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Finite element analysis of a time harmonic Maxwell problem

with an impedance boundary condition

Gabriel N. Gatica∗ Salim Meddahi†

Abstract

We consider an electromagnetic scattering problem produced by a perfect conductor. We pose the
problem in a bounded region surrounding the obstacle and impose on the exterior boundary of the
computational domain an impedance boundary condition inspired from the asymptotic behavior of
the scattered field at infinity. The operator associated to our problem belongs to a class of operators
for which a suitable decomposition of the energy space plays an essential role in the analysis.
This decomposition is performed here through a regularising projector that takes into account the
boundary conditions. The discrete version of this projector is the key tool to prove that a Galerkin
scheme based on Nédélec’s edge elements is well-posed and convergent under general topological
asumptions on the scatterer and without assuming special requirements on the triangulations.
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1 Introduction

This paper deals with the finite element approximation of an electromagnetic scattering problem.
More precisely, we consider a conductor occupying a bounded region Ωc and assume that it is subject
to a given time-harmonic incident wave. Our purpose is to provide a finite element approximation of
the scattered electromagnetic wave. We avoid here the difficulty related with the fact that the problem
is posed in an unbounded domain by introducing an artificial boundary Γ (located sufficiently far from
the obstacle) and considering a computational domain represented by the region Ω delimited by Γ
and Σ := ∂Ωc. We impose on the exterior closed surface Γ an absorbing boundary condition that
mimics the Silver-Müller radiation condition. Moreover, since the scatterer is assumed to be a perfect
conductor, the eventual penetration of the electric field inside the obstacle can be neglected, whence
the tangential trace of the electric field vanishes on the interface Σ.

The importance of the time harmonic Maxwell system in real word applications is undeniable.
In spite of this, convergence results concerning the Galerkin approximations of this problem with
Nédeléc’s finite elements only appeared at the beginning of the nineties. Monk [14] was the first to prove
quasi-optimal error estimates for this model problem posed in a convex domain Ω. Then, Hiptmair
[12] and Monk [15] extended these error estimates to the case of general Lipschitz polyhedrons. The
essential tool underlying all the strategies used to deal efficiently with this problem consists in a
suitable Helmholtz-type decomposition of the unknown. It reveals hidden compactness properties and
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allows one to handle the problem through a classical analysis. Actually, Buffa [3] succeeded in setting
up this technique in a general abstract framework for a certain class of noncoercive operators and
applied it to this model problem.

All the aformentioned articles consider a vanishing tangential trace as a boundary condition, i.e.,
they deal with a model problem posed in H0(curl; Ω). Here we are interested in a generalization of
the technique to the case of an impedance boundary condition in a connected component of ∂Ω. This
task has already been considered in [16, Chapter 4]. The error analysis of this problem is achieved
in Chapter 7 of this book by using a collective compactness property when the finite element families
of triangulations are quasiuniform on Γ. Our aim here is to provide a new convergence proof that
circumvents this restriction. Our technique is more in the spirit of [12, Section 5] and [3]. In fact,
we show that the bilinear form we deal with fits exactly within the theory exposed in [3] and prove
that this approach can be successfully adapted to deal with the boundary conditions considered for
the present Maxwell system (formulated in terms of the electric field). The construction of a suitable
projector is essential in our analysis since it yields an appropriate Helmholtz decomposition of the
energy space arising in the formulation. A similar idea was employed in [9] for a decomposition of
H(div,Ω). Moreover, the approximation property satisfied by the discrete version of this projector
(see (5.7) below) provides stability and convergence for a Galerkin scheme based on Nédélec’s edge
finite element. Compared to Monk’s strategy, our analysis is free from any special requirement on the
finite element triangulations and it does not need the regularity result proved in [16, Lemma 7.15]
under the hypothesis of a simply connected domain Ω.

The rest of the paper is organized as follows. In Section 2 we collect some known results on
tangential trace operators in a generic space H(curl; Ω). In Section 3 we describe the boundary value
problem of interest. Then, in Section 4 we derive and analyze the continuous variational formulation.
In particular, we use an adequate Helmholtz decomposition to prove its well-posedness. Finally, in
Section 5 we introduce the corresponding Galerkin scheme and show that it is convergent.

We end this section with some notations to be used below. Since in the sequel we deal with
complex valued functions, we let C be the set of complex numbers, use the symbol ı for

√
−1, and

denote by z and |z| the conjugate and modulus, respectively, of each z ∈ C. In addition, given any
Hilbert space U , we let [U ]3 denote the space of vectors with entries in U . When no confusion arises
we simply use U3 instead of [U ]3. Finally, in what follows we utilize the standard terminology for
Sobolev spaces and norms, employ 0 to denote a generic null vector, and use C , with or without
subscripts, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 Preliminaries

We denote by Ω ⊂ R
3 a generic bounded polyhedral domain and let n be the outward normal vector

on its boundary Γ. We recall that

H(curl; Ω) :=
{

w ∈ [L2(Ω)]3 : curl(w) ∈ [L2(Ω)]3
}

endowed with the norm ‖w‖2
H(curl;Ω) := ‖w‖2

[L2(Ω)]3 + ‖curl(w)‖2
[L2(Ω)]3 is a Hilbert space and that

[C∞(Ω)]3 is dense in H(curl; Ω). As usual, curl(w) stands for the vector defined formally by ∇×w.
We also recall that

H(div;Ω) :=
{
τ ∈ [L2(Ω)]3 : div(τ ) ∈ L2(Ω)

}
,
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endowed with the norm ‖τ‖2
H(div;Ω) := ‖τ‖2

[L2(Ω)]3 + ‖div(τ )‖2
L2(Ω) is a Hilbert space and that [C∞(Ω)]3

is dense in H(div;Ω). It is well known that the mapping

γ
n

: [C∞(Ω)]3 −→ L2(Γ)

τ −→ γ
n
(τ ) := τ |Γ · n

can be extended to define a normal trace operator

γ
n

: H(div;Ω) −→ H−1/2(Γ)

τ −→ γ
n
(τ )

(2.1)

which is bounded, surjective, and possesses a right inverse.

Tangential traces of functions in H(curl; Ω) are also well understood even in the case of polyhedral
domains thanks to the recent results of [4, 5]. We give here a brief summary of these fundamental
tools. To this end, we begin by defining the space

L2
t(Γ) :=

{
µ ∈ [L2(Γ)]3 : µ · n = 0

}

and the tangential trace mapping

γt : [C∞(Ω)]3 → L2
t(Γ)

v 7→ γt(v) := v|Γ × n

together with the tangential projection operator

πt : [C∞(Ω)]3 → L2
t(Γ)

v 7→ πt(v) := n × (v|Γ × n).

Notice that, because of the orthogonality condition defining L2
t(Γ), this subspace of [L2(Γ)]3 may be

identified in what follows with a space of two dimensional tangent fields. At this point we also recall
that

H0(curl; Ω) :=
{

w ∈ H(curl; Ω) : γt(w) = 0 on ∂Ω
}
.

Let us now introduce the spaces

H
1/2
⊥ (Γ) := γt([H

1(Ω)]3) and H
1/2
‖ (Γ) := πt([H

1(Ω)]3) ,

which are endowed with the natural Hilbert space structure that makes both γt : [H1(Ω)]3 → H
1/2
⊥ (Γ)

and πt : [H1(Ω)]3 → H
1/2
‖ (Γ) bounded and surjective. Similarly, for any δ ∈ (0, 1), we define

Hδ
‖(Γ) := πt([H

δ+1/2(Ω)]3) (2.2)

and provide it with an inner product that renders πt : [Hδ+1/2(Ω)]3 → Hδ
‖(Γ) continuous. We refer to

[4] for and explicit definition of these spaces in the case of Lipschitz boundaries with piecewise smooth
components. In the following, we will also write γt(ϕ) (or πt(ϕ)) for ϕ ∈ [H1/2(Γ)]3, which should
be understood as γt(γ

−1(ϕ)) (or πt(γ
−1ϕ)) where γ−1 : [H1/2(Γ)]3 → [H1(Ω)]3 is a given bounded

right-inverse of the usual trace operator γ : [H1(Ω)]3 → [H1/2(Γ)]3.
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Next, we introduce the dual H
−1/2
⊥ (Γ) of H

1/2
⊥ (Γ) and the dual H

−1/2
‖ (Γ) of H

1/2
‖ (Γ) with respect

to the pivot space L2
t
(Γ). Then, it is easy to deduce from the Green formula

∫

Ω

{
u · curl(v) − v · curl(u)

}
=

∫

Γ
γt(u) · πt(v) ∀u,v ∈ [C∞(Ω)]3 (2.3)

and the fact that [C∞(Ω)]3 is dense in H(curl; Ω), that γt and πt can be extended to define bounded

tangential mappings from H(curl; Ω) onto H
−1/2
‖ (Γ) and from H(curl; Ω) onto H

−1/2
⊥ (Γ), respectively.

A more precise result is given by the following theorem (see [6]) (we refer to [4, 6] for the definition of
the differential operators divΓ and curlΓ on piecewise smooth Lipschitz boundaries).

Theorem 2.1 Let

H−1/2(divΓ; Γ) :=
{
µ ∈ H

−1/2
‖ (Γ) : divΓ(µ) ∈ H−1/2(Γ)

}

and

H−1/2(curlΓ; Γ) :=
{

µ ∈ H
−1/2
⊥ (Γ) : curlΓ(µ) ∈ H−1/2(Γ)

}
.

Then

γt : H(curl; Ω) → H−1/2(divΓ; Γ) and πt : H(curl; Ω) → H−1/2(curlΓ; Γ)

are bounded, surjective and possess continuous right inverses. Moreover, the [L2(Γ)]3-inner pro-

duct can be extended to define a duality product 〈 ·, · 〉t,Γ between the spaces H−1/2(divΓ; Γ) and

H−1/2(curlΓ; Γ).

As a consequence of this theorem, Green’s formula (2.3) can be extended to functions u, v in
H(curl; Ω) if the boundary integral of the right hand side is interpreted as 〈 γt(u),πt(v) 〉t,Γ, that is

∫

Ω

{
u · curl(v) − v · curl(u)

}
= 〈 γt(u),πt(v) 〉t,Γ ∀u,v ∈ H(curl; Ω) . (2.4)

3 The model problem

We consider a perfect conductor occupying a region represented by a bounded and connected polyhedra
Ωc ⊂ R

3 and immersed in an electromagnetic medium filling the whole space. We denote by Σj,
j = 0, · · · , J the connected components of Σ := ∂Ωc, Σ0 being the boundary of the unbounded
component of R3 \ Ωc.

Let ǫ, µ, and σ be the electric permittivity, the magnetic permeability and the conductivity of the
medium, respectively. These coefficients are piecewise regular real valued scalar functions satisfying
in R

3 \ Ωc,
µ0 ≤ µ(x) ≤ µ̄, ǫ0 ≤ ǫ(x) ≤ ǭ and 0 ≤ σ(x) ≤ σ̄ , (3.1)

where the constants ǫ0 and µ0 denote the electric permittivity and magnetic permeability of free space,
respectively, and µ̄, ǭ, and σ̄ are given upper bounds. Moreover, we assume that we have vacuum
conditions sufficiently far from the obstacle, i.e., there exists R > 0 such that

µ(x) = µ0, ǫ(x) = ǫ0 and σ(x) = 0 ∀x , |x| ≥ R . (3.2)

The incident electric and magnetic fields E i and Hi are supposed to exhibit a time-harmonic behavior
with frequency ω and complex amplitudes ei and hi, respectively. Hence, the total electric and
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magnetic fields have also a time harmonic behavior with frequency ω, namely,

E(x, t) = Re
{
exp (−ı ω t) ǫ−1/2

0 e(x)
}
,

H(x, t) = Re
{
exp (−ı ω t)µ−1/2

0 h(x)
}
,

where the complex amplitudes e and h satisfy

curl (e) − ı k bh = 0 in R
3\Ωc ,

curl (h) + ı k ae = 0 in R
3\Ωc ,

(3.3)

k := ω
√
ǫ0 µ0 is the wave number,

a(x) :=
ǫ(x)

ǫ0
+ ı

σ(x)

ǫ0 ω
and b(x) :=

µ(x)

µ0
∀x ∈ R

3 . (3.4)

It is clear from (3.2) that
a(x) = b(x) = 1 ∀x , |x| ≥ R . (3.5)

We now let n denote the unit normal on Σ oriented towards the exterior of Ωc. Then, according
to our hypothesis,

e × n = 0 on Σ . (3.6)

In addition, the scattered electromagnetic field exhibits the Silver-Müller asymptotic behaviour

(h − hi) × x

|x| − (e − ei) = o(
1

|x|) , (3.7)

as |x| → +∞, uniformly for all directions
x

|x| . We notice that this asymptotic behaviour implies

that the outgoing waves are absorbed by the far field. Motivated by this fact, and aiming to obtain a
suitable simplification of our model problem, we now introduce a sufficiently large sphere Γ centered at
the origin, let Ω be the complement of Ωc in the ball whose boundary is Γ, and consider the impedance
boundary condition:

(h − hi) × n − (e − ei) = 0 on Γ , (3.8)

where n denotes also the unit outward normal on Γ. Actually, in order to avoid introducing later a
nonconforming Galerkin scheme, we may simply think of Γ as the polyhedral surface resulting from a
sufficiently accurate approximation of the given sphere.

In this way, equations (3.3), (3.6), (3.8), the expression h = (ı k b)−1 curl (e) of the magnetic field
in terms of e, and the fact that b ≡ 1 on Γ (cf. (3.5)), lead us to the following formulation of the
problem: Find e : Ω → C

3 such that

curl
(
b−1 curl (e)

)
− k2 ae = 0 in Ω ,

e × n = 0 on Σ ,

curl (e) × n − ı k e = g on Γ ,

(3.9)

where g := ık(hi × n − ei). Note here that the boundary conditions on Σ and Γ can be expressed in
terms of the tangential trace mapping γt, respectively, as follows

γt(e) = 0 on Σ , (3.10)

and
γt(curl (e)) = ı k e + g on Γ . (3.11)
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4 The continuous variational formulation

In this section we derive and analyze the full continuous variational formulation of (3.9). We begin
by noticing, as we will see below, that the natural space for the electric field is given by

X :=
{
w ∈ H(curl; Ω) : πt(w) ∈ L2

t(Γ) and γt(w) = 0 on Σ
}
,

which, equipped with the graph norm

‖w‖2
X := ‖w‖2

H(curl; Ω) + ‖πt(w)‖2
[L2(Γ)]3 , (4.1)

is a Hilbert space.

Now, we test the first equation of (3.9) with a function w ∈ X, use Green’s formula (2.4) and the
fact that b ≡ 1 on Γ (cf. (3.5)) to obtain

∫

Ω

{
b−1curl(e) · curl(w) − k2 ae · w

}

+ 〈 γt(b
−1curl(e)),πt(w) 〉t,Σ − 〈 γt(curl(e)),πt(w) 〉t,Γ = 0 .

(4.2)

Then, noting from (2.4) that

〈γt(b
−1 curl(e)),πt(w)〉t,Σ = −〈γt(w),πt(b

−1 curl(e))〉t,Σ = 0 ,

and incorporating the boundary condition (3.11) we find that (4.2) yields the following global varia-
tional formulation of problem (3.9): Find e ∈ X such that

A(e,w) =

∫

Γ
g · πt(w) ∀w ∈ X , (4.3)

where A : X× X → C is the bounded bilinear form defined by

A(e,w) :=

∫

Ω

{
b−1 curl(e) · curl(w) − k2 ae · w

}
− ı k

∫

Γ
πt(e) · πt(w) ∀ e, w ∈ X . (4.4)

In what follows we employ a suitable decomposition of X to prove that (4.3) becomes a compact
perturbation of a well-posed problem.

4.1 A Helmholtz decomposition

Let us first introduce a sphere Γ0 containing Ω̄∪ Ω̄c in its interior. We consider now the open annular
domain Q delimited by the boundaries Γ and Γ0 and denote Ω̃ the set Q∪Γ∪Ω. Then, we define the
spaces

V(Ω̃) :=
{
w ∈ H0(curl; Ω̃); divw = 0 in Q, 〈 γ

n
(w), 1 〉Γ0

= 0
}
,

V0(Q) := {w ∈ H0(curl;Q); divw = 0 in Q, 〈 γn(w), 1 〉Γ0
= 0} ,

where 〈 ·, · 〉Γ0
stands for the H−1/2(Γ0) ×H1/2(Γ0) bracket. We recall the following useful result.

Lemma 4.1 The seminorm w 7→ ‖curlw‖[L2(Q)]3 is a norm on V0(Q) equivalent to the usual norm

in H(curl;Q).

Proof. See for instance [2, Corollary 3.19]. 2
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Lemma 4.2 The linear extension mapping

E : X → V(Ω̃)
w 7→ Ew

characterized by Ew ∈ V(Ω̃), Ew = w in Ω, and

∫

Q
curl Ew · curlq = 0 ∀q ∈ V0(Q) , (4.5)

is bounded.

Proof. Let us denote by γ−
t

and γ+
t

the tangential traces on Γ taken from Ω and Q, respectively.
We know from Theorem 2.1 that there exists a continuous right inverse (γ+

t
)−1 : H−1/2(divΓ,Γ) →

HΓ0
(curl;Q) of γ+

t
, where

HΓ0
(curl;Q) :=

{
w ∈ H(curl;Q); γt(w) = 0 on Γ0

}
.

It follows that the linear operator

L : X → HΓ0
(curl;Q)

w 7→ Lw := (γ+
t

)−1(γ−
t

w)

is bounded, that is there exists a constant C0 > 0 such that

‖L(w)‖H(curl;Q) ≤ C0 ‖w‖X ∀w ∈ X. (4.6)

Now, we let
M(Q) :=

{
θ ∈ H1(Q); θ|Γ = 0, θ|Γ0

= constant
}
,

and, given w ∈ X, we seek zw ∈ L(w) + H0(curl;Q) and χ ∈M(Q) satisfying

∫

Q
curlzw · curlq +

∫

Q
q · ∇χ = 0 ∀q ∈ H0(curl;Q) ,

∫

Q
zw · ∇θ = 0 ∀θ ∈M(Q) .

(4.7)

The well-posedness of this problem is guaranteed by the Babuška-Brezzi theory. Indeed, the fact that
∇(M(Q)) ⊂ H0(curl;Q) and the Poincaré inequality yield the inf-sup condition

sup
q∈H0(curl;Q)

∫

Q
q · ∇θ

‖q‖H(curl;Q)
≥

∫

Q
|∇θ|2

‖∇θ‖H(curl;Q)
= ‖∇θ‖[L2(Q)]3 ≥ β ‖θ‖H1(Q),

for all θ ∈M(Q), whereas Lemma 4.1 ensures the ellipticity on the kernel

V0(Q) =

{
q ∈ H0(curl;Q);

∫

Q
q · ∇χ = 0 ∀χ ∈M(Q)

}
,

which means that there exists C1 > 0 such that

‖curlq‖[L2(Q)]3 ≥ C1 ‖q‖2
H(curl;Q) ∀q ∈ V0(Q).
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It is clear now that Ew :=

{
w in Ω

zw in Q
satisfies the required conditions. Moreover, thanks to the

stability results for (4.7), there exists a constant C2 > 0 such that

‖E(w)‖H(curl;Q) ≤ C2 ‖L(w)‖H(curl;Q) .

Finally, (4.6) yields the estimate

‖E(w)‖
H(curl;eΩ) ≤

√
1 + (C0C2)2 ‖w‖X ∀w ∈ X . (4.8)

2

Lemma 4.3 Let R : H0(curl; Ω̃) → H0(curl; Ω̃) be the linear and bounded operator defined by

R(w) := w −∇ϕw ∀w ∈ H0(curl; Ω̃) ,

where

ϕw ∈M(Ω̃) :=
{
θ ∈ H1(Ω̃); θ|Γ0

= constant, θ|Σj = 0, j = 0, · · · , J
}

is the unique solution of ∫

eΩ
∇ϕw · ∇ψ =

∫

eΩ
w · ∇ψ ∀ψ ∈M(Ω̃) . (4.9)

Then there hold:

• div(R(w)) = 0 and 〈 γ
n
R(w), 1 〉Γ0

= 0,

• curl(R(w)) = curl(w) ∀w ∈ H0(curl; Ω̃) ,

• R ◦R = R,

• there exists a constant C̃ > 0 such that

‖R(w)‖X ≤ C̃ ‖w‖
H0(curl;eΩ)

∀w ∈ H0(curl; Ω̃) . (4.10)

Proof. The properties listed in the first two items follow immediately from the definition of R. It is
also clear that R is idempotent and bounded. Finally, it is known (see [2, Proposition 3.7]) that there
exists s ∈ (1/2, 1] such that

H0(curl; Ω̃) ∩ H(div; Ω̃) →֒ [Hs(Ω̃)]3. (4.11)

Then, by virtue of (2.2) and (4.11),

‖R(w)‖2
X = ‖R(w)‖2

H(curl;Ω) + ‖πtR(w)‖2
[L2(Γ)]3 ≤ C1‖w‖2

H(curl;eΩ)
+ ‖πtR(w)‖2

H
s−1/2

‖
(Γ)

≤ C1‖w‖2
H(curl;eΩ)

+ C2‖R(w)‖2
[Hs(eΩ)]3

≤ C1‖w‖2
H(curl;eΩ)

+ C3‖R(w)‖2
H(curl;eΩ)

≤ C̃‖w‖2
H(curl;eΩ)

,

for all w ∈ H0(curl; Ω̃), which proves the result. 2

With the aid of these tools, we are able to introduce the following projector.
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Lemma 4.4 Let P : X → X be the linear and bounded operator defined by

P(w) := (REw)|Ω ∀w ∈ X .

Then P ◦ P = P and

curl
(
P(w)

)
= curl(w) ∀w ∈ X. (4.12)

Proof. The boundedness of P is a consequence of (4.10) and (4.8). The property (4.12) follows
immediately from Lemma 4.3. Indeed,

curl
(
P(w)

)
= curl

((
REw

)
|Ω

)
= (curlR(Ew))|Ω = (curl(Ew))|Ω = curl(Ew|Ω) = curl(w)

for all w ∈ X.

To prove that P is a projector we first recall that R ◦ R = R. Now, notice that the field z :=
E((REw)|Ω) −REw vanishes identically in Ω. Moreover, it is straightforward from the definitions of
E and R that z|Q ∈ V0(Q). Hence, by virtue of (4.5),

∫

Q
curlz · curlz =

∫

Q
curlE((REw)|Ω) · curlz −

∫

Q
curlREw · curlz

= −
∫

Q
curlEw · curlz = 0,

which proves that curlz = 0 in Q. Consequently, thanks again to Lemma 4.1, z also vanishes
identically in Q. This means that

E((REw)|Ω) = REw in Ω.

Using the last identity together with the fact that R is idempotent yield

P(Pw) = (RE(Pw))|Ω =
(
RE

(
REw

)
|Ω

)
|Ω =

(
RREw

)
|Ω = (REw)|Ω = Pw

and the result follows. 2

We deduce from the last results that P provides the stable and direct Helmholtz-type decomposition

X = P(X) ⊕ (I − P)(X), (4.13)

where I represents the identity operator. Hence, any element w ∈ X admits the unique splitting

w = P(w) + (I − P)(w) (4.14)

and the norm w → |||w|||X :=
(
‖P(w)‖2

X
+ ‖(I − P)(w)‖2

X

)1/2
is equivalent to w → ‖w‖H(curl; Ω)

on X. Namely, since ‖P‖ = ‖I − P‖,
1√

2‖P‖
|||w|||X ≤ ‖w‖X ≤

√
2 |||w|||X, (4.15)

for all w ∈ X.

Lemma 4.5 The mappings P : X → [L2(Ω)]3 and πt ◦ P : X → L2
t
(Γ) are compact.

Proof. The first assertion is a consequence of (4.11) and the compactness of the canonical injection
Hs(Ω) →֒ L2(Ω). On the other hand, we choose 0 < ǫ < s − 1/2 and notice that the embedding
[Hs(Ω)]3 →֒ [Hs−ǫ(Ω)]3 is compact and the tangential trace operator πt is bounded from [Hs−ǫ(Ω)]3

to L2
t(Γ), see (2.2). 2
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4.2 A Fredholm alternative

In this section we apply the stable decomposition (4.13) to reformulate (4.3) as a compact perturbation
of a well-posed problem. To this end, we first introduce the bounded bilinear form

A+(e,w) :=

∫

Ω

{
b−1 curl(e) · curl(w) + k2 ae · w

}
+ ı k

∫

Γ
πt(e) · πt(w) (4.16)

which arises from the form A (cf. (4.4)) after performing suitable changes of sign. More precisely,
note that

A+(e,w) = A(e,w) + 2 k2

∫

Ω
ae · w + 2 ı k

∫

Γ
πt(e) · πt(w) (4.17)

Then, employing (4.14) for each h, w ∈ X we deduce from (4.17) that the bilinear form A can be
decomposed as

A(e,w) = A0(e,w) + K(e,w) , (4.18)

where
A0(e,w) = A+(P(e),P(w)) − A+((I − P)(e), (I − P)(w)) (4.19)

and
K(e,w) = A(P(e), (I − P)(w)) + A((I − P)(e),P(w))

− 2 k2

∫

Ω
aP(e) · P(w) − 2 ı k

∫

Γ
πt(P(e)) · πt(P(w)) .

(4.20)

Next, we let A0, K : X → X′ be the linear and bounded operators induced by the corresponding
bilinear forms A0(·, ·) and K(·, ·) respectively. Then, the continuous variational formulation (4.3) can
be rewritten as the following operator equation: Find e ∈ X such that

(A0 + K)e = G (4.21)

where G ∈ X′ represents the linear form w 7→
∫

Γ
g · πt(w).

In what follows we prove that the operators on the left-hand side of (4.21) are invertible and
compact, respectively. We begin by showing that A0 is bijective. To this end, we first observe from
(4.16), recalling the definition of the coefficient a (cf. (3.4)), that for each w ∈ X there holds

Re
{
(1 − ı)A+(w,w)

}
=

∫

Ω

{
µ0

µ
|curl(w)|2 + k2 (

ωǫ+ σ

ǫ0ω
) |w|2

}
+ k ‖πt(w)‖2

[L2(Γ)]3 , (4.22)

which, according to the assumptions (3.1), yields

Re
{
(1 − ı)A+(w,w)

}
≥ α ‖w‖2

X ∀w ∈ X , (4.23)

where

α := min

{
µ0

µ̄
, k2 , k

}
.

Lemma 4.6 There exists α > 0 such that

sup
w∈X\{0}

|A0(e,w) |
‖w‖X

≥ α ‖e‖X ∀ e ∈ X . (4.24)

In addition, there holds

sup
e∈X

|A0(e,w) | > 0 ∀w ∈ X \{0} . (4.25)
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Proof. Let Ξ : X → X be the linear operator defined by

Ξ(w) := (1 + ı)(2P − I)(w) ∀w ∈ X . (4.26)

It follows from the properties of P that Ξ is bounded and bijective. Thus, we have that

sup
w∈X\{0}

|A0(e,w) |
‖w‖X

≥ |A0(e,Ξ(e)) |
‖Ξ(e)‖X

≥
Re

{
A0(e,Ξ(e))

}

‖Ξ(e)‖X

∀ e ∈ X\{0} . (4.27)

Since P2 = P, we observe that

P (2P − I) = P and (I − P) (2P − I) = − (I − P) ,

whence we obtain from (4.19) that

A0(e,Ξ(e)) = (1 − ı)A+(P(e),P(e)) + (1 − ı)A+((I − P)(e), (I − P)(e)) . (4.28)

Applying (4.23) to both terms on the right-hand side of (4.28), we deduce that

Re
{
(1 − ı)A+(P(e),P(e)) + (1 − ı)A+((I − P)(e), (I − P)(e))

}

≥ α
{
‖P(e)‖2

X + ‖(I − P)(e)‖2
X

}
∀ e ∈ X .

(4.29)

In this way, thanks to (4.28), (4.29) and (4.15), we deduce that

Re
{
A0(e,Ξ(e))

}
≥ α

2
‖e‖2

X ∀ e ∈ X , (4.30)

which, using the boundedness of Ξ, yields

Re
{
A0(e,Ξ(e))

}

‖Ξ(e)‖X
≥ β ‖e‖X ∀ e ∈ X\{0} (4.31)

with β = α/(2‖Ξ‖). The above estimate and (4.27) proves the inf-sup condition (4.24). Finally, the
symmetry of A0 and (4.24) provide the inf-sup condition (4.25). 2

Therefore, as a consequence of Lemma 4.6 and the well-known Nečas theorem (see [10, Theorem
3.2.3]), the operator A0 : X → X′ is an isomorphism.

Lemma 4.7 The operator K : X → X′ is compact.

Proof. Using that
curl

(
(I − P)(w)

)
= 0 ∀w ∈ X ,

we deduce from (4.20) that

K(e,w) = −k2

∫

Ω
a
{

2P(e) · P(w) + P(e) · (I − P)(w) + (I − P)(e) · P(w)
}

− ı k

∫

Γ
2πt(P(e)) · πt(P(w)) + πt(I − P)(e) · πt(P(w)) + πt(P(e)) · πt(I − P)(w) .

The compactness of P : X → [L2(Ω)]3 and πt ◦ P : X → L2
t(Γ) (see Lemma 4.5) guarantees that the

operators associated, in the last expression of K(·, ·), to both the integrals on Ω and Γ are compact
and the result follows. 2

We are now ready to establish the main result of this section.
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Theorem 4.1 Assume that the homogeneous problem associated to (4.3) has only the trivial solution.

Then A : X → X′ is an isomorphism and, consequently, given an incident wave (hi, ei), there exists

a unique solution e ∈ X to (4.3). In addition, there exists C > 0 such that

‖e‖X ≤ C ‖G‖X′ . (4.32)

Proof. It suffices to observe, in virtue of Lemmas 4.6, and 4.7, that A := A0 + K is a Fredholm
operator of index zero, and hence the well-posedness of (4.3) follows from uniqueness. 2

We end this section with a uniqueness result for (4.3). At this point we need to make more restric-
tive assumptions on the coefficients. We denote by Ωj the connected components of Ω represented by
the cavities whose boundaries are Σj , j = 1, · · · , J . Let J := {1, · · · , J} and J0 ⊂ J be the subset
of indices such that σ(x) = 0 for a.e. x ∈ ∪j∈J0

Ωj . We assume that σ is a stricty positive function in

∪j∈J\J0
Ωj. For each j ∈ J0, we consider the positive increasing sequence {kj

ℓ}ℓ diverging to ∞ and
solving the eigenvalue problem:

find (kj
ℓ ,w

j) ∈ R ×H0(curl; Ωj) such that

∫

Ωj

b−1curlwj · curlv = (kj)2
∫

Ωj

ǫ(x)

ǫ0
wj · v ∀v ∈ H0(curl; Ωj).

(4.33)

Finally, let us denote now by Ω0 the connected component of Ω delimited by the boundaries Σ0

and Γ. We assume that Ω0 can be decomposed into L connected polyhedra Ql such that Ω
0

= ∪L
l=1Q

l

with Ql ∩Qm = ∅ if l 6= m and such that µ, ǫ and σ are constant functions in each Ql.

Theorem 4.2 Assume that k does not belong to the set {0} ∪ (∪j∈J0
{kj

ℓ}ℓ). Then, there is at most

one solution to (4.3).

Proof. Let e be a solution of the homogeneous system corresponding to (4.3), that is when g = 0.
Then, taking w = e in (4.3) gives

∫

Ω

{
b−1|curl(e)|2 − k2 a |e|2

}
− ı k ‖πt(e)‖2

[L2(Γ)]3 = 0 . (4.34)

This shows that the imaginary part of (4.34) reduces to

−k2

∫

Ω
Im

(
a
)
|e|2 − k ‖πt(e)‖2

[L2(Γ)]3 = 0 .

Noting that Im
(
a
)
> 0 in ∪j∈J\J0

Ωj we deduce immediately that e vanishes identically in this
domain. In the other cavities Ωj , j ∈ J0, k > 0 is not a solution of (4.33) and then e also vanishes in
∪j∈J0

Ωj. Finally, since Im
(
a
)
≥ 0 in Ω0 we have that πt(e) = 0 on Γ. Thus, applying the unique

continuation principle of [8, Theorem 9.3] (as done also in [16, Theorem 4.12]), we deduce that e = 0
in Ω0. 2

5 The discrete problem

In order to introduce a Galerkin approximation of (4.3) we first let {Th}h>0 be a regular family of
triangulations of Ω by tetrahedrons K of diameter hK . As usual, the parameter h denotes in each
case the mesh size of the corresponding triangulation. Then, we denote by Th(Γ) the triangulations
induced by Th(Ω) on Γ.
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For any K ∈ Th(Ω) we let ND1(K) := [P0(K)]3 ⊕ [P0(K)]3 × x be the local edge space of
Nédélec, that is

ND1(K) :=
{
v : K → C

3 , v(x) = a + b × x ∀x ∈ K, a , b ∈ C
3
}
.

Then, the finite element subspace for the unknown e is defined by Xh := X ∩ NDh(Ω), where

NDh(Ω) :=
{
w ∈ H(curl; Ω) : w|K ∈ ND1(K) ∀K ∈ Th(Ω)

}
.

We define the finite element scheme associated to (4.3) as follows: Find eh ∈ Xh such that

A(eh,w) =

∫

Γ
g · πt(w) ∀w ∈ Xh , (5.1)

In order to show that (5.1) is well-posed (see Section 5.2 below) we need some technical results.

5.1 Technical results

For any δ ≥ 0 we introduce the Sobolev space

Hδ(curl; Ω) :=
{

w ∈ [Hδ(Ω)]3 : curl(w) ∈ [Hδ(Ω)]3
}

and endow it with its Hilbertian norm

‖w‖2
Hδ(curl;Ω) := ‖w‖2

[Hδ(Ω)]3 + ‖curl(w)‖2
[Hδ(Ω)]3 .

Then for any edge E of Th(Ω), we denote by tE a unit tangential vector along E. It follows from [2,
Lemma 4.7] that if w ∈ Hδ(curl; Ω) with δ > 1/2, then the moments

∫
E w · tE are meaningful. This

guarantees that the interpolation operator Πh : Hδ(curl; Ω) → NDh(Ω) associated to the edge finite
element, which is characterized by

∫

E
Πh(w) · tE =

∫

E
w · tE for all edge E of Th(Ω),

is well-defined and uniformly bounded. In addition, the following interpolation error estimate holds
(see [1, Proposition 5.6]):

‖w − Πh(w)‖H(curl;Ω) ≤ C hδ ‖w‖Hδ(curl;Ω) ∀w ∈ Hδ(curl; Ω) , ∀ δ > 1/2 . (5.2)

Another useful property of Πh is given by the following result.

Lemma 5.1 For each δ ∈ (1/2, 1] define the space

Hδ
h(curl; Ω) :=

{
w ∈ [Hδ(Ω)]3 : curl(w) ∈ curl(NDh(Ω))

}
. (5.3)

Then, the operator Πh is also well defined in Hδ
h(curl; Ω) and there exists a constant C > 0, indepen-

dent of h, such that

‖w − Πh(w)‖[L2(Ω)]3 ≤ C hδ ‖w‖[Hδ(Ω)]3 ∀w ∈ Hδ
h(curl; Ω) . (5.4)

13



Proof. See [12, Lemma 4.6]. 2

Next, we need to introduce curlΓ-conforming surface finite elements on the manifold Γ. Actually,
divΓ-conforming finite elements on manifolds are more frequently used in the literature since they
arise naturally in the BEM-theory for Maxwell equations, (see, e.g. [7] and the references therein).
We still can benefit here from the result announced in the last reference for the Raviart-Thomas finite
elements since they may be translated to the bidimensional Nédélec finite element by a simple π/2-
rotation in the space variable on each one of the faces compounding Γ. To be more specific, the lowest
order bidimensional Nédélec finite element (also known as the rotated Raviart-Thomas finite element)
approximation of the space

H(curlΓ; Γ) :=
{

ϕ ∈ L2
t(Γ) : curlΓ(ϕ) ∈ L2(Γ)

}
,

relatively to the mesh Th(Γ), is given by

NDh(Γ) := πt(NDh(Ω)) .

The corresponding interpolation operator ΠΓ
h : Hδ

‖(Γ) ∩ H(curlΓ; Γ) → NDh(Γ) (δ ∈ (0, 1]) satisfies
the following error estimate.

Lemma 5.2 For each δ ∈ (0, 1] there exists a constant C > 0, independent of h, such that

‖ϕ − ΠΓ
h(ϕ)‖[L2(Γ)]3 ≤ C hδ

{
‖ϕ‖

Hδ
‖
(Γ) + ‖curlΓ(ϕ)‖L2(Γ)

}
∀ϕ ∈ Hδ

‖(Γ) ∩H(curlΓ; Γ) .

Proof. See [7, Lemma 15]. 2

For tangential vector fields with a discrete curlΓ, there holds the following variant.

Lemma 5.3 For each δ ∈ (0, 1] there exists a constant C > 0, independent of h, such that

‖ϕ − ΠΓ
h(ϕ)‖[L2(Γ)]3 ≤ C hδ ‖ϕ‖

Hδ
‖
(Γ)

for all ϕ ∈ Hδ
‖(Γ) satisfying curlΓ(ϕ) ∈ curlΓ(NDh(Γ)) .

Proof. See [7, Lemma 16]. 2

In this way, recalling the definition of the norm ‖·‖X (see (4.1)), and using the commuting diagram
property πt Πh = ΠΓ

h πt together with (5.2) and Lemma 5.2, we deduce that for each δ ∈ (1/2, 1]
there exists a constant C > 0, independent of h, such that for all w ∈ Hδ(curl; Ω) satisfying
πt(w) ∈ Hδ

‖(Γ) ∩ H(curlΓ; Γ), there holds

‖w − Πh(w)‖X :=
{
‖w − Πh(w)‖2

H(curl; Ω) + ‖πt

(
w − Πh(w)

)
‖2
[L2(Γ)]3

}1/2

≤ C hδ
{
‖w‖Hδ(curl;Ω) + ‖πt(w)‖

Hδ
‖
(Γ) + ‖curlΓ(πt(w))‖L2(Γ)

}
,

(5.5)

which constitutes an approximation property of the space Xh.
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5.2 Well-posedness of the discrete problem

In this section we prove the well-posedness of the discrete problem (5.1). For this purpose, according
to a classical result on projection methods for compact perturbations of invertible operators (see, e.g.,
Theorem 13.7 in [13]), it suffices to show that the Galerkin scheme associated to the isomorphism A0

is well posed. Hence, in what follows we prove that A0 satisfies an inf-sup condition on the finite
element subspace Xh, thus providing the discrete analogue of Lemma 4.6.

In the sequel, we define discrete version of the operator P. Let us first notice that for each w ∈ Xh

there holds
curl(P(w)) = curl(w) ∈ curl(Xh) ,

which, recalling that P(w) ∈ [Hs(Ω)]3, shows that P(w) belongs to Hs
h(curl; Ω) (cf. (5.3) with

δ = s).
In this way, Lemma 5.1 implies that Πh can be applied to P(w), and hence we define the discrete

version of the operator P as follows

Ph : Xh → Xh

w 7→ Ph(w) := Πh(P(w)) .
(5.6)

Lemma 5.4 There exists a constant C > 0, independent of h, such that

‖P(w) − Ph(w)‖X ≤ C hs−1/2 ‖w‖X ∀w ∈ Xh . (5.7)

Proof. Let Π̃h be the lowest order Raviart-Thomas interpolation operator associated to the triangu-
lation Th(Ω), cf. [16]. By virtue of the well-known commuting diagram property

curlΠh = Π̃h curl ,

we have that
curl(ΠhP(w)) = Π̃h

{
curl(P(w))

}
= Π̃h

{
curl(w)

}
= curl(w) .

Thus curl
(
P(w)

)
= curl

(
Ph(w)

)
, which yields

‖P(w) − Ph(w)‖H(curl; Ω) = ‖P(w) − Ph(w)‖[L2(Ω)]3 .

Hence, applying Lemma 5.1 (cf. (5.4)) we deduce that for each w ∈ Xh there holds

‖P(w) − Ph(w)‖H(curl; Ω) ≤ C0 h
s ‖P(w)‖[Hs(Ω)]3 ≤ C1 h

s ‖w‖X, (5.8)

where the last inequality follows from the boundedness of P : X → [Hs(Ω)]3.
On the other hand, using the commuting diagram property πt Πh = ΠΓ

h πt , we have that

πt(Ph(w)) = πt

(
Πh(P(w)

)
= ΠΓ

h

(
πt(P(w))

)
.

In addition, since curlΓ πt = divΓ γt and divΓ(γt(w)) = curl(w) · n ∈ H−1/2(Γ) for each w ∈
H(curl; Ω) (see [6]), we deduce that

curlΓ
(
πt(P(w))

)
= divΓ(γt(P(w)) = curl(P(w))·n = curl(w)·n = curlΓ

(
πtw)

)
∈ curlΓ(NDh(Γ))

for all w ∈ Xh. Consequently, applying now the boundedness of πt : [Hs(Ω)]3 → H
s−1/2
‖ (Γ) and the

estimate provided by Lemma 5.3, we find that

‖πt

(
P(w) − Ph(w)

)
‖[L2(Γ)]3 = ‖πt

(
P(w)

)
− ΠΓ

h

(
πt

(
P(w)

))
‖[L2(Γ)]3

≤ C2 h
s−1/2 ‖πt

(
P(w)

)
‖
H

s−1/2

‖
(Γ)

≤ C3 h
s−1/2 ‖P(w)‖[Hs(Ω)]3 ≤ C4 h

s−1/2 ‖w‖X ,
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which, together with (5.8), yields the required estimate and completes the proof. 2

We are now ready to establish the discrete inf-sup condition for A0.

Lemma 5.5 There exist constants β∗, h0 > 0, independent of h, such that for each h ≤ h0 there

holds

sup
w∈Xh\{0}

|A0(e,w) |
‖w‖X

≥ β∗ ‖e‖X ∀ e ∈ Xh . (5.9)

Proof. Following the definition of the operator Ξ : X → X (see (4.26)), we now introduce its discrete
version as follows

Ξh : Xh → Xh

w 7→ (1 + ı)(2Ph − I)(w) .

It follows straightforwardly from Lemma 5.4 that

‖Ξ(w) − Ξh(w)‖X ≤ C0 h
s−1/2 ‖w‖X ∀w ∈ Xh . (5.10)

Hence, using (5.10), (4.30) and the boundedness of A0, we find that for each w ∈ Xh there holds

Re
{

A0(w,Ξh(w))
}

≥ Re
{

A0(w,Ξ(w))
}

− C0 ‖A0‖hs−1/2 ‖w‖2
X

≥ α

2
‖w‖2

X − C0 ‖A0‖hs−1/2 ‖w‖2
X ≥ α

4
‖w‖2

X ,
(5.11)

for all h ≤ h1 :=
(

α
4 C0 ‖A0‖

)2/(2s−1)
.

On the other hand, the boundedness of Ξ and (5.10) imply the existence of C1, C2, h2 > 0,
independent of h, such that

C1 ‖w‖X ≤ ‖Ξh(w)‖X ≤ C2 ‖w‖X ∀w ∈ Xh , ∀h ≤ h2 . (5.12)

Hence, (5.9) follows immediately from (5.11) and (5.12) defining h0 := min{h1, h2}. 2

The well-posedness and convergence of the discrete scheme (4.3) can finally be established.

Theorem 5.1 Assume that there exists at most one solution to (4.3). Then, there exists h0 > 0 such

that for each h ≤ h0, the Galerkin scheme (4.3) has a unique solution eh ∈ Xh. In addition, there

exist C1, C2 > 0, independent of h, such that

‖eh‖X ≤ C1 ‖G‖X′ , (5.13)

and
‖e − eh‖X ≤ C2 inf

wh∈Xh

‖e − wh‖X . (5.14)

Furthermore, if there exists δ ∈ (1/2, 1] such that e ∈ Hδ(curl,Ω) and πt(e) ∈ Hδ
‖(Γ)∩H(curlΓ; Γ)

then there holds

‖e − eh)‖X ≤ C3 h
δ

{
‖e‖Hδ(curl;Ω) + ‖πt(e)‖

Hδ
‖
(Γ) + ‖curlΓ(πt(e))‖L2(Γ)

}
, (5.15)

with a constant C3 > 0, independent of h.

Proof. Thanks to Lemma 5.5, the first part of the proof is a direct application of Theorem 13.7 in [13],
whereas the rate of convergence (5.15) follows from the Céa estimate (5.14) and the approximation
properties of the finite element subspaces provided in Section 5.1 (cf. (5.5)). 2
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2009-12 Alfredo Bermúdez, Luis Hervella-Nieto, Andres Prieto, Rodolfo Ro-
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