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Abstract

In this paper we propose and analyze a Local Discontinuous Galerkin method
for an elliptic variational inequality of the first kind that corresponds to a Poisson
equation with Signorini type condition on part of the boundary. The method uses
piecewise polynomials of degree one for the field variable and of degree zero or one
for the approximation of its gradient. We show optimal convergence for the method
and illustrate it with some numerical experiments.
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1 Introduction

This paper is concerned with the numerical solution of a model problem that can be
written in terms of a variational inequality of the first kind in a closed convex set. In
differential form the problem is:

−∆u = f in Ω,

u = g0 on Γ0,

u ≥ 0, ∂νu ≥ g, u (∂νu− g) = 0 on Γ.

(1.1)

Here Ω is a polygonal domain in the plane whereas the polygonal curves Γ and Γ0 form
a subdivision of its boundary (see Figure 1 for a sketch of the geometry). This problem
is a scalar version of the Signorini problem, that arises when we exchange the Laplace
operator by the Navier–Lamé (linear elasticity) operator and all occurrences of the normal
derivative by the normal stress. The Signorini problem is an important linear model for
elastic behavior with friction conditions on the boundary (or on part of it). For more
on the Signorini problem, we refer the reader to the already classical text [17]. Problem
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(1.1) includes a three conditions on the friction boundary Γ: two inequalities and a
complementarity condition.

In variational form this problem corresponds to minimizing the functional

1

2

∫
Ω

|∇u|2 −
∫

Ω

f u−
∫

Γ

g u

over the set
K := {u ∈ H1(Ω) : u = g0 on Γ0, u ≥ 0 on Γ}.

In its turn, this minimization problem can be written as a variational inequality of the
first kind on the convex set K: u ∈ K,∫

Ω

∇u · ∇(v − u) ≥
∫

Ω

f (v − u) +

∫
Γ

g (v − u) ∀v ∈ K.

Elementary results on this very simple type of variational inequalities can be found in [15]
or [17]. Finite element approximation of this and more complicated variational inequalities
has been the subject of intense research since the very dawn of this popular method.
The above mentioned monographs include statements of results on this approximation.
An introduction to this subject can be found in [4, Chapter 11], including results that
already appeared in original papers as [7]. In addition to the usual inherent difficulties
of variational inequalities associated to elliptic problems (such as regularity issues), finite
element approximation adds the analytical difficulty of the appearance of a consistency
error term due to the fact that the finite element approximation of the convex set K is not
a subset of it. Apart from the interest of obtaining fine estimates for this approximation
process, its theoretical study is a source of novel mathematical techniques in finite element
analysis.

In this work we are going to propose the numerical solution of this problem by one of
the many Discontinuous Galerkin (DG in the sequel) methods that appear in the liter-
ature. DG methods applied both to steady–state and dynamic problems have attracted
the attention of theorists and practitioners (two seminal references are [1] and [16]). The
number of different DG methods increased during the decade of the nineties. The need for
organizing, classifying and finding common features (as well as differences) was fulfilled,
in the case of DG methods applied to elliptic problems, in [3]. Many of the methods
studied in that paper shared the possibility of being written both in primal and mixed
form. In the primal form only the discretization of the original unknown (u in our case)
is shown, whereas the mixed form emphasizes the fact that a numerical approximation of
the flux (∇u in our case) is being computed at the same time. Among the advantages of
DG methods, the possibility of handling very general partitions (with multiple hanging
nodes) and varying the polynomial degree from element to element have been advertised
as desirable characteristics for dealing with complicated geometries and using simple local
adaptivity procedures.

Among the methods discussed in [3], there is the Local Discontinuous Galerkin (LDG)
method, that appeared in its current formulation in [12]. The natural form for this
method is the mixed one and the primal form appears here as just a trick for analysis.
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The LDG method has grown since in new directions, by adding more possibilities of how
numerical fluxes (the main ingredient of DG methods) depend on the different discrete
variables, as in [10]. In particular, some of these methods admit hybridization, a very
useful computational feature that appeared in [2] for some mixed and non–conforming
methods, allowing to reduce computations to the skeleton of the discretization. LDG
methods that can be hybridized cannot be however be written in primal form. Since the
primal form is at the very heart of our proposal for the method, based on the discretization
of the minimization problem, we are not able to deal with this promising feature at the
present state of our research. Among some of the advantages of LDG is the fact that it
is a naturally mixed method, offering simultaneous approximation of the primal variable
and the flux, as well as the simplicity of the treatment of several kinds of non–linearities
[8], [9].

In this paper we will present and analyze an LDG approximation of the minimization
problem and will explain some practical issues related to implementation. To keep the
analysis simple we will restrict ourselves to linear elements and will emphasize how DG
methods that can be written in primal form can be applied to variational inequalities.

Notational foreword. To distinguish easily between scalar–valued and vector–valued
quantities, we will always use boldface fonts for vectors. The symbols . and ≈ will be
used as accustomed in much of the finite element literature. When we write a . b we mean
that there exists a quantity C > 0 that does not depend on the discretization parameter
h such that a ≤ C b. If a . b . a, we just write a ≈ b.

2 The LDG gradient

Consider a plane domain Ω, whose boundary is composed of two closed polygonal lines
Γ and Γ0 (Figure 1). For given f ∈ L2(Ω), g0 : Γ0 → R and g : Γ → R (the regularity
conditions on these two will be given in the sequel), we consider the problem

−∆u = f in Ω,

u = g0 on Γ0,

∂νu = g on Γ,

(2.1)

as well as an LDG discretization of it.
We consider a sequence {Th} of partitions of Ω, each formed by shape–regular triangles

with possible hanging nodes. In principle, to avoid unnecessary difficulties, we consider
triangulations that are refinements of conforming triangulations à la Ciarlet (see [5]).
Bounded variation of the triangulation is also assumed, i.e., sizes of adjacent triangles
have to be asymptotically comparable. We consider the broken Sobolev spaces

H1(Th) :=
∏

T∈Th

H1(T ), H1(Th) :=
∏

T∈Th

[
H1(T )

]2

.

Traces from these spaces on the boundaries Γ and Γ0 are to be understood always element
by element without further clarification. The interior skeleton I◦

h is defined to be the union
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Figure 1: The very simplified model geometry. The Dirichlet boundary Γ0 is set apart
from the friction/Signorini boundary Γ to avoid unnecessary complications.

of all the edges of elements. The trace of functions in H1(Th) and H1(Th) on the interior
skeleton is a double valued function. We are going to use the standard notation of [3] for
interelement averages and jumps: if e = T1∩T2 and νTi

is the normal vector on e exterior
to Ti, then we write

[[u]]e := uT1νT1 + uT2νT2 , {u}e := 1
2
(uT1 + uT2),

[[τ ]]e := τ T1 · νT1 + τ T2 · νT2 , {τ}e := 1
2
(τ T1 + τ T2).

With these definitions, it is easy to prove the discrete divergence theorem∫
Ω

(
∇hv · τ + v divhτ

)
=

∫
Γ∪Γ0

v (τ · ν) +

∫
I◦

h

(
[[v]] · {τ} + {v}[[τ ]]

)
, (2.2)

where ∇h and divh denote respectively the gradient and divergence operators applied
elementwise.

We next consider two bilinear forms depending on traces of functions of the broken
Sobolev spaces, A : H1(Th) ×H1(Th) → R and S : H1(Th) × H1(Th) → R, given by

A(u, v) :=

∫
I◦

h

α[[u]] · [[v]] +

∫
Γ0

αu v

and

S(u, τ ) :=

∫
I◦

h

[[u]] ·
(
{τ} − [[τ ]]β

)
+

∫
Γ0

u (τ · ν).

They both constitute important elements in the definition of the LDG method. Here α
and β are constant on each edge and we assume that

αe ≈ h−1
e , |βe| . 1 ∀e.

Finally we introduce the two discrete spaces for the LDG discretization

Vh :=
∏

T∈Th

P1(T ), Σh :=
∏

T∈Th

[
Pr(T )

]2

, r ∈ {0, 1},
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Pr(T ) being the space of bivariate polynomials of degree not greater than r. The global
formulation of the LDG equations is given by

σh ∈ Σh, uh ∈ Vh,∫
Ω

σh · τ h −
( ∫

Ω

∇huh · τ h − S(uh, τ h)
)

=

∫
Γ0

g0 (τ h · ν) ∀τ h ∈ Σh,( ∫
Ω

∇hvh · σh − S(vh,σh)
)

+ A(uh, vh) = ℓ(vh) +

∫
Γ0

α g0 vh ∀vh ∈ Vh,

(2.3)

with

ℓ(v) :=

∫
Ω

f v +

∫
Γ

g v.

Derivation of these global equations from local equations, that can be easily interpreted
in terms of local numerical fluxes, can be found in [3] or [8]. We will take them here as a
given and proceed onwards.

We now define the operator Sh : H1(Th) → Σh given by the relations∫
Ω

Shv · τ h = S(v, τ h) ∀τ h ∈ Σh,

the corrected gradient (the LDG gradient) operator

∇∗
h := ∇h − Sh,

and the discrete function g0
h ∈ Σh such that∫

Ω

g0
h · τ h =

∫
Γ0

g0 (τ h · ν) ∀τ h ∈ Σh.

Notice that in case it is needed, g0
h can be computed on an element–by–element basis and

that the support of g0
h is limited to the set of triangles having an edge on Γ0. Note also

that for the exact solution of (2.1) we have

∇∗
hu = ∇u− g0

h. (2.4)

With these notations, the first equation in (2.3) can be written as∫
Ω

σh · τ h −
∫

Ω

∇∗
huh · τ h =

∫
Ω

g0
h · τ h ∀τ h ∈ Σh.

Since ∇h : Vh → Σh, this equation is equivalent to the identity

σh = ∇∗
huh + g0

h.

Substituting in the second equation of (2.3), we obtain

ah(uh, vh) = ℓh(vh) ∀vh ∈ Vh, (2.5)

5



where

ah(u, v) :=

∫
Ω

∇∗
hu · ∇∗

hv + A(u, v)

and

ℓh(v) := ℓ(v) + ℓ0h(v), ℓ0h(v) :=

∫
Γ0

α g0 v −
∫

Ω

g0
h · ∇∗

hv. (2.6)

Notice that (2.5) is equivalent to the minimization problem

1
2
ah(uh, uh) − ℓh(uh) = min!, uh ∈ Vh. (2.7)

Here and in the sequel we will use Zeidler’s shorthand writing for minimization problems
(see [20] for example): problem (2.7) is to be read as the minimization (in the sense of
finding the argument where the minimum takes place) of the functional 1

2
a(uh, uh)−ℓh(uh)

subject to the condition uh ∈ Vh.
Some analytical properties concerning elements that have appeared here will be given

in Section 4

3 Variational problem and its LDG discretization

Consider the set

K :=
{
u ∈ H1(Ω) : u = g0 on Γ0, u ≥ 0 on Γ

}
and the bilinear form

a(u, v) :=

∫
Ω

∇u · ∇v.

The minimization problem

1
2
a(u, u) − ℓ(u) = min!, u ∈ K (3.1)

is equivalent (see [4] or [11]) to the variational inequality[
u ∈ K,

a(u, v − u) ≥ ℓ(v − u), ∀v ∈ K.
(3.2)

By elementary results on quadratic minimization on convex sets of Hilbert spaces these
problems are uniquely solvable. Note that they are weak forms of (1.1). Consider now
the discrete set

Kh := {uh ∈ Vh : uh ≥ 0 on Γ}

and note that we have dropped the Dirichlet condition on Γ0 in the definition. Motivated
by the LDG discretization of the boundary value problem (2.7), we consider the discrete
minimization problem

1
2
ah(uh, uh) − ℓh(uh) = min!, uh ∈ Kh. (3.3)
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This problem is equivalent to[
uh ∈ Kh,

ah(uh, vh − uh) ≥ ℓh(vh − uh) ∀vh ∈ Kh,
(3.4)

and to (Kh is a closed conic set with vertex on the origin)
uh ∈ Kh,

ah(uh, uh) = ℓh(uh),

ah(uh, vh) ≥ ℓh(vh) ∀vh ∈ Kh.

(3.5)

Before carrying out the analysis of the method let us detail how the functional and
its gradient can be effectively computed. Everything reduces to the ability to evaluate
ah(vh, wh) and ℓ0h(vh) for arbitrary vh, wh ∈ Vh. In fact, in ℓh most terms can be handled
in a simple way, and we only have to take care of how to compute∫

Ω

g0
h · ∇∗

hvh.

Let us choose a basis {φi} for Vh and another one {σi} of Σh, constructed by joining
bases for the spaces on each element. Consider then the matrices A, B and C whose
elements are

aij :=

∫
Ω

σj · σi, bij :=

∫
Ω

∇hφj · σi − S(φj,σi), cij := A(φj, φi)

and the vector d with elements

di :=

∫
Γ0

g0(σi · ν).

Note that A and C are square matrices of different size and A is block–diagonal (with a
block for each triangle).

Proposition 1 Let v and w be the respective vectors of coefficients of vh and wh

vh =
∑

i

viφi, wh =
∑

i

wiφi.

Then

ah(vh, wh) = w⊤
(
C + B⊤A−1B

)
v,

∫
Ω

g0
h · ∇∗

hvh = v⊤B⊤A−1d.

Proof. Given vh ∈ Vh, the corrected gradient ∇∗
hvh is characterized by the equations ∇∗

hvh ∈ Σh,∫
Ω

∇∗
hvh · τ h =

∫
Ω

∇hvh · τ h − S(vh, τ h) ∀τ h ∈ Σh.
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If we write
∇∗

hvh =
∑

j

sjσj,

then the vector of coefficients, say s, is the solution to the equations As = Bv. Hence∫
Ω

∇∗
hvh · ∇∗

hwh =
(
A−1Bw

)⊤
A

(
A−1Bv

)
and the first identity follows readily. The second one is a straightforward consequence of
the formula we have given for s. �

Note that this result is just a matrix formalization of how the LDG equations are set
into primal form by using the Schur complement of[

A −B

B⊤ C

]
,

which is just the global matrix corresponding to the system (2.3).

4 Some technical properties

With respect to the discrete norm

|||u|||h :=
[ ∫

Ω

|∇hu|2 + A(u, u)
]1/2

, (4.1)

the LDG–corrected gradient is uniformly bounded

∥∇∗
hu∥0,Ω . |||u|||h ∀u ∈ H1(Th). (4.2)

The proof of this can be found in [14], [13] or [8] or, with a somewhat different language,
in [3]. Hence the bilinear form ah is h−uniformly bounded (this is just part of [13, Lemma
3.2] or [18, Proposition 3.1])

|ah(u, v)| . |||u|||h|||v|||h ∀u, v ∈ H1(Th). (4.3)

It is also h−uniformly elliptic

|||u|||2h . ah(u, u) ∀u ∈ H1(Th), (4.4)

as follows from arguments that are well known in the literature of DG methods (see the
same references as for (4.2)). This fact proves unique solvability of (2.5) and of (3.4).

We next recall two useful bounds that appear often in the DG and FEM literature.
The first one is the local version of the trace theorem that can be obtained by a scaling
argument from the reference element (see [1] for instance):

h1/2∥v∥0,e . ∥v∥0,T + h|v|1,T , e ∈ E(T ), v ∈ H1(T ). (4.5)

In this inequality h is any of hT or he, which are assumed to be asymptotically equivalent
and E(T ) is the set of edges of T (which might be consisting of more than three edges if
there are hanging nodes). The second property concerns a bound of norms and appears
in several different formulations in different parts of the literature. We will state it here
as a Proposition and show how it can be proven by adapting a result from [19].
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Proposition 2
∥vh∥0,Ω . |||vh|||h ∀ vh ∈ Vh. (4.6)

Proof. We will show how to prove this result for the more general space

Wh :=
∏

T∈Th

Pk(T ),

with any k ≥ 0 fixed. First of all we construct a new shape regular triangulation Th,
which is a refinement of Th, has no hanging nodes and is such that sizes of edges of the
new triangulation that proceed from subdividing an edge of the old one are comparable.
This can be done because of the requirements done on our initial triangulation at the
beginning of Section 3.

On the skeleton of Th we consider a new piecewise constant positive function αh (with
the same behavior as α) and with that we define the norm ||| · |||h. Note that Wh ⊂ Wh

and that
|||vh|||h ≈ |||vh|||h ∀vh ∈ Wh, (4.7)

since there are no jumps of vh in newly created edges and αh ≈ α on I◦
h ∪ Γ0. We now

consider the space Vh of Raviart–Thomas elements of order k on the triangulation Th

with homogeneous boundary conditions on Γ, i.e., functions vh ∈ H(div,Ω) such that

vh|T ∈ [Pk(T )]2 + Pk(T )m, ∀T ∈ Th, m(x) :=

[
x1

x2

]
and that vh · ν = 0 on Γ. Note that

∥vh∥0,Ω . sup
0̸=vh∈Vh

∣∣∣ ∫
Ω

vh (div vh)
∣∣∣

∥vh∥div,Ω

∀vh ∈ Wh, (4.8)

by a well–known result on Raviart–Thomas elements (see [6] for instance).
With these elements in hand we can go to the statement and proof of [19, Theorem

3.1] and notice that we can do the following modifications (we refer to notations of [19]):
(a) the factor h−1 in front of each integral on edges can be substituted by the function α
inside the integral; (b) the triangulation is not needed to be quasiuniform anymore (this is
a requirement at the beginning of Section 2 in [19]) since we use the local mesh–sizes; (c)
the definition of the discrete operator B∗ can be adapted for the space Vh that includes
homogeneous boundary conditions and therefore edges of the triangulation lying on Γ can
be ignored in the definition of the bilinear form A. These simple adaptations allow us to
use [19, Theorem 3.1] and (4.8) to prove that

∥vh∥0,Ω . |||vh|||h ∀vh ∈ Wh,

which coupled with (4.7) proves the result. Note again that the adaptations are necessary
since the original result is stated for quasi–uniform grids without hanging nodes and
including all edges in the discrete norm (we do not have the edges on Γ in it). �
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Proposition 3
|ℓ0h(vh)| . h−1/2∥g0∥0,Γ0 |||vh|||h ∀ vh ∈ Vh.

Proof. Since αe ≈ h−1
e , it follows readily that∣∣∣ ∫

Γ0

α g0 vh

∣∣∣ .
( ∫

Γ0

αg2
0

)1/2

|||vh|||h . h−1/2|||vh|||h∥g0∥0,Γ0 .

On the other hand, using a scaling argument on the triangles that have edges on Γ0, it is
simple to see that

∥uh∥0,Γ0 . h−1/2∥uh∥0,Ω ∀uh ∈ Σh. (4.9)

Using the definition of g0
h ∈ Σh, it follows that

∥g0
h∥2

0,Ω =

∫
Γ0

g0 (g0
h · ν) . ∥g0∥0,Γ0∥g0

h∥0,Γ0 ,

which together with (4.9) proves that

∥g0
h∥0,Ω . h−1/2∥g0∥0,Γ0 .

We now go back to the remaining term of the definition of ℓ0h∣∣∣ ∫
Ω

g0
h · ∇∗

hvh

∣∣∣ . ∥g0
h∥0,Ω∥∇∗

hvh∥0,Ω . h−1/2∥g0∥0,Γ0|||vh|||h,

where in the last inequality we have used (4.6). This finishes the proof. �

Proposition 4

|ℓ(vh)| . h−1/2|||vh|||h
(
∥f∥0,Ω + ∥g∥0,Γ

)
∀vh ∈ Vh.

Proof. The term involving f is easily bounded by ∥f∥0,Ω|||vh|||h using (4.6). On the other
hand, applying (4.5) on each edge e on the boundary Γ, it is simple to prove that

∥vh∥0,Γ . h−1∥vh∥2
0,Ω + h∥∇hvh∥2

0,Ω . h−1|||vh|||h,

where we have used (4.6) again. Hence∣∣∣ ∫
Γ

g vh

∣∣∣ ≤ ∥g∥0,Γ∥vh∥0,Γ . h−1/2∥g∥0,Γ|||vh|||h.

Note that we can also bound using first (4.5) and then (4.6)∫
Γ

|vh| ≤
( ∑

e⊂Γ

he

∫
e

|vh|2
)1/2

. |||vh|||h, (4.10)

from which we can obtain the bound∣∣∣ ∫
Γ

g vh

∣∣∣ . ∥g∥L∞(Γ)|||vh|||h,

assuming more regularity for g. The inequality given in the statement will be enough for
our purposes. �
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Lemma 5 Let ηh ∈
∏

e∈EΓ
h

P1(e) be such that ηh ≥ 0 (here EΓ
h is the set of edges of the

triangulation that are contained in Γ). Then there exists ρ ∈ H1(Γ) such that ρ ≥ 0 and∫
Γ

|ηh − ρ| ≤ 2h3

∫
Γ

ηh.

Proof. Beginning in one node of the partition of Γ and using the arc parameterization
from that point, we can identify functions on Γ with functions on [0, L], where L :=
length (Γ). Let ti be the points of this interval corresponding to the nodes of the partition.
We decompose

ηh =
∑

i

ηi

where supp ηi ⊆ [ti−1, ti+1], ηi(t
±
j ) = 0 for all j ̸= i and ηi(t

±
i ) = ηh(t

±
i ). Assume that

ηi(t
+
i ) > ηi(t

−
i ) as in Figure 2 (in the other case the construction is similar but moving

to the left) and take the point τi := ti + h4
i , where hi := ti+1 − ti (we assume hi < 1

henceforth).
Now we define a function ρi such that ρi ≡ 0 outside [ti−1, ti+1], ρi ≡ ηi in [ti−1, ti] ∪

[τi, ti+1] and in the remaining interval [ti, τi], ρi is linear. Figure 2 shows the construction
of this function. It is clear that 0 ≤ ρi ≤ ηi. Notice that∫ ti+1

ti−1

(ηi − ρi) =

∫ τi

ti

(ηi − ρi) ≤ h4
i ηi(t

+
i ) ≤ 2h3

i

∫ ti+1

ti

ηi ≤ 2h3

∫ L

0

ηi,

where the first inequality is simply seen in Figure 2: we have overestimated the small
triangle separating both graphs by a rectangle with base of length h4

i and height ηi(t
+
i ).

We then define (see Figure 3 for the final aspect of this function) ρ :=
∑

i ρi, which is a
Lipschitz continuous function and satisfies 0 ≤ ρ ≤ ηh. Moreover

0 ≤
∫ L

0

|ηh − ρ| =

∫ L

0

(ηh − ρ) =
∑

i

∫ ti+1

ti−1

(ηi − ρi) ≤ 2h3
∑

i

∫ L

0

ηi = 2h3

∫ L

0

ηh

and the proof is thus finished. �

t
i−1

t
i+1

t
i

τ
i

Figure 2: The function ηi in solid line and the construction of ρi (dashed line) by joining
the lower limit of ηi on ti with a point in the upwards direction.
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Figure 3: The result of the construction in Lemma 5: a continuous polygonal with roughly
the same area. The difference is a very small multiple of the area.

Proposition 6 Let uh be the solution to (3.4). Then

inf
v∈K

∫
Γ

|uh − v| . h5/2
(
∥f∥0,Ω + ∥g0∥0,Γ0 + ∥g∥0,Γ

)
.

Proof. Take ρ : Γ → R as in Lemma 5 and construct v ∈ H1(Ω) such that v = 0 on Γ0

and v = ρ on Γ. Then, by (4.10)∫
Γ

|uh − v| =

∫
Γ

|uh − ρ| ≤ 2h3

∫
Γ

uh . h3|||uh|||h.

We now can use the ellipticity property (4.4) as well as the characterization (3.5) for uh

to obtain
|||uh|||2h . ah(uh, uh) = ℓh(uh) = ℓ(uh) − ℓ0h(uh).

Using Propositions 3 and 4 and the above bounds the result follows readily. �

5 Analysis

The residual of the discrete variational inequality when applied to the exact solution and
tested with a general w ∈ H1(Th) is

Rh(w) := ah(u,w) − ℓh(w).

Proposition 7 For arbitrary vh ∈ Kh and v ∈ K

|||u− uh|||2h . |||u− uh|||h|||u− vh|||h +Rh(vh − uh) +Rh(v − u).

Proof. First we use ellipticity (4.4) to obtain

|||u− uh|||2h . ah(u− uh, u− uh) = ah(u− uh, u− vh) + ah(u− uh, vh − uh). (5.1)
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For all w ∈ H1(Ω) such that w|Γ0 = 0 it follows that ∇∗
hw = ∇w and therefore

ℓ0h(w) = −
∫

Ω

g0
h · ∇w.

Because of (2.4), if w is as before, then

ah(u,w) =

∫
Ω

(∇u− g∗
h) · ∇w = a(u,w) + ℓ0h(w). (5.2)

Applying this to w = v − u with v ∈ K, we prove that the solution to (3.2) satisfies

ah(u, v − u) ≥ ℓ(v − u) + ℓ0h(v − u) = ℓh(v − u) ∀v ∈ K.

This inequality together with the definition of uh as the solution to (3.4) prove that for
arbitrary vh ∈ Kh and v ∈ K,

ah(u− uh, vh − uh) = ah(u, vh − u+ v − uh) − ah(u, v − u) − ah(uh, vh − uh)

≤ ah(u, vh − u+ v − uh) − ℓh(v − u) − ℓh(vh − uh)

= Rh(vh − uh) +Rh(v − u).

The result follows now from this inequality, (5.1) and the uniform boundedness of the
discrete bilinear form (4.3). �

Proposition 8 For all w ∈ H1(Ω) such that w|Γ0 = 0,

Rh(w) =

∫
Γ

(∂νu− g)w.

Proof. Because of (5.2) it follows that Rh(w) = a(u,w)− ℓ(w) and therefore the result is
a simple application of Green’s formula and the fact that −∆u = f . �

To shorten some forthcoming expressions, we will write ξh ∈ Σh for the best L2(Ω)
approximation of ∇u in Σh, i.e., ξh ∈ Σh,∫

Ω

ξh · τ h =

∫
Ω

∇u · τ h, ∀τ h ∈ Σh.

Proposition 9 If u ∈ H3/2+ε(Ω), for some ε > 0, then

Rh(wh) = S(wh,∇u− ξh) +

∫
Γ

(∂νu− g)wh ∀wh ∈ Vh.

Proof. Using (2.4), it is simple to see that

ah(u,wh) =

∫
Ω

(∇u− g0
h) · ∇∗

hwh +

∫
Γ0

α g0wh

=

∫
Ω

∇u · ∇hwh + ℓ0h(wh) −
∫

Ω

∇u · Shwh,
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and therefore, using the definition of ξh and of the discrete operator Sh, we obtain

Rh(wh) =

∫
Ω

∇u · ∇hwh − ℓ(wh) − S(wh, ξh). (5.3)

We then apply the discrete divergence theorem (identity (2.2) with τ = ∇u and v = wh)
to obtain∫

Ω

∇u · ∇hwh −
∫

Ω

f wh =

∫
I◦

h

∇u · [[wh]] +

∫
Γ∪Γ0

(∂νu)wh = S(wh,∇u) +

∫
Γ

(∂νu)wh,

which substituted into (5.3) proves the statement. �
For our convergence estimate, that proves that the method has optimal order of con-

vergence (order one, since we are dealing with H1(Ω) norms and P1 elements), we assume
additional regularity requirements. These ones are sufficient to get full order of conver-
gence, although they will not be satisfied by most solutions for which there will be a
reduced order of convergence. Note that the freedom given by the triangulation to intro-
duce hanging nodes makes the method able to deal with simple adaptive strategies. This
will be the aim of future work.

Theorem 10 Assume that u ∈ H3/2+ε(Ω) ∩H2(Th), for some ε > 0, and that ∂νu− g ∈
L∞(Γ). Then

|||u− uh|||h . h
(
|u|2,Th

+ ∥f∥0,Ω + ∥g0∥0,Γ0 + ∥g∥0,Γ + ∥∂νu− g∥L∞(Γ)

)
.

Proof. Using Propositions 7, 8 and 9, we prove that

|||u− uh|||2h . |||u− uh|||h|||u− vh|||h + S(vh − uh,∇u− ξh)

+

∫
Γ

(∂νu− g)(vh − u) +

∫
Γ

(∂νu− g)(v − uh) ∀vh ∈ Kh, ∀v ∈ K.

Using some standard bounds on L2 projections (see [14, Section3] for a proof in this same
language), it is possible to prove that

|S(vh − uh,∇u− ξh)| . h|u|2,Th
|||vh − uh|||h ≤ h|u|2,Th

(
|||u− vh|||h + |||u− uh|||h

)
.

Taking v as in the proof of Proposition 6, we easily obtain∣∣∣ ∫
Γ

(∂νu− g) (v − uh)
∣∣∣ . h5/2∥∂νu− g∥L∞(Γ)D1,

with D1 := ∥f∥0,Ω+∥g0∥0,Γ0 +∥g∥0,Γ. Hence, using a weighted Cauchy–Schwarz inequality
we can eliminate all occurrences of |||u − uh|||h in the right–hand side and obtain (with
D2 := ∥∂νu− g∥L∞(Γ))

|||u− uh|||2h . |||u− vh|||2h + h2|u|22,Th
+D2

(
D1h

5/2 +

∫
Γ

|u− vh|
)
, ∀vh ∈ Kh.
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The result is proved once we show that

inf
vh∈Kh

(
h|||u− vh|||h +

∫
Γ

|u− vh|
)

. h2|u|2,Th
,

regrouping terms afterwards to get the desired inequality. This can be done using an
element–by–element interpolant. In this way the requirement of vh ≥ 0 on Γ is naturally
satisfied. Terms involving jumps in the discrete norm (there will be jumps where hanging
nodes occur) and the L1(Γ) norm are moved to interior estimates using (4.5). Finally,
we apply well–known results on approximation by piecewise polynomials to obtain the
result. �

6 Numerical examples

In this section we show the performance of the method, considering the P1−[P0]
2 and P1−

[P1]
2 approximation. The code has been written in Matlab, making use of the quadprog

routine for quadratic minimization with linear constraints. In the three examples, we will
take Ω := Ω1 \ Ω0, where Ω1 := (0, 2) × (0, 1) and Ω0 := (1/2, 3/2) × (1/4, 3/4). We also
take Γ0 := ∂Ω0, while Γ := ∂Ω\Γ0 = ∂Ω1 is divided into four parts:

Γ1 := {(x, 0) : 0 ≤ x ≤ 2} ,
Γ2 := {(2, y) : 0 ≤ y ≤ 1} ,
Γ3 := {(x, 1) : 0 ≤ x ≤ 2} ,
Γ4 := {(0, y) : 0 ≤ y ≤ 1}.

We measure the errors

eh(u) := |||u− uh|||h, e(σ) := ∥σ − σh∥0,Ω,

e0(u) := ∥u− uh∥0,Ω, eT :=
(
eh(u)

2 + e0(σ)2
)1/2

.

Finally rh(u), r0(σ), r0(u) and rT denote the corresponding experimental rates of conver-
gence for the given error measures.

Example #1. We take u(x, y) = xy, and consider

g(x, y) :=


−20 on Γ1 ,
y on Γ2 ,
x on Γ3 ,

−20 on Γ4 .

Note that ∂νu = g on Γ2 ∪ Γ3 and u = 0 on Γ1 ∪ Γ4, so the transition points between
the two complementary conditions are corners of the domain that are always nodes of the
grid. The numerical results are described in Table 1 and Table 2. As predicted by our
theory, the method displays order one of convergence. Moreover, in L2(Ω), we observe
superconvergence for the primal variable u.
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dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

80 0.8542 —– 0.2688 —– 0.0942 —– 0.8955 —–
320 0.3923 1.1226 0.1332 1.0136 0.0198 2.2506 0.4143 1.1121
1280 0.1442 1.4435 0.0665 1.0022 0.0035 2.4929 0.1588 1.3832
5120 0.0566 1.3494 0.0333 0.9982 0.0007 2.3914 0.0657 1.2742
20480 0.0238 1.2496 0.0167 0.9983 0.0001 2.2766 0.0291 1.1762
81920 0.0106 1.1608 0.0083 0.9989 3.058E-5 2.1777 0.0135 1.1035

Table 1: Numerical results for example 1 (P1 − [P0]
2 approximation)

dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

144 0.4003 —– 0.1776 —– 0.0213 —– 0.4379 —–
576 0.1628 1.2978 0.0873 1.0248 0.0047 2.1942 0.1847 1.2452
2304 0.0801 1.0233 0.0408 1.0970 0.0011 2.0637 0.0899 1.0391
9216 0.0396 1.0150 0.0196 1.0594 0.0003 2.0349 0.0442 1.0239
36864 0.0197 1.0081 0.0096 1.0335 0.0001 2.0110 0.0219 1.0130

Table 2: Numerical results for example 1 (P1 − [P1]
2 approximation)

Example #2. Here we first introduce a truncation function

ψ(z) :=


0 z < 1/2 ,
16(z − 1

2
)2(7 − 8z) 1/2 ≤ z ≤ 3/4 ,

1 3/4 ≤ z .

Then we consider the data of the problem (except for g) such that the exact solution is
u(x, y) = ψ(x2 + y2). Since u(x, u) = 0 for x2 + y2 ≤ 1/2, it is convenient to decompose
the sides Γ1 and Γ4 in two pieces each:

Γ1a := {(x, 0) : 0 ≤ x ≤ 1/
√

2} , Γ1b := Γ1\Γ1a ,

and similarly Γ4 = Γ4a ∪ Γ4b. We then define

g :=

{
∂νu on Γ2 ∪ Γ3 ∪ Γ1b ∪ Γ4b ,
−24 otherwise .

The constant −24 is chosen to be a strict lower bound of the normal derivative, so that
the contact points are (0, 1/

√
2) and (1/

√
2, 0). These are never going to be nodes of the

triangulations.
The numerical results are described in Tables 3 and 4. Convergence order is again one

(the solution is smooth) and the superconvergence in L2(Ω) is still appreciated, although
the order of superconvergence seems to be reduced.

Example #3. We consider the data of the problem (except for g) such that the exact
solution is u(x, y) = ψ(x2 + y2) − x(2 − x)y(1 − y), with ψ being the same truncation
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dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

80 4.8240 —– 3.1745 —– 0.9674 —– 5.7748 —–
320 7.4959 —– 2.2388 0.5038 0.4655 1.0553 7.8231 —–
1280 4.9192 0.6077 1.6315 0.4565 0.1499 1.6343 5.1827 0.5940
5120 2.9431 0.7411 1.0092 0.6930 0.0613 1.2893 3.1113 0.7362
20480 1.8366 0.6803 0.5884 0.7784 0.0239 1.3606 1.9285 0.6900
81920 0.9250 0.9895 0.3111 0.9194 0.0069 1.7977 0.9759 0.9827

Table 3: Numerical results for example 2 (P1 − [P0]
2 approximation)

dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

144 2.6932 —– 2.5803 —– 0.2846 —– 3.7298 —–
576 2.5133 0.0998 2.2982 0.1670 0.1905 0.5790 3.4056 0.1312
2304 1.8149 0.4697 1.5134 0.6027 0.0916 1.0567 2.3631 0.5272
9216 1.1761 0.6258 0.9245 0.7111 0.0423 1.1157 1.4960 0.6596
36864 0.6491 0.8576 0.3770 1.2939 0.0144 1.5575 0.7506 0.9949
147456 0.3248 0.9987 0.1553 1.2801 0.0042 1.7750 0.3600 1.0601

Table 4: Numerical results for example 2 (P1 − [P1]
2 approximation)

function introduced in the second example. Since the normal derivative of the bubble is
positive, we can set g as in the previous example, too. The numerical results are described
in Tables 5 and 6.

dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

80 4.7223 —– 3.1314 —– 0.9365 —– 5.6662 —–
320 7.6019 —– 2.2430 0.4814 0.4757 0.9771 7.9259 —–
1280 4.9491 0.6192 1.6329 0.4580 0.1513 1.6530 5.2115 0.6049
5120 2.9538 0.7446 1.0101 0.6929 0.0619 1.2882 3.1218 0.7393
20480 1.8409 0.6821 0.5891 0.7780 0.0240 1.3656 1.9329 0.6916
81920 0.9264 0.9908 0.3115 0.9192 0.0075 1.6735 0.9774 0.9838

Table 5: Numerical results for example 3 (P1 − [P0]
2 approximation)
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dof eh(u) rh(u) e0(σ) r0(σ) e0(u) r0(u) eT rT

144 2.7085 —– 2.6046 —– 0.2819 —– 3.7577 —–
576 2.5407 0.0923 2.3285 0.1617 0.1941 0.5384 3.4464 0.1248
2304 1.8186 0.4824 1.5161 0.6190 0.0916 1.0839 2.3677 0.5416
9216 1.1774 0.6272 0.9251 0.7128 0.0423 1.1146 1.4973 0.6611
36864 0.6501 0.8569 0.3780 1.2911 0.0144 1.5523 0.7520 0.9936
147456 0.3253 0.9988 0.1553 1.2830 0.0042 1.7719 0.3605 1.0608

Table 6: Numerical results for example 3 (P1 − [P1]
2 approximation)
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