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SUMMARY

This work is devoted to the study of a second order numerical scheme for the critical generalized
Korteweg-de Vries equation (GKdV with p = 4) in a bounded domain. The KdV equation and some
of its generalizations as the GKdV type equations appear in Physics, for example in the study of waves
on shallow water. Based on the analysis of stability of the first order scheme introduced by Pazoto et al.
[1], we add a vanishing numerical viscosity term to a semi-discrete scheme of second order in space so
as to preserve similar properties of stability, and thus able to prove the convergence in L4-strong. The
semi-discretization of the spatial structure via second-order central finite difference method yields
a stiff system of ODE. Hence, for the temporal discretization, we resort to the two-stage implicit
Runge-Kutta scheme of the Gauss-Legendre type. The resulting system is unconditionally stable and
possesses favorable nonlinear properties. On the other hand, despite the formation of blow up for the
critical case of GKdV, it is known that a localized damping term added to the GKdV-4 equation
leads to the exponential decay of the energy for small enough initial conditions, which is interesting
from the standpoint of the Control Theory. Then, combining the result of convergence in L4-strong
with discrete multipliers and a contradiction argument, we show that the presence of the vanishing
numerical viscosity term allows the uniform (with respect to the mesh size) exponential decay of the
total energy associated to the the semi-discrete scheme of higher-order in space with the localized
damping term. Numerical experiments are provided to illustrate the performance of the method and
to confirm the theoretical results.

key words: Higher order scheme; Generalized Korteweg-de Vries equation; Critical case; Implicit
Runge-Kutta scheme
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1. INTRODUCTION

The Korteweg-de Vries equation and some of its generalizations play an important role in
the development of the soliton theory (see Korteweg and de Vries [2]). They arise in many
physical contexts such as surface water waves where dispersion and nonlinearity dominate,
while dissipative effects are small enough to be neglected in the lowest-order approximation. In
many real situations, however, one cannot neglect energy dissipation mechanisms and external
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2 M. SEPÚLVEDA

excitation, especially for the long-time behavior. In this context, several energy dissipation
mechanisms were derived and, depending on the physical situation, they must be taken into
account, at least, as a perturbation. In this context, a variation of the KdV equation is known
in the literature as the generalized Korteweg-de Vries (GKdV) equation. Historically, these
types of equations first arose in the study of 2D shallow wave propagation, but have since
appeared as limiting cases of many dispersive models. There is a large body of literature for
the analysis of the GKdV equation on the line, the half-line, the torus, and boundary domains
(see for example, [3, 4, 5] and the references therein). The GKdV-4 equation or quintic (mass-
critical) GKdV equation are of special interest: the problem becomes degenerated and presents
a lot of similarities with the critical nonlinear Schrödinger equation (see [6]).

In this work we study a second order scheme for the critical generalized Korteweg-de Vries
equation (GKdV-4 equation) in a bounded domain (0, L) with or without the effect of a possible
localized damping term:

ut + uxxx + u4ux + ux + a(x)u = 0, (0, L)× (0, +∞), (1)

u(0, t) = u(L, t) = 0, t ∈ (0, +∞), (2)

ux(L, t) = 0, t ∈ (0, +∞), (3)

u(x, 0) = u0(x), x ∈ (0, L). (4)

The nonlinearity u4ux in (1) is particularly interesting due to its mass-critical nature
[3, 6, 7, 8, 9]. The drift term ux in (1) is not necessary here, and could be not considered,
but it is convenient both theoretically and practically to have the extra flexibility inherent
in formulation (1)-(4) (see for example, [4]). The function a = a(x) of the damping term in
(1), must be non-negative (a(x) > 0, a.e. in (0, L)). It can be eventually identically to zero
(a(x) ≡ 0), in which case (1) is the pure GKdV-4 dispersive equation without damping term.
On the other hand, in order to obtain the asymptotic behavior of the exponential decay of the
total energy associated to the model given by

E(t) =
1

2

∫ L

0

|u(x, t)|2dx, (5)

the function a = a(x) must satisfy the following additional assumption characterizing the
localized damping term

{
a ∈ L∞(0, L) and a(x) > a0 > 0 a. e. in Ω

where Ω is a nonempty open subset of (0, L).
(6)

This system (1)-(4) was studied first in [3], where the authors prove the exponential decay of the
energy, under the hypotheses (6) and for a small initial data u0 such that ‖u0‖L2(0,L) <

√
3π/2.

The same system was studied in a numerical point of view in [1], where the authors prove a
uniform stabilization and convergence of a first order numerical schemes for the system (1)-(4)
under the same assumptions. In this paper, we give an improvement in the order of this finite
difference scheme maintaining the properties of uniform stability and convergence of [1].

There are several numerical schemes for the KdV and GKdV type equations in the literature
with stability and conservative properties (see [1, 4, 7, 10, 11, 12] and the reference therein).
However, in the case of GKdV-4 equation, we had to make a special treatment of the
nonlinearity u4 ux, rewriting it in a particular and a bit sophisticated way, taking into account
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SECOND ORDER SCHEME FOR THE GKDV-4 EQUATION 3

the invariance of the mass scaling in the L2-norm. The numerical schemes proposed here, is the
generalization to the second order of the first order scheme introduced by Pazoto et al. [1] where
such treatment of the nonlinearity is taken into account. In the case of the first-order scheme,
the approximation of the dispersive term by decentered finite differences, provides a natural
numerical viscosity which makes the numerical approximation of δx1/2uxx be bounded in L2. In
contrast, the second-order approximation of the dispersive term has not such natural diffusive
term and therefore we must add one artificially. The vanishing numerical viscosity term added
to obtain the required stability corresponds to a numerical approximation of δxθuxxxx with
1 < θ < 10/9. That is, the numerical scheme for which we prove the uniform stability may
be only of order least than 10/9. It is not a second-order scheme, but at least it is a scheme
of higher-order (greater than 1). This uniform stability allows us to obtain the convergence
in L4 in space-time of the solution of the scheme, and the convergence in L10/9 in space-time
of the discretization of the nonlinearity. Therefore, using discrete multiplier techniques, the
contradiction argument and the Holmgren’s Uniqueness Theorem leads to have the uniform
exponential decay rate of the discrete energy associated to the numerical approximation when
de assumption (6) is verified. Additionally, to ensure unconditional stability, we choose for our
numerical examples, a full implicit scheme discretization. The resulting system of equations
can be approximately solved using the Newton method or a fixed point argument.

The outline of this paper is organized as follows. In Section 2, we briefly describe the known
results of well-posedness, estimates and exponential decay of the energy for the solutions of
the critical GKdV equation with damping (the continuous case). In Section 3 we describe
the numerical methods, introducing the semi-discrete scheme of second-order in space, and
a perturbation of this scheme by a vanishing numerical viscosity term of 4th order. We
present also some previous lemmas which we need for the next sections. The well-posedness,
convergence, and uniform exponential decay of the energy, for the semi-discrete scheme is
proved in Section 4. Finally, in Section 5 we present the full discrete scheme of second-order
in space and time, and we give some numerical tests and illustrative examples.

2. PRELIMINARIES

Let us recall in this section, the main results of [3], detailing and commenting on some
inaccuracies of this work. We start by stating the following existence result due to Rosier
and Zhang [14].

Theorem 2.1 (See [14], Theorem 2.13)
Let u0 ∈ L2(0, L) and T > 0 be given. Then, there exists T ∗ ∈ (0, T ] such that the problem
(1)-(4) admits a unique solution u ∈ C([0, T ∗]; L2(0, L)) ∩ L2([0, T ∗); H1

0 (0, L)).

In the next result we establish an a priori estimate obtained by Pazoto et al. [1].

Proposition 2.1 (see [1], Proposition 2.1)
Let u be a solution of problem (1)-(4) obtained in Theorem 2.1. If the initial data satisfies

‖u0‖L2(0, L) <
√

3π
2 , then

‖u‖2
L2(0, T ; H1

0 (0, L)) 6 c
‖u0‖2

L2(0, L)[
1 − 4

9π2 ‖u0‖4
L2(0, L)

] (7)
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4 M. SEPÚLVEDA

where c = c(T, L). Furthermore,

ut ∈ L6/5(0, T ; H−2(0, L)). (8)

For the sake of completeness we state the stabilization result obtained in [3].

Theorem 2.2 (See [3], Theorem 3.3)
Let u be the solution of problem (1)-(4) given by Theorem 2.1 and let Ω and a = a(x) be as

in (6). Then, for any 0 < R <
√

3π/2 and T > 0, there exist positive constants c = c(R, T )
and µ = µ(R), such that

E(t) 6 c ‖u0‖2
L2(0, L) e−µ t (9)

holds for all t > 0 and u0 satisfying ‖u0‖L2(0, L) 6 R.

From the numerical point of view, it is possible to find several numerical scheme with
stabilization properties. Here we are interested in establishing a stabilization result for solutions
of a high-order numerical scheme of (1)-(4) with an exponential decay rate uniform with respect
to the mesh size.

3. DESCRIPTION OF THE SEMI-DISCRETE NUMERICAL SCHEME

This section is devoted to give a description of a family of conservative numerical scheme for
the GKdV-4 equation. We introduce a semi-discrete scheme of second-order in space based on
centered finite differences, and a variation of it by a vanishing numerical viscosity in order to
obtain the desired stability and convergence similar to the case of first-order [1]. Consequently,
we take here also recall some lemmata related to stability, introducing some variations and
new ones adapted to second-order scheme. Let us introduce the discrete space

X1
J = {u = (u0, . . . , uJ) ∈ R

J+1 | with u0 = 0 and uJ = uJ−1 = 0},

(D+u)j =
uj+1 − uj

δx
, (D−u)j =

uj − uj−1

δx
, for j = 1, . . . , J − 1, and D =

1

2
(D+ + D−) the

classical difference operators, where δx is the space-step and δt is the time-step, for j = 0, . . . , J ,
and n = 0, . . . , N . We also introduce the following inner products in XJ

(z, w) =

J−1∑

j=1

δx zj wj , (z, w)x = (z, xw) =

J−1∑

j=1

jδx2 zj wj , (10)

for all z, w ∈ R
J+1, and the norms |z| =

√
(z, z), |z|x =

√
(z, z)x, for all z ∈ R

J+1.
Additionally, we introduce the following p−norms in XJ

|z|p .
=




J−1∑

j=1

δx |zj |p



1/p

and |z|∞ .
= max

j=1,...,J−1
|zj |, (11)

for all z, w ∈ R
J+1.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 1:1–20
Prepared using fldauth.cls



SECOND ORDER SCHEME FOR THE GKDV-4 EQUATION 5

We describe now the semi-discrete numerical scheme. Denoting by uj(t) the approximate
value of u(jδx, t), solutions of the nonlinear problem (1)-(4), the approximation of the nonlinear
problem (1)-(4) reads as the following system of ODEs :

d

dt
[uj ] +

(
A(θ)u

)
j
+ F (u)j + aδuj = 0, j = 1, . . . , J − 1, (12)

u(t) ∈ XJ (∀t > 0), u0 =

∫ x
j+ 1

2

x
j− 1

2

u0(x)dx (j = 1, . . . , J − 1), (13)

where xj+ 1
2

= j + 1
2δx and xj = jδx. The matrix A(θ) ∈ R

(J−1)×(J−1) is an approximation
of order θ of the dispersive term uxxx and the linear convective term ux. For instance, the
first-order approximation in space considered by [1] was given by

A(1) = D+D+D− + D. (14)

In our case where we are most interested in the scheme of second order, we take the central
differences approximation as follows

A(2) = D+DD− + D. (15)

However, in a point of view of the analysis, we can not argue with this second-order
approximation (15) in the same way as it was do it for the first order scheme [1]. Nevertheless,
there is a way to correct the approximation (15), adding a vanishing numerical term of 4th
order:

A(θ) = δxθ D−D+D+D− + D+DD− + D, (16)

with 1 < θ < 2. Thus, we obtain a slightly more precise numerical scheme, and it is possible
to prove with similar argument to those used by Pazoto et al. [1]. This idea of adding a
vanishing numerical term to ensure the property of uniform exponential decay is not new. It
was suggested for the wave equation with a vanishing numerical term of 2nd order (see for
example [13, 15]).

The approximation of the damping function a = a(x) is given by aδ = (aj)
J−1
j=1 ∈ R

J−1,

where each component aj is given by aj =

∫ x
j+ 1

2

x
j− 1

2

a(x)dx.

The nonlinearity u4ux in the equation (1) will be approximated by a nonlinear function
F (u), where F : R

J−1 → R
J−1 is chosen such that, it verifies the following conservation

properties:

(u , F (u)) = 0, (17)

(u , F (u))x = −1

6
|u|66, (18)

where the discrete inner products (·, ·) and (·, ·)x are defined in (10) and the discrete 6-norm
| · |6 is defined in (11). For this we choose the same function F introduced by Pazoto et al. [1]
and characterized in the following Lemma:
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6 M. SEPÚLVEDA

Lemma 3.1 (see [1], Lemma 3.1)
The function F : R

J−1 → R
J−1 defined by the following expression

F (u)j = u4
j (Du)j − 5

2
u3

j

(
Du2

)
j

+
10

3
u2

j

(
Du3

)
j
− 5

2
uj

(
Du4

)
j

+
(
Du5

)
j

(19)

for all j = 1, . . . , J − 1, verifies the conservativity properties (17) and (18), for all u ∈ XJ .

On the other hand, we state the following identities associated to central differences:

Lemma 3.2
For all z ∈ XJ , the following identities

(D z , z) = 0, (20)

(D+D D−z , z) =
1

2

([
(D−z)1

]2
+

[
(D−z)J

]2)
, (21)

(D z , z)x =
δx2

4
|D−z|2 − 1

2
|z|2 +

δx3

4

[
(D−z)J

]2
, (22)

(D+D D−z , z)x =
δx

2

([
(D−z)1

]2
+ (J + 1)

[
(D−z)J

]2
)

+
1

2
|D−z|2 + |D z|2 − δx2

4
|D+D−z|2, (23)

(D−D+D+D−z , z) =
2

δx

[
(D−z)J

]2
+

∣∣D+D−z
∣∣2 , (24)

(D−D+D+D−z , z)x = −
[
(D−z)1

]2
+ (2J + 1)

[
(D−z)J

]2
+

∣∣D+D−z
∣∣2
x

. (25)

Proof. Using the identity
(
a2 − b2

)
+(a−b)2 = 2(a−b)a with a = zj , wj and b = zj−1, wj−1,

multiplying by 1 and jδx, and summing by parts over j = 1, . . . , J − 1, we obtain (20)-(25).
2

Remark 3.1
1. Let be the discrete sub-space of XJ defined by :

X̃J = {u ∈ XJ | with u2 = 2 u1} (26)

the identity (24) and (25) can be reduced to

(D−D+D+D−z , z) =
∣∣D+D−z

∣∣2
2

(27)

(D−D+D+D−z , z)x = −
[
(D−z)1

]2
+

∣∣D+D−z
∣∣2
x

(28)

for all z ∈ X̃J .
2. The condition u2 = 2u1 is equivalent to [D+D−u]1 = 0, for all u ∈ XJ . In this sense, numerical

scheme (12)-(13), with (16), (19), and un ∈ X̃J is an approximation of

ut + εuxxxx + uxxx + u4 ux + ux + a(x)u = 0, (0, L) × (0, +∞),

u(0, t) = u(L, t) = 0, t ∈ (0, +∞),

ux(L, t) = 0, t ∈ (0, +∞),

uxx(0, t) = 0, t ∈ (0, +∞),

u(x, 0) = u0(x), x ∈ (0, L),
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SECOND ORDER SCHEME FOR THE GKDV-4 EQUATION 7

with ε = δxθ.
3. Due to vanishing numerical viscosity term, the spatial approximation is not yet of second-

order, but it is of θ-order, with 1 < θ < 2. Furthermore, we also note that the boundary
conditions imposed by the discrete space XJ are approximations of first-order. While there
are second-order approximations for the boundary conditions required, the choice of XJ space
is needed to ensure the stability of the method. Whereupon, the method proposed here is a
real improvement on the first-order scheme introduced in [1], to the extent that the boundary
conditions are not relevant. This is justified for example if the solution is a soliton that it
propagates in a domain large enough so that it rarely touch the boundaries.

To finish with this series of lemmata, we recall some inequalities corresponding to a discrete
version of some well known Gagliardo-Nirenberg type inequalities (see [1]):

Lemma 3.3 (see [1], Lemma 3.3)
For all u ∈ XJ ,

|u|2∞ 6 2 |u|2 |Du|2 (29)

|u|44 6 2 |u|32 |Du|2 (30)

|u|2∞ 6 2 |u|3/2
2 |D+D−u|1/2

2 (31)

|D−u|pp 6 2
p−1
2 |u|

p+1
4

2 |D+D−u|
3p−1

4
2 , (32)

for all p > 2.

4. CONVERGENCE AND WELL-POSEDNESS

Before stating the convergence results we recall the definition of the extension operator (see
[1, 15]): for all v ∈ R

J+1 with v = (vj)
J
j=0, we define

pδvδ =





the continuous function, linear in each interval
[jδx, (j + 1)δx]
such that pδvδ(jh) = vj , j = 0, . . . , J.

qδvδ =





the step function defined in each interval
[(j − 1

2 )δx, (j + 1
2 )δx] ∩ (0, L)

such that pδvδ(jh) = vj , j = 0, . . . , J.

First, we give a well-posedness result for the solution of the numerical scheme (12)-(13).

Proposition 4.1
Let u

0 in XJ , for δx > 0 fixed. Then there exists a unique solution uδ ∈ XJ of the numerical
scheme (12)-(13), for some time interval (0, T ).

Proof. The numerical scheme (12)-(13) is a system of ordinary differential equations verifying
all the hypotheses for the (local) existence and uniqueness: for a fixed δx, we have that

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 1:1–20
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8 M. SEPÚLVEDA

uδ 7→ A(θ)uδ + F (uδ) − aδuδ, is locally Lipschitz continuous. Thus, there is a time interval
(0, T ) where we can ensure existence and uniqueness of the numerical solution. 2

Then, we give the following a priori estimates result

Proposition 4.2
Let t 7→ uδ(t) ∈ XJ built by the numerical scheme (12)-(13), with A(θ) defined by (16) and

F (un) defined by (19). If |u0|2 ≤
√

3

2
, then there exists a constant C > 0 independent of δx

and T , such that

‖qδuδ‖L∞(0,T ; L2(0,L)) 6 |u0|2, (33)

‖pδuδ‖2
L2(0,T ; H1

0 (0,L)) 6
(T + L + δx)

3

(
1 − 4

9
|u0|42

) |u0|22, (34)

‖qδD
+D−uδ‖L2((0,T )×(0,L)) 6

δx−θ/2

√
2

|u0|2, (35)

‖∂t (pδuδ)‖L10/9(0,T ; H−2(0, L)) 6 C. (36)

Proof.

1) Estimates for pδuδ and qδuδ.

First, we multiply the equation (12) by uδ, and sum over j = 1, . . . , J − 1. Using (20), (21)
and (24), we obtain

d

dt
|uδ|22 +

[
(D−uδ)1

]2
+ δxθ

∣∣D+D−uδ

∣∣2
2

+ 2 (F (uδ), uδ)︸ ︷︷ ︸
= 0

from Lemma 3.1
and (17)

+ 2 (aδuδ, uδ) = 0,

Next, integrating over (0, T ), we obtain

|uδ(T )|22 +

∫ T

0

[
(D−u)1

]2
dt + δxθ

∫ T

0

∣∣D+D−uδ

∣∣2
2

dt + 2

∫ T

0

(aδuδ, uδ) dt = |u0|22, (37)

then (33) follows. In addition, we deduce the following estimate for the 3rd term on the left
hand side of (37)

∫ T

0

∣∣D+D−uδ

∣∣2
2

6
δx−θ

2
|u0|22, (38)

which give us (35). In order to prove (34), we follow the same reasoning above. First, we
multiply the equation (12) by j δx uδ and sum over j = 1, . . . , J −1. Using (22), (23) and (25),

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 1:1–20
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SECOND ORDER SCHEME FOR THE GKDV-4 EQUATION 9

we obtain

d

dt
|uδ|2x +

∣∣D−uδ

∣∣2
2

+ 2 |Duδ|22 + δxθ
∣∣D+D−uδ

∣∣2
x
− δx2

∣∣D+D−uδ

∣∣2
2

− |uδ|22 − δx
[
(D−uδ)1

]2
+ 2 (F (un+1), un+1)x︸ ︷︷ ︸

= − 1
3 |uδ|66

from Lemma 3.1
and (18)

+ 2 (aδuδ, uδ)x = 0.

Then, integrating over (0, T ), we get

|uδ(T )|2x +

∫ T

0

∣∣D−uδ

∣∣2
2

dt + 2

∫ T

0

|Duδ|22 dt

+ δxθ

∫ T

0

∣∣D+D−uδ

∣∣2
x

dt − δx2

∫ T

0

∣∣D+D−uδ

∣∣2
2

dt + 2

∫ T

0

(aδuδ, uδ)x dt

=

∫ T

0

|uδ|22 dt + δx

∫ T

0

[
(D−uδ)1

]2
dt +

1

3

∫ T

0

|uδ|66 dt + |u0|2x. (39)

Now, using (37) we can estimate the third term on the left hand side of (39) as follows

∫ T

0

|Duδ|22 dt 6
1

3

∫ T

0

∣∣D−uδ

∣∣2
2

dt +
2

3

∫ T

0

|Duδ|22 dt

6
1

3

∫ T

0

|uδ|22 dt +
δx

3

∫ T

0

[
(D−uδ)1

]2
dt +

1

9

∫ T

0

|uδ|66 dt +
1

3
|u0|2x.

6
(T + L + δx)

3
|u0|2x +

1

9

∫ T

0

|uk|66 dt. (40)

Moreover, combining (29), (30), and (33) we deduce that

∫ T

0

|uδ|66 dt 6 4 |u0|4
∫ T

0

|Duδ|22 . (41)

Replacing (41) in (40), and using the fact that |Duδ|22 6 |D−uδ|22 the inequality (34) follows.

2) Estimate of the nonlinearity. Here, we treat the nonlinearity F (uδ) as same as in [1]. Thus,
due to the definition (19), we can write F (uδ)j as

F (uδ) =
1

5
D

[
(uδ)

5
]
+ (NL)+(t) + (NL)−(t) (42)

where

(NL)±(t) =
δx

60

(
4u3

δ − 22u2
δτ

±
δ uδ + 27uδ(τ

±
δ uδ)

2 − 24(τ±
δ uδ)

3
) (

D± [uδ]
)2

(43)

for all uδ ∈ XJ , where τ±
δ are the left and right shift operators: (τ+

δ uδ)j = uj+1 and
(τ−

δ uδ)j = uj−1, for j = 1, . . . , J − 1. On the other hand, using (41) we have

∫ T

0

J∑

j=1

δx
∣∣∣(uj)

5
∣∣∣
6/5

dt 6 4 |u0|4
∫ T

0

∣∣Duk
∣∣2
2

dt. (44)
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Therefore, from the estimates (33) and (34) we have that

(qδuδ)
5 is bounded in L6/5((0, T ) × (0, L))

independent of δx. Moreover, since L6/5(0, L) →֒ H−1(0, L) we deduce for the first term on
the right hand side of (42) that

1

5
qδD

[
u5

δ

]
is bounded in L6/5(0, T ; H−2(0, L)), (45)

independently of δx.
Now, to estimate the nonlinearities (43), we use the discrete Gagliardo-Nirenberg type

inequality (31) and the Hölder inequality to obtain
(
4u3

δ − 22u2
δτ

±
δ uδ + 27uδ(τ

±
δ uδ)

2 − 24(τ±
δ uδ)

3
)s

6 27s|uδ(t)|3s
∞ 6

(
23/4 × 27

)s

|uδ(t)|9s/4
2 |D+D−uδ(t)|3s/4

2 (46)

for s > 1. Then, using the discrete Gagliardo-Nirenberg type inequality (32), the following
holds

∣∣D±uδ(t)
∣∣2s

2s
6 2s−1 |uδ(t)|

s+1
2

2 |D+D−uδ(t)|
3s−1

2
2 , (47)

for s > 1. Replacing (46) and (47) in (43), summing over j = 1, . . . , J and integrating over
(0, T ), we deduce that

∫ T

0

J∑

j=1

δx
∣∣(NL)±j (t)

∣∣s dt 6 Cδxs max
t6T

(
|uδ(t)|

11s+2
4

2

) ∫ T

0

|D+D−uδ(t)|
9s−2

4
2 dt,

with C =
1

2

(
9

5 × 21/4

)s

, independent of δx. Then, taking s = 10/9 in the above inequality,

we obtain
∫ T

0

J∑

j=1

δx
∣∣(NL)±j (t)

∣∣10/9
dt 6 Cδx

10
9

(
|u0|

32
9

2

) ∫ T

0

|D+D−uδ(t)|22 dt.

Finally, using estimate (38), we conclude that

qδ(NLk)±δ is in a compact of L10/9((0, T )× (0, L)). (48)

3) Estimate of (pδuδ)t. Now, we can obtain a bound for
∂

∂t
Pδuδ. Indeed, from (12) we have

∂

∂t
pδuδ = −pδ

(
A(θ)uδ + F (uδ) − aδuδ

)
,

estimates (34), (45) and (48) allow to conclude that

∂

∂t
pδuδ is bounded in L10/9(0, T : H−2(0, L)).

This complete the proof of Proposition 4.2. 2

Now, with the previously proven propositions 4.1 and 4.2, the convergence result is as follows:
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Theorem 4.1
Let t 7→ uδ(t) ∈ XJ built by the numerical scheme (12)-(13), where A(θ) defined by (16) is

chosen such that 1 < θ < 10
9 , and F (uδ) is defined by (19). If |u0|2 ≤

√
3

2
, then, there exists

a subsequence of uδ, not relabeled, such that

qδuδ → u strongly in L4(0, T ; L4(0, L)), (49)

as δt, δx → 0, where u is the weak solution of (1)-(4).

Proof.

For the compactness result, thanks to the a priori estimates of Proposition 4.2, we can
follow the same outlines of Pazoto et al. (see [1], proof of Theorem 4.1), in order to prove the
strong convergence (49): since {uδ} is bounded in L2(0, T ; H1

0 (0, L)) ∩ L∞(0, T ; L2(0, L)),
by interpolation we can deduce that {uδ} is bounded in

[Lq(0, T ; L2(0, L)), L2(0, T ; H1
0 (0, L))]ζ = Lp(0, T ; [L2(0, T ; H1

0 (0, L))]ζ),

where 1
p = 1−ζ

q + ζ
2 and 0 < ζ < 1. Thus, choosing q = ∞, ζ = 1

2 , we have p = 4, and

[L2(0, L), H1
0 (0, L)] 1

2
= H1/2(0, L). On the other hand, H1/2(0, L) →֒ L4(0, L) is compact.

Then, due to the estimate (36) and classical compactness results ([18], Corollary 4) we can
extract a subsequence of {Qδ′uδ′}, still denoted by {Qδuδ}, such that

qδuδ −→ u strongly on L4(0, T ; L4(0, L)), (50)

thus (49) follows.

To show that u is solution of (1)-(2) we need to pass to the limit. For that, let φ ∈
C3

0 ((0, T ) × (0, L)) be a test function and set φj(t) := φ(xj , t), 0 6 j 6 J and 0 6 t 6 T . We
multiply the numerical scheme (12)-(13) by δxφj , summing and integrating by parts, in order
to obtain

∫ T

0

J−1∑

j=1

δx uj∂tφj dt − δxθ

∫ T

0

J−1∑

j=1

δx ujD
−D+D+D−φj dt

+

∫ T

0

J−1∑

j=1

δx uj

(
D+DD− + D

)
φj dt

+

∫ T

0

J−1∑

j=1

δxF (u)j φj dt +

∫ T

0

J−1∑

j=1

δx aδ uj φj dt = 0 (51)

Due to the convergence result (50), it is easy now to pass the limit in the previous terms,
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12 M. SEPÚLVEDA

indeed,

∫ T

0

J−1∑

j=1

δx uj∂tφj dt− →
∫ T

0

∫ L

0

u ∂tφdx dt (52)

δxθ

∫ T

0

J−1∑

j=1

δx ujD
−D+D+D−φj dt → 0 (53)

∫ T

0

J−1∑

j=1

δx uj

(
D+D−D− + D

)
φj dt →

∫ T

0

∫ L

0

u (φxxx + φx) dx dt (54)

∫ T

0

J−1∑

j=1

δx aδ uj φj dt →
∫ T

0

∫ L

0

a(x)u φdx dt (55)

∫ T

0

J−1∑

j=1

δxF (uδ)j φj dt → < χ, φ > (56)

as δx → 0, where χ ∈ D′((0, T )× (0, L)). Moreover, (45) allows us to take the limit of the first
term on the right hand side of (42) to the limit as follow

∫ T

0

J−1∑

j=1

δx
1

5
D

[
u5

δ

]
j

φj dt =

−
∫ T

0

J−1∑

j=1

δx
1

5
(uδ)

5
jD [φj ]j dt → −

∫ T

0

∫ L

0

u5φx dx dt (57)

as δx → 0. For the remaining terms in (42), we can use (48) to get
∣∣∣∣∣∣

∫ T

0

J−1∑

j=1

δx (NLk)±j φk
j dt

∣∣∣∣∣∣
6 Cδx

10
9 ‖φ‖L10(0, T ; L10(0, L))

−→ 0, (58)

as δx → 0. Replacing (57) and (58) in (56) we deduce that χ =
1

5

(
u5

)
x

in the sense of

distribution, which is formally equivalent to u4 ux. Due to (52)-(56), we have that u verifies
(1)-(4) in a weak sense (boundary and the initial condition are verified by sample arguments),
and, consequently, qδuδ converges to the unique solution of (1)-(4). 2

To conclude this section, we give now a result of uniform exponential decay of energy, i.e.
a decay of the energy independent of the size of the discretization δx. The energy associated
to the system (12)-(13) is defined by

Eδ(t) = |uδ|22, for all 0 6 t 6 T. (59)

This result on the uniform exponential decay of the energy for the solution of the numerical
scheme reads as follows:
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Theorem 4.2
Let uδ be the sequence in XJ built by the numerical scheme (12)-(13) and let Ω and a = a(x)

be as in (6). Then, for any 0 < R <
√

3/2 and T > 0, there exist positive constants c = c(R, T )
and µ = µ(R), but both independent of δx, such that

Eδ(t) 6 c |u0|22 e−µ t (60)

holds for all t > 0 and u0 satisfying |u0|2 6 R.

Proof. The proof of this theorem is done using a classical argument of contradiction and the
Holmgren’s Uniqueness Theorem. Thus, thanks to the results of a priori estimates and strong
convergence in L4 previously proven (see Proposition 4.2, and Theorem 4.1), we can argue
similar to Pazoto et al. (see [1], proof of Theorem 5.1). Then forward the details of the proof
in this paper. 2

5. NUMERICAL EXAMPLES.

Now we will see the full discretization in space and time. For both the first-order scheme
and the second-order scheme, we use an implicit method so as to maintain the unconditional
stability property.

5.1. Full discrete implicit numerical schemes.

In order to discretize the system (12)-(13) in the temporal variable. We will denote by un
j the

approximate value of uj(nδt), solutions of the nonlinear system (12)-(13) for n = 0, . . . , N .

5.1.1. Implicit Euler. The simplest implicit numerical scheme is given by the implicit Euler
of order one and reads as follows:

un+1
j − un

j

δt
+

(
A(1)un+1

)
j
+ F (un+1)j + aδu

n+1
j = 0, j = 1, . . . , J − 1, (61)

un
0 = un

J = un
J−1 = 0, (62)

u0 =

∫ x
j+ 1

2

x
j− 1

2

u0(x)dx, j = 1, . . . , J − 1, (63)

where A(1) is defined in (14) and F (·) and aδ are defined in (19). Pazoto et al. [1] prove
that this full discrete scheme have a solution which converges to the weak solution of (1)-(4).
Moreover, these authors prove in [1], the stability of the method, the L4-strong convergence of
the numerical solution, and the uniform exponential decay of energy for this first order scheme.

5.1.2. Implicit Runge-Kutta of order 2. We consider here a temporal discretization by the 2-
stage Gauss-Legendre implicit Runge-Kutta method, which correspond to the table (for more
details on definitions and deductions of these tables, see Butcher [17])

a11 a12 τ1

a21 a22 τ2

b1 b2

=

1
4

1
4 − 1

2
√

3
1
2 − 1

2
√

3
1
4 + 1

2
√

3
1
4

1
2 + 1

2
√

3

1
2

1
2

(64)
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14 M. SEPÚLVEDA

The numerical scheme is now specified, step by step, for n = 0, 1, . . . , N . We seek un
j , by way

of the intermediate stages un,ℓ
j , for ℓ = 1, 2, which are solution of the 2(J−1)×2(J−1) system

of nonlinear equations

un,ℓ
j − un

j

δt
+

2∑

m=1

aℓ,m

[(
A(θ)un,m

)
j
+ F (un,m)j + aδu

n,m
j

]
= 0,

j = 1, . . . , J − 1,
ℓ = 1, 2,

(65)

un,ℓ
0 = un,ℓ

J = un,ℓ
J−1 = 0, ℓ = 1, 2. (66)

using the formula

un+1
j = un

j − δt
2∑

ℓ=1

bℓ

[(
A(θ)un,ℓ

)
j
+ F (un,ℓ)j + aδu

n,ℓ
j

]
, (67)

where A(θ) is defined in (16) and F (·) and aδ are defined in (19). The application of this
full implicit Runge-Kutta Method for the temporal discretization of KdV type equations is
not new. It was applied before by Bona et al. in [4] using Finite Element Method for the
space discretization. In our case, the nonlinear system (65) can be approximately solved using
Newton method or a fixed point method. In this section we show some numerical examples to
describe a helpful strategy to solve this nonlinear system.

The choice of full implicit schemes (implicit Euler or implicit Runge-Kutta scheme) is
important in order to obtain unconditional stability of the method.

5.2. Computing strategy

The operators A(θ) defined in (14), (15) and (16) are well defined as a linear application
XJ → R

J+1, in the sense that we do not need additional points on the outside of [0, L] to
compute A(θ)u. Thus A(θ) is represented by a penta-diagonal matrix of order (J +1)×(J +1) :

A(θ) u =




γ1 ε1 ζ1

β2 γ2 ε2 ζ2 0
α3 β3 γ3 ε3

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . ζn−2

0 . . . βJ−1 γJ−1 εJ−1

αJ βJ γJ




(68)

where αi, βi, γi, εi and ζi, for i = 1, . . . , J are defined in table 5.2 for first-order and second-
order approximations.

In the case of the implicit Euler approximation, the nonlinear system (61) can be written as

(I + A)un+1 = un − δt F (un+1) (69)

where A = δt
(
diag(aδ) + A(θ)

)
. The nonlinear system (69) can be approximately solved using

the Newton method or a fixed point method. The number of iterations is determined by a stop
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αi βi γi εj ζi

3

δx3 (i 6= J) − 3

δx3 +
1

δx
(i 6= J − 1)

A(1) 0 − 1

δx3 − 1

δx
1

δx3 (i = J) − 2

δx3 +
1

δx
(i = J − 1)

1

δx3

1

δx3 − 1

δx
(i 6= J) − 1

δx3 +
1

δx
(i 6= J − 1)

A(2) − 1

2 δx3
1

2 δx3 − 1

δx
(i = J)

0 −
2 δx3 +

1

δx
(i = J − 1)

1

δx3

Table I: Coefficients of the matrix A = A(1) for the first-order approximation (14) and A = A(2)

for the second-order approximation (15).

criterion, within a tolerance of the error generally less than 10−6. Obviously, the number of
iterations will depend on the example and on the size of δt. For the examples in this paper
and this tolerance of the error, we observed that the number of iterations is not more than 4
or 5.

In both cases, we have in each iteration to solve a linear system with a positive definite
penta-diagonal matrix. Taking into account the structure of the matrix (I + A) it is easy to
apply a LU decomposition based on a simple modification of the Thomas algorithm for a
penta-diagonal matrix [19, 20].

In the case of the 2-stage Gauss-Legendre implicit Runge-Kutta method, the nonlinear system
(65) can be written as

{
(I + a11 A) un,1 + a12 Aun,2 = un − δt a11 F (un,1) − δt a12 F (un,2)
a21 Aun,1 + (I + a22 A)un,2 = un − δt a21 F (un,1) − δt a22 F (un,2)

where aij are defined in the Butcher table (64), for i, j = 1, 2. We can rewrite this nonlinear
system as an uncoupled system in its linear part as
{ (

12 I + 6A + A2
)

un,1 =
(
12 I + 2

√
3A

)
un − δt (3 I + A)F (un,1) − δt (3 − 2

√
3)F (un,2)(

12 I + 6A + A2
)

un,2 =
(
12 I − 2

√
3A

)
un − δt (3 + 2

√
3)F (un,1) − δt (3 I + A)F (un,2).

(70)

Using now Newton method or a fixed point method, we have in each iteration to solve a linear
system with an 9-diagonal matrix

(
12 I + 6A + A2

)
. Taking into account the structure of the

9-diagonal matrix it is easy to apply again, a simple modification of the Thomas algorithm.

5.3. Example 1. Comparison with an exact soliton solution

An exact solution for the generalized KdV equation

ut + uxxx + up ux + ux = 0, (0, L) × (0, +∞),

with x ∈ R can be write as a traveling-wave solution (soliton) of the form

u(x, t) =
α

cosh2/p [β p (x − (4 β2 + 1) t − x0)]
(71)
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Figure 1: The exact solution and the numerical simulation for t = 100[sec.], p = 4, without
damping (J = 100000 and n = 1000000). Left: Implicit Euler method; Right: 2-step Gauss-
Legendre Implicit Runge-Kutta Method of order 2.

δt δx
‖uδ−uexact‖L∞(0,T,L2(0,L))

‖uexact‖L∞(0,T,L2(0,L))
CPU

Euler RK-1 RK-2 Euler RK-1 RK-2
10−3 3.10−2 1.06 1.08 1.11 0.038 0.108 0.110
10−4 3.10−3 2.53 × 10−1 2.44 × 10−2 1.09 × 10−1 2.33 7.39 9.66
10−5 3.10−4 4.00 × 10−2 3.70 × 10−2 3.21 × 10−3 149.02 697.98 701.06
10−6 3.10−5 4.35 × 10−3 3.99 × 10−3 9.47 × 10−5 18215. 101294. 102304.

Table II: Comparison between numerical and exact solution for the Implicit Euler method, the
Implicit Runge-Kutta method with first-order space discretization (RK-1), and the Implicit
Runge-Kutta method with second-order space discretization (RK-2); relative error in norm
L∞(0, T, L2(0, L)).

where α and x0 are arbitrary constants and β =

[
αp

2 (p + 1) (p + 2)

]1/2

(see for instance,

Ablowitz and Segur [21]).

We consider the initial condition of the traveling wave solution (71) with p = 4, that is

u0(x) =
α

cosh1/2 [4 β (x − x0)]
, (72)

and we make a simulation for L = 300.0; T = 100 ; α = 1.0 and x0 = 50; δt = T/n and
δx = L/J with different values of J and n (see Figure 1).

Remark 5.1
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Figure 2: Example 2. Perturbations of a soliton by homothetic transformation: (a) The
function T 7→ 1√

T+L
‖Pδuδ‖L2(0,T : H1

0 (0,L)) for different η values in formula (72); (b)

Homothetic reduction of the initial condition; (c) Soliton without homothetic transformation;
(d) Homothetic amplification of the initial condition.

We note here that the mass of the soliton is accumulated practically throughout the interval
[−350, 250], and is almost negligible outside it. Thus, the energy of u on [−350, 250] can be
reasonably approximated by the energy on the entire real line which results to be a calculable
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integral. That is, the norm L2 of the initial condition of a soliton is given by

‖u0‖L2(−350,250) =




∫ 250

−350

α2 dx

cosh
[

2 α2√
15

(x − x0)
]




1/2

= 151/4

√
π

2
+ O(10−6) ≈ 2.4665

which is greater than
√

3π/2 ≈ 2.1708, the critical level for the estimates in H1 for the

solution given by (7)) and consequently it is greater than
√

3/2 ≈ 1.2247, the critical level
for the estimate of the numerical approximation given by (34). In this sense, this numerical
example gives a successful rate of convergence, even outside the theoretical range that we
needed in the previous sections to prove the uniform stability and convergence. Obviously, this
does not rule out that may have examples where the uniform convergence and stability are
not met.

5.4. Example 2. Perturbations of a soliton by homothetic transformation

In this example, we study the numerical behavior of the solution for a perturbation of
the soliton like (71). Because we want to study the propagation of waves not touching the
boundaries of the interval (0, L) avoiding reflection numerical effects, and on the other hand,
we do not want to use too large intervals in order to loose accuracy, we simplify our equation
(1) as

ut + uxxx + u4 ux = 0,

eliminating the linear convective term and taking a(x) ≡ 0, focusing on the effect of nonlinear
convective term and dispersive term on the behavior of the solution under perturbation of the
soliton. For that, we multiply the initial condition (72) by a parameter η, that is

u0(x) =
η α

cosh1/2 [4 β (x − x0)]
, (73)

and we make a simulation for L = 200.0; T = 240 ; α = 1.0, β = 1
2
√

15
and x0 = 100; δt = T/n

and δx = L/J , with J = 10000, n = 240000, and different values of η. In Figure 2, we see the
numerical results of these perturbations. Figure 2(a) shows the graphics of the function

T 7→ 1√
T + L

‖pδuδ‖L2(0,T : H1
0 (0,L)), (74)

for different η values, where pδ is defined in (33). The idea of dividing the norm L2(0, T :
H1

0 (0, L)) of the numerical solution by
√

T + L in (74), is to ensure that the constant of the
estimate (34) does not depend on T or L, when the initial condition verify |u0|2 ≤

√
3/2. We

remark that this last condition is verified only when η ≤ (3/5)1/4

√
π

≈ 0.49655. On the other

hand, Figure 2(a) shows that the assumption on small initial condition is not needed in this
case. In fact, we obtain in our numerical tests that functions defined in (74) are bounded for
0 ≤ η ≤ 3.745.
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Figure 2 (b), (c) and (d) show the evolution of the waves solution for η = 0.1, η = 1.0 and
η = 3.745, respectively. In these 3 cases and also in all the intermediary cases, there is not
blow up.
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