‖∞,ΩChK‖uλ‖2,K + Ch−1

K ‖∇Ihuλ‖0,Kh2
K‖uλ‖2,K

≤ ChKL‖uλ‖2,K , (52)
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and then, using (35), we get

‖ − f + λ(∇Ihuλ)Ihuλ +∇Jhpλ‖0,K
= ‖∆uλ − λ((∇uλ)uλ − (∇Ihuλ)Ihuλ)−∇(pλ − Jhpλ)‖0,K
≤ ‖∆uλ‖0,K + CλhKL‖uλ‖2,K + C‖pλ‖1,ωK

≤ C{(1 + λ hL)‖uλ‖2,K + ‖pλ‖1,ωK
}. (53)

The item I is addressed using Lemma 5, (53) and (24), and Poincaré’s inequality as follows

I =
∑

K∈Th

(

pMe (f − λ(∇Ihuλ)Ihuλ −∇Jhpλ), p
M
e (λ(∇wh)vh)

)

K

≤ C
∑

K∈Th

λ h2
K‖f − λ(∇Ihuλ)Ihuλ −∇Jhpλ‖0,K‖(∇wh)vh‖0,K

≤ C
∑

K∈Th

λ hK L(1 + λ hK L)‖∇wh‖0,KhK‖vh‖∞,K

≤ C λhL (1 + λ hL)
∑

K∈Th

‖∇wh‖0,K‖vh‖0,K

≤ C λhL (1 + λ hL)|||(wh, th)||||||(vh, qh)|||. (54)

Also, using again Lemma 5, the embedding of H2(Ω) →֒ L∞(Ω), (26), (33), (34) and the

continuous embedding H1(Ω) →֒ L4(Ω), the item II is bounded as follows

II = −
∑

K∈Th

(

pMe (λ(∇vh)Ihuλ + λ(∇Ihuλ)vh +∇qh), p
M
e (λ(∇wh)Ihuλ)

)

K

≤ C λ
∑

K∈Th

{

λ‖pMe ((∇vh)Ihuλ + (∇Ihuλ)vh)‖0,K + ‖pMe (∇qh)‖0,K
}

‖pMe ((∇wh)Ihuλ)‖0,K

≤ C λ
∑

K∈Th

{λ hK(‖(∇vh)Ihuλ‖0,K + ‖(∇Ihuλ)vh‖0,K) + hK‖∇qh‖0,K} hK‖(∇wh)Ihuλ‖0,K

≤ C λh
∑

K∈Th

{λ hK‖∇vh‖0,K‖Ihuλ‖∞,K + λ hK‖∇Ihuλ‖0,4,K‖vh‖0,4,K

+ hK‖∇qh‖0,K} ‖∇wh‖0,K‖Ihuλ‖∞,K

≤ C λhL

{

λ h‖∇vh‖0,Ω‖uλ‖∞,Ω + λ h‖∇uλ‖0,4,Ω‖vh‖0,4,Ω +‖qh‖0,Ω} ‖∇wh‖0,Ω

≤ C λhL {1 + λ hL} |||(vh, qh)||| |||(wh, th)|||, (55)
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and the item III as

III = −
∑

K∈Th

(

pMe (λ(∇vh)Ihuλ + λ(∇Ihuλ)vh), p
M
e (∇th)

)

K

≤ Cλh
∑

K∈Th

(

‖∇vh‖0,K‖Ihuλ‖∞,K + ‖∇Ihuλ‖0,4,K‖vh‖0,4,K
)

‖pMe (∇th)‖0,K

≤ Cλh {|vh|1,Ω‖uλ‖∞,Ω + ‖Ihuλ‖1,4,Ω‖vh‖0,4,Ω}
(

∑

K∈Th

h2
K‖∇th‖20,K

)1/2

≤ Cλh ‖uλ‖2,Ω|vh|1,Ω‖th‖0,Ω
≤ CλhL |||(vh, qh)||| |||(wh, th)|||. (56)

Therefore, from (54), (55) and (56) it follows that

‖A1 −Du,pFh(λ, Ihuλ,Jhpλ)‖L(Vh×Qh) ≤ C λhL (1 + λ h)2 (1 + λ hL) , (57)

and the result follows for some h0 ≤ h1 using analogous arguments. �

Along with the previous Lemma, the next result states further properties of the mapping Fh

and its derivative.

Lemma 10. Assume the hypothesis of Lemma 9 hold. Therefore, there exists a constant C,

which does not depend on h or λ, such that

|||Fh(λ, Ihuλ,Jhpλ)||| ≤ C h
{

λL2(1 + λh)2 (1 + h+ λh2L) + L
}

. (58)

Furthermore, for each ρ > 0 and for all (vh, qh) ∈ Vh ×Qh such that (vh, qh) belongs to the

ball centered at (Ihuλ,Jhpλ) with radius ρ, there exists a constant C > 0, independent of h

and λ but depending on ρ, such that

‖Du,pFh(λ,Ihuλ,Jhpλ)−Du,pFh(λ, vh, qh)‖L(Vh×Qh)

≤ C λ
{

(1 + λ h)2 (1 + λ+ λL)
}

|||(Ihuλ − vh,Jhpλ − qh)||| . (59)

Proof. We first note that Fh(λ,uλ, pλ) = 0, and then using the linearity of Th we obtain

|||Fh(λ, Ihuλ,Jhpλ)||| = |||Fh(λ, Ihuλ,Jhpλ)− Fh(λ,uλ, pλ)|||
≤ |||(Ihuλ − uλ,Jhpλ − pλ)|||+ |||Th(Gh(λ,uλ, pλ)−Gh(λ, Ihuλ,Jhpλ))|||
= S1 + S2. (60)

To estimate S1 we use (30) and (35) and easily obtain

S1 ≤ C hL . (61)
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Next, using the continuity of Th (cf. Lemma 8) and the dual norm (5), it holds

S2 = |||Th(Gh(λ,uλ, pλ)−Gh(λ, Ihuλ,Jhpλ))|||
≤ C (1 + λ h)2 sup

|||(vh,qh)|||≤1

(Gh(λ,uλ, pλ)−Gh(λ, Ihuλ,Jhpλ), (vh, qh))

≤ C (1 + λ h)2 sup
|||(vh,qh)|||≤1

{

λ((∇uλ)uλ − (∇Ihuλ)Ihuλ, vh)Ω

−
∑

K∈Th

(

pMe (f +∆uλ − λ(∇uλ)uλ −∇pλ), p
M
e (λ(∇vh)uλ)

)

K

−
∑

K∈Th

(

pMe (−f + λ(∇Ihuλ)Ihuλ +∇Jhpλ), p
M
e (λ(∇vh)Ihuλ)

)

K

−
∑

K∈Th

(

pMe (λ(∇Ihuλ)Ihuλ − λ(∇uλ)uλ), p
M
e (∇qh)

)

K

}

≤ C (1 + λ h)2 sup
|||(vh,qh)|||≤1

{I + II + III + IV} .

As for the first term, using (52) and Cauchy–Schwarz’s and Poincaré’s inequalities we have

I = λ((∇Ihuλ)Ihuλ − (∇uλ)uλ, vh)Ω

≤ λ‖(∇Ihuλ)Ihuλ − (∇uλ)uλ‖0,Ω ‖vh‖0,Ω
≤ C λhL2 |||(vh, qh)|||. (62)

Since (uλ, pλ) is the solution of problem (16) then II = 0. We are left with bounding III and

IV, for which we use Lemma 5, (34) and the continuous embedding H2(Ω) →֒ L∞(Ω), and

(53) as follows

III = −
∑

K∈Th

(

pMe (−f + λ(∇Ihuλ)Ihuλ +∇Jhpλ), p
M
e (λ(∇vh)Ihuλ)

)

K

≤ C
∑

K∈Th

λh2
K ‖ − f + λ(∇Ihuλ)Ihuλ +∇Jhpλ‖0,K‖(∇vh)Ihuλ‖0,K

≤ C
∑

K∈Th

λh2
K {(1 + λ hL)‖uλ‖2,K + ‖pλ‖1,ωK

} |vh|1,K L

≤ C λh2L2 {1 + λ hL} |||(vh, qh)|||. (63)
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As for item IV, we further use (52) and (26) to get

IV =
∑

K∈Th

(

pMe (λ(∇Ihuλ)Ihuλ − λ(∇uλ)uλ), p
M
e (∇qh)

)

K

≤ C
∑

K∈Th

λ hK ‖(∇Ihuλ)Ihuλ − (∇uλ)uλ‖0,K ‖pMe (∇qh)‖0,K

≤ C
∑

K∈Th

λLh2
K‖uλ‖2,K hK‖∇qh‖0,K

≤ C λh2 L2 |||(vh, qh)|||. (64)

Gathering (62)–(64), we get

S2 ≤ C λhL2 (1 + λh)2 (1 + h + λh2L) (65)

and thus, using (60) and the bounds given in (61) and (65), we establish (58).

Estimate (59) is addressed next. Let (uh, ph), (vh, qh), (wh, rh) ∈ Vh×Qh with |||(wh, rh)||| =
1. From the stability of the discrete Stokes operator in Lemma 8 we get

|||Du,pFh(λ, vh, qh)(wh, rh)−Du,pFh(λ, Ihuλ,Jhpλ)(wh, rh)|||
= |||Th(Du,pGh(λ, vh, qh)(wh, rh)−Du,pGh(λ, Ihuλ,Jhpλ)(wh, rh))|||
≤ C (1 + λ h)2 sup

|||(zh,sh)|||≤1

(Du,pGh(λ, vh, qh)(wh, rh)−Du,pGh(λ, Ihuλ,Jhpλ)(wh, rh), (zh, sh))

≤ C (1 + λ h)2 sup
|||(zh,sh)|||≤1

{

− (λ(∇Ihuλ)wh + λ(∇wh)Ihuλ, zh)

+ (λ(∇vh)wh + λ(∇wh)vh, zh) +
∑

K∈Th

(

pMe (f − λ(∇Ihuλ)Ihuλ −∇Jhpλ), p
M
e (λ(∇zh)wh)

)

K

−
∑

K∈Th

(

pMe (f − λ(∇vh)vh −∇qh), p
M
e (λ(∇zh)wh)

)

K

−
∑

K∈Th

(

pMe (λ(∇Ihuλ)wh + λ(∇wh)Ihuλ +∇rh), p
M
e (λ(∇zh)Ihuλ)

)

K

+
∑

K∈Th

(

pMe (λ(∇vh)wh + λ(∇wh)vh +∇rh), p
M
e (λ(∇zh)vh)

)

K

−
∑

K∈Th

(

pMe (λ(∇Ihuλ)wh + λ(∇wh)Ihuλ), p
M
e (∇sh)

)

K

+
∑

K∈Th

(

pMe (λ(∇vh)wh + λ(∇wh)vh), p
M
e (∇sh)

)

K

}

= C (1 + λ h)2 sup
|||(zh,sh)|||≤1

{

V + VI + VII + VIII + IX + X
}

.
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We bound the item V by using (7) as follows

V = −λ ((∇(Ihuλ − vh))wh + (∇wh)(Ihuλ − vh), zh)

≤ 2αλ |Ihuλ − vh|1,Ω|wh|1,Ω|zh|1,Ω
≤ 2αλ |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)|||, (66)

and for the item VI we use Cauchy-Schwarz’s inequality, Lemma 5, (24) and (26) to obtain

VI = −
∑

K∈Th

(

pMe (∇(Jhpλ − qh)), p
M
e (λ(∇zh)wh)

)

K

≤ C λ
∑

K∈Th

hK ‖∇(Jhpλ − qh)‖0,KhK‖∇zh‖0,K‖wh‖∞,K

≤ C λ
∑

K∈Th

‖Jhpλ − qh‖0,K |zh|1,K‖wh‖0,K

≤ C λ |||(Ihuλ − vh,Jhpλ − qh)||| |||(zh, sh)||| |||(wh, rh)||| . (67)

Following analogous steps, and using Poincaré’s inequality, we can establish the following

estimates for items VII− X:

VII = −
∑

K∈Th

λ
(

pMe ((∇Ihuλ)Ihuλ − (∇vh)vh), p
M
e (λ(∇zh)wh)

)

K

≤ Cλ2
∑

K∈Th

h2
K‖(∇Ihuλ)Ihuλ − (∇vh)vh‖0,K‖(∇zh)wh‖0,K

≤ Cλ2
∑

K∈Th

hK‖(∇Ihuλ)Ihuλ − (∇vh)vh‖0,K |zh|1,K‖wh‖0,K

≤ Cλ2

{

∑

K∈Th

hK‖(∇Ihuλ)(Ihuλ − vh)‖0,K +
∑

K∈Th

hK‖(∇(Ihuλ − vh))vh‖0,K
}

|zh|1,Ω|wh|1,Ω

≤ Cλ2

{

∑

K∈Th

hK‖∇Ihuλ‖0,K‖Ihuλ − vh‖∞,K +
∑

K∈Th

hK‖∇(Ihuλ − vh)‖0,K‖vh‖∞,K

}

|zh|1,Ω|wh|1,Ω

≤ Cλ2







(

∑

K∈Th

‖∇Ihuλ‖20,K

)1/2(
∑

K∈Th

‖Ihuλ − vh‖20,K

)1/2

+

(

∑

K∈Th

|Ihuλ − vh|21,K

)1/2(
∑

K∈Th

‖vh‖20,K

)1/2






|zh|1,Ω|wh|1,Ω

≤ Cλ2 {‖uλ‖2,Ω + |vh|1,Ω} |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)|||,
≤ Cλ2 {L+ ρ} |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)|||, (68)
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and

VIII =−
∑

K∈Th

λ
(

pMe ((∇(Ihuλ − vh))wh + (∇wh)(Ihuλ − vh)), p
M
e (λ(∇zh)Ihuλ)

)

K

≤C λ2
∑

K∈Th

h2
K‖(∇(Ihuλ − vh))wh + (∇wh)(Ihuλ − vh)‖0,K‖(∇zh)Ihuλ‖0,K

≤C λ2
∑

K∈Th

{|Ihuλ − vh|1,K‖wh‖0,K + |wh|1,K‖Ihuλ − vh‖0,K} |zh|1,K‖Ihuλ‖0,K

≤C λ2







(

∑

K∈Th

|Ihuλ − vh|21,K

)1/2 (
∑

K∈Th

‖wh‖20,K

)1/2

+

(

∑

K∈Th

|wh|21,K

)1/2(
∑

K∈Th

‖Ihuλ − vh‖20,K

)1/2






|zh|1,Ω‖uλ‖2,Ω

≤C λ2L |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)||| , (69)

and

IX = −
∑

K∈Th

λ
(

pMe ((∇vh)wh + (∇wh)vh +∇rh), p
M
e (λ(∇zh)(Ihuλ − vh))

)

K

≤C λ2
∑

K∈Th

h2
K‖(∇vh)wh + (∇wh)vh +∇rh‖0,K‖(∇zh)(Ihuλ − vh)‖0,K

≤C λ2
∑

K∈Th

{|vh|1,K‖wh‖0,K + |wh|1,K‖vh‖0,K + ‖rh‖0,K} |zh|1,K‖Ihuλ − vh‖0,K

≤C λ2|vh|1,Ω |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)|||
≤C λ2{L+ ρ} |||(Ihuλ − vh,Jhpλ − qh)||| |||(wh, rh)||| |||(zh, sh)||| , (70)

and

X =−
∑

K∈Th

λ
(

pMe ((∇(Ihuλ − vh))wh + (∇wh)(Ihuλ − vh)), p
M
e (∇sh)

)

K

≤C λ
∑

K∈Th

hK ‖(∇(Ihuλ − vh))wh + (∇wh)(Ihuλ − vh)‖0,K hK ‖∇sh‖0,K

≤C λ
∑

K∈Th

{|Ihuλ − vh|1,K hK ‖wh‖∞,K + |wh|1,KhK ‖Ihuλ − vh‖∞,K} ‖sh‖0,K

≤C λ
(

|Ihuλ − vh|1,Ω ‖wh‖0,Ω + |wh|1,Ω‖Ihuλ − vh‖0,Ω
)

‖sh‖0,Ω
≤C λ |||(Ihuλ − vh,Jhpλ − qh)||| |||(zh, sh)||| |||(wh, rh)||| . (71)

Finally, gathering (66)–(71) the estimate (59) follows. �
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We are now ready to prove the existence and uniqueness of a local discrete solution, and to

present an error estimate.

Theorem 11. Assume the hypothesis of Lemma 9 hold. Therefore, there is a positive con-

stant h0(Λ) such that for all h with 0 < h ≤ h0 a unique branch λ → (uh,λ, ph,λ) of solutions

of problem (21) exists in a neighborhood of (uλ, pλ). Moreover, the following estimate holds

sup
λ∈Λ

{

|uλ − uh,λ|21,Ω + ‖pλ − ph,λ‖20,Ω
}1/2 ≤ C h , (72)

where C = C(L,Λ) > 0 does not depend on h.

Proof. From Lemma 9 we have that Du,pFh(λ, Ihuλ,Jhpλ) is an isomorphism of Vh × Qh

onto itself for each λ ∈ Λ, provided that h supλ∈Λ λ is sufficiently small. In addition, from

(59) (cf. Lemma 10) we obtain that

|||Fh(λ, vh, qh)− Fh(λ,wh, th)−Du,pFh(λ, Ihuλ,Jhpλ)[(vh, qh)− (wh, th)]|||
≤ C(λ, L)ρ |||(vh, qh)− (wh, th)||| , (73)

for all (vh, qh), (wh, th) ∈ B((Ihuλ,Jhpλ); ρ). The two above facts constitute the hypothesis

of Theorem IV.3.6 in [17]. Hence, supposing that h is small enough such as

4C(λ, L) ‖{Du,pFh(λ, Ihuλ,Jhpλ)}−1‖2L(Vh×Qh)
|||Fh(λ, Ihuλ,Jhpλ)||| < 1 , (74)

and applying (58) (cf. Lemma 10) and Theorem IV.3.6 in [17] we conclude that problem

(49) has a unique solution (uh,λ, ph,λ) ∈ B((Ihuλ,Jhpλ); ρ), where ρ is given by

ρ := 2 ‖{Du,pFh(λ, Ihuλ,Jhpλ)}−1‖L(Vh×Qh) |||Fh(λ, Ihuλ,Jhpλ)||| ≤ C(L,Λ)h ,

and the result follows using (30), (35) and the triangular inequality. �

4. A divergence-free discrete velocity.

Since continuous piecewise linear interpolations for the velocity can not be divergence-free,

some additional work is needed in terms of a post-processing. Whenever discontinuous

pressure interpolations are used, this can be accomplished by either solving local problems

(as in [1]), or by adding a particular Raviart-Thomas vector field to the discrete velocity,

which is easy to compute. Here we follow the latter option, slightly modifying the approach

presented in [1, 2] and defining in each K ∈ Th

unc,λ =
∑

F⊂∂K∩Ω

τ̃FΠF (J∂nuh,λ + ph,λnK) · nϕF , (75)
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where ϕF := ± hF

2 |K|(x − xF ), with xF the opposite node to the edge F , stands for the

lowest–order Raviart–Thomas basis function. Using (75), we build the non–conforming

velocity field ûh,λ :=uh,λ + unc,λ which is point-wise divergence-free and shares the same

convergence properties as uh,λ. This is stated in the following result.

Lemma 12. Let uh,λ be the solution of (21) and unc,λ given in (75), respectively. Then,

the velocity field ûh,λ :=uh,λ + unc,λ satisfies

∇ · ûh,λ = 0 ∀K ∈ Th. (76)

Moreover, under the hypothesis of Theorem 11, there exists a constant C = C(L,Λ) > 0,

independent of h, such that

sup
λ∈Λ

{

∑

K∈Th

|uλ − ûh,λ|21,K

}
1

2

≤ C h.

Proof. The proof of the first part is a slight variation of Lemma 3.8 in [1], and hence we omit

it. The error estimate reduces to prove a bound on |unc,λ|1,K which, after using the fact that

τ̃F ≤ ChF (see [2]), follows the same steps as in [1], Lemma 3.9. �

5. Numerical validations

This section is devoted to testing the new RELP method (15) having as discrete spaces the

pairs P2
1/P0 and P

2
1/P1 (with continuos pressures). The domain is set to be the unit square

Ω = (0, 1)× (0, 1). In what follows, we first validate theoretical convergence rates through

a benchmark with an analytical solution. Next, we address the standard lid-driven cavity

problem in the high Reynolds number setting.

5.1. A study of convergence. We set ν = 1 and ν = 10−2, and f is such as the exact

solution u(x, y) := (u1(x, y), u2(x, y)) and p(x, y) of the Navier–Stokes equations is given by

u1(x, y) := ex sin(y), u2(x, y) := ex cos(y), p(x, y) := −1

2
e2x +

1

4
(e2 − 1) .

We remark that the velocity is a harmonic function and then the RELP method is fully

consistent for the element P
2
1/P1. In Figures 1-2 we provide the convergence history using

the norms ‖p− ph‖0,Ω, ‖u− uh‖0,Ω and |u− uh|1,Ω, where (uh, ph) is the solution of (15).
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Figure 1. Convergence history of ‖p − ph‖0,Ω (top left), ‖u − uh‖0,Ω (top

right) and |u− uh|1,Ω (bottom). Here ν = 1.

We observe that the numerical orders show a perfect agreement with the theoretical ones,

plus a second order convergence for the pressure for the P
2
1/P1 case. Next, for the element

P
2
1/P0 we update the solution uh with (75) and produce the divergence-free velocity field

ûh = uh + unc. The results are given in Table 1 assuming different values for ν. The

procedure preserves the optimality of the error as pointed out in Figure 3, in agreement with

the theory.
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h 0.25 0.125 0.0625 0.03125 0.015625

maxK∈Th |∇· ûh |K | (ν = 1) 8× 10−15 4.9× 10−14 2.4× 10−13 1.4× 10−12 5.7× 10−12

maxK∈Th |∇· ûh |K | (ν = 10−2) 9.1× 10−12 2.6× 10−11 2.4× 10−11 8× 10−11 2.6× 10−13

Table 1. Error in the divergence for P1/P0.
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Figure 2. Convergence history of ‖p − ph‖0,Ω (top left), ‖u − uh‖0,Ω (top

right) and |u− uh|1,Ω (bottom). Here ν = 10−2.
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Figure 3. Convergence history for the updated velocity ûh with the element

P
2
1/P0. Here ν = 1 (left) and ν = 10−2 (right).

5.2. The lid-driven cavity flow. Next, a challenging test involving a high Reynolds num-

ber flow is addressed for which no exact solution is available. We attempt to solve the

lid-driven cavity problem with f = 0 and ν = 1
5000

, and consider a structured mesh of

around 65,000 elements. We depict in Figure 4 the streamlines obtained using both pairs of

interpolation spaces.

We can see that the method provides a well-balanced dose of numerical diffusion as the

secondary vortices are recovered. Also, the precision of the RELP method is validated

comparing the numerical solutions provided by the present method with previously available

reference solutions. We can see in Table 2 that such results are in accordance.

Re Ghia et al. [16] NSIKE [19] RELP P
2
1/P0 RELP P

2
1/P1

5000 x = 0.5117 x = 0.53 x = 0.5285 x = 0.5298

y = 0.5352 y = 0.53 y = 0.521 y = 0.5370

Table 2. Primary vortex center position.
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Figure 4. Streamlines with elements P2
1×P0 (left) and P

2
1×P1 (right). Here

the Reynolds number is 5000.

6. Conclusion

New RELP methods made stable the simplest and lowest equal order pairs of interpolation

spaces for the fully non-linear Navier–Stokes equations, introducing the right dose of numeri-

cal diffusion. In the process of proving well-posedness and optimal convergence in the natural

norms, a new stabilized method for the Stokes model was also introduced and analyzed. In

addition, a simplified version of the RELP method, which shares the same desired properties

of the original method, avoided the use of two level approaches and became computationally

competitive. Next, this method was combined with a simple post-processing procedure to

produce a locally conservative solution which is optimally convergent in the discontinuous

pressure case. As such, the methods in this work may be seen as an appealing alternative

to simulate complex flows using the cheapest and simplest elements in a precise way while

respecting the divergence-free constraint exactly.
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Appendix A. The discrete Stokes operator

The discrete Stokes operator includes a formally new stabilized finite element method, given

by: Find (uh, ph) ∈ Vh ×Qh such that :

B((uh, ph), (vh, qh)) = 〈w, vh〉+ (r, qh) , (77)

for all (vh, qh) ∈ Vh ×Qh, where (w, r) ∈ V′ ×Q is given, and B(., .) reads as follows

B((uh, ph), (vh, qh)) := (∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)

+
∑

K∈Th

(

pMe (∇ph), p
M
e (∇qh)

)

K
+ (λχh(x∇ · uh), λχh(x∇ · vh))K

+
∑

F∈Eh

hF

12
(J∂nuh + phnK, J∂nvh + qhnK)F . (78)

The next result establishes the existence and unicity of solution for (77).

Lemma 13. The mapping Th is well-defined.

Proof. Defining the mesh-dependent norm

‖(vh, qh)‖h :=

{

|vh|21,Ω +
∑

K∈Th

‖χh(qh)‖20,K + ‖λχh(x∇ · vh)‖20,K +
∑

F∈Eh

hF

12
‖J∂nvh + qhnK‖20,F

}
1

2

,

(79)

and using (14) it is easy to realize that, for all (vh, qh) ∈ Vh ×Qh

B((vh, qh), (vh, qh)) = ‖(vh, qh)‖2h , (80)

and, thus, the problem (77) is well-posed and the operator Th is well-defined. �

Lemma 14. The operator Th is continuous. More precisely, there exists C > 0, independent

of h and λ, such that

|||Th(w, r)||| ≤ C (1 + λ h)2 ‖(w, r)‖(Vh×Qh)′ ,

for all (w, r) ∈ (V ×Q)′.

Proof. The proof follows standard arguments, but we present it here for completeness. Let

(uh, ph) = Th(w, r). From (80) we see that

‖(uh, ph)‖2h = B((uh, ph), (uh, ph)) = 〈w,uh〉+ (r, ph) ≤ ‖w‖V′

h
|uh|1,Ω + ‖r‖Q′

h
‖ph‖0,Ω .

(81)



30 R. ARAYA, G.R. BARRENECHEA, A.H. POZA, AND F. VALENTIN

To bound the L2(Ω)-norm of ph, let z ∈ H1
0 (Ω)

2 be such that

β ‖ph‖0,Ω|z|1,Ω ≤ (ph,∇ · z) , (82)

and let zh be the Clément interpolate of z. Then, integrating by parts, using that (uh, ph)

is the solution of (77), (35) and (36) we arrive at

β ‖ph‖0,Ω|z|1,Ω ≤ (ph,∇ · (z − zh)) + (ph,∇ · zh)

= −
∑

K∈Th

(∇ph, z − zh)K +
∑

F∈Eh

(JphnK, z − zh)F + (∇uh,∇zh)

+
∑

K∈Th

(λχh(x∇ · uh), λχh(x∇ · zh))K +
∑

F∈Eh

hF

12
(J∂nuh + phnK, J∂nzhK)F − 〈w, zh〉

≤ C
∑

K∈Th

hK‖∇ph‖0,K |z|1,ωK
+ C

∑

F∈Eh

h
1

2

F‖JphnK‖0,F |z|1,ωF
+ |uh|1,Ω|zh|1,Ω + ‖w‖V′

h
|zh|1,Ω

+ C
∑

K∈Th

λ‖χh(x∇ · uh)‖0,Kλ‖χh(x∇ · zh)‖0,K +
∑

F∈Eh

hF

12
‖J∂nuh + phnK‖0,F‖J∂nzhK‖0,F .

(83)

Next, using the generalized Poincaré’s inequality and the fact that |x|1,K ≤ ChK and (35)

we obtain

‖χh(x∇ · zh)‖0,K =
‖χh(x)‖0,K

|K| 12
‖∇ · zh‖0,K ≤ ChK ‖z‖1,ωK

, (84)

and then (25), (26), (83) and the mesh regularity lead to

β ‖ph‖0,Ω|z|1,Ω ≤ C

{

∑

K∈Th

h2
K‖∇ph‖20,K +

∑

F∈Eh

hF‖JphnK‖20,F + ‖(uh, ph)‖2h + ‖w‖2
V′

h

}
1

2

{

|z|21,Ω +
∑

K∈Th

λ2h2
K‖z‖21,ωK

}
1

2

≤ C
{

‖(uh, ph)‖2h + ‖w‖2
V′

h

}
1

2

(1 + λh) |z|1,Ω , (85)

and dividing by |z|1,Ω we arrive at

‖ph‖0,Ω ≤ C (1 + λh)
{

‖(uh, ph)‖2h + ‖w‖2
V′

h

}
1

2

. (86)

Then, using (86) in (81), and a b ≤ a2 + 1
4
b2 with a, b ∈ R

+, we arrive at

‖(uh, ph)‖2h ≤ C ( ‖w‖2
V′

h
+ (1 + λ h)2‖r‖2Q′

h
)

≤ C (1 + λ h)2 ( ‖w‖2
V′

h
+ ‖r‖2Q′

h
) , (87)
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and then replacing this in (86) it holds

‖ph‖0,Ω ≤ C (1 + λh)2 (‖w‖V′

h
+ ‖r‖Q′

h
) .

Finally, the proof ends remarking that |||(uh, ph)||| ≤
(

‖(uh, ph)‖2h + ‖ph‖20,Ω
)1/2

and using

‖w‖V′

h
+ ‖r‖Q′

h
≤ C ‖(w, r)‖(Vh×Qh)′ . �

Lemma 15. There exists a constant C > 0, independent of h and λ such that, for all

w ∈ L2(Ω)2, it holds

|||(T − Th)(w, 0)||| ≤ C (1 + λ h)2h ‖w‖0,Ω . (88)

Proof. Let (u, p) = T (w, 0) and (uh, ph) = Th(w, 0). The proof consists of proving the error

estimates

‖(u− uh, p− ph)‖h ≤ C (1 + λ h) h (‖u‖2,Ω + ‖p‖1,Ω) , (89)

‖p− ph‖0,Ω ≤ C (1 + λ h)2 h (‖u‖2,Ω + ‖p‖1,Ω) , (90)

and then applying classical regularity results for the Stokes problem (cf. [17]).

To prove (88) we split the error into interpolation error (ηu, ηp) := (u − Ih(u), p − Jh(p))

and discrete error (euh , e
p
h) := (Ih(u)−uh,Jh(p)−ph). Then, using the stability and approx-

imation properties of χh, the fact that u is solenoidal, (30)-(36), and the mesh regularity we

obtain

‖(ηu, ηp)‖2h = |ηu|21,Ω +
∑

K∈Th

‖χh(η
p)‖20,K + ‖λχh(x∇ · ηu)‖20,K +

∑

F∈Eh

hF

12
‖J∂nηu + ηpnK‖20,F

≤ Ch2 |u|22,Ω + ‖ηp‖20,Ω +
∑

K∈Th

λ2‖χh(x)‖20,K
|K| ‖∇ · Ih(u)‖20,K + C

∑

F∈Eh

h2
F (|u|22,ωF

+ |p|21,ωF
)

≤ Ch2(|u|22,Ω + |p|21,Ω) + C
∑

K∈Th

λ2h2
K‖∇ · ηu‖20,K

≤ Ch2
(

(1 + λ2h2) |u|22,Ω + |p|21,Ω
)

. (91)

Next, using arguments very close to the analysis from [1] we can prove that

‖(euh , eph)‖h ≤ C(1 + λ h) h (|u|2,Ω + |p|1,Ω) , (92)

and then (89) follows using the triangle inequality. To prove (90) we use the continuous

inf-sup condition and the definition of the method. We omit further details, and refer to [1]

for an analysis that can be easily adapted to the present case. �
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