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ABSTRACT: The aim of this contribution is to build 
consensus on a consistent modeling methodology 
(CMM) of complex real processes in wastewater 
treatment by utilizing both classical concepts and new 
results from applied mathematics. The real process 
should be approximated by a mathematical model 
(process model; ordinary or partial differential 
equation (ODE or PDE)), which in turn is 
approximated by a simulation model (numerical 
method) implemented on a computer. Although this 
has been done before, often it has not been carried out 
in a correct way. The secondary settling tank was 
chosen as a case since this is one of the most complex 
processes in a wastewater treatment plant and the 
simulation models developed decades ago have no 
guarantee of satisfying fundamental mathematical and 
physical properties. Nevertheless, such methods are 
still used in commercial tools to date. This particularly 
becomes of interest as the state-of-the-art practice is 
moving towards plant-wide modeling. Then all 
submodels interact and errors propagate through the 
model and severely hamper any calibration effort and, 
hence, the predictive purpose of the model. The CMM 
is described by applying it first to a simple conversion 
process in the biological reactor yielding an ODE 
solver, and then to the solid-liquid separation in the 
secondary settling tank, yielding a PDE solver. Time 
has come to incorporate established mathematical 
techniques into environmental engineering, and 
wastewater treatment modelling in particular, and to 
use proven reliable and consistent simulation models. 
 
KEYWORDS: Secondary clarifier, thickener, 
continuous sedimentation, partial differential equation, 
simulation model, numerical method 
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Introduction 
Wastewater treatment (WWT) systems are 
widely studied with the aid of mathematical 
models (Gujer, 2008; Henze et al., 2000). 
Detailed models exist for the biological 
processes occurring in the system. However, 
a biological WWT system also includes a 
secondary settling tank (SST) for the 
separation of the cleaned liquid from the 
activated sludge. It has also a thickening 
function to recycle and retain the solids and, 
hence, the biological activity in the system. A 
typical WWT model consists of a very 
complex biological submodel and a rather 
simplified sedimentation submodel. The 
reason for the latter is mainly a practical one. 
Indeed, the biological models typically 
consist of ordinary differential equations 
(ODEs), whereas a sedimentation model 
includes both time and space dependence, 
turning it into a partial differential equation 
(PDE). The main commercial simulators, 
however, do not provide reliable simulation 
methods for these PDEs; there is no 
guarantee that the simulations satisfy 
fundamental mathematical and physical 
properties. One reason for this has been the 
lack of established solvers for the particular 
type of nonlinear PDE that models 
continuous sedimentation. Therefore, many 
workarounds have been proposed for the 
simulation of integrated WWT models in an 
ODE environment (Abusam and Keesman, 
2009; Chatellier and Audic, 2000; David et 
al., 2009a, 2009b; De Clercq et al., 2003; 
Dupont and Dahl, 1995; Dupont and Henze, 
1992; Giokas et al., 2002; Hamilton et al., 
1992; Härtel and Pöpel, 1992; Koehne et al., 
1995; Nocoń, 2006; Otterpohl and Freund, 
1992; Ozinsky et al.,1994; Plósz et al., 2007; 
Queinnec and Dochain, 2001; Takács et 
al.,1991; Vaccari and Uchrin, 1989; Verdickt 
et al., 2005; Vitasovic, 1989; Watts et al., 
1996; Zheng and Bagley, 1998). Although 
acceptable at the time of their development, 
these simulation models should be 

reconsidered as both knowledge and 
computational power have evolved 
significantly. In short, the problem is not the 
ODE environment, rather the heuristic 
unreliable workarounds in the numerical 
implementation. De Clercq (2006) and De 
Clercq et al. (2008) utilize the 
mathematically proved reliable PDE solver 
by Bürger et al. (2005) for the secondary 
settling tank (SST). An example of a 
combination of PDE and ODE solvers is the 
simulation model by Diehl and Jeppsson 
(1998), which utilizes the Activated Sludge 
Model no 1 (ASM1) by Henze et al. (1987) 
and a PDE solver for the SST. The PDE 
solver includes the sedimentation of the 
flocculated multi-component particles 
(Jeppsson and Diehl, 1996b). 

SSTs often cause problems in the daily 
operation of wastewater treatment plants 
(WWTPs). Factors influencing the solid-
liquid separation include hindered and 
compression settling, flocculation-breakup, 
non-settleable solids fractions, sludge 
viscosity and density. Furthermore, 
hydrodynamic impacts (geometry/design of 
the SST, horizontal density currents, solids 
influent and removal) have been studied in 
more detail and resulted in additional 
knowledge that has not yet been included 
into integrated WWT models. Hence, the 
problematic behavior often observed in 
practice cannot be explained by current state-
of-the-art models. Moreover, new pressures 
on WWT systems have come into the picture. 
An important one with respect to the SST is 
the occurrence of extreme hydraulic events 
most possibly induced by climate change. 
The development of mitigation strategies 
calls for improved settler models. When 
developing the latter, it makes a lot of sense 
to start from the state of the art in the 
modelling of continuous sedimentation that 
has been achieved in different disciplines. 
Knowledge in applied mathematics, chemical 
engineering and environmental engineering 
should be combined and utilized with the aim 
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of building SST models efficiently, but first 
of all consistently. 

The clarification-thickening process also 
appears in several other applications, such as 
the mineral, chemical, food, pulp-and-paper 
and other industries. Researchers in different 
disciplines therefore tackled basically the 
same problem, gained a lot of insight and 
produced new results during several decades. 
From our experience there persists a wide 
gap between different fields, particularly 
between mathematics and environmental 
engineering science, which we would like to 
bridge. New results in mathematical 
publications require fairly advanced skills to 
be understood fully, so applied 
mathematicians need to “translate” and 
explain how the results can be used in the 
applications. The specific nonlinearities of 
the continuous sedimentation process have 
led to intense mathematical research during 
the last two decades. The environmental 
engineering field should now benefit from 
these results. 

Another reason for the gap lies in the 
traditional modeling approaches. In the 
WWT field, a “settler model” often means a 
simulation model implemented on a 
computer. This has been accomplished by 
writing down the numerical scheme directly 
from physical reasoning and experience. 
There is no analysis provided in what way 
such a method produces any reliable 
simulation. On the contrary, such a numerical 
scheme is often inconsistent in one or another 
way (e.g. the Takács model). At the same 
time, there exists a fundamental modeling 
methodology that is usually not written out 
but understood among applied 
mathematicians and utilized in some applied 
fields, e.g. chemical engineering. This 
methodology would be beneficial for the SST 
modeling future and this is the reason for the 
present paper. Moreover, it is in the interest 
of the environmental engineering field to use 
proven reliable models in order to avoid that 
people loose trust in them. This is especially 

important when moving to plant-wide 
modeling. 

In this paper, we propose a consistent 
modeling methodology (CMM), within 
which future model extensions can be 
developed and thereby unnecessary pitfalls 
avoided. We make a clear distinction 
between a mathematical model and a 
simulation model. The CMM makes it easier 
to determine sound and unsound ways of 
modeling. The paper is organized in the 
following way. In the next section, the CMM 
is described by applying it to a principle 
biological process in the biological reactor. 
The outcome is an ODE solver. Then the 
CMM is applied to the continuous 
sedimentation process and the outcome is a 
PDE solver. The last section contains some 
illustrative simulations. 

A consistent modeling methodology 
(CMM) 
The CMM is illustrated in Figure 1. The 
terminology is explained in more detail in the 
Appendix. After initial observations and 
experience of the real process, the modeling 
procedure begins. In this section, we describe 
the six steps of the CMM by applying it to a 
biological conversion process occurring in a 
compartment of the bioreactor within the 
activated sludge process. The purpose of the 
CMM is to create a simulation model that 
produces reliable simulated data with respect 
to the input assumptions made and the given 
physical law. 
 

FIGURE 1 
 
Step 1: Construction of a mathematical 
model. The starting point is usually a 
physical law. Often it is the conservation law 
of mass (mass balancing) which postulates 
that the increase of mass per time unit of a 
substrate in a region equals the net flux into 
the region (“transport in” minus “transport 
out”) plus the net production within the 
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region (production minus consumption). Let 
the region be one of the compartments of the 
biological reactor. For simplicity, we 
consider an intermediate compartment of 
fixed volume ܸ with the in- and outgoing 
volumetric flow rate ܳ. If we also make the 
idealizing assumption that the compartment 
is always completely mixed, then the 
concentration of a single substance (substrate 
or biomass) ܼ is the same in the whole 
reactor at each time point ݐ. Denoting the 
incoming concentration of the substance in 
the compartments by ܼin, we can write down 
the conservation law exactly, namely as the 
following ODE: 
 

ܸ
ܼ݀
ݐ݀

ൌ ܼܳin െ ܼܳ   (1) . ܸݎ

 
Here, ݎ is the reaction rate and the term ܸݎ 
the net production of the substance within the 
compartment per time unit. The given 
variables in (1) are ܸ, ܳ and ܼin and the 
sought variable is ܼ. To solve the equation, 
one needs an additional relation between ݎ 
and ܼ (and concentrations of other 
substances). This is called a constitutive 
relation, or a constitutive assumption, and 
contains the model parameters. A common 
such is the Monod relation, which for ܼ ൌ ܵs 
(readily biodegradable soluble COD) can be 
written as (ignoring for simplicity any 
dependence on other substances) 
 

ݎ ൌ െ
maxܵsߤ

Hܻሺܭs  ܵsሻ
 . (2) 

 
The model parameters (in this example 
,maxߤ Hܻ and ܭs) may have some physical 
meaning and they can sometimes be 
determined by laboratory experiments. We 
may model ݉ substances (ܼ, ݅ ൌ 1, … , ݉) in 
the compartment by ݉ ODEs of the form (1), 
which are coupled via the reaction rates 
similar to (2). We have a nonlinear system of 
ODEs, which makes up the mathematical 

model or process model, or just the model of 
the reactor. A well-known example is the 
ASM1 by Henze et al. (1987), in which 
݉ ൌ 13.  
 
Step 2: Establishing well-posedness. In 
engineering, the system of ODEs of the form 
(1) would simply be simulated with an ODE 
solver in a software platform, which many 
users completely trust and not question its 
correctness. One may not realise that the 
solver actually is derived from the 
mathematical model behind the software 
platform. The actual solution of the 
mathematical model, the exact solution, 
consists of a vector of substance 
concentrations as function of time, ܼሺݐሻ, 
which satisfy the ODEs at every time point ݐ 
(given initial data ܼሺ0ሻ). In many cases it is 
impossible to write down these functions 
explicitly in terms of simple expressions like 
exponentials, power laws, trigonometric 
functions, etc. This is often referred to as 
“the equations cannot be solved (explicitly)”. 
Nevertheless, the question whether an exact 
solution exists or not is still open. If there 
exists one, it is physically and 
computationally important that it should be 
unique for given initial data. Furthermore, 
small changes in the initial data should only 
cause small changes in the solution. In other 
words, a solution should exist, be unique and 
depend continuously on initial data – the 
model is then said to be well-posed. 
Establishing well-posedness is often difficult 
and requires mathematical tools often 
originating in physical principles; see e.g. 
Bürger et al. (2004b). (The existence of a 
solution can sometimes be proved by 
utilizing a numerical method, see Step 3 
below. The uniqueness of a solution is often 
proved by starting with two solutions, both 
satisfying the same initial data, and then one 
proves that they are actually identical. A 
similar procedure can often be used to 
establish of the continuous dependence on 
initial data.) For our purposes, well-
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posedness is of key importance since it 
ensures that the mathematical model 
describes the real process in a relevant way. 
If the mathematical model is not well-posed, 
then it is meaningless to try to find a 
numerical method for simulation. 
 
Step 3: Numerical method and simulation 
program. Fortunately, most ODE models 
arising from real processes are well-posed 
and can be solved approximately by efficient 
and reliable numerical methods, such as 
Runge-Kutta methods, which are utilized in 
commercial software packages (e.g. the 
example in Step 1). The terminology “ODE 
solver” is well established for such a 
numerical method, although it only delivers 
approximate solutions of the unique exact 
solution of the mathematical model, which is 
defined at every time point ݐ. The numerical 
approximate solution is only given at discrete 
time points. However, any reliable numerical 
method should produce numerical solutions 
that are increasingly better approximations of 
the exact solution as the resolution of the 
discrete time points becomes finer. In other 
words, the numerical solutions converge to 
the exact solution as the time step tends to 
zero. 
 
Step 4: Calibration. Identification, 
calibration or fine tuning of the model is 
done by adjusting the model parameters in 
the constitutive relations. Some parameters 
may be found with specifically designed 
batch experiments in laboratories (e.g. 
respirometry). Otherwise real (full-scale) and 
simulated data are compared. The method of 
least squares and some suitable optimization 
algorithm are often used to find the optimal 
parameters, i.e. to solve the calibration 
problem. When the process includes 
biological material that changes over time it 
is an ultimate goal to develop an on-line 
calibration method of the full process. If the 
outcome of the calibration is not satisfactory, 
one could try new constitutive relations 

(instead of the Monod expression). The more 
parameters these have, the more is the 
freedom of adjustment which adds to the cost 
of computations, a more ill-conditioned 
calibration problem (difficult to find unique 
parameters) and sometimes also an ill-posed 
calibration problem (some parameters are not 
identifiable; different values of the 
parameters may yield the same simulated 
data; the calibration problem is not uniquely 
determined, hence not well-posed). More 
parameters will also induce larger output 
uncertainty. 
 
Step 5: Validation. As one set of data has 
been used for calibration, another 
independent set should be used for validation 
of the model. 
 
Step 6 and 1: Rebuilding or extension of 
the model. In the validation step (or already 
in the calibration step) one often encounters 
that the real process behaves in a way that 
cannot be explained sufficiently accurately 
by the simulation model. Then the only 
sound way to proceed is to change the 
mathematical model by changing the 
idealizing assumptions and restart from Step 
1. Note that the simulation model is never 
changed directly, only indirectly via the 
mathematical model. This step is often 
violated in the previous models in the 
literature. 

The CMM applied to the continuous 
sedimentation process 
Step 1: Construction of a mathematical 
model. The physical law is again the 
conservation of mass. We want to model the 
process of solid-liquid separation of activated 
sludge driven by gravity and it is well known 
that the particulate concentration depends on 
both space and time; ܥሺݖ, -ݖ ሻ, where theݐ
axis points downwards, see Figure 2. We 
thus make the idealizing assumption that the 
SST is one dimensional. We know that this is 
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restrictive, but it will lead to a model that can 
capture the fundamental features of gravity 
settling and compression, since these 
phenomena occur in only one dimension. 
Considering the sludge, we make idealizing 
assumptions such as: there is no biological 
activity in the SST; the sludge has 
flocculated in the preceding reactor and 
consists of particles of the same size and 
shape; outside the SST, i.e. in the outlet and 
effluent pipes, the sludge and water have the 
same speed.  

To capture the processes of gravity 
settling and compression it is fruitful to 
consider temporarily batch sedimentation, 
i.e., sedimentation without bulk flows. Then 
the conservation of mass can be written as 
the PDE 

ܥ߲
ݐ߲


߲

ݖ߲
ሺݒܥsሻ ൌ 0 , (3) 

 
where ݒs  0  is the downward settling 
velocity of the particles. This is one equation 
with two unknowns (ܥ and ݒs). Hence, a 
constitutive relation is needed between ݒs 
and ܥ. We make the following constitutive 
assumptions: 
1. The hindered settling velocity ݒhsሺܥሻ is a 

function of the local concentration only 
(Kynch, 1952). This is the velocity of a 
layer of constant concentration, i.e., when 
there is no concentration gradient present. 
Commonly used formulae for activated 
sludge are those by Vesilind (1968) and 
Takács et al. (1991).  

2. For high concentrations the sludge may 
be compressed by its own weight. More 
specifically, above a critical 
concentration, denoted by  ܥc, the 
particles are in constant contact and form 
a network that can bear a certain stress, 
the effective solids stress ߪeሺܥሻ, which is 
assumed to be an increasing function of 
the concentration above  ܥc and zero 
below (Aziz et al., 2000; Bürger et al., 
2000a; De Kretser et al., 2001). 

In accordance with the continuum 
mechanical derivations by Bürger et al. 
(2000b), we assume that the downward 
settling velocity of the particles in batch 
sedimentation can be written as the following 
constitutive relation: 
 
sݒ

ൌ ቐ
ሻ   for 0ܥhsሺݒ  ܥ  cܥ

ሻܥhsሺݒ ቆ1 െ
ሻܥeԢሺߪsߩ

ߩΔ݃ܥ
ܥ߲
ݖ߲

ቇ   for ܥ  cܥ ,

 (4) 
 
where ߩs is the density of the solids, ݃ the 
gravity of acceleration and Δߩ the density 
difference between the solids and the liquid. 
Thus, for concentrations greater than  ܥc, the 
settling velocity is reduced by a compression 
effect when the concentration increases with 
depth. This has the same effect on the 
solution as a nonlinear diffusion 
phenomenon. Indeed, inserting (4) into (3) 
yields the following degenerate parabolic 
PDE with one unknown variable ܥ:  
 

ܥ߲
ݐ߲


߲

ݖ߲
൫ݒܥhsሺܥሻ൯

ൌ
߲

ݖ߲
൬݀compሺܥሻ

ܥ߲
ݖ߲

൰ , 
(5) 

 
where the compression function is 
 
݀compሺܥሻ

ൌ ൝
0 for 0  ܥ  , cܥ

sߩ

݃Δߩ
eߪሻܥhsሺݒ

ᇱሺܥሻ for ܥ  . cܥ  
 

 
The flux function in (5), ݒܥhsሺܥሻ, is the 
batch settling flux function originating from 
Kynch (1952). A consequence of (4) is that 
hydrodynamic diffusion is a much slower 
process and need not be modeled. 
 

FIGURE 2 
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Now we again consider continuous 
sedimentation in the ideal 1D SST, see 
Figure 2. The height of the clarification zone 
is denoted by ܪ and the depth of the 
thickening zone by ܤ. The volume flows 
leaving the SST at the effluent and underflow 
are denoted by ܳe and ܳu, respectively. We 
assume that there is either an upward (ܳe) or 
a downward (ܳu) volumetric flow at each 
point of the 1D axis, except for a single point 
where the feed source is assumed to be 
situated (ݖ ൌ 0). The 1D assumption means 
several simplifying interpretations of the real 
process: The concentration is assumed to be 
the same at each depth ݖ; no horizontal 
effects are considered; wall effects are 
neglected; etc. We may assume that the 
cross-sectional area depends on depth, but for 
simplicity of presentation we assume here 
that it is a constant ܣ. A third constitutive 
assumption is the following: 
3. Modelling mixing effects: The horizontal 

flows of an SST, however, are substantial 
and difficult to capture in a 1D model. 
The result of currents that mix lower and 
higher concentrations of sludge could 
possibly be seen as a result of a large 
diffusion. According to Fick’s 
constitutive relation, we assume that the 

corresponding flux is equal to െdmix
பC

ப
  

with dmix  0. If mixing currents are 
expected at certain heights, for example 
at the feed inlet, we may assume that dmix 
depends on ݖ and let it be larger in a 
neighborhood of the feed inlet. One of 
the idealizing assumptions is that the 
mixture follows the bulk flows in the 
outlet pipes. This means that as the 
mixture has left the SST it cannot return, 
which in turn implies that we must 
require 
 

݀mixሺݖሻ ൌ 0  for  ݖ ൏ െܪ and ݖ  ܤ .
 
The resulting term in the PDE is 
sometimes called a dispersion term and is 

assumed to be a function of the 
volumetric flow rates as well (David, 
2009a; De Clercq et al., 2003, 2005; Lee 
et al., 2006; Lev et al., 1986; Plósz et al., 
2007; Verdickt et al., 2005; Watts et al., 
1996). 

With a certain mathematical interpretation in 
mind called the weak sense, which allows for 
discontinuous solutions, we can write the 
conservation law of mass as the following 
convection-diffusion PDE, defined for 
െ∞ ൏ ݖ ൏ ∞: 
 

ܥ߲
ݐ߲


߲

ݖ߲
,ܥሺܨ ,ݖ ሻݐ

ൌ
߲

ݖ߲
൭൫ߛሺݖሻ݀compሺܥሻ  ݀mixሺݖሻ൯

ܥ߲
ݖ߲

൱


ܳfሺݐሻܥfሺݐሻ

ܣ
 . ሻݖሺߜ

(6) 

 
The last term is a source term containing the 
feed volumetric flow ܳf, the feed 
concentration ܥf and the Dirac delta 
distribution ߜ. The convective flux function 
 contains the hindered settling velocity ܨ
within the SST and the two volumetric 
upward and downward flows: 
 
,ܥሺܨ ,ݖ ሻݐ

ൌ

ە
۔

ۓ
െܳeሺݐሻܣ/ܥ   for ݖ ൏ െܪ ,

ܥሻܥhsሺݒ െ ܳeሺݐሻܣ/ܥ   for  െ ܪ ൏ ݖ ൏ 0 ,
ܥሻܥhsሺݒ  ܳuሺݐሻܣ/ܥ   for  0 ൏ ݖ ൏ ܤ ,

ܳuሺݐሻܣ/ܥ   for ݖ  . ܤ
 
The depth axis is thus divided into four 
zones: the effluent zone (ݖ ൏ െܪ), 
clarification zone (െܪ ൏ ݖ ൏ 0ሻ, thickening 
zone (0 ൏ ݖ ൏  and underflow zone (ܤ
ݖ)   ሻ is equal to 1ݖሺߛ The function .(ܤ
inside the SST, i.e. in the interval ሺെܪ,  ,ሻܤ
and 0 outside. Hence, outside the SST there 
is neither sedimentation nor compression, 
only bulk flows. The fundamental features of 
Equation (6) are the following. If ݀mix  0, 
then the equation has a diffusion term, which 
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implies that the solution has no 
discontinuities. In a mathematical model, we 
would like to be able to handle all special 
cases, also ݀mix ൌ 0. Recent analysis shows 
that even in this case (6) is still well-posed 
(Bürger et al., 2005). For concentrations 
below ܥc, the compression term vanishes 
(݀comp ൌ 0), the equation becomes 
hyperbolic and the solution may have dis-
continuities. This happens normally above 
and at the sludge blanket level. For higher 
concentrations the compression term 
smoothes the solution, which is then 
continuous. This occurs normally below the 
sludge blanket. 

In this first step of the CMM, the 
mathematical model is Equation (6) together 
with initial data ܥሺݖ, 0ሻ. The sought variable 
is the concentration ܥሺݖ, ∞ሻ for െݐ ൏ ݖ ൏
∞, ݐ  0. The interesting output 
concentrations are ܥሺݖ, ܪሻ for െݐ ൏ ݖ ൏  ܤ
and the effluent and underflow 
concentrations (cf. Figure 2): 
 
ሻݐeሺܥ ؔ limఌ՜ା ܪሺെܥ െ ,ߝ   , ሻݐ
ሻݐuሺܥ ؔ limఌ՜ା ܤሺܥ  ,ߝ  . ሻݐ
 
Step 2: Establishing well-posedness. The 
investigations of well-posedness for PDEs of 
the form (6) and hence the development of a 
reliable numerical method are particularly 
complex. For instance, the solution 
of Equation (6) may contain discontinuities 
(e.g. the sludge blanket level), the 
interpretation of the PDE has to be made in a 
special mathematical sense called the weak 
sense. Another problem is that (6) does not 
have a unique solution for given initial data. 
An additional physical principle has to be 
added, a so-called entropy condition. Such an 
entropy condition should account for shock 
waves not only within each zone, but also at 
the space discontinuities (the feed inlet and 
the outlets). We do not go into the details 
here; see LeVeque (2002) for a general 
theory for shock waves within each region, 

and Bürger et al. (2005) and Diehl (2009) for 
equations of the form (6). In the special case 
when ݀comp ൌ ݀mix ൌ 0, Equation (6) was 
first presented and analyzed independently 
(with different mathematical approaches) by 
Chancelier et al. (1994) and Diehl (1996). 
More general results were later presented by 
Bürger et al. (2004b). A major break-through 
concerning the well-posedness of a version 
of (6) was made by Bürger et al. (2005). We 
also refer to this publication for further 
details of (6). They consider the case 
݀mix ൌ 0, however, the case ݀mix  0 causes 
no new complication in the analysis. By an 
exact solution of the mathematical model we 
mean a solution of (6) that satisfies a suitable 
entropy condition (Bürger et al., 2005; Diehl, 
2009). 
 
Step 3: Numerical scheme (simulation 
model). Since the concentration depends on 
two variables, the discretization has to be 
made along both the ݖ- and ݐ-axis. The ݖ-axis 
is thus divided into intervals, or layers, that 
correspond to 1D finite volumes.  Without 
going into details (we refer to text books in 
numerical analysis, e.g. LeVeque (2002)), the 
fundamental principles for PDE solvers of 
(6) include the following:  
 there is an upper limit of the time steps in 

relation to the size of the layer, the so-
called CFL condition (Courant-
Friedrichs-Lewy); 

 the numerical update of the convective 
flux term ܨ, called the numerical flux, is 
critical and should have a certain form, 
which in mathematical terminology is 
called consistent; 

 the numerical flux should automatically 
take the entropy condition (see Step 2) 
into account. 

One such numerical flux is the Godunov 
numerical flux. Its formula is derived from 
the unique exact solution, see Diehl (1996) 
and Jeppsson and Diehl (1996a). An explicit 
and a semi-implicit reliable numerical 
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method for (6) were presented by Bürger et 
al. (2005), see the simulations in the last 
section. Both methods utilize the Engquist-
Osher numerical flux. This model has also 
been used for the calibration and simulation 
of batch and continuous sedimentation of 
activated sludge by De Clercq et al. (2006, 
2008). 
 
Step 4: Calibration. The model parameters 
for calibration are the critical concentration 
 c, those contained in the expressions forܥ
,ݖሻ and ݀mixሺܥeሺߪ ,ሻܥhsሺݒ … ሻ. There are 
numerous reports on the calibration of 
different hindered settling formulae. This is 
sufficient for determining the convective flux 
 In the compression function ݀comp, all .ܨ
model parameters are present. Only a few 
experiments have been reported on the 
compressibility properties for activated 
sludge, see De Clercq et al. (2006, 2008). 
 
Step 5: Validation. The mathematical model 
consisting of (3) and (4), modeling batch 
sedimentation of minerals, has been 
validated, e.g. Bürger et al. (2000a, 2004a), 
Garrido et al. (2000). For the SST operation, 
some partial results were presented by De 
Clercq (2006).  
 
Step 6 and 1: Rebuilding or extension of 
the model. An inherent problem with our 
mathematical model is that there are several 
influential features of the real process that the 
idealizing assumptions made do not take into 
account. Some of these are related to the feed 
and discharge mechanisms. A modification 
with a distributed feed, still in 1D, has been 
presented by Nocoń (2006). 

Further comments on the CMM 

A simple necessary convergence test 
It is difficult to prove whether a numerical 
scheme produces approximate solutions that 
converge to the exact solution of the model 

equation as the mesh size tends to zero (the 
number of layers tend to infinity). However, 
the scheme should at least pass the following 
convergence test: For given initial data, feed 
concentration etc., run the scheme with an 
increasing number of layers, e.g. 10, 50, 100, 
200, .... The numerical solutions obtained 
should be qualitatively the same, with 
quantitatively smaller and smaller 
differences. If a scheme does not pass this 
test, it should not be used under any 
circumstances. We emphasize that passing 
this test is a necessary, however not 
sufficient, condition for being a reliable 
simulation model.  

The traditional 10-layer-model approach 
The traditional layer model could be seen as 
a simulation model outcome in two ways. 

First, it can be fitted into the CMM in the 
following way. One makes the idealizing 
assumption that the SST consists of a fixed 
number of well-mixed compartments, usually 
10, and that there are flows between these. 
Then, the conservation of mass yields 10 
ODEs, which are coupled due to the fluxes 
between the compartments. The problem is 
how to model these fluxes in a physically 
correct way. If this were done in a 
satisfactory way, standard ODE solvers could 
be used as the simulation model. The first 
approach that also included the clarification 
zone was presented by Vitasovic (1989), who 
suggested a minimum-flux condition for the 
numerical flux updates with some additional 
heuristic conditions. The same approach was 
also used by Takács et al. (1991) in their 
simulation model, which still today is the 
most common one in the WWT field, but not 
in others. However, an inherent problem is 
that the mass balance is not sufficient to 
determine the fluxes uniquely between the 
compartments (this is the reason for the 
additional entropy condition). Several 
shortcomings of the traditional layer models 
have been reported (Jeppsson and Diehl, 
1996a, 1996b; David et al., 2009a). From a 
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modelling point of view, one may question 
that the SST is subjectively discretized first 
(idealizing assumption) and then the mass 
balance is used. Indeed, there are no 
compartments in the SST. 

The second way is the following. In many 
of the publications where layer models are 
used or created, one can indeed find a PDE 
as the mathematical model. This means that 
the layer model is used as a numerical 
method (PDE solver), which has been created 
without a proper connection to the PDE. 
Such a procedure severe violates the CMM. 
For example, the Takács model does not pass 
the necessary convergence test described 
above. This has been illustrated by Jeppsson 
and Diehl (1996a), who also showed how the 
minimum-flux update by Vitasovic should be 
adjusted to become a consistent numerical 
flux update, namely the Godunov method. 
Looking at these two flux updates without 
having the PDE background, it is not easy to 
judge which one is correct. The findings by 
Vitasovic and Takács et al. put forward 
around 1990 were in the right direction, 
however, we now strongly recommend that 
correct numerical fluxes are used instead. 

The solids-flux theory and extensions 
For more than half a century, the paper by 
Kynch (1952) has been the origin of a 
platform often referred to as the solids-flux 
theory from which many conclusions on the 
operation and design of SSTs have been 
drawn, see Ozinsky et al. (1994), Ekama et 
al. (1997), Diehl (2001) and references 
therein. With the assumptions by Kynch, the 
solids-flux theory is in fact based on a PDE 
which is a special case of the mathematical 
model (6), namely by setting ݀comp ൌ ݀mix ൌ
0, i.e. only hindered settling is considered. 
We refer to Diehl (2008) for the classical and 
extended results interpreted by means of 
operating charts for both stationary and 
dynamic situations. Hence, the CMM allows 
deriving submodels. Another such is 
provided by the steady-state calculus by 

Bürger and Narváez (2007), who consider (6) 
with ݀mix ൌ 0 but ݀comp  0 for 
concentrations above ܥC. 

Non-flocculated particles 
The constitutive relation for the hindered 
settling velocity can be expressed as any 
function of the concentration within the 
CMM. Equation (6) models the concentration 
of particles that have the same properties 
(density, size, shape). However, to take into 
account the non-flocculated particles that do 
not settle at all and follow the water streams, 
an appealing approach was put forward by 
Takács et al. (1991), who suggested that the 
settling velocity function should be zero for 
small concentrations. 

Varying sludge properties 
Some of the properties of the sludge are 
known to depend slowly on time, such as the 
sludge density and particle size distribution. 
Then the settling and compression 
behaviours are influenced. Such phenomena 
can be captured by letting the model 
parameters in the constitutive relations 
depend slowly on time. The main problem 
here for the future is to develop on-line 
calibration methods. 

Illustration by simulation 
To demonstrate the behavior of the 
mathematical model (6) for the SST we use 
the PDE solver by Bürger et al. (2005). We 
have used the following data: ܪ ൌ ܤ ൌ 2 m, 
ܣ ൌ 400 mଶ, and the hindered settling 
velocity is described by the Vesilind formula: 
 
ሻܥhsሺݒ ൌ eିݒ , (7) 
 
where ݒ ൌ 9.6 · 10ିସ m/s and ݊ ൌ 0.37 l/g, 
see Figure 3. At time ݐ ൌ 0, we assume that 
the tank is full of sludge at the concentration 
ܥ ൌ 2 g/l. The feed concentration is constant 
in time ܥf ൌ 4.4 g/l and so are the volumetric 
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flow rates ܳe ൌ 3.9 · 10ିଶ m3/s and ܳu ൌ
1.7 · 10ିଶ m3/s. 
 

FIGURE 3 
 
In Figure 4a, the case when ݀comp ൌ ݀mix ൌ
0 m2/s is shown. Then Equation (6) models 
hindered settling and bulk flow transport 
only. It is clearly seen that the solution has 
several discontinuities among which the 
sludge blanket is the most distinct one 
propagating from the bottom. The high 
concentration in the underflow pipe is shown 
in the small interval below ݖ ൌ ܤ ൌ 2 m. 
The concentration increases discontinuously 
across the bottom of the tank. This is a result 
of the mass conservation when there is no 
diffusion term in the PDE. The initial amount 
of sludge in the clarification zone, together 
with the feed load, implies that some amount 
of sludge is built up in the clarification zone 
during approximately the first hour. Then all 
sludge in the clarification zone settles.  

To illustrate the effect of compression, we 
let ݀mix ൌ 0 while ݀comp is determined by the 
constant ߩs/ሺ݃∆ߩሻ ൌ 2.1 s2/m and the 
effective solids stress function by De Clercq 
et al. (2008): 
 

ሻܥeሺߪ ൌ ߙ ln ቀ
ିCାఉ

ఉ
ቁ , (8) 

 
where we have chosen ߙ ൌ 4 Pa, ߚ ൌ 4 g/l 
and ܥc ൌ 6 g/l, see Figure 3. Thus, ݀comp  0 
for concentrations higher than ܥc ൌ 6 g/l. In 
the solution shown in Figure 4b, it is seen 
that ܥc is reached below the sludge blanket. 
For higher concentrations, which occur 
below the sludge blanket, the concentration 
increases continuously all the way into the 
underflow pipe. For concentration below 
cܥ ൌ 6 g/l, there are discontinuities as in 
Figure 4a. In particular, the temporary build-
up of sludge in the clarification zone is the 
same as in Figure 4a (note the scales on the 
 .(axes-ݖ

Finally, in addition to the values above, 
we now introduce a mixing effect limited to a 
region around the inlet by using 
 

݀mixሺݖሻ ൌ ൝
0  for |ݖ|  ܾ ,

ܽ cos ቀ
ݖߨ
2ܾ

ቁ  for |z| ൏ ܾ ,
 (9) 

 
with ܽ ൌ 1.4 · 10ିସ m2/s and in two cases 
with ܾ ൌ 0.5 m and ܾ ൌ 1 m, respectively, 
see Figure 3. The smoothening in a 
neighborhood of the inlet is clearly shown in 
Figures 4c and 4d. 
 

FIGURE 4 
 

Conclusions 
We describe a consistent modeling 
methodology (CMM), which can be used to 
construct models for all processes in 
wastewater treatment systems. We 
demonstrate how it can be used to obtain a 
1D platform model for the SST. 
 A key principle of the CMM is that for a 

real process that occurs in continuous 
time and space, the modeling should be 
done in continuous time and space. The 
resulting mathematical model is then a 
PDE. It is then the outcome of 
mathematics to derive a simulation model 
(numerical scheme) defined at discrete 
time and space points (or layers). 

 The model parameters are introduced 
only in the first step of the CMM and 
turns up in the simulation model 
automatically. Usually, they are 
contained in the constitutive relations. 
Parameters should never be introduced 
directly in the simulation model. If 
calibration of the model parameters is not 
satisfactory, then the mathematical model 
should be rebuilt. A simulation model 
(ODE or PDE solver) should never be 
changed as a result of a poor fitting of 
simulated data to real. 
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 Modeling the SST with: (i) the idealized 
assumption of 1D, (ii) three constitutive 
assumptions; hindered settling, 
compression at high concentrations and 
mixing hydrodynamic effects due to e.g. 
the feed inlet, (iii) the conservation of 
mass; then the outcome is the 
mathematical model (6). The output of 
the CMM is one of the proven consistent 
and reliable numerical schemes (PDE 
solvers) presented by Bürger et al. 
(2005). Different types of 
implementations of such schemes, e.g. in 
an ODE environment, will be presented 
in a subsequent publication. 

 Simulations have been shown 
demonstrating the impact of the three 
constitutive assumptions. 

 As a consequence of the CMM, together 
with the fact that there are proven reliable 
PDE solvers available now, the 
traditional layer models should be 
replaced by reliable ones. 

Appendix: The terminology of the 
CMM 
Real process: The 

physical/biological/chemical process to be 
modeled. 

Idealizing assumptions: Simplifying 
assumptions made in order to define a 
mathematical model that is not too 
complicated but still captures the main 
features of the real process. Examples: 
1D, neglecting wall effects, particles are 
spherical, instantaneously well-mixed 
compartment. 

Constitutive assumption = constitutive 
relation: an assumed relation between 
physical (biological/chemical) variables 
needed to obtain a mathematical model 
that is not underdetermined. Examples: 
the Monod relation, the Vesilind 
expression for the settling velocity as a 
function of the concentration, Fick’s law 

of diffusion. The constitutive relations 
contain the model parameters, both kinetic 
and stoichometric. 

Mathematical model = model = model 
equation = process model: The system of 
equations that describes the physical 
law(s). It is a simplification of the real 
process, taking into account only some of 
the features in reality, but it models these 
exactly (and at every time point). 

Model parameters: Parameters introduced in 
the first step of the CMM, usually 
contained in the constitutive relations. 
Exactly the same set of parameters is 
present in the mathematical model and the 
simulation model.  

Numerical scheme = numerical algorithm = 
numerical method = simulation method = 
simulation program = simulation model = 
computer model (the prefixes ‘numerical’ 
and ‘simulation’ can often be used as 
synonyms): A sequence of instructions for 
computing real numbers. It can be defined 
explicitly or implicitly. Examples are 
Runge-Kutta methods for ODEs, finite-
element methods for PDEs. It is often seen 
as a discretized version of the 
(continuous-in-time) mathematical model. 
Therefore, the terminology ‘simulation 
model’ is common although it is really not 
a model (unless the real process is discrete 
in time). 

Entropy condition: An admissibility criterion 
related to physical principles. It is needed 
for nonlinear PDEs in conservation law 
form to obtain the physically relevant 
unique solution. 

Well-posedness: A mathematical model, 
defined by an ODE or PDE (or system of 
such) together with initial data at time 
zero, is well-posed if there exists precisely 
one solution (existence and uniqueness), 
and this solution depends continuously on 
the initial data, i.e. a small change in the 
initial data will only cause a small change 
in the solution. 
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Solution = exact solution: This refers to the 
solution of the mathematical model 
subject to the condition that the model is 
well-posed, defined for all time points. In 
the case of (6), the solution is ܥሺݖ,  .ሻݐ

Numerical solution = simulation output = 
approximate solution: The output data 
from a simulation program constitute an 
approximate discrete-in-time solution of 
the exact one. 

Reliable numerical scheme: The word 
reliable means that the simulated data are 
consistent with the idealizing assumptions 
made at the beginning of the CMM 
(whether simulated data agree with 
experimental observations is a completely 
different issue; see Steps 4 and 5 in the 
CMM). A reliable numerical scheme is 
robust (consistently handles any 
physically reasonable input data), 
conservative (no loss of mass), has no 
overshoots (the concentration is never 
negative or above a prescribed maximum 
value), convergent (approximate solutions 
converge to the exact solution as the time 
step (and layer thickness) tends to zero). 
For a PDE that models continuous 
sedimentation, an additional requirement 
is that the approximate solutions should 
converge to the unique physically 
admissible solution (which satisfies an 
entropy condition). 

Nomenclature 
 cross-sectional area of SST [m2] ܣ
 depth of thickening zone [m] ܤ
 concentration in SST [kg/m3] ܥ
 C critical concentration [kg/m3]ܥ
 flux function in (6) [kg/(m2h)] ܨ
 height of clarification zone [m] ܪ
 S model parameter in (2) [kg/m3]ܭ
ܳ volumetric flow rate [m3/h] 
ܵS readily biodegradable soluble 

concentration [kg/m3] 
ܸ volume of bioreactor [m3] 

Hܻ model parameter in (2) [–] 

ܼ substance concentration 
(substrate or  biomass) [kg/m3] 

ܽ model parameter in (9) [m2/h] 
ܾ model parameter in (9) [m] 
݀ diffusion coefficient in (6) [m2/h] 
݃ gravity of acceleration [m/h2] 
݉ number of substances in 

bioreactor 
݊ model parameter in (7) [m3/kg] 
 reaction rate [kg/(m3h)] ݎ
ݐ time [h] 
 model parameter in (7) [m/h] 0ݒ
hsݒ hindered settling velocity [m/h] 
sݒ settling velocity [m/h] 
ݖ depth from feed level in SST [m] 
Greek letters
ߙ model parameter in (8) [Pa] 
 model parameter in (8) [kg/m3] ߚ
 ሻ Dirac delta distribution [1/m]ݖሺߜ
 ,ሻ characteristic function in (6)ݖሺߛ

equals 1 inside and 0 outside SST 
 max model parameter in (2) [kg/(m3h)]ߤ
sߩ density of solids 
 e effective solids stress [Pa]ߪ
Subscripts
comp compression 
e effluent 
f feed 
mix mixing 
u underflow 
Superscript
in incoming 
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Figure 1: Schematic overview of the consistent modeling methodology (CMM). The dashed 
arrows indicate the initial observations of the real process. Note that {model parameters} refers 
to the same set of parameters defined in the constitutive relations. 
 
 

 
Figure 2: Schematic overview of an ideal 1D SST. 
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Figure 3: Graphs of the constitutive relations. Note that the critical concentration is ܥc ൌ 6 g/l. 
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   (a)      (b) 

 
   (c)      (d) 
 
Figure 4: Numerical solutions of Equation (6). (a) The hindered settling and bulk flow transport 
is considered only (݀mix ൌ ݀comp ൌ 0). (b) Compression is turned on at high concentrations 
(݀mix ൌ 0, ݀comp  0 for ܥ  6 g/l).  (c) Mixing around the inlet and (݀mix  0 for |ݖ| ൏ 0.5 m) 
and with compression as in b. (d) As in c but with the mixing in the larger region |ݖ| ൏ 1 m. 
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ment method for the buckling problem of a non-homogeneous Timoshenko beam

2010-08 Franco Fagnola, Carlos M. Mora: Linear stochastic Schrödinger equations with
unbounded coefficients

2010-09 Fabián Flores-Bazán, Cesar Gutierrez, Vicente Novo: A Brezis-Browder
principle on partially ordered spaces and related ordering theorems

2010-10 Carlos M. Mora: Regularity of solutions to quantum master equations: A stochastic
approach

2010-11 Julio Aracena, Luis Gomez, Lilian Salinas: Limit cycles and update digraphs
in Boolean networks

2010-12 Gabriel N. Gatica, Ricardo Oyarzúa, Francisco J. Sayas: A residual-based
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