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Abstract

In this paper, we consider the completely generalized multi-valued co-variational
inequality problems in Banach spaces and construct an iterative algorithm. We
prove the existence of solutions for our problems involving strongly accerative op-
erators and convergence of iterative sequences generated by the algorithm.
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1. Introduction

The theory of variational inequalities provides us an unified frame work to deal with a
wide class of problems arising in elasticity, structural analysis, economics, optimization,
operations research, physical and engineering sciences, etc; see for example [1-2,5,9] and
references therein.

In this paper, we consider a more general form of multi-valued variational inequalities
problems in Banach spaces, called completely generalized multi-valued co-variational in-
equality problem. By extending the technique of Alber and Yao [4], we suggest an iterative
algorithm for finding the approximate solution of our problem. The convergence of iter-
ative sequences generated by our algorithm is studied. We also prove the existence of a
solution of our problem.The main result of this paper(Theorem 4.1)is stated and estab-
lished for uniformly smooth Banach spaces in section 4. Several special cases are also



considered.

2. Preliminaries

Let B be a real Banach space with its dual B∗ and 〈x, f〉 a pairing between x ∈ B
and f ∈ B∗. We denote by C(B) and 2B the family of non empty compact subsets of
B and the family of nonempty subsets of B, respectively. Let N(., .) : B × B → B,
G : B → B be the nonlinear mappings, T,A : B → C(B) be the multivalued mappings,
K : B → 2B be a multivalued mapping such that K(x) is a nonempty, closed and
convex set for all x ∈ B. We consider the following completely generalized multi-valued
co-variational inequality problem :

(CGMCVIP)


Find x ∈ B, u ∈ T (x), and v ∈ A(x)
such that G(x) ∈ K(x) and
〈N(u, v), J(z −G(x)〉 ≥ 0, ∀ z ∈ K(x),

where J : B → B∗ is the normalized duality operator.

As an application of (CGMCVIP), we consider an elastoplasticity problem, which is
mainly due to Panagiotopoulos and Stavroulakis [11].

Example 2.1. Let a general hyperelastic material law holds for the elastic behaviour of
the elastoplastic material under consideration. Let us assume the decomposition

E = Ee + Ep,

where Ee denotes the elastic and Ep denotes the plastic deformation of three-dimensional
elastoplastic body. We write the complementary virtual work expression for the body in
the form

〈Ee, τ − σ〉+ 〈Ep, τ − σ〉 = 〈f, τ − σ〉, for all τ ∈ Z.

Here we have assumed that the body on a part ΓU of its boundary Γ has given
displacements, that is , µi = Ui on ΓU and that on the rest of its boundary ΓF = Γ− ΓU ,
the boundary tractions are given, that is, Si = Fi on ΓF , where the following energy inner
products appear:

〈E, σ〉 =
∫

Ω
εijσijdΩ

〈f, σ〉 =
∫

ΓU

UiSidΓ

Z = {τ : τij ,j + fi = 0 on Ω, i, j = 1, 2, 3, Ti = Fi on ΓF , i = 1, 2, 3},

is the set of statically admissible stresses and Ω is the structure of the body.
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Let us assume that the material of the structure Ω is hyperelastic such that

〈Ee(σ), τ − σ〉 ≤ 〈W ′
m(σ), τ − σ〉, for all τ ∈ <6,

where Wm is the superpotential which produces the constitutive law of the hypere-
lastic material and is assumed to be quasidifferentiable, that is, there exist convex and
compact subsets ∂

¯
′Wm amd ∂̄′Wm such that

〈W ′
m(σ), τ − σ〉 = max

W e
1∈∂¯

′
Wm

〈W e
1 , τ − σ〉+ max

W e
2∈ ∂̄′Wm

〈W e
2 , τ − σ〉.

We also introduce the generally nonconvex yield function P ⊂ Z, which is defined by
means of general quasidifferentiable function F (σ), that is,

P = {σ ∈ Z;F (σ) ≤ 0.

Here Wm is a generally nonconvex and nonsmooth, but quasidifferentiable function for
the case of plasticity with convex yield surface and hyperelasticity. Combining these facts,
Panagiotopoulos and Stavroulakis [11] have obtained the following multivalued variational
inequality problem:

Find σ ∈ Z, W e
1 ∈∂¯

′Wm(σ), W e
2 ∈ ∂̄′Wm(σ) such that

〈W e
1 +W e

2 , τ − σ〉 ≥ 〈f, τ − σ〉, for all τ ∈ Z,

which is exactly the problem (CGMCVIP), with u = W e
1 , v = W e

2 , N(u, v) =∂
¯
′Wm(σ)+

∂̄′Wm(σ), J = I, f = 0, K(x) = K, G = I, T (x) = ∂
¯
′Wm(σ), A(x) = ∂̄′Wm(σ) and

B = Z.

Recall that the normalized duality operator J : B → B∗ is defined for arbitrary
Banach space by the condition

‖ Jx ‖B∗=‖ x ‖ and 〈x, Jx〉 =‖ x ‖2, ∀ x ∈ B.

Some examples and properties of the mapping J can be found in [3].

Special Cases

(I) If T is a single-valued nonlinear operator and N(u, v) = Tx+Av, then (CGMCVIP)
is equivalent to find x ∈ B, v ∈ A(x) such that G(x) ∈ K(x) and

〈Tx+ Av, J(z −G(x)〉 ≥ 0, for all z ∈ K(x) (2.1)
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Problem (2.1) is called generalized multi-valued co-variational inequality, recently consid-
ered and studied by Alber and Yao [4].

(II) When B is a Hibert space, J reduces to the identity mapping. Consequently, problem
(2.1) reduces to the following problem: Find x ∈ B, v ∈ A(x) such that G(x) ∈ K(x) and

〈Tx+ Av, z −G(x)〉 ≥ 0, ∀ z ∈ K(x) (2.2)

Problem (2.2) is called generalized multi-valued variational inequality introduced and stud-
ied by Jou and Yao [10].

It is clear, from these special cases that our problem (2.1) is more general than the
problem considered in [4] and generalizes many problems in the literature. See, e.g., [8],
[13].

We first recall that the uniform convexity of the space B means that for any given
ε > 0 there exists δ > 0 such that for all x, y ∈ B, ‖ x ‖≤ 1, ‖ y ‖≤ 1, ‖ x− y ‖= ε, the
following inequality

‖ x+ y ‖ ≤ 2(1− δ)

holds. The function

δB(ε) = inf

{
1− ‖ x+ y ‖

2
: ‖ x ‖= 1, ‖ y ‖= 1, ‖ x− y ‖= ε

}
is called the modulus of the convexity of the space B.

The uniform smoothness of the space B means that for any ε > 0, there exists δ > 0
such that

‖ x+ y ‖ + ‖ x− y ‖
2

− 1 ≤ ε ‖ y ‖

holds. The function

ρB(t) = sup

{
‖ x+ y ‖ + ‖ x− y ‖

2
− 1 : ‖ x ‖= 1, ‖ y ‖= t

}
is called the modulus of the smoothness of the space B.

We observe that the space B is a uniformly convex if and only if δB(ε) > 0 for all
ε > 0 and it is uniformly smooth if and only if lim

t→0
t−1ρB(t) = 0.

Remark 2.1. All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spaces
W p

m(p ≥ 2) are two uniformly smooth, while, for 1 < p ≤ 2, Lp (or lp) and W p
m(p ≥ 2)
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spaces are p-uniformly smooth.

The following inequalities will be used in the proof of our main result and the proof
of these inequalities can be found, e.g. in [3], and hence, we omit it.

Proposition 2.1. Let B be a uniformly smooth Banach space and J the normalized
duality mapping from B to B∗. Then, for all x, y ∈ B, we have

(i) ‖ x+ y ‖2 ≤ ‖ x ‖2 +2 〈y, J(x+ y)〉,
(ii) 〈x− y, Jx− Jy〉 ≤ 2d2ρB(4 ‖ x− y ‖ /d), where d =

√
(‖ x ‖2 + ‖ y ‖2)/2.

Let us recall the following definitions.

Definition 2.1. The mapping G : B → B is said to be strongly accretive if there exist
a constant γ > 0 such that

〈Gx−Gy, J(x− y)〉 ≥ γ ‖ x− y ‖2, for all x, y ∈ B.

Definition 2.2. Let T,A : B → C(B) be two multivalued mappings, N(., .) : B×B → B
be a nonlinear mapping.

The mapping u 7→ N(u, v) is said to be strongly accretive with respect to the mapping
T , if for any x1, x2 ∈ B there exists a constant t > 0 such that for any u1 ∈ T (x1), u2 ∈
T (x2) and any v ∈ A(x),

〈N(u1, v)−N(u2, v), J(x1 − x2)〉 ≥ t ‖ x1 − x2 ‖2 .

Remark 2.2. If T,A are single-valued mappings and N(T (x), A(x)) = G(x), then
Definition 2.2 reduces to Definition 2.1.

Definition 2.3. The mapping N(., .) : B × B → B is said to be Lipschitz continuous
with respect to first argument, if there exists a constant β > 0 such that

‖ N(u1, .)−N(u2, .) ‖ ≤ β ‖ u1 − u2 ‖ .

Definition 2.4. The mapping A : B → C(B) is said to be H-Lipschitz continuous if
there exists a positive constant η such that

H (A(x), A(y)) ≤ η ‖ x− y ‖, ∀ x, y ∈ B.

where H(., .) is the Hausdorff metric on C(B).
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Let B be a real Banach space and Ω a nonempty closed convex subset of B.

Definition 2.5.[6,7,12] A mapping QΩ : B → Ω is said to be

(i) retraction on Ω if Q2
Ω = QΩ;

(ii) nonexpansive retraction on Ω if it satisfies the inequality

‖ QΩx−QΩy ‖ ≤ ‖ x− y ‖, ∀ x, y ∈ B

(iii) sunny retraction on Ω if for all x ∈ B and for all −∞ < t <∞

QΩ(QΩx+ t(x−QΩx)) = QΩx

We have the following characterization of a sunny nonexpensive retraction mapping.

Proposition 2.2.[7] QΩ is a sunny nonexpansive retraction if and only if for all x ∈ B
and for all y ∈ Ω

〈x−QΩx, J(QΩx− y)〉 ≥ 0.

Proposition 2.3.[4] Let B be a Banach space, Ω a nonempty closed and convex subset
of B, m = m(x) : B → B and QΩ : B → Ω be a sunny nonexpensive retraction. Then
for all x ∈ B, we have

QΩ+m(x)x = m(x) +QΩ(x−m(x))

3. Iterative Algorithm

In this section, we first give some characterizations of solutions of (CGMCVIP).

Theorem 3.1. Let B be a Banach space, T,A : B → C(B), N(., .) : B × B → B,
G : B → B, QΩ : B → Ω be a sunny nonexpensive retraction and K : B → 2B such
that K(x) is nonempty closed convex subset for all x ∈ B.

Then the following statements are equivalent:
(i) x ∈ B, u ∈ T (x), v ∈ A(x) are solutions of (CGMCVIP);
(ii) x ∈ B, u ∈ T (x), v ∈ A(x) and Gx = QK(x)(Gx− τ(N(u, v))) for any τ > 0.

Proof. For the proof, we refer to [4] and references mentioned therein.

By combining Proposition 2.3 and Theorem 3.1, we have the following theorem.

6



Theorem 3.2. Let B be a Banach space, X a nonempty closed convex subset of B. Let
T,A : B → C(B), N(., .) : B × B → B, G : B → B, QΩ : B → Ω be a sunny
nonexpensive retraction and K : B → 2B such that K(x) = m(x) + X for all x ∈ B.
Then x ∈ B, u ∈ T (x), v ∈ A(x) are solutions of (CGMCVIP) if and only if

x = x−Gx+m(x) +QX(Gx− τ(N(u, v))−m(x)), for any τ > 0.

Algorithm 3.1. We now construct the algorithm for finding approximate solutions of
(CGMCVIP). Let K(x) = m(x) + X, where X is a nonempty closed convex subset of B
and τ > 0 be fixed.

Given x0 ∈ B, take any u0 ∈ T (x0), v0 ∈ A(x0) and let

x1 = x0 −Gx0 +m(x0) +QX(Gx0 − τ(N(u0, v0))−m(x0)).

since T (x0) and A(x0) are nonempty and compact sets, there exist u1 ∈ T (x1), v1 ∈ A(x1)
such that

‖ u0 − u1 ‖ ≤ H(T (x0), T (x1))

‖ v0 − v1 ‖ ≤ H(A(x0), A(x1))

Let
x2 = x1 −Gx1 +m(x1) +QX(Gx1 − τ(N(u1, v1))−m(x1))

By induction, we can obtain sequences {xn}, {un} and {vn}

and
xn+1 = xn −Gxn +m(xn) +QX(Gxn − τ(N(un, vn))−m(xn)), (3.1)

un ∈ T (xn), ‖ un − un+1 ‖ ≤ H(T (xn), T (xn+1))
vn ∈ A(xn), ‖ vn − vn+1 ‖ ≤ H(A(xn), A(xn+1)),

n = 0, 1, 2 · · ·

4. Convergence Theory

We apply the Algorithm 3.1 to prove the following convergence and existence result.

Theorem 4.1. Let B be a uniformly smooth Banach space with the module of smooth-
ness ρB(t) ≤ Ct2 for some C > 0. Let X be a closed convex subset of B, N(., .) : B×B →
B be a bifunction, T,A : B → C(B) be the multivalued mappings, G,m : B → B
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be single-valued mappings. Let QΩ : B → Ω be a sunny nonexpensive retraction,
K : B → 2B be a multivalued mapping such that K(x) = m(x) + X for all x ∈ B.
Suppose that the following conditions are satisfied:

(i) N(., .) is strongly accretive with respect to mappings T and A with corresponding
constants t > 0, s > 0; Lipschitz continuous in both the arguments with correspond-
ing constants β > 0 and α > 0,

(ii) G is both strongly accretive with constant γ > 0 and Lipschitz continuous with
constant δ > 0,

(iii) m is Lipschitz continuous with constant θ > 0,

(iv) T and A are H-Lipschitz continuous with constant ξ > 0 and η > 0, respectively,

(v) 0 < 2(1− 2γ + 64Cδ2)
1
2 + 2θ + (1− 2τ(t+ s) + 64Cτ 3(α2η2 + β2ξ2))

1
2 < 1.

Then there exist x ∈ B, u ∈ T (x) and v ∈ A(x) which are solutions of (CGMCVIP) and
the sequences {xn}, {un} and {vn} generated by the algorithm 3.1 converge strongly to
x, u and v, respectively i.e. xn → x, un → u and vn → v as n→∞.

Proof. By the iterative scheme (3.1) and Proposition 2.3, we have

‖xn+1 − xn‖ = ‖xn −Gxn +m(xn) +QX(Gxn − τ(N(un, vn))−m(xn))− (xn−1

−Gxn−1 +m(xn−1)−QX(Gxn−1 − τ(N(un−1, vn−1))−m(xn−1)))‖
≤ ‖xn − xn−1 − (Gxn −Gxn−1)‖+ 2‖m(xn)−m(xn−1)‖+ ‖xn − xn−1

−(Gxn −Gxn−1)‖+ ‖xn − xn−1 − τ(N(un, vn)−N(un−1, vn−1))‖
= 2‖xn − xn−1 − (Gxn −Gxn−1)‖+ 2‖m(xn)−m(xn−1)‖

+‖xn − xn−1 − τ(N(un, vn)−N(un−1, vn−1))‖ (4.1)

By proposition (2.1), we have
‖xn − xn−1 − (Gxn −Gxn−1)‖2

≤ ‖xn − xn−1‖2 − 2〈Gxn −Gxn−1, J(xn − xn−1 − (Gxn −Gxn−1))〉

= ‖xn − xn−1‖2 − 2〈Gxn −Gxn−1, J(xn − xn−1)〉 − 2〈Gxn −Gxn−1,

J(xn − xn−1 − (Gxn −Gxn−1))− J(xn − xn−1)〉

≤ ‖xn − xn−1‖2 − 2γ‖xn − xn−1‖2 + 4d2ρB

(
4‖Gxn −Gxn−1‖

d

)

≤ ‖xn − xn−1‖2 − 2γ‖xn − xn−1‖2 + 64C‖Gxn −Gxn−1‖2

≤ (1− 2γ + 64Cδ2)‖xn − xn−1‖2. (4.2).
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By Proposition 2.1, we have

‖xn − xn−1 − τ(N(un, vn)−N(un−1, vn−1))‖2

≤ ‖xn − xn−1‖2 − 2τ〈N(un, vn)−N(un−1, vn−1),

J(xn − xn−1 − τ(N(un, vn)−N(un−1, vn−1))〉
= ‖xn − xn−1‖2 − 2τ〈N(un, vn)−N(un−1, vn−1),

J(xn − xn−1)〉 − 2τ〈N(un, vn)−N(un−1, vn−1), J(xn − xn−1

−τ(N(un, vn)−N(un−1, vn−1)))− J(xn − xn−1)〉
= ‖xn − xn−1‖2 − 2τ〈N(un, vn)−N(un−1, vn)

+N(un−1, vn)−N(un−1, vn−1), J(xn − xn−1)〉
−2τ〈N(un, vn)−N(un−1, vn−1), J(xn − xn−1

−τ(N(un, vn)−N(un−1, vn−1)))− J(xn − xn−1)〉
= ‖xn − xn−1‖2 − 2τ〈N(un, vn)−N(un−1, vn),

J(xn − xn−1)〉 − 2τ〈N(un−1, vn)−N(un−1, vn−1),

J(xn − xn−1)〉 − 2τ〈(N(un, vn)−N(un−1, vn−1), J(xn − xn−1

−τ(N(un, vn)−N(un−1, vn−1)))− J(xn − xn−1)〉. (4.3)

Since N is strongly accretive with respect to the mappings T and A, we have

〈N(un, vn)−N(un−1, vn), J(xn − xn−1)〉+ 〈N(un−1, vn)−N(un−1, vn−1), J(xn − xn−1)〉
≥ (t+ s)‖xn − xn−1‖2. (4.4)

Using (4.4) and (ii) of Proposition 2.1, (4.3) becomes

‖xn − xn−1 − τ(N(un, vn)−N(un−1, vn−1))‖2

≤ ‖xn − xn−1‖2 − 2τ(t+ s)‖xn − xn−1‖2

+4d2ρB

(
4τ 2‖N(un, vn)−N(un−1, vn−1)‖

d

)
. (4.5)

Using Lipschitz continuity of N in both the arguments and Algorithm 3.1,

we estimate the following

4d2ρB

(
4τ 2‖N(un, vn)−N(un−1, vn−1)‖

d

)

= 4d2ρB

(
4τ 2

d
(‖N(un, vn)−N(un, vn−1) +N(un, vn−1)−N(un−1, vn−1)‖)

)

≤ 4d2ρB

(
4τ 2

d
(‖N(un, vn)−N(un, vn−1)‖+ ‖N(un, vn−1)−N(un−1, vn−1)‖)

)
≤ 64Cτ 3(‖N(un, vn)−N(un, vn−1)‖2 + ‖N(un, vn−1)−N(un−1, vn−1)‖2)

≤ 64Cτ 3(α2‖vn − vn−1‖2 + β2‖un − un−1‖2)
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≤ 64Cτ 3(α2H2(A(xn), A(xn−1)) + β2H2(T (xn), T (xn−1)))

≤ 64Cτ 3(α2η2‖xn − xn−1‖2 + β2ξ2‖xn − xn−1‖2)

= 64Cτ 3(α2η2 + β2ξ2))‖xn − xn−1‖2. (4.6)

It is clear from the Lipschitz continuity of m that

‖ m(xn)−m(xn−1) ‖ ≤ θ ‖ xn − xn−1 ‖ (4.7)

From (4.2)-(4.7), we have the following inequality:

‖ xn+1 − xn ‖ ≤ k ‖ xn − xn−1 ‖

where k = 2(1−2γ+ 64Cδ2)
1
2 + 2θ+ (1−2τ(t+ s) + 64Cτ 3(α2η2 +β2ξ2))

1
2 and 0 < k < 1

by (v).

Consequently, {xn} is a Cauchy sequence, and thus, converges to some x ∈ B. Now
we prove that un → u ∈ T (x) and vn → v ∈ A(x). From Algorithm 3.1, we have

‖ un+1 − un ‖ ≤ H(T (xn+1), T (xn)) ≤ ξ ‖ xn+1 − xn ‖

and
‖ vn+1 − vn ‖ ≤ H(A(xn+1), A(xn)) ≤ η ‖ xn+1 − xn ‖

which imply that the sequence {un} and {vn} are Cauchy sequences in B. Let un → u
and vn → v. Since QX , G, T, A, N(., .) and m are continuous in B, we have

x = x−Gx+m(x) +QX(GX − τ(N(u, v))−m(x)).

It remains to show that u ∈ T (x) and v ∈ A(x). In fact,

d(u, T (x)) = inf {‖ u− w ‖: w ∈ T (x)}
≤ ‖ u− un ‖ +d(un, T (x))
≤ ‖ u− un ‖ +H(T (xn), T (x))
≤ ‖ u− un ‖ +ξ ‖ xn − x ‖→ 0

Hence d(u, T (x)) = 0 and therefore u ∈ T (x). Similarly, we can prove that v ∈ A(x). The
result then follows from Theorem 3.2.
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