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Abstract We present a mimetic approximation of the Reissner-Mindlin plate
bending problem which uses deflections and rotations as discrete variables.
The method applies to very general polygonal meshes, even with non match-
ing or non convex elements. We prove linear convergence for the method
uniformly in the plate thickness.

1 Introduction

The Mimetic Finite Difference (or MFD) method allows for the discretiza-
tion of problems in partial differential equations using very general polygo-
nal/polyhedral grids. The MFD scheme has been successfully employed for
solving problems of continuum mechanics [40], electromagnetics [35], gas dy-
namics [24], and linear diffusion (see e.g. [36,41,37,14,15,34] and references
therein).

Recently, a new approach to the MFD method has been proposed in [21].
Such approach, which interprets the MFD method as a generalization of
the finite element method, seems to be more flexible both for developing the
method and for the convergence analysis. This last generation of MFD should
be more appropriately called Mimetic Discretization (MD) methods, since
the original finite difference approach is abandoned. From the standpoint of
finite elements, the fundamental idea of the mimetic discretization scheme
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becomes the following: the discrete variational problem is written directly
in terms of the degrees of freedom and the underlying basis functions are
not specified explicitly. Clearly, the differential operators and bilinear forms
appearing in the problem must be suitably discretized in such a way that
certain stability and consistency properties are satisfied. This approach allows
for general polygonal/polyhedral meshes, even with non-matching and non-
convex elements. Another remarkable fact is that the aforementioned forms
can be practically constructed in a rather simple algebraic way.

The ideas and convergence analysis presented in [21] for the diffusion
problem has been further developed in [17,10,38,7]. As previously mentioned,
this analysis resulted also in new algebraic methods for building mass [23,
22] and stiffness [17] matrices on arbitrary-shaped elements for the linear
diffusion problem. These algebraic methods have been developed also for
higher order MFD methods [13,33]. A-posteriori error estimators have been
analyzed in [6,12], while in [25,26] the authors introduced a post-processing
technique and generalized some previous results. Moreover, a mimetic dis-
cretization of the Stokes problem following this new approach was presented
in [8,11]. Finally, the mimetic discretization method has been shown to share
strong similarities also with the finite volume method in [29], see also [28].

The aim of the present paper is to develop a Mimetic Discretization of
the Reissner-Mindlin plate bending problem. This problem has attracted a
large attention in the last decades both in the engineering and mathematical
communities, mainly due to the large applicability of the model and the
strong difficulties hidden in its numerical approximation. Nowadays there
exists a large range of finite element schemes for the Reissner-Mindlin plate
bending problem, the most famous and popular ones belonging without doubt
to the Mixed Interpolation of Tensorial Components (MITC) class of methods
[4,2]. The convergence analysis of the MITC elements has been covered in
several papers from different points of view, see for instance [18,3,20,42,32,
43,31,5,39|.

In the present paper, we propose a MD method which applies to general
polygonal (even non-conforming or non-convex) meshes and which takes the
steps from the MITC philosophy. The degrees of freedom for the (scalar)
displacement variable are one for each mesh vertex, while for the (vectorial)
rotation variable we adopt two degrees of freedom for each vertex plus an
additional degree of freedom on each edge. Under certain assumptions on the
mesh, such edge degrees of freedom can be dropped, leading to a method
which uses only vertex d.o.f.s. both for the displacements and rotations.
Taking inspiration from the MITC approach, the proposed scheme adopts
a reduction of the shear energy in order to avoid locking. As it happens in
mimetic discretizations, all the reduction and differential operators, bilinear
forms and degrees of freedom must be defined carefully in order to correctly
mimic the properties of the original problem.

The paper is organized as follows. In Section 2 we present the model
problem. In Section 3, after introducing the discrete spaces, operators and
bilinear forms, we describe the proposed method. In the rest of the paper we
develop the error analysis. In order to do so, we take inspiration from the
ideas of [42,1,20,39] which rewrite the discrete problem as a combination of
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different sub-problems via a discrete Helmholtz decomposition. We choose
such approach because, although it is perhaps less direct than others, it has
the advantage of unveiling the true structure of the problem. After introduc-
ing the equivalent discrete problem in Section 4, we derive the error analysis
in Section 5. In the main Theorem 1, we finally prove the linear convergence
of the method, uniformly in the thickness parameter ¢t and under realistic
regularity requirements for the solution.

2 The Reissner-Mindlin plate bending problem

Here and thereafter we use the following operator notation for any tensor
field 7 = (7;) i, = 1,2, any vector field n = (n;) ¢ = 1,2 and any scalar
field v:

. 0
divn := Oim + O2np, rot 1 := 01z — Az, Vui= (8;5) 7

O o1+ O :
. 2 S 1711 + 02712 ) 3
curlv := < 511)) , div 7 := (ale (927'22) , tr(7) := igl Tii-

Throughout the paper we will use standard notations for Sobolev spaces,
norms and semi-norms. Moreover, we will denote with ¢ and C, with or
without subscripts, tildes, or hats a generic constant independent of the mesh
parameter h and the plate thickness ¢, which may take different values in
different occurrences.

Consider an elastic plate of thickness ¢ such that 0 < ¢ < diam(£2), with
reference configuration 2 x (—%, %) , where {2 is a convex polygonal domain
of R? occupied by the midsection of the plate. The deformation of the plate is
described by means of the Reissner-Mindlin model in terms of the rotations
B = (1, B2) of the fibers initially normal to the plate’s midsurface, the scaled
shear stresses v = (71,72), and the transverse displacement w. Assuming
that the plate is clamped on its whole boundary 02, the following strong
equations describe the plate’s response to conveniently scaled transversal
load g € L?(£2): find (B,w,~) such that

—divCe(B) —vy=0in {2,

—divy =g in {2, (1)
vy=rt"3(Vw—08) in £,
ﬁ:()’u}:O on 60,

where the tensor of bending moduli

E
Cr:= 2007 (1 =v)T 4+ vtr(7)I),

with E > 0 representing the Young modulus, 0 < v < 1/2 being the Poisson
ratio for the material and I indicating the second order identity tensor.
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Let the H&(Q)Q—elliptic bilinear form be given by

a(B,m) = /Qcam:e(n):

7 E
S 12(1—v?)

(2)
/Q [(1—v)e(B):e(n) +vdivadivy],

with & = (£)1<;,j<2 the standard strain tensor defined by &;;(8) := £(0;3;+
Then, the variational formulation of problem (1) reads: Find (8, w,v) €
HL(02)? x HE(£2) x L*(22)” such that

2
{a(ﬁ,n) + (v, Vv =m)oe = (g,v)02 V(n,v) € Hy(2)" x Hy(£2), @)
(Vw — B,8)0.0 — K 2(7,8)0,0 =0 V0 € L*(2)*,
where k := Ek/2(1 + v) is the shear modulus with k a correction factor
usually taken as 5/6 for clamped plates.
Using the Helmholtz decomposition for the shear term [18]
v = Vi) + curlp, (4)

with ¢ € H}(2) and p € HY(£2) N L3(£2), the same decomposition for the
test function
6 = V& + curlyg,

and integrating by parts, we easily infer that problem (3) is equivalent to the
following: Find (¢, 8, p,w) € HA(2) x HY(2)* x H'(2) N L3(R2) x HL ()
such that

(Vi Vo)o,o = (9,v)0,0 Vo € Hy(£2),

a(B,m) — (p,rot Mo, = (Vi,n)o,e Vn € H&(Q)Q,
—(rot B,q)o.2 — k™3 (curl p,curlq)o.o = 0 Vg € HY(2) N L3(£2),

(Vwa v&)o,ﬂ = (67 V§)079 + K’ith(vll/}a v&)O,Q Vf € H&(‘Q)
()
It can be easily checked that there is a unique solution for both variational
problems considered above. In what follows we will make the following regu-
larity assumption. The load term g € L?(§2), all components of the solution
(4, B, p,w) of (5) are in H?(£2) and it holds

[¥ll2.2 + [1Bllz,2 + lIpll1,2 + lIpll2,2 + w20 < Cllgllo.e, (6)

with C independent of ¢.
The above assumption is reasonable. We recall for instance the following
regularity result (see [1]):

Proposition 1 Let {2 be a convex polygon or a smoothly bounded domain in
the plane. Then, for any t € (0,diam(§2)] and g € L*(12), the condition (6)
is satisfied.
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3 A mimetic discretization

In this section we present a mimetic discretization method for the Reissner-
Mindlin plate bending problem.

3.1 Mesh notation and assumptions

Let 25, be a partition of the computational domain {2 into N'(£2;) polygons
E. We assume that this partition is conformal, i.e. intersection of two different
elements Fy and FEj is either a few mesh points, or a few mesh edges (two
adjacent elements may share more than one edge) or empty. We allow (2,
to contain non-convex and degenerate elements. For each polygon F, |E|
denotes its area, hg denotes its diameter and

h := max hg.
Eey,

We denote the set of mesh vertices and edges by V;, and &, the set of
internal vertices and edges by V? and £, the set of vertices and edges of a
particular element E by V,? and S}?, and the set of boundary vertices and
edges by V,? and 8,?, respectively. Moreover, we denote a generic mesh vertex
by v, a generic edge by e and its length both by he and |e|.

A fixed orientation is also set for the mesh (2, which is reflected by a
unit normal vector ne, e € &, fixed once for all. Moreover, t. denotes the
tangent vector defined as the anticlockwise rotation of n. by 90°.

For every polygon E and edge e € Ef, we define a unit normal vector n%,
that points outside of E, and by t% the tangent vector as the anticlockwise
rotation of n%, by 90°.

The mesh is assumed to satisfy the following shape regularity properties,
which have already been used in [17].

There exist

— an integer number Ny, which is independent of h;

— a real positive number p independent of h;

— a compatible sub-decomposition 7, of every (2} into shape-regular trian-
gles,

such that

(H1) any polygon E € (2;, admits a decomposition 7, |g formed by less than
N, triangles;

(H2) any triangle T' € 7}, is shape-regular in the sense that the ratio between
the radius r of the inscribed ball and the diameter hr is bounded from
below by p:

r
0<p< ey

From (H1), (H2) there can be easily derived several useful properties that

3

we list below:
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(M1) the number of vertices and edges of every polygon F of (2, are uni-
formly bounded from above by two integer numbers N, and N, which
only depend on Ng;

(M2) there exists a real positive number o, which only depends on N, and
p, such that

he > oshEg and |E| > ashQE,

for every polygon E of every decomposition §2;,, for every edge e of E.

(M3) there exists a constant C,, only dependent on p and Ny, such that for
every polygon E, for every edge e of E and for every function ¢ € H(E)
there holds the trace inequality:

1913 < Ca (R NI 2 + halvl 5.

(M4) there exists a constant Cy,,,

every E and for every function 1) € H'(FE) there exists a constant 19 € R
such that

which is independent of h, such that for

1Y — tollo,g < CypphelY) B

(M5) there exists a constant Clyp, which is independent of h, such that for
every E and for every function v € H?(E) there holds the interpolation
inequality

[ — 1llo,g + hel — ¥i|1,e < Capph|¥]2,E,

where 11 is the L?(E)-orthogonal projection of 1) over the space of linear
polynomials defined on F.

Note that (M4) and (M5) follow, for instance, from the extended Bramble-
Hilbert lemma of [30,16]. We make also the following assumptions on the
material data E, v.

(H3) The scalar functions E, v are piecewise constant with respect to the
mesh (25,. Moreover, there exist two positive constants C, and C* such
that Cy < E < C* on the whole domain.

The above uniformity condition on E is standard, while the piecewise con-
stant condition can be interpreted as an approximation of the data and is
introduced only for simplicity. In the general case, it is sufficient to assume
that E and v are (piecewise) W1 and to introduce an element-wise aver-
aging in the data of the numerical scheme.

3.2 Degrees of freedom and interpolation operators

The discretization of problem (3) requires to discretize the scalar field of
displacement and the vector fields of rotations and shears. In order to do so,
we introduce the degrees of freedom for the numerical solution in accordance

with the correspondance

w,v € H&(Q) — wp,vp € Wh,
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2
ﬁ,’l’] S H&(Q) - /Bhu’r]h S Hh7

v, 8 € L2(02)* = ~,,85 € Ih,

where W}, represents the linear space of discrete displacement, Hj indicates
the linear space of discrete rotations and [}, is the linear space of discrete
shears.

The discrete space for transverse displacements W}, is defined as follows:
a vector vy, € W}, consists of a collection of degrees of freedom

Uh = {UV}VEVS )

one per internal mesh vertex, e.g. to every vertex v € V,& we associate a
real number vY. The scalar v¥ represents the nodal value of the underlying
discrete scalar field of displacement. The number of unknowns is equal to the
number of internal vertices.

The discrete space for rotations Hy, is defined as follows: a vector n;,, € Hj,
is a collection of degrees of freedom

M = {ﬂv}vevg U {neE}EGQh,e€5fﬁ£27

i.e. we assign a vector ¥ € R? per each vertex v € V), and, for every element
E in 2, one real number 7% € R per each edge e € EF N EY. We make the
following continuity assumption: for each edge e shared by two element F;
and Fs, we have

e _ e
Neg, = —NEgy»

so that, in practice, we have only one degree of freedom per edge. The vector
7V represents the nodal values of the underlying discrete vector field of rota-
tions, while the scalar 1§ represents a bubble-type correction to the tangent
value of the discrete rotations on edges. The number of unknowns is equal
to twice the number of internal vertices plus the number of internal edges.

Finally, the space for the discrete shear force I}, is defined as follows: to
every element F in {2, and every edge e € £F N &Y, we associate a number

%, l.e.

— e
on = {5E}Ee.0h,ee£{fm£g .

We make the continuity assumption that for each edge e shared by two ele-
ment F7 and E5, we have

e __ _ ge
Ey — Es-

The scalar %, represents the average on edges of the discrete shears in the
tangential direction. The number, of unknowns is equal to the number of
internal edges.
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Wi, Hy Iy,

Fig. 1 Degrees of freedom for transverse displacements (left), rotations (center)
and shear force (right).

We now define the following interpolation operators from the spaces of
smooth enough functions to the discrete spaces W},, Hy, and I},, respectively.
For every function v € C°(2) N HE(£2), we define v; € W), by

oy ==wv(v) W eV
For every function 1 € [C%(£2) N H}(£2))2, we define n; € Hy, by
77‘1’ =n(v) WeVp,
(n1)% : ||/n tS — [y +nP) -t VE€, VYec&FnéEp,

where v; and vy are the vertices of the edge e.
For every function § € Hy(rot; £2) N [L*(£2)]2, s > 2, we define &1 € I},
by

(6m)% ||/6t VEc ), Vec&Fne&.

For all E € (2 in the sequel we will also make use of local interpolation
operators v, g, Ny g, 0, g, with values in Wy, |g, Hp| g, I'n| £ respectively; such
operators are simply the obvious restriction of the global ones to the element
E for functions which are sufficiently regular on F.

Remark 1 Although all the discrete degrees of freedom live only on the in-
ternal vertices and edges, in the sequel we will often (implicitly) consider
its extension to the boundary vertices and edges. In such case, the values
associated to the degrees of freedom living on boundary vertices and edges
must always be considered zero.

3.3 Discrete norms and operators

We endow the space W, with the following norm

2
lonlB, = 3 lonlBye= 3 1] S [ “)} o

Ecy, Ec(2y, eeSE
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where v; and vy are the vertices of e, oriented such that t% points from v;
to va.
In the space H}, we consider the norm

1 2
Hnallr, == D iz, = D 1B Y (Ul =2l + ln&l) )
le]

Ee, Eey, eeff
(8)

where vi and vq are the vertices of the edge e, and || - || denotes the euclidean
norm on vectors.
In the space I}, we consider the following norm

16ull, = D llonllz, 2= D 1Bl Y 165 (9)

Eey, Eecny, ecEf

The norms on W}, and Hj, are H'(£2) type discrete semi-norms, which become
norms due to the boundary conditions on the spaces. Indeed, the differences
appearing in both norms represent gradients on edges and the scalings with
respect to hg are the correct ones to mimic an H'(E) local semi-norm. Note
that for the edge degrees of freedom in Hj, no difference is needed since such
part represents a bubble correction. Finally, the norm for I}, is an L?(£2)
type discrete norm.

In the sequel we will also use the following norm on Hj, which is a
lle()]lo,2 type discrete norm:

lalzr, = D Il e = Y min [, - o([~7, #Dusllz, 5 (10)

Ecs2y, Ecy,

where (Z,y) are local cartesian coordinates on E which are null on the
barycenter of E, so that the function [—g,Z] represents a (linearized) ro-
tation around the barycenter. Moreover, we note that

e < llnplllm.e V0, € Hale- (11)

We now introduce the operator V,, defined from the set of nodal un-
knowns W), to the set of edge unknowns I}, as follows:

Vi Wy — I},

1

- H(w —o") VE €, Vec&FNE, Vu, €Wy,

(thh)% :
where v; and vy are the vertices of e, oriented such that t% points from vq
to va.

The operator V;, represents a discrete gradient on Wj. It is immediate
to check that it holds
lnllwi, = [IVaonlln, - (12)
We consider also a reduction operator, defined from the discrete space of
rotations Hj, to the set of edge unknowns I}, as follows:

thHh—>Fh
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1
(hmy) = + 5™ + 0] -t VE €O, Vee &Y, Vm, € Hy,

where v; and vy are the vertices of e, oriented such that t% points from vq
to va.

3.4 Scalar products and bilinear forms

We equip the space I}, with a suitable scalar product, defined as follows:

o Onlrn =D [va 0nln. 5, (13)
Ec2y,
where [-, -], g is a discrete scalar product on the element E.

Following [21], we introduce the following assumptions:

(S1) There exist two positive constants ¢; and ¢y independent of h such
that, for every 8;, € I', and each E € (2;,, we have

cil|6n|7, 5 < [6h,0nlr,.8 < c2l|6nl[T, 5 (14)

(S2) For every element F, every scalar linear function p; on E and every
on € Iy, we have

[(curlpi)ir, Onlr, B :/

E

pr(rotr, 6)e — S 6 / mo(15)

ecgp

where the operator (rotp, dp)g = ﬁ Zeesf 5% |e| will be better detailed
in Section 4.

The above scalar product mimics an L? type scalar product on the underlying
space, i.e.

["/hﬁh]rh,EN/:/h'gha
FE

where, roughly speaking, 4,,, d, denote regular functions living on E which
“extend the data” «,,, 85, inside the element. In this sense, property (S1) mim-
ics the coercivity of the scalar product and the correct scaling with respect to
the element size, while property (S2) is a consistency condition which asserts
that the scalar product respects integration by parts when tested with the
curl of linear functions.

We denote with ap(-,-) : Hp x Hp, — R the discretization of the bilinear
form af(-,-), defined as follows:

an(Br,my) = Z ar, (Bp>nn) VB € Hp, (16)
Ec2y,

where aZ(-,-) is a symmetric bilinear form on each element E, mimicking

aE (Bpm) ~ / Ce(By) : (iin) -
E

Similarly to the previous case, we introduce two assumptions for the local
bilinear form af (-, -). The first one represents the coercivity (up to the kernel)
and the correct scaling of the local forms.
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(S1,) there exist two positive constants ¢ and ¢ independent of h such
that, for every n;, € Hj, and each E € (2}, we have

allnnll, e < @i (. mn) < Gollmllg, k- (17)

In order to introduce the second condition, we observe beforehand that, using
an integration by parts,

[ ceton) e = X [ (Ceprm)-n

ecEF

= Y [(Cotpong ng) [0+ (Copong - t5) [n-t5]

ecgf ¢ €

(18)

for all E € (2, for all n € [H*(E)]? and for all linear vector functions pj.
Substituting the two integrals in the last line of (18) with an integration rule
based on the available degrees of freedom gives our second condition

(S2,) For every element E, every linear vector function p; on E, and every
1}, € Hp, it holds

€ \% \Y%
af(Eorm) = Y [(Ceung ng) (Sl 7] -n,)
ecEf (19)
e
+ (Celpr)ngs - t5) (Il + S + 7] -5

The meaning of the above consistency condition (52,) is therefore that the

discrete bilinear form respects integration by parts when tested with linear

functions.

Remark 2 The scalar product and the bilinear form shown in this Section
can be easily built element by element in a simple algebraic way. The details
of such construction can be found in [23] for the scalar product (13) and in
[8] for the bilinear form (16).

3.5 The discrete method

Finally, we are able to define the proposed mimetic discrete method for
Reissner-Mindlin plates. Let the loading term

ke
(g:on)n = > Gle Yy v"wh, (20)

Ec2y, i=1
with vi,...,vg, are the vertices of E, g|g := ‘—}%J‘ ng, and wi,. ..,wleE are
positive weights such that fol wh = |E|. The loading term above is an

approximation of

(gavh)hN/ gv,
(9]

which is exact for constant functions.
Then, the initial discretization of problem (3) reads:
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Method 1 Given g € L*(2), find (B}, wn,~,) € Hp x Wy, x I}, such that

ah(ﬁhanh) + [’Yha Vpvp — thh]Fh, = (gavh)h v("7}151)}1) € Hp x Wp,
[Vhwh - Hhﬁh,dh]ph — Ii_lt2[’7h,5h]ph =0 Véy, € Iy,

It is immediate to check that the Method 1 is equivalent to the following one:
Method 2 Given g € L*(£2), find (B,,,ws) € Hy, x Wy, such that

K
an(Bp,ny) + t—Q[Vhwh — 0By, Vaon, — IIyny ), = (9,0n)n

for all (n,,,vn) € Hp x Wj,. The Method 2 is positive definite, see the obser-
vations below, and it involves less variables. Therefore, it is in general more
suitable for practical implementation.

Due to assumptions (S1) and (S1,) the bilinear form appearing in Method
2 is clearly semi-positive definite on Wy, x Hj. Moreover, again due to (S1),
(S1,) and the boundary conditions on W}, Hp, it is easy to check that if

K
an(My, ny) + t—g[thh — IIymy,, Vo, — ), =0

then 1, and v, are null. Therefore, Method 2 is positive definite and has a
unique solution for all A and ¢ > 0. For ease of exposition, the uniform stabil-
ity of the Method with respect to h,t will be left as an implicit consequence
of the error analysis that follows.

4 A Discrete Helmholtz decomposition

As in the continuous case, we will write an equivalent formulation of Method
1 based on a discrete Helmholtz decomposition. With this aim, we define an
auxiliary discrete space @y defined as follows: every discrete scalar ¢, € Qp
consists of one degree of freedom per each element E in (2, e.g. to every
element FE, we associate a real number ¢g,

an = {qe}Eecn,,

satisfying the additional constraint that
> aplE|=0. (21)
Eef2),

The number of unknowns is equal to the number of elements minus one. For
all E € 2, qr can be interpreted as the (constant) value on E of a global
function g5, € L3(£2).

We define the following interpolation operator in Qp: for every function
q € L3(02), we define ¢, € Qp, by

),
qr)E = — | q VYE € {2,
e =15 J,

It is immediate to check that ¢, satisfies condition (21).



A mimetic discretization for Reissner-Mindlin plates 13

The space @y, is endowed with the L?(2) type scalar product
prsanler = D |Elpeae Vpn,dan € Qn, (22)
Eey,

and with the norm
2
llgnllg, = lan, anlq,-
We now observe that, for all E € (2}, and for all sufficiently regular functions

4, it holds
rotd = o -t5%.
IEI/ IEI 2 g

eceP VC
Consistently, we introduce the following operators which represent a discrete
“rot” operator from I, to @ and from Hy to Qp, respectively

I‘Otph :Fh _’Qh

(rotr, 6n)E |E| Z 5% lel, (23)
ecEF
and
rotHh : Hy — Qh
(rOtHh nh . |E| Z <77E' + 5 VI + T’V2] ! teE') |e|7 (24)
eGSE

where v; and vy are the vertices of e, oriented such that t% points from v;
to va.

Using (23) and (24) it is easy to check the following commutative diagram
properties hold

rotp, (811) = (rot ), (25)
rota, (M) = (rot 1), (26)

for all & € Hy(rot; 2)N[L*(2)]?, s > 2 and n € [CO(2)N HL(£2)]%. Moreover,
we note that the operator rotr, satisfies rotr, Vivp, = 0 for all v, € Wp,. In
fact,

(I‘Otph Vh’Uh Z Vh’Uh E|e| Z 0, (27)
| ecgp | ecgp

since v; and vy are by definition the vertices of the edge e oriented such that
t%, points from vy to vo. Furthermore, the following identity is easy to check

roty, 1, = rotr, (thh) V’l’]h c Hy,. (28)

Using the definition above, we define a discretization of the “curl” oper-
ator as the adjoint to the discrete rotr, operator with respect to the scalar
product (13) and (22), i.e.

curlh : Qh — Fh

[5}17 curly, qh]ph = [qh, rotr, 6h]Qh Yqn € Qn, Vop € I}, (29)
We have the following discrete Helmholtz decomposition.
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Lemma 1 For every 8y, € I}, there exists a unique (&, qn) € Wi, X Qp, such
that
0n = V& + curly gp. (30)

Proof. Let 8, € I},. In order to prove the lemma, we need to show the
existence of (&n, qn, an) € Wi X Qp X I, such that

On = Vién + ap,

31
[ah,rh]ph = [rotph I‘h,qh]Qh Vry, € I},. ( )

Note that, applying the operator rotp, to both sides of (31); and recalling
(27), we get that the function a, must satisty rotp, (ap, —d5) = 0. Combined
with (31)q, this is equivalent to solve the following problem: Find (e, gn) €
Iy, x Qp, such that

lan, rh]r, — [gn,rotr, Th]g, =0 Vry € I,

32
[rotph oy, dh]Qh, = [I"Otph on, dh]Qh, Vdy, € Q. ( )

This is a well posed problem as a consequence of the results in [21] for
the diffusion problem in mixed form, simply changing DIV? to rotp, and
“rotating the fields 90°”. Therefore, there exists a unique couple (e, qn) €
I', X Qp, which satisfies the two equations in (32).

As already mentioned, due to (32); a, satisfies (31)3, while, due to (32)a,
it holds rotp, (e, — 8x) = 0. Therefore, what is left to prove is that for all
rp, € I, with rotp, rp, = 0, it exists a unique v, € W), such that Vyv, =1y,

We will show this natural result rather briefly. Given any two nodes v; and
vy of the mesh, we call y(vq,v2) a path from v; to vo made along (oriented)
edges of the mesh, in such a way that each edge is never repeated. It is
immediate to check that this can always be done, since all the vertices are
connected along edges. Then, given r;, € I}, we define v, € W}, in the
following way: We choose a node vy on the boundary and set vY° = 0. For
any other node v of the mesh, we define

=Y felrg(td - th) (33)

e€y(vo,v)

where t7 is the tangent along each edge e oriented as the path. Note that, in
(33), the element E that appears in 7§, can be chosen as any one among the
two elements that share the edge e (without changing the result).

In order to prove that the above construction is well defined, we must
show that the value v¥ does not depend on the particular path chosen. It is
easy to check that this is equivalent to show that for any (oriented) circular
path without repetition of edges y(v,v), v vertex of {25, it holds

> lelrs(t? t5) =0, (34)
ecvy(v,v)

This can be proved by induction. Any circular path (v, v) as described above
corresponds to the (oriented) boundary of a connected set of n elements,
n € N. Accordingly, in the following we will write that a path is of class n
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if it “surrounds” n elements. If the path is of class n = 1, then (v, v) is the
boundary of a single element E and, recalling that rotp, r;, =0, we get

Y lelrh(td - tg) =% Y lelry =0. (35)

e€vy(v,v) ecgf

Now, Assuming that equation (34) is true for any path of class n. Then, it is
easy to show that any circular path y(v,v) of class n + 1 without repetition
of edges can be splitted as the sum of two circular paths without repeti-
tions, respectively of class n and class 1. Therefore, the result follows by the
induction hypothesis and (35). Therefore, vy, in (33) is well defined.

From definition (33) we get immediately

—[2 ="' =715 VE € 2, Vee 55, (36)

where vi = vy (e) and va = va(e) have the usual meaning, simply by evaluating
the left hand side as the difference along two ad-hoc chosen paths which differ
only by the edge e. By definition, identity (36) implies Vv, = rj,. Moreover,
by selecting a path along the boundary and recalling that the values of rj, on
boundary edges are null, it correctly follows that vy is null on all boundary
nodes. Finally, the uniqueness of v, follows immediately from the fact that

the kernel of V;, on W}, reduces to the trivial one. O
By using the previous lemma, we can write
Yo = Viathn + curly pp, (37)

with ¢, € Wy, and pp € @Qp. By using the same decomposition for the test
function
0n = Vpép + curly gn,
we obtain that Method 1 is equivalent to the following problem:
Find (¢p, By, ph, wn) € Wi X Hp, X Qp x Wy, such that

(Vitn, Vior]r, = (9,vn)n Yoy, € Wy,
an(Bpsmp) — [curly pr, ), = [Vatn, Himy]r, vn,, € Hp,
— (LB, curly, g, — & 't2[curly, pp, curly gn)r, =0 Yqn € Qp,
[Vnwn, Viénlr, = HnBh, Viénlr, + £~ [Vntn, Viénlr, Vén € vg.g)

Using (29) and (28) we get that for all g, € Qp, and i, € Hp,

[Curlh dh, thh]Fh = [qb7 rotp, (thh)]Qh = [qhu rot nh]Qh' (39)

Therefore, problem (38) finally becomes: find (¢n, B}, Pr, wrn) € Wi, X Hy, X
Qn X Wy, such that

[(Vin, Vavnln, = (9,0)n Yoy, € Wi,
an(Br, ) — [Pn, rotm, nylq, = Vi, vy ]r, vy, € Hp,
— [rotw, B, anlo, — &k~ t3[curly pp, curly gl =0 Yan € Qn,

(Vawn, Vi&nlr, = B, Vilnlr, + £ [V atbn, Viénlr,  Vén € Wi.
(40)
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Problem (40), which is the combination of two Poisson-like problems (first
and last lines) and a rotated Stokes-like problem (second plus third lines),
is going to be used in the error analysis. Due to Lemma 1 the existence of a

unique solution for problem (40) follows easily from that of Method 1.

5 Error estimates

In this section we estimate the error between the continuous problem (5) and
the discrete problem (40). The main result of this section is the following
bound.

Theorem 1 Let (¢, 3, p,w) and (¥, By, pr, wr) be the solutions of problems
(5) and (40), respectively. Let the reqularity bound (6) holds. Then, there
exists a constant C' independent of h and t such that

U1 — Yullw, + 181 = Bulla, + llpx — prllQy
+t|| curly, pr — curly pul|r, + [[wr — whlw, < Chlgllo.o-

The proof of the above result will follow by combining the three proposi-
tions 2, 3 and 4 shown in the following.

5.1 Error estimate for variable .

From now on, given an element E we use the subscript |g to denote the
restrictions of the involved unknowns to E. For instance Wj|g will denote
the restriction of W}, to the nodes belonging to FE.

Let 9, be the solution of the discrete problem (40)1, ¢ be the solution of
the continuous problem (5); and ¥y its interpolant in Wj,. Let 1* be a piece-
wise linear discontinuous function on {2 which is an approximation of 1. The
restriction of ¢ to E, VE € (2, is denoted by % and is defined as the
L?(E)-projection of 1 onto the polynomials of degree < 1. We will also con-
sider the local interpolant (¢%)1 € Wj| g and a piecewise linear discontinuous
function f* such that

curl f = Vol VE € (2. (41)

In the following we will need two lemmas which has been proved in [17].
The first one is a technical bound.

Lemma 2 Let wl,, ... ,wEE be positive weights such that fol wh = |E|,
for all E € (2, with kg vertices. For every vertex vi € VE, and for every
v, € Wh|g there exists a constant C independent of h, such that

kg

S — 0Pl < Chllonl, -
=1

The second lemma shows the existence of a stable lifting operator.
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Lemma 3 For all E € (2, it exists a linear operator Rf, from the space of
nodal unknown Wy| g into the Sobolev space H' (E)NC°(E), with the following
properties:

(P1) (REw,)(v) =0 W eVF Vo, € Wilg,

(P2) RFvyle is a linear function Ve € EF Vv, € Wy |g,

(P3) |Rfjvnlt g < Cllonlly, 5 Yvn € Walg,

(P4) |Rivn — "3 5 < Chllonllly, WV €V Yun € Walp.
We have the following result:

Proposition 2 Let ¢ and 1y, be the solutions of problems (5); and (40)q,
respectively. Let assumption (6) holds. Then, there exists a constant C > 0
independent of h and t such that

91 = ¥nllwi, < Chligllo.e-

Proof. Using (12), property (S1), the first equation of problem (40) and
adding and subtracting (1/%)1, we get

crlln = ¥nllfy, = a1l Vi@ —vu)llf, = Y Vel — vl 5

Fey,

< Ve —¥n), Valtn — ¢n)ln, e
Ec2y,

= Z [Vatr — Vi (@g)1, Ve — ¥n)ln,.e — (9,91 — ¥n)n
Ec2y,

+ > V@R Va(tn — v, e
EE),

(42)
We continue with the last term in the above estimate. First, from the
definitions of our interpolants, we have

Vaph = (VYg)n in Ihls, (43)

thus, using (43), (41), property (S2) and the fact that rotp, Vyv, = 0, we
obtain

Z (Vi) Vi(r — n)ln, 6 = Z [(curl fi)ur, Va(yr — ¥n)lr, .6

Ecs2y, Ecy,

== Y (X ato - [ 1),
E€Q  ecef e
(44)
Let the global operator R, : W) — HE(£2) be defined by (Rpvp)|lg =
RE(vp|g) for all vy, € Wy, and for all E € £2;,. Then, for each v, € Wj,|g and
each E € 25, due to (P1) and (P2)
1

(Vntn) =7 (1 = ") = o (REun(v2) = R un )

1
—H/VRfvh-te = VRFu, -t Vec&F,
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where v; and vy are the vertices of e, oriented such that t% points from v;
to va. Thus, it follows

Z (Z V(1 =¢n)); /fE Z Z fe(VRE (i — ¢h)-t%)>.

E€Q, ecgf Eenh ecer Ve

(45)
Using an integration by parts on each element E for the last term of (45),
applying again (41) and adding and subtracting the exact solution 1, from
(44) we get that

> Ve, Vil —n)lne = Y /CUfle VRE (1 —n)

Ecy, Ecy,

- [ st VRE =) = 3 [ Vit VREW - )

Ecy,

-y / (W — ) - VRE (g1 — ) +/ Vb - VR (1 — ).
Eey, o)

(46)
Therefore, using the first equation of problem (5), we obtain from (42) and
(46)

calln = ¥nllfy, < Y [Vath = V(@) Va(tn — ¥n)ln, &

EcQ,
+ Y / (6l — ) - VRE (1 — )

Eef2),

+ (g, Rn(¥1 = ¥n))o,2 = (9, ¢ — Yn)n] = T1 + T + Ts.

(47)
For the first term in the above bound, by a Cauchy-Schwarz inequality and
(S1) give for all E € 2y,
Vit = Vi (@51, Vi (r—¢n)]n, e
< OVt = Vi@Wel el Vi = vn)lln,. e,

which, using an approximation result (Lemma 6.3 from [17]), yields

1/2

(Vi = Vi@g), Vi — ¥n)ln,.e < (Chplvl3.e) " [IVa(r — vn)lln, &

(48)
Summing on the elements, from bound (48) it follows

Ty < Chll2.0l[Vi(r = ¥n)lln, < Chliglo.ellvr —dnllw,, (49

where in the last inequality, we have used (12) and (6).
For the second term in (47), by a Cauchy-Schwarz inequality and using
(M5) and (P3), we get

/E VWl — ) - VRE(W — tn) < Challo.slltr — dallw,.e



A mimetic discretization for Reissner-Mindlin plates 19

Summing on the elements and using again (6), the above bound yields

Ty < Chlylz,elltr — Yullw, < Chllgllo.ellr — ¥nllw,- (50)

Now, we bound T3. It is easy to see that for each vertex v € Vf, E € (2, we
have

ke kg
e (W —vn)wh =gl > (W — ¢ )wk =dle / (¥ — )
i=1 i=1 B (51)
W

E
=[E9( — ).

Thus, using the definition of the loading term (-,-) in (20), adding and
subtracting the term ng( (' —¥"1), where v; is any fixed vertex of E, for
all £ € 2, from (51) we obtain

ke

ng/ gBRa(r —vn) — Y gl Y (W) — ¢ )wp
2 Ee, i=1
_ RE _ _ Vi V1
Egh/Eg( B — ) — (0 — )
ke
+ ) gl Y (@ =) = () — ")) wip
Ec2y, i=1

Using the Cauchy-Schwarz inequality, we get

T3 < > lgllo.elRE @ — ) — (0 = ¥y llo.e

Eey,
ke 12 g 1/2
+ ) (Zgl%w%) (Z[( =) — ( F—W)]“‘w%) :
Eey, =1 1=1

Finally, from (P4), Lemma 2 and the fact that |E|*|g|g| < [|g||§ g, we obtain

Ty < Chllglo.llts — ¥nllw,. (52)

The result follow combining (47) with the above bounds for T4, Ty, T5.

5.2 Error estimate for variables 3 and p.

Now, let (B,,,pr) be the solution of the discrete problem given by (40)s_3,
and (3, p) be the solution of the continuous problem given by (5)2-_3.
The following inf-sup condition holds
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Lemma 4 There exists C > 0 independent of h such that for every qn € Qp
there exists m;, € Hy, satisfying:

[rOtHh Mh> qh]Qh > C”Qh”@h?
(g llen, < 1.
Proof. Changing DIV), to rotp, and rotating the fields 90° in Lemma 4.2 of

[11] prove the result. O
We introduce the following discrete bilinear form

Al;z((ﬁhaph)v (nhv Qh)) ::ah(/glw nh) - [ph7 rot g, nh]Qh
— [rotw, Br.ala, — k2 [curly, pp, curly, qr)
(53)

As a consequence of Lemma 4 and property (S1,), following standard
techniques of mixed finite element methods [19], it is easy to show the follow-
ing stability estimate for the discrete Stokes-like problem given by (40)5_3.

Lemma 5 There exists C > 0 independent of h and t such that

sup AZ((IBhvph)v (nhaqh)) >
npEHp ”nh”Hh + ||Qh||Qh + t” curly QhHFh

ap €EQ

CIBullz, + llpallQn + tl carln prllr,)

for all (By,,pn) € Hp X Qn, and where the sup is taken on non-null couples
of functions.

The following lemma states the existence of a stable lifting operator also
for the rotation variable.

Lemma 6 For all E € (2p,, it exists a linear operator RE from the space
Hy|g into the Sobolev space [H(E) N CO(E)]? with the following properties:

(01) (Rim,)(v) =n" WEeVS Vn, € Hilg,
(02) le®inu)lls & < Clinull, & ¥nn € Hule,

(03) (Rgnh| e) -1 is a linear function Ve € EF  Vn,, € Hy|g,
(Ri'mple) - t% is a quadratic function Ve € EF  Vn, € Hy|g,
le]

(08) [(REm) -t = I+ 5 ln" + 7]t Ve e EF Vo, € Hlr,

where as usual vi and vo are the vertices of the edge e.

The proof of the above lemma can be found in the Appendix. The lifting
operator RE is an extension of those in [11,17], with the additional important
property of preserving linear functions.

Note that as a consequence of (03) it holds

le]

J®Em) s = S s, vee £F vm e Hile VE € 2, (50
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while, due to of (O4), we have
/ rot(Rfm,) = |E|(rotm, n,)e VN, € Hulg VE € (. (55)
E

Finally, we define the global operator Ry, : H, — [H}(£2)]? by (Run,)|e =
RE(n,|k) for all n, € Hy, and for all E € (2. The image of Ry, is indeed in
[H}(£2)]? due to property (03).

Now, we are able to state and prove our second convergence result.

Proposition 3 Let (3,p) and (8,,,pn) be the solutions of problems (5)2—3
and (40)a_3, respectively. Let the bound (6) holds. Then,

181 = Bulla, + llpx — prllQ, + tll curly pr — curly pallr, < Chllgllo.o;
where C' is independent of h and t.

Proof. We divide this rather long proof into two parts. In step 1 we bound
the error as a sum of various terms, which will be bounded separately in step
2.

Step 1. From Lemma 5, we have that there exists (1,,qn) € Hp X Qp such
that

[nnllen, + llgnllen + il carly gulln, <1 (56)

and

C(IBx = Ballm, + [pr = prllQ, +tl| curly px — curly pa| 1)

< AL((Br— Brrpe — o)y (). O

Now, we can rewrite the right hand side of (57), using (40)2_3 as follows:

AZ((IBI - /Bhapfr _ph)a (T’ha qh)) = AZ((ﬁvaﬂ')v (nha qh)) - [Vh¢ha thh]Fh'

Therefore, from (53), we have

A;L((IBI - 6hapﬂ' - ph)a (T’hv Qh)) :ah(/Blv nh) - [pﬂ'a I‘OtHh’ nh]Qh,
— [rotm, B, qnlq,
— k1 [curly, p, curly qr)

— Vb, Iy,
=A; — Ay — A3 — Ay — As.

We also consider a piecewise linear discontinuous function ﬁé which is an
approximation of 8 on each element E. The restriction of ﬁé to E, E € {2,
is denoted by 3% and is defined as the L2(E)-projection of 3 onto the space
of linear vector valued functions defined on E. We also consider the local
interpolant (8%)1 € Hy|g.
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In that follows, we will manipulate the terms A;, i = 1,...,5. We begin
with term A;: adding and subtracting (8% )1, we obtain

A=Y (af (B = (BL)rm) +af (Bp)rm)

Ee$2),

=Bi+ Y a ((Bp)umm).

Ec2y,

Using assumption (52,), we get

> af(@em) = 3 (3 [(ce@oms ng) (S +n)-ng)

Ee2y;, Eey, e€£f
le|

+ (Cotpms ) (1ebs + Em 4013 ]).

First, from (54), (04) and then using an integration by parts, we obtain

> af(Bum) = Y (Z [ (cet@omsy nt) [ <anh>-n%}>

Eec2y, Ec€Q), \ecEE €

+(Ce(Bhms - t5) [(REm) -5

e

> (Z / u(ﬂé)n%-Rﬁnh) = / Ce(B) : (R )
ecEf N E

Ee2;, FEe2y,
_ ‘o . E .
—EZQ /E Ce(BY — B) : e(REn,) + /Qu(m.smhm

ng—i—/QCe(ﬁ):e(Rhnh).

Using (5)2, from (58) we get

S @B (B m,) = Ba + /Qprot<Rhnh>+ /Q Vi - Rumy,

Ec2y,

and thus

Al = B1 + BQ —|—/ pI‘Ot(RhT]h) +/ Vl/) . Rh’l’]h.
2 2
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We continue with the term As. Using the definition of [-,-]g,, (55) and
adding and subtracting the exact solution p, we obtain

A= 3 Blen)s (ot m)e = 3 [ rot®Em) v

Ecs2y, Ecy,

= Z /Erot(anh)((pﬂ)E—p)—l-/QYOt(Rhnh)p

Eef2),

= Bj —|—/ rot(Ryny,)p-
2

Now, we rewrite Ag, using (26) as follows:

Az = [(rot B)x. anlq, = —k *[(rot(curlp))z., nlq,

where in the last equality we have used that rot3 = —r =2 (rot(curlp))
which is a consequence of (4) and (1)3. Then, using (25) and (29), we get

Az = —k H?[rotr, ((curl p)n), qunlq, = —k~ “t2[(curl p)i, curly qulr, . (59)

We now consider p’ a piecewise linear discontinuous function which is an
approximation of p on §2. The restriction of p’ to E, E € 2}, is denoted
by p% and is defined as the L2?(FE)-projection of p onto the polynomials of
degree < 1. Using (59), (29) and adding and subtracting the term (curl p% )i
on each element, we get

A4 —+ A3 = H71t2 ([pﬂ-, I‘Otph (Curlh qh)]Qh — Z [(curlp%)n, curly, Qh]l‘h,E
Eef2),

+ > l(eurl(ply — p))ucurly ) )
Eeny,

From assumption (S2) and the identity

[pr, rotm, (curly gr)lo, = Z /p rotr, (curl, gn)|E,
Ec2y, 2

we obtain

Ay + Ay = ,i—ltz( Z [(curl(py — )i, curly, qulr, 2
Ec(2y,

+ 3 [ [ o= shotn b+ X [ plcurtnan)3])
Ee$2), 2 ecgp €
= B4+ Bs + Bs.
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Thus, collecting all the previous bounds for terms A;, i = 1,...,5, we
obtain the following inequality:

AZ((ﬁI - ﬁhupfr _ph)u (nmqh)) =A; —Ay— A3 — Ay — As
<By + By — B3 — By — Bs — Bg

. / V- Ry, — [Vaton, Tamp) -
[0
(60)
Defining
B7 = / v¢ . Rh’r]h - [vh¢h7 thh]Fh7
[0

from (57) and (60) we get

7
CI81 = Bullm, + Ipx — pulle + ¢l curl o — cwlapillr,) < 37 1Bl
i=1
(61)

Step 2. We bound each term B;, ¢ = 1,...,7 with a constant C indepen-
dent of A and t.

Estimate of | By|. Using assumption (S1,), the Cauchy-Schwarz inequality,
(11), (56), the estimates (4.31) and (4.36) from [11] and finally (6), we obtain

1Bl <C > 1By — Bl m,. lnlla, 2

Ec(2y,
1/2 1/2
<O X 18— Bl e) (X Il z)
Ecy, Ec(2y,
1/2
< 18— Bl z)  Inul,
Ec(2y,

< Ch||Bll2,2 < Chl\glo,0-

Estimate of |Bz|. We apply the Cauchy-Schwarz inequality, the estimate
of the interpolation error (M5), property (02) of the lifting operator R (-),
(56) and (6); we obtain

Bal < > 1B=BEh.ele®in,)|o.e

Eey,
/ /
<(X18-85ke) " (X le®inlEs)
Eec Een
/ /
< (X Coptl835) " (X Cllmliz)
Ec? Ecs?

< Chl|Bll2, el ||, < Chllgllo,o-
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Estimate of |Bs|. Using the Cauchy-Schwarz inequality, the estimate of
the interpolation error (M4), the Korn inequality [27], property (O2) of the
lifting operator R¥(+), (56) and (6), we get

1Bs| < > llp— (o) ello,£ll rot(RE D)o,

Ee(2y,
1/2
(Z lp = (pr E||0 E) (Z |R 77h|1 E)
Ec? Ee2
2 1/2
< ( Z apph |p|1 E) |Rhnh|119
Ecq?
B 9 1/2
< Chlplale®um)lo < Chllplie( S le®EnIE ;)
Ee2
5 \1/2
< Chlple( Y Clmaliz) < Chllplvelmlm, < Chliglo.:

Eef

Estimate of |By|. Using assumption (S1), the Cauchy-Schwarz inequality
and the definition of the norm || - ||, &, we get

1Bal <5712 > | (eurl(p — p))ullr,. 2l curly gull 5

Ec2y,
3 1/2 1/2
s> ||<cur1<p%—p>>n||%,,,,E) (X Iewlanl?, z)
Eecny, Eecy,

1/2
—n_ltz( Z |E| Z |(curl(p g | ) | curly gn| 1, -

Ees2y, ecEf

Now, using the definition of the interpolant ()1, the Cauchy-Schwarz in-

equality, properties (M3), (M1) and the estimate of the interpolation error
provided by (M5), yields

2
2 1
Z |(cur1(p% —p))n)g| = Z H/curl(p% -p)-tg
ecgp ectF ¢
e 1 -
/ jewrl(ph, — p) 45" < 3 — (hg' lewl(pl; — p)I3
e€€E| | e€Ey |e|

N, . _
+ hg| curl(pl —p)liE) < Ch—Ee (hg'1p% — pli g + hElP B)
Ne , _
< C@ (hElcaPPh2E|p|§,E + hE|P|§E) < C|P|§,E-

Therefore, using the above estimate, bound (56) and (6) we obtain

3 1/2
Bal <57 (0 ClEIpBE)  lewlhanlin, < Chlglo.o
Ec2y,
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Estimate of |Bs|. Due to (M2), the definitions of rot, and || - ||, yield
the following inverse estimate

|E|Y2(votr, 8n)e < Chp'||0nllr,.e VOn € Th, VE € Q. (62)

Therefore, using also the Cauchy-Schwarz inequality and the estimate of the
interpolation error (M5), we obtain the following development;:

1Bs| < k7' Y lp—pillo.s [EI'?(votr, (curly ga)) s

Ec,
<k Y BIplee bt || curly gul| e (63)
Ee$2),
B 1/2 1/2
<cr (N mEbBe) (Y llewhail?,g)
Ecy, Ecs2y,

Finally, from (63), (56) and bound (6) it follows

|Bs| < Ck"*h?|pla,oh ™| curly gl 1, < Chllgllo,o-

Estimate of | Bg|. Using the same argument as in Lemma 5.3 of [21], bound
(56) and (6), we can prove that

|Bs| < Cht?||pllz, el curly gnllr, < Chllgllo,e,

where C is independent of h and ¢.

Estimate of |Bz7|. In order to estimate this term, we split it as follows.
Adding and subtracting the terms V1%, and Vj,(¥%); on each element E, we
get

Br=B]+BI+ > [/EVWE ‘Rymy, — Va(We)n, Ianylr, m|,  (64)
Eey,

where

Bi= Y / V@ —vE) Rimy, B = Y [Va((@g)i =), Tany]n, .
Ec,’E EeQy,
(65)
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Using (41) and (43), integrating by parts and finally using assumption (52),
from (64) we obtain

By =B; + B} + Z /curle R my, — [(curl f5)m, Mumy,)r,, }

E€,
=B; + B7 + Z /fEmt (Rym,) — Z fe(REny, - te)}
E€, ccer /e
- Z /fE (rotr, (1Inmy,))E — Z fe(Thmy,)% }
Ecy, EEE €
B B+ Y / Th (ot (REm,) — (votr, (Hamy) )]
E€y,

+ Z [Z ((ITnmy,)5% (anh'teE))}

Ec), ecgF "¢

=Bi + B? + B2 + B7.

Thus, in order to bound the term By, we have to bound each term BZ,
i =1,2,3,4 separately.

Estimate of |B2|. Using the Cauchy-Schwarz inequality, the estimate of
the interpolation error (M5), the Korn inequality [27], property (02), (56)
and (6), we get

B < (X Iv@- b)) (X IREmlEs)

EeQ, Eeq,
< Chl[Y]lz,elleRrnp)llo,e < Chll2,ellnplla, < Chllglo,o-

Estimate of |B2|. We begin this estimate by using assumption (S1), the
Cauchy-Schwarz inequality, adding and subtracting V1, and applying the
triangular inequality. We obtain

1B < > IVa(@p)1 — ¥)lln, 2| Timylln, &

Eef2),
1/2 1/2
< (3 IVa@R = v e) (D Il 5)
Eecy, Eecny,
1/2
< C(IVar—wn)IF, + D2 IVa(@Er = o0)3,2) 1Tl

Ecy,
(66)
We now note that the following inequality holds, as shown in the Appendix:

[ 11n61 1, < C|Onl|, VOn € Hp. (67)
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Therefore, first using identity (12), Proposition 2, Lemma 6.3 from [17] and
(67) in (66), then applying the bounds (56) and (6) yields

2 2 2 2 2 1/2
1B < C(CRgllf o+ D2 CH2 ) Imallm,
Ee$2),
< Chllglo.alimy |, < Chllglo.o

Estimate of |B2|. From (28) and (55) it follows

[ rotREm) = [ (wotr, (hon)z = | Eltvotr, (Tam)) e (69)
E E

Let fp = %' [ [ for all E € £2;,. Using identity (68) it follows

|B| = Z / (f& — f&) rot(REmy,)|,

Ecy,

which, using a Cauchy-Schwarz inequality, gives

B3 < > £ — Fhllo.el rot(Rymy,) o,k
Eeqy,

Now, using the estimate of the interpolation error (M4), the Korn in-
equality [27], the fact that |f5|1.e2 = V%16 < ||[¢||1.E, property (02), (56)
and finally (6), we obtain

|B7| S( Z ||fﬁ7_fﬁ7||(2JE) ( Z IR, |7 E)

Eeqy, Eey,
1/2
<(Y cndifBe) " Rimale
Eey,
1/2
<( X cndlvkREe) " le®any)lo.
Eey,
1/2
<Chlele( S Imld.e) " = Chlglialmlm, < Chlglo.o
Ec2y,

Estimate of |B2|. Similarly to the previous case, from (68) and the defi-
nition of rotp, in (23), we get

/ RE, - t5, = / Ty = lel(Tamp). (69)
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Using this identity, the triangular inequality and the Cauchy-Schwarz
inequality, we have that

B = [ [ 2 (mm)s — REn, -15) ||

Ee®, ecel’®

| [ fuh - 5 (s - REn, 15 ]|

Ee,  ecgf

< S0 [ 1h = ThlloelRE -85 = (Tum )5 lo.

EeQ, ecef

_ / /
< (SRR (X IREm -t~ (sl

Ee2,  ecEf ecEF

Using (M3), (M4), one dimensional interpolation estimates, the fact that
lfohie = W5 e < ||¢|li.e and a trace inequality, gives

B _ 1/2
BH < > (h5HIfE — FEIR 5+ halfE 5)
Ee(2y,

1/2
( Z he|Ri My, 't%ﬁ/ze)

eGSf

1/2
<cn® N (nelftfe) " IREnL 2,00
Ecqy,

<Ch Y Wl elRYml 6.
Eef2),

The Cauchy-Schwarz inequality, the Korn inequality [27], property (02), (56)
and (6) now yield

|B7| < Chlyl1,olRamy 1,0 < Chl[¢|h,elle®Rang)lo.o

1/2
< Chllglio( D Imalld z) = Chllvlivalmlm, < Chlglo..
Ee2y,

Combining (61) with all the above bounds for the B;, i = 1,..,7, gives
the proof of the proposition. O

5.3 Error estimate for variable w.

Let wy, be the solution of the discrete problem (40)4 and w be the solution of
the continuous problem (5)4. Using essentially the same arguments used to
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prove the error estimate for variable 1, one can show the following bound:

cr|fwr — wa [y, < Z [Vawr — Vi(wg)1, Vi(wr — w5
Eef2),

+ V(wy —w) - VR (wy — wy,)
Egh‘/E " " " (70)

+(B, VRy(wi — wp))o,2 — [InBy,, Vi(wr — wp)]p,
+r 2 (Veh, VR, (w1 — wi))o.0
—k "2 [V ptbn, Vi(wr — wp)]r,

From (70), repeating the same techniques used in Sections 5.1 and 5.2,
the bounds for the deflection variable follow.

Proposition 4 Let w and wy, be the solutions of problems (5)4 and (40)4,
respectively. Let bound (6) holds. Then, there exists a constant C > 0 inde-
pendent of h and t such that

lwr — wn|lw,, < Chllgllo,o-

We are now in a position to prove Theorem 1.

Proof of Theorem 1. The proof follows easily by combining Propositions 2,
3 and 4. O

Moreover, the following important remark holds.

Remark 3 The “bubble” edge degrees of freedom in the rotation space are
added in order to guarantee the validity of Lemma 4, i.e. the stability of the
discrete system, and do not enhance the approximation capabilities of Hj,.
In [9] the authors show that, under certain conditions on the adopted mesh,
the nodal degrees of freedom alone are sufficient to derive Lemma 4. Such
conditions on the mesh are not very strict, and include for example a large
array of meshes made with polygons with more than 4 edges. Although the
results of [9] are intended for the Stokes problem, a “rotation of 90°” allows
immediate application also to our case. Once Lemma 4 is proven, the rest
of our proofs extend almost identically to the case with no edge degrees of
freedom. Therefore, under the favorable mesh conditions of [9], it is easy
to check that the same plate method presented here, but with the smaller
rotation space

Hp =A{ny |n, ={n"}ew},

is stable, and the same O(h) error estimates hold. This is interesting since
it allows to use the same degrees of freedom both for rotations and displace-
ment.

6 Conclusions
We presented a mimetic discretization method for the Reissner-Mindlin plate

bending problem. The fundamental idea of the mimetic discretization method-
ology lays in writing the variational problem directly in terms of the degrees
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of freedom, without specifying the underlying basis functions. The present
scheme adopts one degree of freedom in each mesh vertex for the deflections,
and two degrees of freedom in each mesh vertex for the rotations, plus an
additional degree of freedom on each edge (that is not always needed). After
building all the necessary tools, such as discrete bilinear forms and opera-
tors, we presented the method and proved linear convergence with respect to
the mesh size, uniformly in the plate thickness. The latter result is achieved
rewriting the discrete problem as a combination of different sub-problems via
a discrete Helmholtz decomposition.

7 Appendix

In the first part of this section we briefly show, for all E € (2, the existence
of a lifting operator

RY . H,|p — [HY(E)NCY(E)?

which satisfies the conditions in Lemma 6. In the second part we will prove
bound (67).

Existence of a lifting operator. We will build the lifting operator in two steps
taking full advantage of the results in [17,11]. Note that we can not use di-
rectly the (rotated) operator of [11] since it does not preserve linear functions,
which is needed to prove (02).

We start with a slightly modified construction of the lifting operator in
[17], which we call RE Given n;, € Hp|g, the vector function Rh ny, is
globally continuous and piecewise linear on the sub-triangulation 7, and
defined in the following way. On the vertices v € VF we set REn,(v) = n".

On the remaining nodes of 7j, that lay on the boundary, R¥n,, is defined
by linear interpolation of the two vertex values of the edge. On the internal
nodes of F, we do instead the following construction. Given any internal
node v of 7y, we call = the set of nodes which share an edge with v and are
different from v. Then, it is easy to check that v, which lays in the convex
hull determined by the nodes {V}ycz,, can be expressed (in a non unique

way) as a weighted sum
v = Z wy v (71)

VEE,

_w‘f

ves = 1. For each internal

with wY non-negative real numbers such that >
node v, we then enforce the condition

hnh Z wy Rh (v

VE-—V

This set of conditions provides a square linear system which determines the
value of RE 1 My, in the internal nodes. Indeed, it is immediate to verify that the
ass0c1ated matrix is an M-matrix, which in particular implies the existence
of a unique solution and a discrete maximum principle. In addition, due to
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the identity (71), this operator preserves linear vector functions, in the sense
that

f{f(pl)LE =p1 for all linear vector functions p; on F .

Following the same argument as in [17], from the maximum principle it fol-
lows that the operator Rf satisfies the following properties

(02) REmyl2 5 < Clllnull, 2 Vnn € Halp,
with €' independent to the particular element £ of the mesh family. Further-
more, by definition of anh it holds
(0'1) (REn,)(v) =n" WeVF Vn, €Hylg VEE2,.
(0'3) RFn,leis alinear (vector) polynomial for alle € EF  Vn, € Hylp VE €
.

We then build our final lifting operator R¥ as a correction of ﬁf by the
addition of tangential edge bubbles, as done in [11]. More precisely

= Eb
Ry =R} + R},

where the image of the operator Rf’b lays in the span of {cpet%}eegf with ¢e
scalar edge bubble functions (which are quadratic along the edge e). Briefly

speaking, the coefficients of the bubble part Rf’b are chose in order to satisfy
(04); we refer to [11] for the details.

Given the above properties (0'1)-(0'3), following the same proof shown
in [11] one immediately obtains that R satisfies (O1), (03), (04) and the
bound

(072) |RE77h|%,E < C|||"7h|||%lh,E Vn, € Hplg VE € (.

Furthermore, since the added bubble part is null on linear functions, it still
holds that RE (p1)1,2 = pa for all linear vector functions p; on E. Let now
A: E — R"™" n € N be a symmetric matrix field and B : E — R™*"™ an
anti-symmetric matrix field. Then, from the orthogonality with respect to
the contraction operator A : B = 0, we get

14+ BII§ & = 1AI5 2 + [I1BIS 2 > 1A} & - (72)

First, using definition (10), then property (0"2) and finally that the operator
RY preserves linear vector functions, yields

Il 5 = min lllmn — (=9, 2Dy slliz,

> C'min || VR (n, - e([=9,7])1e) 6.5 (73)
= C'min VR, — V[-5.7]3 5 -

for all n, € Hy|g. Splitting V R¥n, into its symmetric and anti-symmetric
part and observing that V[—g,Z| is an anti-symmetric matrix, from (72),
(73) we obtain

”nh”%{h,E > OI||€(R£"7h)||(2),E Vn, € Hylp VE € 25,
which is property (02).
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Proof of bound (67). The norm appearing on the left hand side of inequality
(67) is a discrete L? norm, while that appearing on the right hand side is
a |le(-)||z2 type norm. Therefore, due to the boundary conditions on Hyp,
bound (67) is quite natural. Although relation (67) does not involve the
lifting operator, but only the degrees of freedom of H},, for simplicity we will
prove it making use of the lifting Rj, appearing above. A more direct proof
should involve in particular a “discrete Korn inequality", which is beyond the
scopes of the paper.
By definition and due to (M2) it immediately follows

Imonld, <0 3 B 102+ D 116Y]) (74)

Ee€Ny, e€€f vGVf
10nl7, =C D> D 10517+ 116" — 67| (75)
E€Q ee€P

where v; and v, are as usual the two vertices of the edge e. Therefore the
bound on the bubble part follows immediately from (74) and (75) observing
that |E| < |£2] for all elements E:

STIENY 10517 < ClIon[F, (76)

Ee2y, ecEF
From the definition of Ry, for all E € (2
1B > 1161 < B REOA|I (1)- (77)
VEV}?

Let now h%”" indicate the diameter of the smaller element of 7,|g. First
applying an inverse inequality (see for instance Lemma 4.15 of [44]), then
using that due to (H1)-(H2) the ratio hg/h%*" is uniformly bounded, we get

hg _
RO ) < C (1 + 108 () ) (IRFOAE 2 + [EI RO 1)
E
< C1B[TYIRE 01 & -
(78)
Combining (77), (78), summing over the elements, applying the Korn in-

equality on {2 and finally property (02) yields
DB 116YIP < CIRw6I1E o < Clle(Rab)I[5 0 < ClIOwIIF, - (79)
Ecy, vevp

The result follows from (76) and (79).
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