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Abstract: We develop the connections between stochastic processes and
operator theory to describe the evolution of open quantum systems. Us-
ing stochastic Schrödinger equations, we study Markovian quantum master
equations (QMEs for short) whose coefficients involve unbounded opera-
tors. QMEs are operator evolution equations that govern the dynamics of
the density operators, which are positive operators of trace 1. Let the ini-
tial density operator be regular in the sense that the expected values with
respect to it of a large class of unbounded operators are well-defined. Then
we prove, under general conditions, that the solution of the QME remains
regular all the time. Our analysis is mainly based on probabilistic rep-
resentations of solutions to QMEs and adjoint quantum master equations
(AQMEs). As by-products we obtain probabilistic interpretations of regular
solutions to QMEs and the uniqueness of the solution for the AQME.
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1. Introduction

This paper studies the evolution of the mean values of quantum observables rep-
resented by unbounded operators with the help of classical stochastic analysis.
To establish the regularity of solutions of quantum master equations with un-
bounded coefficients we develop the relation between stochastic evolution equa-
tions and the operator equations describing the evolution of density operators
in open quantum systems.

1.1. Context

In the usual set-up of open quantum systems, a small quantum system inter-
acts weakly with a heat bath. The states of the small system are characterized
by elements of a complex Hilbert space (h, 〈·, ·〉) and their statistical mixtures

∗Supported in part by FONDECYT Grant 1070686. This research was partially supported
also by PBCT-ACT 13, FONDAP - BASAL projects CMM, Universidad de Chile, and by
Centro de Investigación en Ingenieŕıa Matemática (CI2MA).
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are modeled by positive operators in h with unit trace, which are called den-
sity operators. In many physical situations, the density operators ρt (%) evolve
according to the operator evolution equation{

d

dt
ρt (%) = Gρt (%) + ρt (%)G∗ +

∑∞
k=1 Lkρt (%)L∗k

ρ0 (%) = %
, (1.1)

where G,L1, L2, . . . are given linear operators in h such that formally

G = −iH − 1
2

∞∑
k=1

L∗kLk (1.2)

with H self-adjoint operator.
We can derive the quantum master equation (1.1) by using the Born-Markov

approximation (see, e.g., [12, 14, 28]) or by means of coupling limit methods
(see, e.g., [1, 2, 3, 20, 43, 44]). The Hamiltonian H guides essentially the free
evolution of the small quantum system and L1, L2, . . . govern the effect of the
environment. The measurable physical quantities of the small quantum system
are represented by self-adjoint operators in h, which are called observables. The
mean value of the observable A at time t is given by tr (ρt (%)A), the trace of
ρt (%)A (see, e.g., [15, 42] for deeper discussions of the postulates of quantum
mechanics).

1.2. Primary aim

Our main goal is to make progress in the understanding of the evolution of
tr (ρt (%)A) in cases, like boson systems, where the observables A are described
by unbounded operators. Relevant examples of unbounded observables arise, for
instance, from quantum oscillators (see, e.g., Remark 5.5) and systems formed
by an indefinite number of particles (see, e.g., [10, 35]).

1.3. Specific objectives

From [17] and [21] we have that (1.1) has a unique solution (see Subsection 5.2
for details). Since we are interested in the well-posedness of the expected values
of observables described by unbounded operators, this paper investigates when
the solution of (1.1) is regular enough to guarantee the trace-class property of
ρt (%)A for a large set of unbounded operators A.

In [22], Davies established the regularity of ρt (%) for a variable number of
neutrons moving in a translation invariant external reservoir of unstable atoms.
Chebotarev, Garćıa and Quezada [18] proved that ρt (%) is regular in a general
framework (Remark 5.4 presents some details). Arnold and Sparber [4] got reg-
ularity results for a linear quantum master equation associated to a diffusion
models with Hartree interaction. All of these works are based on methods from
the operator theory.
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This paper provides a general criterion under which the solutions of (1.1)
keep the regularity of the initial data (see Definition 4.1 for the precise meaning
of regular solution). To this end, we first bring together classes of regular density
operators and random variables taking values in h. Indeed, we deduce that the
density operator % is regular if and only if there exists a regular h-valued random
variable ξ such that % = E 〈ξ, ·〉 ξ.

Second, we consider the stochastic evolution equation

Xt (ξ) = ξ +
∫ t

0

GXs (ξ) ds+
∞∑
k=1

∫ t

0

LkXs (ξ) dW k
s , (1.3)

where
(
W k
)
k∈N is a sequence of real valued independent Wiener processes on a

filtered complete probability space
(

Ω,F, (Ft)t≥0 ,P
)

. We prove that

ρt (%) := E 〈Xt (ξ) , ·〉Xt (ξ) (1.4)

is the unique solution of (1.1) under a refined non-explosion condition of the
type introduced by Chebotarev and Fagnola [17]. Hence, the regularity of Xt (ξ)
implies that of ρt (%).

By applying stochastic techniques we deduce that E 〈Xt (ξ) , ·〉Xt (ξ) is a
solution to (1.1) whenever ξ is regular. This leads to construct a semigroup
(ρt)t≥0 of trace-class operators satisfying (1.1). The adjoint semigroup of (ρt)t≥0

solves the the operator evolution equation{
d

dt
Tt (A) = Tt (A)G+G∗Tt (A) +

∑∞
k=1 L

∗
kTt (A)Lk

T0 (A) = A
, (1.5)

where Tt (A) is an unknown linear operator in h. To obtain the uniqueness of
the solution for (1.1), using (1.3) we show the uniqueness of the solution to (1.5)
whenever A is bounded. Thus, as a by-product, we establish a new criterion for
the existence and uniqueness of the solution to (1.5) with bounded initial data
(see, e.g., [16, 17, 18, 19, 25] for previous works on this problem). The adjoint
quantum master equation (1.5) describes the dynamic of the observable A in
the Heisenberg picture under, for instance, the Born-Markov approximation.

From (1.4) we obtain
ρt (%) = E 〈Yt, ·〉Yt, (1.6)

where Yt satisfies the non-linear stochastic Schrödinger equation on h (driven
by a standard cylindrical Brownian motion)

Yt = Y0 +
∫ t

0

G (Ys) ds+
∞∑
k=1

∫ t

0

Lk (Ys) dW k
s . (1.7)

Here for any y ∈ h, Lk (y) = Lky −<〈y, Lky〉 y, and

G (y) = Gy +
∞∑
k=1

(
< 〈y, Lky〉Lky −

1
2
<2 〈y, Lk y〉 y

)
.
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The probabilistic representation (1.6) has been introduced in the physical lit-
erature by means of formal computations (see, e.g., [5, 12, 29]). Furthermore,
Barchielli and Holevo [6] established essentially (1.4) and (1.6) in situations
where G,L1, L2, . . . are bounded.

Relation (1.6) has given rise to efficient and accurate numerical schemes that
compute the mean value of quantum observables at time t through the non-linear
stochastic Schrödinger equations (see, e.g., [12, 34, 41] and references therein).
On the other hand, (1.4) and (1.6) open a door to treat, for instance, the long
time behavior of the evolution of open quantum systems by means of stochastic
processes (see, e.g., [7, 9, 33]).

1.4. Outline

Section 2 presents notation, hypotheses, and preliminary results on the stochas-
tic Schrödinger equations. Section 3 treats the existence and uniqueness of the
solution for the adjoint quantum master equation, as well as its probabilistic
representation. Section 4 addresses probabilistic interpretations of regular den-
sity operators. Section 5 states the main results. In particular, Subsection 5.1
constructs Schrödinger evolutions by means of stochastic Schrödinger equations.
Subsection 5.2 focusses on (1.1) and Subsection 5.3 is concerned with a quantum
oscillator. Section 6 is devoted to proofs.

2. Preliminary results

2.1. Notation

Throughout this paper, (h, 〈·, ·〉) is a separable complex Hilbert space whose
scalar product 〈·, ·〉 is linear in the second variable and anti-linear in the first
one. We write B (h) for the Borel σ-algebra on h. Following Dirac notation, for
any x, y ∈ h the map |x〉〈y| is defined by |x〉〈y| (z) = 〈y, z〉x whenever z ∈ h.

Suppose that A is a linear operator in h. Then, D (A) stands for the domain
of A and A∗ denotes the adjoint of A. If A has a unique bounded extension to
h, then we continue to write A for the closure of A. By I we mean the identity
operator.

Let X, Z be normed spaces. We write L (X,Z) for the set of all bounded
operators from X to Z (together with norm ‖·‖L(X,Z)). We abbreviate ‖·‖L(X,Z)

to ‖·‖, if no misunderstanding is possible, and define L (X) = L (X,X). Moreover,
L1 (h) denotes the Banach space of trace-class operators on h equipped with the
trace norm ‖·‖1. By L+

1 (h) we mean the subset of all non-negative trace-class
operators on h.

Let C be a self-adjoint positive operator in h. Then, for any x, y ∈ D (C) we
set 〈x, y〉C = 〈x, y〉+ 〈Cx,Cy〉 and ‖x‖C =

√
〈x, x〉C . As usual, L2 (P, h) stands

for the set of all square integrable random variables from (Ω,F,P) to (h,B (h)).
We write L2

C (P, h) for the set of all ξ ∈ L2 (P, h) satisfying ξ ∈ D (C) a.s. and
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E ‖ξ‖2C <∞. The function πC : h→ h is defined by πC (x) = x if x ∈ D (C) and
πC (x) = 0 whenever x /∈ D (C).

In the sequel, the letter K denotes generic constants. Notation 2.1 and 5.1
point out the meaning of the symbols X (ξ) and ρt respectively.

2.2. Linear stochastic Schrödinger equation

We begin by specifying the notion of solution to (1.3).

Hypothesis 1. Suppose that C is a self-adjoint positive operator in h such that
D (C) is a subset of the domains of G,L1, L2, . . . and the maps G ◦ πC , L1 ◦
πC , L2 ◦ πC , . . . are measurable.

Definition 2.1. Let Hypothesis 1 hold. Assume that T is either [0,∞[ or the
interval [0, T ], with T ∈ R+. An adapted process (Xt (ξ))t∈T taking values in
h with continuous sample paths is called strong C-solution of (1.3) on T with
initial datum ξ if and only if:

• For any t ∈ T, E ‖Xt (ξ)‖2 ≤ E ‖ξ‖2, Xt (ξ) ∈ D (C) a.s. and

sup
s∈[0,t]

E ‖CXs (ξ)‖2 <∞.

• P-a.s. for all t ∈ T,

Xt (ξ) = ξ +
∫ t

0

GπC (Xs (ξ)) ds+
∞∑
k=1

∫ t

0

LkπC (Xs (ξ)) dW k
s .

Notation 2.1. The symbol X (ξ) will be reserved for the strong C-solution of
(1.3) with initial datum ξ.

Let us introduce the basic assumptions of this paper.

Hypothesis 2. Suppose that Hypothesis 1 holds. In addition, assume:

(H2.1) The operator G belongs to L ((D (C) , ‖·‖C) , h).
(H2.2) For all x ∈ D (C), 2< 〈x,Gx〉+

∑∞
k=1 ‖Lkx‖

2 = 0.
(H2.3) Let ξ ∈ L2

C (P, h) be F0-measurable. Then for all T > 0, (1.3) has a unique
strong C-solution on [0, T ] with initial datum ξ.

From [27] it follows that under Hypothesis 2, ‖X (ξ)‖2 is a martingale and
X (ξ) has the Markov property.

Theorem 2.1. Let Hypothesis 2 hold and let ξ ∈ L2
C (P, h). Then

(
‖Xt (ξ)‖2

)
t≥0

is a martingale. Moreover, for any measurable bounded function f : (h,B (h))→
(R,B (R)) we have

E (f (Xs+t (ξ))�Fs) = E (f (Xs+t (ξ))�Xs (ξ)) (2.1)

=
∫

h

f (z)Pt (Xs (ξ) , dz) ,
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where Pt (x, ·) =
{
P ◦ (Xs (x))−1

, if x ∈ D (C)
δx, if x /∈ D (C)

.

Condition H2.2 is a weak version of (1.2). In [27] it is provided the following
sufficient condition for the existence and uniqueness of strong C-solutions to
(1.3).

Hypothesis 3. Let C be a self-adjoint positive operator in h with the properties:

(H3.1) The operators G,L1, L2, . . . belong to L ((D (C) , ‖·‖C) , h).
(H3.2) There exist non-negative real numbers α, β and a core D1 of C2 such that

for all x in D1,

2<
〈
C2x,Gx

〉
+
∞∑
k=1

‖CLkx‖2 ≤ α ‖x‖2C + β.

(H3.3) There exist a core D2 of C such that for any x in D2,

2< 〈x,Gx〉+
∞∑
k=1

‖Lkx‖2 ≤ 0.

Theorem 2.2. Assume that Hypothesis 3 holds. Let ξ be a F0-measurable ran-
dom variable of L2

C (P, h). Then (1.3) has a unique strong C-solution (Xt (ξ))t≥0

with initial datum ξ. Moreover,

E ‖CXt (ξ)‖2 ≤ exp (αt)
(
E ‖Cξ‖2 + αtE ‖ξ‖2 + βt

)
.

Theorem 2.2 asserts that Condition H2.3 of Hypothesis 2 is general enough
for many physical applications. Indeed, Conditions H3.1 and H3.2 of Hypothesis
3 together with Condition H2.2 of Hypothesis 2 are the underlying assumptions
of this paper.

Remark 2.1. Let A be a closable operator in h such that D (C) ⊂ D (A), where
C is a self-adjoint positive operator in h. Applying the closed graph theorem we
obtain A ∈ L ((D (C) , ‖·‖C) , h), which leads to a sufficient condition for H3.1,
as well as for H2.1.

Remark 2.2. Let C be a self-adjoint positive operator in h whose domain is
contained in D (G). Assume that 2< 〈x,Gx〉 +

∑∞
k=1 ‖Lkx‖

2 ≤ 0, for all x ∈
D (G). Then the numerical range of G is contained in the left half-plane of C,
and so G is closable. Therefore G lies in L ((D (C) , ‖·‖C) , h) by Remark 2.1,
and so Condition H3.1 holds.

Remark 2.3. Suppose that C is a self-adjoint positive operator in h, together
with A ∈ L ((D (C) , ‖·‖C) , h). Then A ◦πC : h→ h is measurable whenever h is
equipped with its Borel σ-algebra (see, e.g., [27] for details). Thus G ◦ πC and
Lk ◦ πC are measurable under Condition H3.1.
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3. Adjoint quantum master equation

To deal with (1.1) we establish the uniqueness of the solution to (1.5) in case A
is bounded operator.

Definition 3.1. Let C be a self-adjoint positive operator in h. Suppose that
A ∈ L (h). A family of operators (At)t≥0 belonging to L (h) is a C-solution of
(1.5) with initial datum A if and only if:

(a) A0 = A.
(b) For all t ≥ 0 and any x, y in D (C),

d

dt
〈x,Aty〉 = 〈x,AtGy〉+ 〈Gx,Aty〉+

∞∑
k=1

〈Lkx,AtLky〉 .

(c) For all T ≥ 0, sups∈[0,T ] ‖As‖L(h) <∞.
(d) For any x, y ∈ h, the application t 7−→ 〈x,Aty〉 is continuous.

Theorem 3.1. Suppose that Hypothesis 2 holds. Let A belong to L (h). Then,
for every non-negative real number t there exists a unique Tt (A) in L (h) such
that for any x, y in D (C),

〈x, Tt (A) y〉 = E 〈Xt (x) , AXt (y)〉 . (3.1)

Moreover, ‖Tt (A)‖L(h) ≤ ‖A‖L(h) for all t ≥ 0, and any C-solution of (1.5)
with initial datum A coincides with (Tt (A))t≥0.

Proof. The proofs fall naturally into Lemmata 6.1 and 6.2.

The following theorem essentially states the existence of a solution to (1.5).
From the physical point of view, Theorems 3.1 and 3.2 have interest by them-
selves, because (1.5) governs the the dynamic of the observable A in the Heisen-
berg picture.

Theorem 3.2. Let Hypothesis 2 holds. Suppose that A ∈ L (h) and that Tt (A)
is as in Theorem 3.1. Then (Tt (A))t≥0 is the unique C-solution of (1.5) with
initial datum A.

Proof. Lemmata 6.20 and 6.21 shows that (Tt (A))t≥0 is a C-solution of (1.5)
with initial datum A. Theorem 3.1 now completes the proof.

Remark 3.1. [37] deals with the existence and uniqueness of solutions to (1.5)
for A unbounded. Chebotarev and Fagnola [17] proved the Markov property of
the family (Tt : L (h)→ L (h))t≥0 (i.e., Tt (I) = I for any t ≥ 0) under a non-
explosion criterion inherent to quantum physical systems. This result, which
has been generalized in [18, 25], implies the uniqueness of the solution to (1.5)
with A bounded. Hypothesis 3, the underlying assumption of Theorem 3.2, is a
refined version of non-explosion criteria that guarantee the Markov property of
the quantum dynamical semigroups.
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4. Probabilistic representations of regular density operators

The following notion of regular density operator was introduced by Chebotarev,
Garćıa and Quezada [18] to investigate the identity preserving property of min-
imal quantum dynamical semigroups.

Definition 4.1. Let C be a self-adjoint positive operator in h. An operator %
belonging to L+

1 (h) is called C-regular if and only if

% =
∑
n∈I

λn |un〉〈un| (4.1)

for some countable set I, summable non-negative real numbers (λn)n∈I and
family (un)n∈I of elements of D (C), which together satisfy:∑

n∈I

λn ‖Cun‖2 <∞. (4.2)

We write L+
1,C (h) for the set of all C-regular density operators.

We next formulate the concept of C-regular operator in terms of random
variables. This characterization of L+

1,C (h) complements those given in [18] using
operator theory (see also [19]).

Theorem 4.1. Suppose that C is a self-adjoint positive operator in h. Let % be a
linear operator in h. Then % is C-regular iff % = E |ξ〉〈ξ| for some ξ ∈ L2

C (P, h).
Moreover, E |ξ〉〈ξ| can be interpreted as a Bochner integral in both L1 (h) and
L (h).

Proof. The proof is divided into Lemmata 6.5 and 6.6.

Using Theorem 4.3 below we can assert that the mean values of a large
number of unbounded observables are well-posed when the density operators
are C-regular. Theorem 4.3 also provides probabilistic interpretations of these
expected values.

Theorem 4.2. Let C be a self-adjoint positive operator in h. Suppose that
% = E |ξ〉〈ξ| with ξ ∈ L2

C (P, h). Then the range of % is contained in D (C).

Proof. Deferred to Subsection 6.2.

Theorem 4.3. Adopt the assumptions of Theorem 4.2. In addition, suppose
that A belongs to L ((D (C) , ‖·‖C) , h) and B is a densely defined linear operator
in h such that D (C) ⊂ D (B∗). Then A%B is densely defined and bounded. The
unique bounded extension of A%B belongs to L1 (h) and is equal to E |Aξ〉〈B∗ξ|.
Moreover, tr (A%B) = E 〈B∗ξ, Aξ〉 and E |Aξ〉〈B∗ξ| is a well-defined Bochner
integral in both L1 (h) and L (h).

Proof. Deferred to Subsection 6.4.
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5. Quantum master equation

5.1. Modelling the evolution of density operators

We next introduce the density operators at time t by means of (1.3).

Theorem 5.1. Suppose that Hypothesis 2 holds. Then, for every t ≥ 0 there
exists a unique operator ρt belonging to L (L1 (h)) such that for each C-regular
operator % we have

ρt (%) = E |Xt (ξ)〉〈Xt (ξ)| , (5.1)

where ξ is an arbitrary random variable in L2
C (P, h) satisfying % = E |ξ〉〈ξ| and

X (ξ) is the unique strong C-solution of (1.3) with initial datum ξ. Here we can
interpret E |Xt (ξ)〉〈Xt (ξ)| as a Bochner integral in L1 (h) as well as in L (h).
Moreover, ‖ρt‖L(L1(h)) ≤ 1 for all t ≥ 0.

Proof. Deferred to Subsection 6.5.

Notation 5.1. From now on, ρt stands for the operator given by (5.1).

In case the initial density operator % is C-regular, Corollary 5.1 allows to
define the density operator at time t as the average of all density operators
associated to the pure states Yt, where Y satisfies (1.7) and % = E |Y0〉〈Y0|. This
model has a sound physical basis (see, e.g., [5, 8, 30, 45]).

Definition 5.1. Let C satisfy Hypothesis 1. Suppose that T is either [0,+∞[ or
[0, T ] provided T ∈ [0,+∞[. We say that

(
Q, (Yt)t∈T , (Wt)t∈T

)
is a C-solution

of (1.7) with initial distribution θ on T if and only if:

• W =
(
W k
)
k∈N is a sequence of real valued independent Brownian motions

on the filtered complete probability space
(
Ω,F, (Ft)t∈T ,Q

)
.

• (Yt)t∈T is an h-valued process with continuous sample paths such that the
law of Y0 coincides with θ and Q (‖Yt‖ = 1 for all t ∈ T) = 1.

• For every t ∈ T, Yt ∈ D (C) Q-a.s. and sups∈[0,t] EQ ‖CYs‖2 <∞.
• Q-a.s., Yt = Y0 +

∫ t
0
G (πC (Ys)) ds +

∑∞
k=1

∫ t
0
Lk (πC (Ys)) dW k

s for all
t ∈ T.

Corollary 5.1. Let Hypothesis 2 hold. Then ρt is the unique element of L (L1 (h))
such that ρt (%) = EQ |Yt〉〈Yt| , for any C-regular operator %. Here(

Q, (Yt)t≥0 , (Bt)t≥0

)
is the C-solution of (1.7) with initial law θ satisfying

∫
h
‖Cx‖2 θ (dx) < ∞,

θ (D (C) ∩ {x ∈ h : ‖x‖ = 1}) = 1, and % =
∫
|y〉〈y| θ (dy).

Proof. Deferred to Subsection 6.6.

We proceed to state basic properties of ρt. Applying Theorems 4.1 and 5.3
we obtain that ρt leaves invariant the set of all C-regular density operators.
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Theorem 5.2. Assume that Hypothesis 2 holds. Let ξ ∈ L2
C (P, h). Then

Eρt (|ξ〉〈ξ|) =ρt (E |ξ〉〈ξ|)

for all t ≥ 0.

Proof. Deferred to Subsection 6.7.

Theorem 5.3. Adopt Hypothesis 2. Then (ρt)t≥0 is a semigroup of contractions

such that ρt
(
L+

1 (h)
)
⊂ L+

1 (h), ρt
(
L+

1,C (h)
)
⊂ L+

1,C (h), and

lim
s→t

tr |ρs (%)− ρt (%)| = 0 (5.2)

provided that % is C-regular.

Proof. The proof is divided into Lemmata 6.12, 6.13 and 6.15.

5.2. Regular solutions of quantum master equations

Using the linear stochastic Schrödinger equation we now show that ρt (%) satisfies
(1.1) in both sense integral and L1 (h)-weak, whenever % is C-regular. Recall that
throughout this paper ρt (%) denotes the operator introduced in Theorem 5.1.
Previously, Davies [21] constructed the so-called minimal solution of (1.1) in case
G is the infinitesimal generator of a strongly continuous contraction semigroup
on h. That is, Davies obtained a contraction semigroup (T∗t)t≥0 on L1 (h) whose
infinitesimal generator is given formally by

L∗ (%) = G%+ %G∗ +
∞∑
k=1

Lk%L
∗
k.

Hypothesis 4. The operators G,L1, L2, . . . are closable.

Theorem 5.4. Let Hypotheses 2 and 4 hold. Suppose that % is C-regular. Then
for all t ≥ 0,

ρt (%) = %+
∫ t

0

(
Gρs (%) + ρs (%)G∗ +

∞∑
k=1

Lkρs (%)L∗k

)
ds, (5.3)

where we understand the above integral in the sense of Bochner integral in L1 (h).
Moreover, for any A ∈ L (h) and t ≥ 0 we have

d

dt
tr (Aρt (%)) = tr

(
A

(
Gρt (%) + ρt (%)G∗ +

∞∑
k=1

Lkρt (%)L∗k

))
. (5.4)

Proof. Deferred to Subsection 6.9.

Remark 5.1. Let G,L1, L2, . . . be densely defined. Then Hypothesis 4 is equiv-
alent to say that G∗, L∗1, L

∗
2, . . . are densely defined.
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We now establish that under Hypothesis 2, E |Yt〉〈Yt| is the unique solution
of a weak version of (5.4).

Theorem 5.5. Let Hypothesis 2 hold. Then there exists a unique semigroup
(ρ̂t)t≥0 of bounded operators on L1 (h) with the following properties:

(i) For each non-negative real number T , supt∈[0,T ] ‖ρ̂t‖L(L1(h)) <∞.
(ii) For any x ∈ D (C) and A ∈ L (h), the function t 7→ tr (ρ̂t (|x〉〈x|)A) is

continuous.
(iii) For any x ∈ D (C) and A ∈ L (h),

lim
t→0+

1
t

(tr (Aρ̂t (|x〉〈x|))− tr (A |x〉〈x|))

= 〈x,AGx〉+ 〈Gx,Ax〉+
∞∑
k=1

〈Lkx,ALkx〉 .

Moreover, (ρ̂t)t≥0 coincides with (ρt)t≥0 and ρ̂t

(
L+

1,C (h)
)
⊂ L+

1,C (h) for all
t ≥ 0.

Proof. Deferred to Subsection 6.10.

Remark 5.2. Adopt Hypothesis 2. By Theorem 5.5, the solutions of (1.1) re-
main in L+

1,C (h) provided that the initial data are C-regular density operators.
Theorem 4.3 leads to the mean values of the observables A with respect to these
solutions are well-posed in case D (C) ⊂ D (A). Thus we arrive at a sound math-
ematical description, which is in a good agreement with physical considerations,
of the evolution of unbounded observables in the Schrödinger picture.

Remark 5.3. Suppose that T∗t (%) is as in the first paragraph of this subsection
and that Tt (I) = I for all t ≥ 0, where Tt (I) is, roughly speaking, the solution of
(1.5) with A = I. Let G be the infinitesimal generator of a strongly continuous
contraction semigroup on h and let Condition H2.2 hold for all x ∈ D (G). Then
the linear span of {|x〉〈y| : x, y ∈ D (G)} is a core for L∗ (see, e.g., Proposition
3.32 of [25] for details). Hence (T∗t)t≥0 is the unique strongly continuous semi-
group on L1 (h) such that (T∗t (%))t≥0 is a solution to (1.1) for % = |x〉〈y|, with
x, y ∈ D (G).

Remark 5.4. Using methods from the operator theory, Chebotarev, Garćıa and
Quezada [18] proved that T∗t (L1,C (h)) ⊂ L1,C (h) under assumptions that in-
clude the restrictions:

• G is the infinitesimal generator of strongly continuous semigroup of con-
tractions and D

(
C2
)
⊂ D (G) ⊂ D (C).

• For any % ∈ L1,C4 (h), tr (CL∗ (%)C) ≤ Ktr (C%C).
• The relation % 7→

∑∞
k=1 Lk%L

∗
k defines a continuous function from(

L1,C4 (h) , tr
(∣∣C2 · C2

∣∣))
to (L1 (h) , tr (|·|)).
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• L∗ is continuous as an application from
(
L1,C2k (h) , tr

(∣∣C2k · C2k
∣∣)) to(

L1,C2k−2 (h) , tr
(∣∣C2k−2 · C2k−2

∣∣)) for k = 1, 2.

5.3. Example

This subsection briefly illustrates our main results by means of a one-dimensional
quantum oscillator. A motivation comes from the fact that many quantum sys-
tems are described through quantum oscillators (see, e.g., Chapter V of [15] for
discussion).

Example 1. Consider h = l2 (Z+) together with its canonical orthonormal basis
(en)n∈Z+

. Let the closed operator a be given by ae0 = 0 and aen =
√
nen−1 if

n > 0. Similarly, a† is defined by a†en =
√
n+ 1en+1 for all n ∈ Z+. Set

N = a†a.
Choose L1 = α1a, L2 = α2a

†, L3 = α3N , L4 = α4a
2, L5 = α5

(
a†
)2 and

L6 = α6N
2, with α1, . . . , α6 complex numbers. Take Lk = 0 for all k ≥ 7 and

G = −iH − 1
2

6∑
k=1

L∗kLk, (5.5)

where H = iβ1

(
a† − a

)
+ β2N + β3

(
a†
)2
a2 with β1, β2, β3 real numbers.

Remark 5.5. In Example 1, the unbounded operator N gives the number of
photons. The observables position and momentum operators are described by
the unbounded operators i

(
a† − a

)
/
√

2 and i
(
a† + a

)
/
√

2 respectively.

Remark 5.6. Example 1 unifies some concrete physical systems like two-photon
absorption and emission processes (see, e.g., [13, 26] and references therein) and
ideal resonators interacting with two-level atoms (see, e.g., [24]). In this model,
l2 (Z+) represents, for instance, a single mode of a quantized electromagnetic
field. The action of a† and a on en make an energy quantum appear or disappear
respectively.

In the framework of Example 1, suppose that |α4| ≥ |α5| and that the initial
density operator is regular enough. Then, according to the next theorem we
have that the mean values of observables formed by a finite composition of the
creation and annihilation operators (i.e., a† and a) are well defined at any time.

Theorem 5.6. Assume the setting of Example 1 and let ρt (%) be as in Theorem
5.1. Suppose that |α4| ≥ |α5| and that p is a natural number greater than or
equal to 4. If % lies in L+

1,Np

(
l2 (Z+)

)
, then ρt (%) is a Np-regular operator

that satisfies both (5.3) and (5.4). Moreover, (ρt)t≥0 is the unique semigroup of
bounded operators on L1

(
l2 (Z+)

)
for which Properties (i)-(iii) of Theorem 5.5

hold with C = Np.

Proof. Deferred to Section 6.11.
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6. Proofs

6.1. Proof of Theorem 3.1

Lemma 6.1. Adopt the assumptions of Hypothesis 2 with the exception of Con-
dition H2.2. Consider A in L (h). Then for every t ≥ 0 there exists a unique
Tt (A) belonging to L (h) for which (3.1) holds for all x, y in D (C). Moreover,
‖Tt (A)‖ ≤ ‖A‖ for any t ≥ 0.

Proof. By Definition 2.1, |E 〈Xt (x) , AXt (y)〉| ≤ ‖A‖ ‖x‖ ‖y‖ , where x, y ∈
D (C). Hence the sesquilinear form over D (C)×D (C) given by

(x, y) 7→ E 〈Xt (x) , AXt (y)〉

can be extended uniquely to a sesquilinear form [·, ·] over h×h with the property
that for any x, y ∈ h,

|[x, y]| ≤ ‖A‖ ‖x‖ ‖y‖ . (6.1)

There exists a unique bounded operator Tt (A) on h such that

|[x, y]| = 〈x, Tt (A) y〉

for all x, y in h, and so the lemma follows from (6.1).

Lemma 6.2. Let Hypothesis 2 hold. Assume that (At)t≥0 is a C-solution of
(1.5) with initial datum A ∈ L (h). Then At = Tt (A) for all t ≥ 0, where Tt (A)
is as in Therorem 3.1.

Proof. Fix x, y ∈ D (C). We first prove that for any t ≥ 0 and n ∈ N,

E
〈
RnX

τj

t (x) ,At−t∧τjRnX
τj

t (y)
〉
→j→∞ E 〈RnXt (x) , ARnXt (y)〉 , (6.2)

where Rn = n (n+ C)−1 and τj = inf {t ≥ 0 : ‖Xt (x)‖+ ‖Xt (y)‖ > j}.
Combining Itô’s formula with Condition H2.2 of Hypothesis 2 we obtain the

martingale property of ‖Xτj (z)‖2, with z = x, y. To this end, we can use an
analysis similar to that in the proof of Theorem 2.1 (see, e.g., [27]). According
to Theorem 2.1 we have E ‖Xt (z)‖2 = ‖z‖2, and so

E
∥∥Xτj

t (z)
∥∥2 = E ‖Xt (z)‖2 = ‖z‖2 . (6.3)

Choose εj = 〈RnXt (x) , ARnXt (y)〉−
〈
RnX

τj

t (x) ,At−t∧τj
RnX

τj

t (y)
〉
. Using

Conditions (c) and (d) of Definition 3.1 gives limj→∞ εj = 0. Since ‖Rn‖ ≤ 1,
applying Fatou’s lemma we get

2E

(
sup
s∈[0,t]

‖As‖
∑
z=x,y

‖Xt (z)‖2
)

≤ lim inf
j→∞

E

(
sup
s∈[0,t]

‖As‖
∑
z=x,y

(
‖Xt (z)‖2 +

∥∥Xτj

t (z)
∥∥2
)
− |εj |

)
.
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Therefore lim supj→∞ E |εj | ≤ 0 by (6.3). This implies (6.2).
Our next claim is that

E 〈Xt (x) , AXt (x)〉 = 〈x,Aty〉 . (6.4)

This establishes At = Tt (A) by Lemma 6.1.
In order to prove (6.4), we consider the orthonormal basis (en)n∈N of h. For

any u ∈ h, we define ū to be
∑
n∈N 〈en, u〉en. We set

Fn (s, u, v) = 〈Rnū,At−sRnv〉

provided that s ∈ [0, t] and u, v ∈ h. Since the range of Rn is contained in D (C),
Condition (b) of Definition 3.1 shows

d

ds
Fn (s, u, v) = −fn (s, ū, v) , (6.5)

where fn (s, u, v) is equal to

〈Rnu,At−sGRnv〉+ 〈GRnu,At−sRnv〉+
∞∑
k=1

〈LkRnu,At−sLkRnv〉 . (6.6)

By CRn ∈ L (h), from Hypothesis 2 and Definition 3.1 we conclude that fn is
continuous. Now, we can apply Itô’s formula and (6.5) to obtain

EFn
(
t ∧ τj , X

τj

t (x), Xτj

t (y)
)
− EFn

(
0, Xτj

0 (x), Xτj

0 (y)
)

(6.7)

= E
∫ t∧τj

0

(−fn (s,Xτj
s (x) , Xτj

s (y)) + gn (s,Xτj
s (x) , Xτj

s (y))) ds,

with gn (s, u, v) given by

〈Rnu,At−sRnGv〉+ 〈RnGu,At−sRnv〉+
∞∑
k=1

〈RnLku,At−sRnLkv〉 . (6.8)

According to (6.2) we have

EFn
(
t ∧ τj , X

τj

t (x), Xτj

t (y)
)
−→j→∞ E 〈RnXt (x) , ARnXt (y)〉 .

Using the dominated convergence theorem we tend j →∞ in (6.7) to get

E 〈RnXt (x) , ARnXt (y)〉 − 〈Rnx,AtRny〉 (6.9)

= E
∫ t

0

(−fn (s,Xs (x) , Xs (y)) + gn (s,Xs (x) , Xs (y))) ds.

Since ‖Rn‖ ≤ 1 and Rn tends pointwise to I as n → ∞, the dominated
convergence theorem leads to

lim
n→∞

E
∫ t

0

gn (s,Xs (x) , Xs (y)) ds = E
∫ t

0

g (s,Xs (x) , Xs (y)) ds
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where g (s, u, v) is described by (6.8) with all Rn deleted. Similarly, we de-
fine f (s, u, v) by (6.6) with Rn replaced by I. Because ‖CRnx‖ ≤ ‖Cx‖ and
limn→∞ CRnx = Cx for all x ∈ D (C), using again the dominated convergence
theorem we deduce that

lim
n→∞

E
∫ t

0

fn (s,Xs (x) , Xs (y)) ds = E
∫ t

0

f (s,Xs (x) , Xs (y)) ds.

We now take the limit when n→∞ in (6.9) to obtain (6.4).

6.2. Proof of Theorem 4.2

In order to prove Theorems 4.1, 4.2 and 4.3 we introduce the following two
technical lemmata.

Lemma 6.3. Suppose that ξ and χ belong to L2 (P, h). Then E |ξ〉〈χ| defines
an element of L1 (h), which moreover, is given by

〈x,E |ξ〉〈χ| y〉 = E 〈x, ξ〉 〈χ, y〉 (6.10)

for all x, y ∈ h. Here, E |ξ〉〈χ| is well-defined as a Bochner integral with values
in both L1 (h) and L (h). In addition,

tr (E |ξ〉〈χ|) = E 〈χ, ξ〉 . (6.11)

Proof. Since the image of |ξ〉〈χ| lies in the set of all rank-one operators on h,
|ξ〉〈χ| takes values in L1 (h). Applying Parseval’s equality yields

tr (A |ξ〉〈χ|) = 〈χ,Aξ〉. (6.12)

Hence |ξ〉〈χ| is B (L1 (h))-measurable, because the dual of L1 (h) is formed by
all maps % 7→ tr (A%) with A ∈ L (h).

Due to the absolute value of |x〉〈y| is ‖x‖ |y〉〈y| / ‖y‖ whenever y 6= 0, for any
x, y ∈ h we have

‖|x〉〈y|‖1 = ‖x‖ ‖y‖ . (6.13)

Combining ξ, χ ∈ L2 (P, h) with (6.13) shows that E ‖|ξ〉〈χ|‖1 < ∞, and so the
Bochner integral E |ξ〉〈χ| is well-defined in the separable Banach space L1 (h).
The application (x, y) 7→ |x〉〈y| from h× h to L (h) is continuous, and in conse-
quence the measurability of ξ and χ implies that |ξ〉〈χ| is B (L (h))-measurable.
Thus using ‖·‖L(h) ≤ ‖·‖1 we deduce that |ξ〉〈χ| is Bochner P-integrable in L (h)
(see, e.g., [46] for a treatment of the Bochner integral in Banach spaces which
in general are not separable). Since L1 (h) is continuously embedded in L (h),
either of the interpretations of E |ξ〉〈χ| given above refers to the same operator.

For any x, y belonging to h, the linear function A 7→ 〈x,Ay〉 is continuous as
a map from L (h) to C. This gives (6.10). Similarly, (6.12) leads to

tr (E |ξ〉〈χ|) = Etr (|ξ〉〈χ|) = E 〈χ, ξ〉 ,

because tr (·) ∈ L1 (h)′.
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Remark 6.1. Under the assumptions of Lemma 6.3, E |ξ〉〈χ| can also be inter-
preted as a Bochner integral in the pointwise sense (see, e.g. [23] for details)

Lemma 6.4. Let C be a self-adjoint positive operator in h. Suppose that ξ ∈
L2
C (P, h) and A ∈ L ((D (C) , ‖·‖C) , h). Then Aξ belongs to L2 (P, h).

Proof. By Aξ = AπC (ξ) P-a.s., from Remark 2.3 we deduce that Aξ is strongly
measurable. Since A ∈ L ((D (C) , ‖·‖C) , h) and ξ ∈ L2

C (P, h), Aξ ∈ L2 (P, h).

Proof of Theorem 4.2. Let x ∈ D (C) and let y ∈ h. Using Lemma 6.3 yields

〈Cx, %y〉 = E 〈Cx, ξ〉 〈ξ, y〉 = E 〈x,Cξ〉 〈ξ, y〉 .

In Lemma 6.4 we take A = C to obtain Cξ ∈ L2 (P, h). Thus, Lemma 6.3 implies

E 〈x,Cξ〉 〈ξ, y〉 = 〈x,E |Cξ〉〈ξ| y〉 ,

and so 〈Cx, %y〉 = 〈x,E |Cξ〉〈ξ| y〉. Therefore %y ∈ D (C∗) = D (C) and C%y =
E |Cξ〉〈ξ| y.

6.3. Proof of Theorem 4.1

Our proof starts with the easy construction of a random variable that represents
a given C-regular operator. Then, we deduce the sufficient condition of Theorem
4.1 with the help of Theorem 4.2.

Lemma 6.5. Suppose that % belongs to L+
1,C (h), where C is a self-adjoint pos-

itive operator in h. Then there exists ξ in L2
C (P, h) such that % = E |ξ〉〈ξ| and

‖ξ‖2 = tr (%) a.s.

Proof. Assume that % is positive. Write % as in (4.1). Then, choose Ω = I. Define
P ({n}) = λn/tr (%) and ξ (n) =

√
tr (%)un for any n ∈ I. According to (4.2) we

have ξ ∈ L2
C (P, h). An elementary computation leads to % = E |ξ〉〈ξ|. On the

other hand, take ξ = 0 in case % = 0.

Lemma 6.6. Let C be a self-adjoint positive operator in h. Suppose that % =
E |ξ〉〈ξ|, with ξ ∈ L2

C (P, h). Then % is C-regular.

Proof. According to Lemma 6.3 we have % ∈ L+
1 (h). Hence

% =
∑
n∈I

λn |un〉〈un| ,

where I is a countable set, (λn)n∈I are summable positive real numbers and
(un)n∈I is a orthonormal family of vectors of h. Using Theorem 4.2 yields un ∈
D (C) for all n ∈ I.
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We extend (un)n∈I to an orthonormal basis (en)n∈I′ of h formed by elements
of D (C). From Parseval’s equality we obtain∑

n∈I

λn ‖Cun‖2 =
∑
n∈I

∑
k∈I′

λn |〈Cun, ek〉|2

=
∑
k∈I′

∑
n∈I

λn 〈Cek, |un〉〈un|Cek〉 =
∑
k∈I′

〈Cek, %Cek〉 .

Combining Lemma 6.3 with Parseval’s equality we now get∑
n∈I

λn ‖Cun‖2 =
∑
k∈I′

E |〈ξ, Cek〉|2 = E
∑
k∈I′

|〈Cξ, en〉|2 = E ‖Cξ‖2 .

This gives % ∈ L+
1,C (h).

6.4. Proof of Theorem 4.3

In this subsection, we approximate A%B by ARn%B, where Rn is the Yosida
approximation of −C. Then, combining Lemma 6.3 with a limit procedure we
deduce our claim.

Proof of Theorem 4.3. Using Theorem 4.2 yields D (A%B) = D (B), and so A%B
is densely defined.

Suppose that x ∈ h and y ∈ D (B). As in the proof of Lemma 6.2 we consider
Rn = n (n+ C)−1

, where n ∈ N. Since CRnz −→n→∞ Cz for any x ∈ D (C),

〈x,A%By〉 = lim
n→∞

〈x,ARn%By〉 .

Lemma 6.3 now gives

〈x,A%By〉 = lim
n→∞

E
〈
(ARn)∗ x, ξ

〉
〈ξ,By〉 (6.14)

= lim
n→∞

E 〈x,ARnξ〉 〈ξ,By〉 .

By Rn commutes with C, ‖Rn‖ ≤ 1 leads to ‖ARnz‖ ≤ K ‖z‖C . Hence the
dominated convergence theorem shows that

lim
n→∞

E 〈x,ARnξ〉 〈ξ,By〉 = E 〈x,Aξ〉 〈B∗ξ, y〉 . (6.15)

Due to B is densely defined, B∗ is closed. From Remark 2.1 we have B∗ ∈
L ((D (C) , ‖·‖C) , h). Applying Lemma 6.4 gives Aξ,B∗ξ ∈ L2 (P, h). By (6.14),
(6.15) and Lemma 6.3,

〈x,A%By〉 = E 〈x,Aξ〉 〈B∗ξ, y〉 = 〈x,E |Aξ〉〈B∗ξ| y〉 .

The proof is completed by using Lemma 6.3.
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6.5. Proof of Theorem 5.1

We first establish, in our framework, the well know relation between Heisenberg
and Schrödinger pictures.

Lemma 6.7. Let Hypothesis 2 hold. Suppose that ξ belongs to L2
C (P, h). Then

tr (AE |Xt (ξ)〉〈Xt (ξ)|) = tr (Tt (A)E |ξ〉〈ξ|) (6.16)

for any A ∈ L (h). Here Tt (A) is the bounded operator described by Theorem
3.1.

Proof. Suppose that A ∈ L (h). For each n ∈ N, we define fn : h→ C to be

fn (x) =
{
〈x,Ax〉 , if ‖x‖ ≤ n

0, if ‖x‖ > n
.

Moreover, set Ptfn (x) = E (fn (Xt (x))) for any x ∈ D (C). By Theorem 2.1,

E (fn (Xt (ξ))) = EPtfn (ξ) . (6.17)

The dominated convergence theorem leads to

lim
n→∞

E (fn (Xt (ξ))) = E 〈Xt (ξ) , AXt (ξ)〉 . (6.18)

Combining (6.18) with Theorem 3.1 yields Ptfn (x) −→n→∞ 〈x, Tt (A)x〉. Since
‖Ptfn (x)‖ ≤ ‖A‖ ‖x‖2, letting n→∞ in (6.17) we obtain

E 〈Xt (ξ) , AXt (ξ)〉 = E 〈ξ, Tt (A) ξ〉 .

Theorem 4.3 now gives (6.16).

The following lemma states that ρt (%) is well defined by (5.1) whenever % is
a C-regular operator.

Lemma 6.8. Adopt Hypothesis 2. Suppose that ξ and ϕ are elements of L2
C (P, h)

satisfying E |ξ〉〈ξ| = E |ϕ〉〈ϕ|. Then

E |Xt (ξ)〉〈Xt (ξ)| = E |Xt (ϕ)〉〈Xt (ϕ)| .

Proof. Let A ∈ L (h). Using Lemma 6.7 yields

tr (AE |Xt (ξ)〉〈Xt (ξ)|) = tr (Tt (A)E |ξ〉〈ξ|) = tr (AE |Xt (ϕ)〉〈Xt (ϕ)|) .

Hence ‖E |Xt (ξ)〉〈Xt (ξ)| − E |Xt (ϕ)〉〈Xt (ϕ)|‖L1(h) = 0 (see, e.g., Proposition
9.12 of [38]).

We now establish the contraction property of the restriction of ρt to L+
1,C (h).

Lemma 6.9. Let Hypothesis 2 hold. If %, %̃ are C-regular, then

tr |ρt (%)− ρt (%̃)| ≤ tr |%− %̃| . (6.19)
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Proof. According to Lemma 6.7 we have

tr |ρt (%)− ρt (%̃)| = sup
A∈L(h),‖A‖=1

|tr (Aρt (%))− tr (Aρt (%̃))|

= sup
A∈L(h),‖A‖=1

|tr (Tt (A) %)− tr (Tt (A) %̃)|

≤ sup
A∈L(h),‖A‖=1

‖Tt (A)‖ tr |%− %̃| .

From Theorem 3.1 we obtain (6.19).

Finally, we extend ρt to a bounded linear operator in L1 (h) by using density
arguments.

Lemma 6.10. Suppose that C is a self-adjoint positive operator in h. Then
L+

1,C (h) is dense in L+
1 (h) with respect to the trace norm.

Proof. Let % ∈ L+
1 (h). Then there exist a sequence of orthonormal vectors

(uj)j∈N for which % =
∑
j∈N λj |uj〉〈uj |, with λj ≥ 0 and

∑
j∈N λj < ∞. Note

that

tr

∣∣∣∣∣∣%−
n∑
j=1

λj |uj〉〈uj |

∣∣∣∣∣∣ =
∞∑

j=n+1

λj −→n→∞ 0. (6.20)

On the other hand, for any x, y ∈ h we have

tr ||x〉〈x| − |y〉〈y|| = sup
A∈L(h),‖A‖=1

|〈x,Ax〉 − 〈y,Ay〉|

≤ ‖x− y‖2 + 2 ‖y‖ ‖x− y‖ .

Therefore {|x〉〈x| : x ∈ D (C)} is a ‖·‖L1(h)-dense subset of {|x〉〈x| : x ∈ h} by
D (C) is dense in h. Combining this property with (6.20) we deduce the assertion
of the lemma.

Proof of Theorem 5.1. Combining Theorem 4.1 with Lemma 6.8 we obtain that
(5.1) defines unambiguously a linear operator ρt (%) for any % ∈ L+

1,C (h) and
t ≥ 0.

Suppose that % ∈ L+
1 (h). By Lemma 6.10, there exists a sequence (%n)n∈N of

C-regular operators for which limn→∞ ‖%− %n‖L1(h) → 0. According to Lemma
6.9 we have that the limit in L1 (h) of ρt (%n) as n → ∞ exists and does not
depend on the choice of (%n)n∈N. Thus, we define

ρt (%) = lim
n→∞

ρt (%n) in L1 (h) .

Recall that every A belonging to L (h) has a unique decomposition of the
form A = < (A) + i = (A), where < (A) and = (A) and selfadjoint operators in
h. For each % ∈ L1 (h), we set

ρt (%) = ρt
(
< (%)+

)
− ρt

(
< (%)−

)
+ i
(
ρt
(
= (%)+

)
− ρt

(
= (%)−

))
.
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Here A+, A− denotes respectively the positive and negative parts of the selfad-
joint operator A (see, e.g., [11, 40] for details).

Assume that % = %1−%2 + i (%3 − %4), with %j ∈ L+
1,C (h) for any j = 1, . . . , 4.

Since ‖Tt (A)‖ ≤ ‖A‖, Lemma 6.7 yields

tr |ρt (%)| = sup
A∈L(h),‖A‖=1

|tr (Aρt (%))|

= sup
A∈L(h),‖A‖=1

|tr (Tt (A) %)| ≤ tr (|%|) .

The construction of ρt (%) now implies ‖ρt (%)‖L1(h) ≤ ‖%‖L1(h) for all % ∈ L1 (h).
Let α ≥ 0. Consider two C-regular operators %, %̃. By Definition 4.1, % + α%̃

belongs to L+
1,C (h). Applying Lemma 6.7 we obtain that for any A ∈ L (h),

tr (ρt (%+ α%̃)A) = tr (Tt (A) %) + αtr (Tt (A) %̃)
= tr ((ρt (%) + αρt (%̃))A) .

Therefore ‖ρt (%+ α%̃)− ρt (%)− αρt (%̃)‖L1(h) = 0, and so Lemma 6.10 leads to
ρt (%+ α%̃) = ρt (%) + αρt (%̃) for any %, %̃ ∈ L+

1 (h). Careful algebraic manipula-
tions now show the linearity of ρt : L1 (h)→ L1 (h).

Finally, Lemma 6.10 guarantees the uniqueness of the operator belonging to
L (L1 (h)) for which (5.1) holds.

6.6. Proof of Corollary 5.1

Proof. Let ξ be distributed according to θ. Set Q̃ = ‖XT (ξ)‖2 · P, where T is a
real number greater that t. Moreover, we choose

Ỹt =
{
Xt (ξ) / ‖Xt (ξ)‖ , if Xt (ξ) 6= 0
0, if Xt (ξ) = 0 .

Let Bkt = W k
t −
∫ t
0

1
‖Xs(ξ)‖2 d

[
W k, X (ξ)

]
s

for any k ∈ N. From [27] (see also [36])

we have that
(
Q, (Yt)t∈[0,T ] ,

(
Bkt
)k∈N
t∈[0,T ]

)
is a C-solution of (1.7) with initial law

θ. According to [27] (see also [36]) we have that (1.7) has a unique C-solution
with initial distribution θ. Therefore the distribution of Ỹt with respect to Q̃
coincides with the distribution of Yt under Q. By Theorem 2.1,

(
‖Xt‖2

)
t∈[0,T ]

is a martingale. Hence for any x ∈ h,

EQ |〈x, Yt〉|2 = EQ̃

∣∣∣〈x, Ỹt〉∣∣∣2 = EP

(∣∣∣〈x, Ỹt〉∣∣∣2 ‖Xt (ξ)‖2
)

= EP |〈x,Xt (ξ)〉|2 .

Applying (5.1) and the polarization identity gives ρt (%) = E |Yt〉〈Yt|.



C.M. Mora/Regularity of solutions to QMEs 21

6.7. Proof of Theorem 5.2

We begin by establishing the continuity of the map ξ 7→ ρt (E |ξ〉〈ξ|).

Lemma 6.11. Adopt Hypothesis 2. Let ξ and ξn, with n ∈ N, be random vari-
ables in L2

C (P, h) satisfying E ‖ξ − ξn‖2 −→n→∞ 0. Then ρt (E |ξn〉〈ξn|) con-
verges to ρt (E |ξ〉〈ξ|) in L (h) as n→∞.

Proof. Let x ∈ h. Combining (5.1) with the linearity of (1.3) we get

‖ρt (E |ξn〉〈ξn|)x− ρt (E |ξ〉〈ξ|)x‖
≤ E |〈Xt (ξn) , x〉| ‖Xt (ξn − ξ)‖+ E |〈Xt (ξ − ξn) , x〉| ‖Xt (ξ)‖

Since E ‖Xt (η)‖2 ≤ E ‖η‖2 for any η belonging to L2
C (P, h),

‖ρt (E |ξn〉〈ξn|)x− ρt (E |ξ〉〈ξ|)x‖

≤ ‖x‖
(
E ‖ξ − ξn‖2 + 2

√
E ‖ξ − ξn‖2

√
E ‖ξ‖2

)
.

Proof of Theorem 5.2. There exits a sequence (ξn)n of (D (C) , ‖·‖)-valued ran-
dom variables with finite ranges such that ‖ξn − ξ‖ converges monotonically to
0 (see, e.g., Lemma 1.1 of [23]). Since ρt is linear, an easy computation shows
that Eρt (|ξn〉〈ξn|) = ρt (E |ξn〉〈ξn|). By Lemma 6.11, ρt (E |ξn〉〈ξn|) converges
to ρt (E |ξ〉〈ξ|) in L (h). Hence

Eρt (|ξn〉〈ξn|) −→n→∞ ρt (E |ξ〉〈ξ|) in L (h) . (6.21)

On the other hand, Lemma 6.11 implies

‖ρt (|ξn〉〈ξn|)− ρt (|ξ〉〈ξ|)‖L(h) −→n→∞ 0.

For any x, y ∈ h we have ‖|x〉〈y|‖ = ‖x‖ ‖y‖, and so

‖ρt (|ξn〉〈ξn|)‖ ≤ ‖ξn‖2 ≤ 2
(
‖ξ1 − ξ‖2 + ‖ξ‖2

)
.

Therefore the dominated convergence theorem leads to

E ‖ρt (|ξn〉〈ξn|)− ρt (|ξ〉〈ξ|)‖L(h) −→n→∞ 0.

Consequently, Eρt (|ξn〉〈ξn|) converges to Eρt (|ξ〉〈ξ|) in L (h). The theorem now
follows from (6.21).
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6.8. Proof of Theorem 5.3

We first obtain the semigroup property of (ρt)t≥0.

Lemma 6.12. Let Hypothesis 2 hold. Suppose that % is C-regular. Then ρt (%)
belongs to L+

1,C (h), with t ≥ 0, and ρt+s (%) = ρt ◦ ρs (%) for all s, t ≥ 0.

Proof. Since Xt (ξ) ∈ L2
C (P, h), combining Theorem 4.1 with (5.1) gives

ρt

(
L+

1,C (h)
)
⊂ L+

1,C (h) . (6.22)

Let x, y belong to h. Consider ξ ∈ L2
C (P, h) satisfying ρ = E |ξ〉〈ξ|. Define

pn (z) =
{

〈z, x〉 〈y, z〉 , if |〈z, x〉 〈y, z〉| ≤ n
n 〈z, x〉 〈y, z〉 / |〈z, x〉 〈y, z〉| , if |〈z, x〉 〈y, z〉| > n

,

where z ∈ h and n ∈ N. According to Theorem 2.1, we have

E (pn (Xt+s (ξ))) = EPt (pn) (Xs (ξ)) , (6.23)

with Pt (pn) (z) = E (pn (Xt (z))) for all z ∈ D (C).
Applying the dominated convergence theorem gives

lim
n→∞

E (pn (Xr (z))) = E 〈Xr (z) , x〉 〈y,Xr (z)〉 = 〈y, ρr (|z〉〈z|)x〉

for any z ∈ D (C) and r ≥ 0. Thus limn→∞ Pt (pn) (z) = 〈y, ρt (|z〉〈z|)x〉 and
limn→∞ E (pn (Xt+s (ξ))) = 〈y, ρt+s (|z〉〈z|)x〉. By the dominated convergence
theorem, letting n→∞ in (6.23) gives

〈y, ρt+s (%)x〉 = E 〈y, ρt (|Xs (ξ)〉〈Xs (ξ)|)x〉 .

Theorem 5.2 now shows that 〈y, ρt+s (%)x〉 = 〈y, ρt (E |Xs (ξ)〉〈Xs (ξ)|)x〉.

Lemma 6.13. Under Hypothesis 2, (ρt)t≥0 is a semigroup of contractions which
leaves L+

1 (h) invariant.

Proof. Recall that Theorem 5.1 asserts that ‖ρt‖L(L1(h)) ≤ 1. Since ρt (%) is
positive whenever % is C-regular, using Lemma 6.10 yields 〈x, ρt (%)x〉 ≥ 0 for
any % ∈ L+

1 (h) and x ∈ h.
Suppose that % = %1 − %2 + i (%3 − %4), where %1, . . . , %4 are C-regular oper-

ators. Applying (5.1) gives ρ0 (%) = %. From Lemma 6.12 we obtain ρt+s (%) =
ρt ◦ρs (%) for any s, t ≥ 0. Then, combining Lemma 6.10 with density arguments
we deduce that (ρt)t≥0 is a semigroup.

In order to prove the continuity of the map t 7→ ρt (%) when % is C-regular,
we next verifies the continuity of the function t 7→ Xt (ξ) in the mean square
sense.

Lemma 6.14. Let Hypothesis 2 hold and let ξ ∈ L2
C (P, h). Then for any T ≥ 0,

lim
s→T

E ‖Xs (ξ)−Xt (ξ)‖2 = 0. (6.24)
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Proof. Suppose that t ≥ s ≥ 0. Then E ‖Xs (ξ)−Xt (ξ)‖2 is less than or equal

to 2
(
E
∥∥∥∫ ts GXr (ξ) dr

∥∥∥2

+ E
∥∥∥∑∞k=1

∫ t
s
LkXr (ξ) dW k

r

∥∥∥2
)

. By Condition H2.2

of Hypothesis 2, E ‖Xs (ξ)−Xt (ξ)‖2 is less than or equal to

2
(

(t− s)
∫ t

s

E ‖GXr (ξ)‖2 dr −
∫ t

s

2E< 〈Xr (ξ) , GXr (ξ)〉 dr
)
.

Using sups∈[0,T+1] E ‖CXs (ξ)‖2 <∞ and G ∈ L ((D (C) , ‖·‖C) , h) gives (6.24).

Lemma 6.15. Adopt Hypothesis 2, together with % ∈ L+
1,C (h). Then the map

t 7→ ρt (%) from [0,∞[ to L1 (h) is continuous.

Proof. Consider ξ ∈ L2
C (P, h) such that % = E |ξ〉〈ξ|. Theorem 4.3 yields

E ‖Xt (ξ)‖2 ≤ E ‖ξ‖2 = tr (%)

for any t ≥ 0. By Theorem 4.3 and the Cauchy-Schwarz inequality,

tr |ρt (%)− ρs (%)| = sup
A∈L(h),‖A‖=1

|E 〈Xt (ξ) , AXt (ξ)〉 − 〈Xs (ξ) , AXs (ξ)〉|

≤ 2 (tr (%))1/2
(
E ‖Xt (ξ)−Xs (ξ)‖2

)1/2

.

Lemma 6.14 now implies (5.2).

6.9. Proof of Theorem 5.4

First, we establish the weak continuity of the map t 7→ AXt (ξ) when A is
relatively bounded by C. Hence a probabilistic version of the right-hand side of
(5.4) is continuous as a function from [0,+∞[ to C.

Lemma 6.16. Assume that Hypothesis 2 holds. If ξ belongs to L2
C (P, h) and if

A lies in L ((D (C) , ‖·‖C) , h), then

lim
s→t

E 〈ψ,AXs (ξ)〉 = E 〈ψ,AXt (ξ)〉 (6.25)

for all ψ ∈ L2 (P, h) and t ≥ 0.

Proof. Let (sn)n be a sequence of non-negative real numbers converging to t.
Since ((Xsn

(ξ) , AXsn
(ξ) , CXsn

(ξ)))n is a bounded sequence in L2
(
P, h3

)
with

h3 = h× h× h, there exists a subsequence
(
sn(k)

)
k

for which(
Xsn(k) (ξ) , AXsn(k) (ξ) , CXsn(k) (ξ)

)
(6.26)

−→k→∞ (Y,U, V ) weakly in L2
(
P, h3

)
.

Set
M =

{
(η,Aη,Cη) : η ∈ L2

C (P, h)
}
.
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Then M is a linear manifold of L2
(
P, h3

)
closed with respect to the strong

topology. In fact, suppose that ((ηn, Aηn, Cηn))n is a sequence of elements of
M that converges to (η1, η2, η3) in L2

(
P, h3

)
. Hence there exists a subsequence((

ηn(j), Aηn(j), Cηn(j)

))
j∈N converging almost surely to (η1, η2, η3). Therefore

η1 ∈ D (C) and η3 = Cη1 by C is closed. Using A ∈ L ((D (C) , ‖·‖C) , h) gives
η2 = Aη1.

For any k ∈ N,
(
Xsn(k) (ξ) , AXsn(k) (ξ) , CXsn(k) (ξ)

)
belongs to M. Since M

is a closed linear manifold of L2
(
P, h3

)
, (6.26) implies (Y, U, V ) ∈M (see, e.g.,

Subsection III.1.6 of [32]). We conclude from Lemma 6.14 that Y = Xt (ξ),
hence that U = AXt (ξ), and finally that AXsn(k) (ξ) −→k→∞ AXt (ξ) weakly
in L2 (P, h).

Lemma 6.17. Let Hypothesis 2 hold. Fix ξ ∈ L2
C (P, h) and A ∈ L (h). Then

t 7→ E 〈GXt (ξ) , AXt (ξ)〉+ E 〈Xt (ξ) , AGXt (ξ)〉

+
∞∑
k=1

E 〈LkXt (ξ) , ALkXt (ξ)〉

is continuous as a function from [0,+∞[ to C.

Proof. Let (tn)n∈N be a sequence of non-negative real numbers such that tn con-
verges to t. Applying Lemma 6.14 gives AXtn (ξ) −→n→∞ AXt (ξ) in L2 (P, h),
and so

lim
n→∞

E 〈GXtn (ξ) , AXtn (ξ)〉 = E 〈GXt (ξ) , AXt (ξ)〉 (6.27)

by Lemma 6.16 (see, e.g., Subsection III.1.7 of [32]). From (6.27) we obtain that
the map t 7→ E 〈A∗Xt (ξ) , GXt (ξ)〉 is continuous. Moreover, according to (6.27)
we have E< 〈Xtn (ξ) , GXtn (ξ)〉 →n→∞ E< 〈Xt (ξ) , GXt (ξ)〉. Thus Condition
H2.2 of Hypothesis 2 leads to

∞∑
k=1

E ‖LkXtn (ξ)‖2 −→n→∞

∞∑
k=1

E ‖LkXt (ξ)‖2 . (6.28)

Applying Lemma 6.16 we get that LkXtn (ξ) converges weakly in L2 (P, h)
to LkXt (ξ) as n tends to ∞, where k ∈ N. Then (6.28) implies that LkXtn (ξ)
converges strongly in L2 (P, h) to LkXt (ξ) as n→∞. Conversely, suppose that

lim sup
n→∞

E ‖LjXtn (ξ)‖2 > E ‖LjXt (ξ)‖2 (6.29)

for a given j ∈ N. Since E ‖LkXt (ξ)‖2 ≤ lim infn→∞ E ‖LkXtn (ξ)‖2, Fatou’s
lemma shows ∑

k 6=j

E ‖LkXt (ξ)‖2 ≤ lim inf
n→∞

∑
k 6=j

E ‖LkXtn (ξ)‖2 . (6.30)
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According to (6.28) and (6.29) we have

lim inf
n→∞

∑
k 6=j

E ‖LkXtn (ξ)‖2 =
∞∑
k=1

E ‖LkXt (ξ)‖2 − lim sup
n→∞

E ‖LjXtn (ξ)‖2

<
∑
k 6=j

E ‖LkXt (ξ)‖2 ,

contrary to (6.30). Therefore lim supn→∞ E ‖LjXtn (ξ)‖2 ≤ E ‖LjXt (ξ)‖2, and
so LkXtn (ξ) −→n→∞ LkXt (ξ) in L2 (P, h). This gives

E 〈LkXtn (ξ) , ALkXtn (ξ)〉 −→n→∞ E 〈LkXt (ξ) , ALkXt (ξ)〉 .

From Condition H2.2 it follows that
∑n
k=1 E 〈LkXt (ξ) , ALkXt (ξ)〉 converges

to
∑∞
k=1 E 〈LkXt (ξ) , ALkXt (ξ)〉 as n → ∞ uniformly on any finite interval.

Then t 7→
∑∞
k=1 E 〈LkXt (ξ) , ALkXt (ξ)〉 is continuous.

Second, combining the regularity of X (ξ) with Itô’s formula we obtain that
E |Xt (ξ)〉〈Xt (ξ)| satisfies an integral version of (1.1).

Lemma 6.18. Suppose that Hypothesis 2 hold and that ξ ∈ L2
C (P, h). We define

L∗ (ξ, t) to be

E |GXt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈GXt (ξ)|+
∞∑
k=1

E |LkXt (ξ)〉〈LkXt (ξ)| .

Then L∗ (ξ, t) is a trace-class operator on h whose trace-norm is uniformly
bounded with respect to t on bounded time intervals. The series involved in the
definition of L∗ converges in L1 (h). Moreover, the application t 7→ tr (AL∗ (ξ, t))
is continuous as a function from [0,∞[ to C for any A ∈ L (h).

Proof. By Condition H2.2 of Hypothesis 2, using (6.13) and Lemma 6.3 we get

‖E |GXs (ξ)〉〈Xs (ξ)|‖1 + ‖E |Xs (ξ)〉〈GXs (ξ)|‖1

+
∞∑
k=1

‖E |LkXs (ξ)〉〈LkXs (ξ)|‖1 ≤ 3E (‖Xt (ξ)‖ ‖GXt (ξ)‖) .

From G ∈ L ((D (C) , ‖·‖C) , h) we obtain

E (‖Xt (ξ)‖ ‖GXt (ξ)‖) ≤ K
√
E ‖ξ‖2

√
E ‖Xt (ξ)‖2C ,

and the first two assertions of the lemma follow.
Using Lemma 6.3 we deduce that tr (AL∗ (ξ, t)) is equal to

E 〈Xt (ξ) , AGXt (ξ)〉+ E 〈GXt (ξ) , AXt (ξ)〉+
∞∑
k=1

E 〈LkXt (ξ) , ALkXt (ξ)〉 ,

whenever A ∈ L (h). Thus Lemmata 6.17 implies the continuity of the function
t 7→ tr (AL∗ (ξ, t)).
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Lemma 6.19. Adopt Hypothesis 2 together with ξ ∈ L2
C (P, h). Then for all

t ≥ 0

ρt (%) = %+
∫ t

0

L∗ (ξ, s) ds, (6.31)

where % = E |ξ〉〈ξ|, L∗ (ξ, s) is as in Lemma 6.18, and we understand the above
integral in the sense of Bochner integral in L1 (h).

Proof. Since the dual of L1 (h) consists in all linear maps % 7→ tr (A%) with A ∈
L (h), the last assertion of Lemma 6.18 implies that t 7→ L∗ (ξ, t) is measurable as
a function from [0,∞[ to L1 (h). Using Lemma 6.18 we deduce that t 7→ L∗ (ξ, t)
is a Bochner integrable L1 (h)-valued function on bounded intervals.

Let x ∈ h. For each n ∈ N, we choose τn = inf {s ≥ 0 : ‖Xs (ξ)‖ > n}. Then,
using Condition H2.2 of Hypothesis 2 yields

E
∞∑
k=1

∫ t∧τn

0

‖〈Xs (ξ) , x〉LkXs (ξ) + 〈LkXs (ξ) , x〉Xs (ξ)‖2 ds

≤ −4n3 ‖x‖2 E
∫ t∧τn

0

‖GXs‖ ds.

Therefore E
∑∞
k=1

∫ t∧τn

0
(〈Xs (ξ) , x〉LkXs (ξ) + 〈LkXs (ξ) , x〉Xs (ξ)) dW k

s = 0
by G belongs to L ((D (C) , ‖·‖C) , h). The complex Itô formula now leads to

E 〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = E 〈ξ, x〉 ξ + E
∫ t∧τn

0

Lx (Xs (ξ)) ds, (6.32)

where for any z ∈ D (C) we write

Lx (z) = 〈z, x〉Gz + 〈Gz, x〉 z +
∞∑
k=1

〈Lkz, x〉Lkz.

Since X (ξ) has continuous sample paths, τn ↗n→∞ ∞. By Conditions H2.1
and H2.2 of Hypothesis 2, applying the dominated convergence we obtain

lim
n→∞

E
∫ t∧τn

0

Lx (Xs (ξ)) ds = E
∫ t

0

Lx (Xs (ξ)) ds. (6.33)

Set εn = 〈Xt (ξ) , x〉Xt (ξ)−〈Xt∧τn
(ξ) , x〉Xt∧τn

(ξ). From Theorem 2.1 we have
E ‖Xt (ξ)‖2 = E ‖ξ‖2, and so Fatou’s lemma implies

2 ‖x‖E ‖ξ‖2 ≤ lim inf
n→∞

E
(
‖x‖ ‖Xt (ξ)‖2 + ‖x‖ ‖Xt∧τn (ξ)‖2 − |εn|

)
. (6.34)

In the proof of Theorem 2.1 we deduced that E ‖Xt∧τn (ξ)‖2 = E ‖ξ‖2 , by means
of Itô’s formula and Condition H2.2. Thus

2 ‖x‖E ‖ξ‖2 ≤ 2 ‖x‖E ‖ξ‖2 − lim sup
n→∞

E |εn| .
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Consequently limn→∞ E |εn| = 0, and so

lim
n→∞

E 〈Xt∧τn
(ξ) , x〉Xt∧τn

(ξ) = E 〈Xt (ξ) , x〉Xt (ξ) . (6.35)

Due to (6.33) and (6.35), letting first n→∞ in (6.32) and then using Fubini’s
theorem we get

E 〈Xt (ξ) , x〉Xt (ξ) = E 〈ξ, x〉 ξ +
∫ t

0

ELx (Xs (ξ)) . (6.36)

Combining the dominated convergence theorem with Condition H2.2 yields

E
∞∑
k=1

〈LkXs (ξ) , x〉LkXs (ξ) =
∞∑
k=1

E 〈LkXs (ξ) , x〉LkXs (ξ) .

Therefore
∫ t
0
ELx (Xs (ξ)) =

∫ t
0
L∗ (ξ, s)xds by Lemmata 6.3 and 6.18. Combin-

ing Theorem 5.1 with Lemma 6.18 leads to (6.31).

We proceed to show (5.3) and (5.4) with the help of Hypothesis 4.

Proof of Theorem 5.4. By Theorem 4.1 there exists ξ ∈ L2
C (P, h) such that

% = E |ξ〉〈ξ|. Theorem 4.3 gives AGρt (%) = E |AGXt (ξ)〉〈Xt (ξ)|. Applying
Hypothesis 4 we get that G∗, L∗1, L

∗
2, . . . are densely defined and G∗∗, L∗∗1 , . . .

coincide with the closures of G,L1, . . . respectively (see, e.g., Theorem III.5.29 of
[32]). According to Theorem 4.3 we have Aρt (%)G∗ = E |AXt (ξ)〉〈GXt (ξ)| and
ALkρt (%)L∗k = E |ALkXt (ξ)〉〈LkXt (ξ)|. Hence L∗ (ξ, t) = Gρt (%) +ρt (%)G∗+∑∞
k=1 Lkρt (%)L∗k. Lemma 6.19 now yields (5.3), and so

tr (Aρt (%)) = tr (A%) +
∫ t

0

tr (AL∗ (ξ, s)) ds

for all t ≥ 0. Using the continuity of L∗ (ξ, ·) we obtain (5.4).

6.10. Proof of Theorem 5.5

Lemma 6.20. Let Hypothesis 2 hold. Then (ρt)t≥0 is a semigroup of bounded
operators on L1 (h) that satisfies Properties (i)-(iii) of Theorem 5.5.

Proof. According to Theorem 5.3 we have that (ρt)t≥0 is a semigroup of bounded
operators on L1 (h) satisfying Property (i) of Theorem 5.5.

Fix % = |x〉〈x|, with x ∈ D (C). Thus % is a C-regular operator, and so (5.2)
leads to Property (ii). By Lemma 6.18, using Lemma 6.19 we obtain

lim
t→0+

1
t

(tr (Aρ̂t (%))− tr (A%)) = tr (AL∗ (x, 0)) .

Lemma 6.3 yields tr (AL∗ (x, 0)) = 〈x,AGx〉 + 〈Gx,Ax〉 +
∑∞
k=1 〈Lkx,ALkx〉.
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Lemma below makes it legitimate to use in our context the duality relation
between quantum master equations and adjoint quantum master equations.

Lemma 6.21. Assume that Hypothesis 2 holds, together with A ∈ L (h). Let
(ρ̂t)t≥0 be a semigroup of bounded operators on L1 (h) satisfying Properties (i)-
(iii) of Theorem 5.5. Then (ρ̂∗t (A))t≥0 is a C-solution of (1.5) with initial datum
A. Here (ρ̂∗t )t≥0 is the adjoint semigroup of (ρ̂t)t≥0 (see, e.g., Section 1.10 of
[39] for details), that is, (ρ̂∗t )t≥0 is the unique semigroup of bounded operators
on L (h) such that

tr (ρ̂t (%)B) = tr (ρ̂∗t (B) %) (6.37)

for all B ∈ L (h) and % ∈ L1 (h).

Proof. Using (6.37) we deduce that for any vectors x, y ∈ h whose norm is 1,

|〈y, ρ̂∗t (A)x〉| = |tr (ρ̂∗t (A) |x〉〈y|)|
≤ tr (|ρ̂t (|x〉〈y|)A|) ≤ ‖A‖ ‖ρ̂t‖L(L1(h)) tr (||x〉〈y||) .

We conclude from (6.13) that tr (||x〉〈y||) = 1, hence that |〈y, ρ̂∗t (A)x〉| ≤
‖A‖ ‖ρ̂t‖L(L1(h)), and finally that

‖ρ̂∗t (A)‖L(h) ≤ ‖A‖ ‖ρ̂t‖L(L1(h)) . (6.38)

Applying Property (i) of Theorem 5.5 gives Property (c) of Definition 3.1.
Let x ∈ h. As in the proofs of Lemma 6.2 and Theorem 4.3, we define Rn to

be n (n+ C)−1, n ∈ N. According to (6.37) we have

〈Rnx, ρ̂∗t (A)Rnx〉 = tr (ρ̂∗t (A) |Rnx〉〈Rnx|) = tr (ρ̂t (|Rnx〉〈Rnx|)A) .

Since Rnx ∈ D (C), Property (ii) of Theorem 5.5 implies the continuity of the
function t 7→ 〈Rnx, ρ̂∗t (A)Rnx〉. By (6.38),

|〈x, ρ̂∗t (A)x〉 − 〈x, ρ̂∗s (A)x〉|

≤ 2 ‖A‖
(
‖ρ̂t‖L(L1(h)) + ‖ρ̂s‖L(L1(h))

)
‖x‖ ‖x−Rnx‖

+ |〈Rnx, ρ̂∗t (A)Rnx〉 − 〈Rnx, ρ̂∗s (A)Rnx〉| .

Using Rnx −→n→∞ x we deduce that the map t 7→ 〈x, ρ̂∗t (A)x〉 is continuous.
The polarization identity leads to Property (d) of Definition 3.1.

Assume that x ∈ D (C). By (6.37), combining ρ̂∗t+s (A) = ρ̂∗s (ρ̂∗t (A)) with
Property (iii) of Theorem 5.5 yields

lim
s→0+

1
s

(〈
x, ρ̂∗t+s (A)x

〉
− 〈x, ρ̂∗t (A)x〉

)
= lim
s→0+

1
s

(tr (ρ̂s (|x〉〈x|) ρ̂∗t (A))− tr (|x〉〈x| ρ̂∗t (A))) = L (ρ̂∗t (A) , x) .

with L (ρ̂∗t (A) , x) = 〈x, ρ̂∗t (A)Gx〉 + 〈Gx, ρ̂∗t (A)x〉 +
∑∞
k=1 〈Lkx, ρ̂∗t (A)Lkx〉.

Thus
d

dt

+

〈x, ρ̂∗t (A)x〉 = L (ρ̂∗t (A) , x) (6.39)
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From (6.38) and Condition H2.2 we get that
∑∞
k=1 〈Lkx, ρ̂∗t (A)Lkx〉 is uni-

formly convergent on bounded intervals, and so t 7→
∑∞
k=1 〈Lkx, ρ̂∗t (A)Lkx〉 is

continuous. Hence the application t 7→ d
dt

+ 〈x, ρ̂∗t (A)x〉 is continuous. Therefore
〈x, ρ̂∗t (A)x〉 is continuously differentiable (see, e.g., Section 2.1 of [39]). Property
(b) of Definition 3.1 now follows from (6.39).

Proof of Theorem 5.5. Let (ρ̂t)t≥0 be a semigroup of bounded operators on
L1 (h) satisfying Properties (i)-(iii) of Theorem 5.5. Let (ρ̂∗t )t≥0 be the ad-
joint semigroup of (ρ̂t)t≥0. Combining Lemma 6.21 with Theorem 3.1 we obtain
ρ̂∗t (A) = Tt (A), where t ≥ 0, A ∈ L (h) and (Tt (A))t≥0 is given by Theorem
3.1.

Let % ∈ L+
1,C (h) and A ∈ L (h). Appying Lemma 6.7 and (6.37) yields

tr (ρt (%)A) = tr (Tt (A) %) = tr (ρ̂∗t (A) %) = tr (ρ̂t (%)A) .

Therefore ρt (%) = ρ̂t (%). Lemma 6.10 now implies that ρt (%) = ρ̂t (%) for all
% belonging to L+

1 (h), and so ρt = ρ̂t. Finally, Lemma 6.20 and Theorem 5.3
complete the proof.

6.11. Proof of Theorem 5.6

Proof of Theorem 5.6. According to (5.5) we have D (G) = D
(
N4
)
. By (5.5),

Remark 2.2 shows that G is a closable operator with the property

G ∈ L ((D (Np) , ‖·‖Np) , h) .

Let x be a vector of h whose coordinates xn := 〈en, x〉 are equal to 0 for all
n ∈ Z+ except a finite number. Then, an easy computation leads to

2<
〈
N2px,Gx

〉
+
∞∑
k=1

‖NpLkx‖2

= 2β1

∞∑
n=1

√
n+ 1

(
(n+ 1)2p − n2p

)
< (xnxn+1)

+4p
(
|α5|2 − |α4|2

) ∞∑
n=0

n2p+1 |xn|2 +
∞∑
n=0

f (n) |xn|2 ,

where f is a 2p-degree polynomial whose coefficients depend of |αk|2 with
k = 1, 2, 4, 5. Hence Np satisfies Hypothesis 3, and so applying Theorem 2.2
we obtain that Np fulfills Condition H2.3 of Hypothesis 2. Now, the proof is
completed by using Theorems 5.4 and 5.5.
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