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Abstract

In this paper, we consider the completely generalized multi-valued co-variational
inequality problems in Banach spaces and construct an iterative algorithm. We
prove the existence of solutions for our problems involving strongly accerative op-
erators and convergence of iterative sequences generated by the algorithm.
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1. Introduction

The theory of variational inequalities provides us an unified frame work to deal with a
wide class of problems arising in elasticity, structural analysis, economics, optimization,
operations research, physical and engineering sciences, etc; see for example [1-2,5,9] and
references therein.

In this paper, we consider a more general form of multi-valued variational inequalities
problems in Banach spaces, called completely generalized multi-valued co-variational in-
equality problem. By extending the technique of Alber and Yao [4], we suggest an iterative
algorithm for finding the approximate solution of our problem. The convergence of iter-
ative sequences generated by our algorithm is studied. We also prove the existence of a
solution of our problem.The main result of this paper(Theorem 4.1)is stated and estab-
lished for uniformly smooth Banach spaces in section 4. Several special cases are also



considered.

2. Preliminaries

Let B be a real Banach space with its dual B* and (x, f) a pairing between = € B
and f € B*. We denote by C(B) and 28 the family of non empty compact subsets of
B and the family of nonempty subsets of B, respectively. Let N(.,.) : B x B — B,
G : B — B be the nonlinear mappings, 7, A : B — C(B) be the multivalued mappings,
K : B — 2B be a multivalued mapping such that K(z) is a nonempty, closed and
convex set for all z € B. We consider the following completely generalized multi-valued
co-variational inequality problem :

Find z € B, u € T(x), and v € A(x)
(CGMCVIP) such that G( ) € K(x) and
(N(u,v),J(z—G(z)) >0, VzeK(z),

where J : B — B* is the normalized duality operator.

As an application of (CGMCVIP), we consider an elastoplasticity problem, which is
mainly due to Panagiotopoulos and Stavroulakis [11].

Example 2.1. Let a general hyperelastic material law holds for the elastic behaviour of
the elastoplastic material under consideration. Let us assume the decomposition

E = E°+ E”,

where F° denotes the elastic and EP denotes the plastic deformation of three-dimensional
elastoplastic body. We write the complementary virtual work expression for the body in

the form
(B¢, 7 — o)+ (EP, 7 —0) = (f,7—0), forall 7€ Z.

Here we have assumed that the body on a part I'y of its boundary I' has given
displacements, that is , u; = U; on I'y and that on the rest of its boundary I'r = T' — I'y,
the boundary tractions are given, that is, S; = F; on I'p, where the following energy inner
products appear:

<E,0'> :/gijaide
Q
Iy
Z={t:7,;+fi=0 onQ, i,j=1,23, Ty =F onlp, i=1,23},

is the set of statically admissible stresses and (2 is the structure of the body.
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Let us assume that the material of the structure € is hyperelastic such that
(E(0), 71— o) < (W] (0), T —0), for all 7 € R°,

where W,,, is the superpotential which produces the constitutive law of the hypere-
lastic material and is assumed to be quasidifferentiable, that is, there exist convex and
compact subsets @'W,,, amd 0'W,, such that

(W) (o), 1 —0)= max (W{,7—o0)+ max (W5 17—o0).

weed W, Wie oW

We also introduce the generally nonconvex yield function P C Z, which is defined by
means of general quasidifferentiable function F'(o), that is,

P={oceZ F(o)<0.

Here W, is a generally nonconvex and nonsmooth, but quasidifferentiable function for
the case of plasticity with convex yield surface and hyperelasticity. Combining these facts,
Panagiotopoulos and Stavroulakis [11] have obtained the following multivalued variational
inequality problem:

Find o € Z, Wf €dW,, (o), W§ € dW,,(c) such that
(Wy+Ws,tr—0)>(f,r—0), forall 7€ Z,
~ which is exactly the problem ( MCVIP), with u = W¢, v = W3, N(u,v) =0'W,(0)+
OWn(o), J =1, f=0, K@) =K, G=1,T(x)=39Wu(o), Alx) = IW,,(c) and
B=17Z.

Recall that the normalized duality operator J : B — B* is defined for arbitrary
Banach space by the condition

I Jz |

p=| 2| and (z,Jz) =[x |? Vazeb

Some examples and properties of the mapping J can be found in [3].
Special Cases

(I) If T is a single-valued nonlinear operator and N(u,v) = Tx + Av, then (CGMCVIP)
is equivalent to find x € B, v € A(z) such that G(z) € K(x) and

(Tx + Av, J(z — G(z)) >0, forall z € K(z) (2.1)



Problem (2.1) is called generalized multi-valued co-variational inequality, recently consid-
ered and studied by Alber and Yao [4].

(I) When B is a Hibert space, J reduces to the identity mapping. Consequently, problem
(2.1) reduces to the following problem: Find x € B, v € A(x) such that G(z) € K(z) and

(Tx + Av, z—G(z)) >0, Vze K(x) (2.2)

Problem (2.2) is called generalized multi-valued variational inequality introduced and stud-
ied by Jou and Yao [10].

It is clear, from these special cases that our problem (2.1) is more general than the
problem considered in [4] and generalizes many problems in the literature. See, e.g., [8],
[13].

We first recall that the uniform convexity of the space B means that for any given
€ > 0 there exists 0 > 0 such that for all z,y € B, ||z ||< 1, ||y [[< 1, || z — y ||=€, the
following inequality

[z+y| <2(1-9)
holds. The function

NEEIN

op(€) :inf{l 5

is called the modulus of the convexity of the space B.
The uniform smoothness of the space B means that for any € > 0, there exists § > 0
such that

l2l=1 [yl=1 ||:c—y||=e}

[z+yll+llz—yll
2

—1<e]yl

holds. The function

le+yll+llz—yll

putt) = sup | : L fel=1 dl=o]

is called the modulus of the smoothness of the space B.
We observe that the space B is a uniformly convex if and only if dg(e) > 0 for all
€ > 0 and it is uniformly smooth if and only if Pr% t~pg(t) = 0.

Remark 2.1. All Hilbert spaces, L, (or [,) spaces (p > 2) and the Sobolev spaces
WP (p > 2) are two uniformly smooth, while, for 1 < p <2, L, (or ,) and W2 (p > 2)



spaces are p-uniformly smooth.

The following inequalities will be used in the proof of our main result and the proof
of these inequalities can be found, e.g. in [3], and hence, we omit it.

Proposition 2.1. Let B be a uniformly smooth Banach space and J the normalized
duality mapping from B to B*. Then, for all z,y € B, we have

O lz+yl* < Nzl +2( J@+y),
(i) (z—y,Jo—Jy) < 2dpp(d||z—y| /), where d = /(| = |2+ [ y [*)/2.

Let us recall the following definitions.

Definition 2.1. The mapping G : B — B is said to be strongly accretive if there exist
a constant v > 0 such that

(Gr — Gy, J(x —y)) > v]|x—y|? foral z,y€ B.

Definition 2.2. Let T, A : B — C(B) be two multivalued mappings, N(.,.) : BXxB — B
be a nonlinear mapping.

The mapping u — N (u,v) is said to be strongly accretive with respect to the mapping
T, if for any 1,9 € B there exists a constant ¢t > 0 such that for any vy € T(z1), us €
T(x9) and any v € A(x),
(N(u1,v) — N(ug,v), J(x1 — x9)) > t |z — x5 ||

Remark 2.2. If T, A are single-valued mappings and N(T'(z), A(x)) = G(z), then
Definition 2.2 reduces to Definition 2.1.

Definition 2.3. The mapping N(.,.) : B x B — B is said to be Lipschitz continuous
with respect to first argument, if there exists a constant 3 > 0 such that

| N(uy,.) = N(ug, ) | < Bl —us |-

Definition 2.4. The mapping A : B — C(B) is said to be H-Lipschitz continuous if
there exists a positive constant 7 such that

H(A(2),Aly) < nlle—yl, ¥V z,yeB.
where H(.,.) is the Hausdorff metric on C(B).



Let B be a real Banach space and €2 a nonempty closed convex subset of B.
Definition 2.5.[6,7,12] A mapping Qq : B — € is said to be

(i) retraction on Q if Q% = Qq;
(ii) nonexpansive retraction on € if it satisfies the inequality

| Qo = Qoy || < [[z—yll, ¥V z,yeB

(ili) sunny retraction on €2 if for all € B and for all —oco <t < 00

We have the following characterization of a sunny nonexpensive retraction mapping.

Proposition 2.2.[7] Qg is a sunny nonexpansive retraction if and only if for all x € B
and for all y € 2

(r — Qoz, J(Qaor—y)) > 0.

Proposition 2.3.[4] Let B be a Banach space, Q2 a nonempty closed and convex subset
of Bm=m(x) : B— Band Qq : B — () be a sunny nonexpensive retraction. Then
for all x € B, we have

QQ—&-m(r)x = m(x) + QQ(:E - m(a;))
3. Iterative Algorithm
In this section, we first give some characterizations of solutions of (CGMCVIP).

Theorem 3.1. Let B be a Banach space, T,A : B — C(B), N(.,.) : Bx B — B,
G:B — B, Qq : B — Q be a sunny nonexpensive retraction and K : B — 28 such
that K (x) is nonempty closed convex subset for all z € B.

Then the following statements are equivalent:

(i) z€ B, ueT(x), v € A(zx) are solutions of (CGMCVIP);
(i) z € B, ueT(x), ve A(r) and Gz = Qk()(Gx — 7(N(u,v))) for any 7 > 0.

Proof. For the proof, we refer to [4] and references mentioned therein.

By combining Proposition 2.3 and Theorem 3.1, we have the following theorem.



Theorem 3.2. Let B be a Banach space, X a nonempty closed convex subset of B. Let
T)A : B—C(B), N,.) : BxB— B, G:B— B, Qq : B —  be a sunny
nonexpensive retraction and K : B — 28 such that K(z) = m(z) + X for all z € B.
Then z € B, u € T(x), v € A(x) are solutions of (CGMCVIP) if and only if

r = x—Gr+m(x)+ Qx(Gx — 7(N(u,v)) —m(z)), forany 7 > 0.

Algorithm 3.1. We now construct the algorithm for finding approximate solutions of
(CGMCVIP). Let K(z) = m(z) + X, where X is a nonempty closed convex subset of B
and 7 > 0 be fixed.

Given xy € B, take any ug € T(xg), vy € A(xg) and let

r1 = x9— Gro+ m(zg) + Qx(Grog — 7(N(ug,vo)) — m(zo)).
since T'(x) and A(zy) are nonempty and compact sets, there exist uy € T'(xy), v1 € A(xq)

such that

| uo —ur || < H(T(x0), T (1))

[ vo—vi || < H(A(wo), A(x1))

Let
vy = x1 — Gy +m(x) + Qx(Goy — 7(N(ug,v1)) — m(z1))

By induction, we can obtain sequences {z,}, {u,} and {v,}

and
Tpr1 = Ty — Gy, +m(x,) + Qx (G, — T(N(up, v,)) — m(z,)), (3.1)
up € T(wn), || un =t || < H(T(2n), T(2n41))
Un € A(@n), [[vn—var1 || < H(A(wn), A(zns1)),
n=012

4. Convergence Theory

We apply the Algorithm 3.1 to prove the following convergence and existence result.

Theorem 4.1. Let B be a uniformly smooth Banach space with the module of smooth-
ness pp(t) < Ct? for some C' > 0. Let X be a closed convex subset of B, N(.,.) : Bx B —
B be a bifunction, T, A : B — C(B) be the multivalued mappings, G,m : B — B



be single-valued mappings. Let Qg : B — €2 be a sunny nonexpensive retraction,
K : B — 2B be a multivalued mapping such that K(z) = m(z) + X for all z € B.
Suppose that the following conditions are satisfied:

(i) N(.,.) is strongly accretive with respect to mappings 7" and A with corresponding
constants ¢t > 0, s > 0; Lipschitz continuous in both the arguments with correspond-
ing constants # > 0 and a > 0,

(ii) G is both strongly accretive with constant v > 0 and Lipschitz continuous with
constant § > 0,

(iii) m is Lipschitz continuous with constant 6 > 0,

(iv) T and A are H-Lipschitz continuous with constant £ > 0 and n > 0, respectively,
(v) 0 <2(1 —2y 4 6400%)7 4+ 20 + (1 — 27(t + s) + 64073 (21?4 $%€%))7 < 1.

Then there exist € B, u € T'(z) and v € A(z) which are solutions of (CGMCVIP) and
the sequences {x,}, {u,} and {v,} generated by the algorithm 3.1 converge strongly to
x, u and v, respectively i.e. x, — x, u, — v and v,, — v as n — Q.

Proof. By the iterative scheme (3.1) and Proposition 2.3, we have

[Znt1 — 2l = |20 — Gzp +m(25) + Qx(Grn — T(N(Un, vn)) — m(20)) — (T
—Gapo1 + m(zn-1) = Qx(Grn-1 — T(N(Up-1,vn-1)) = m(2n-1)))|l
< zn — 21 = (Gry — Gy ) || + 2[lm(2n) — m(zn—1)|| + (20 — 20
—(Gzp = Grp )| + |20 — 21 — T(N (tn, ) = N(tn—1,vn1))]|
= 2l|zn — 2p1 — (Grp — G )| + 2[[m(r,) — m(zn)||
+H|zp — 2po1 — T(N (U, vn) — N(tp_1,0,-1))]| (4.1)
By proposition (2.1), we have
zn — 2p1 — (G — Gz |2
< |wp — 2poil|® — 2(Gzp — Gy, J (20 — Ty — (G — GTpp_1)))
= ||lzn — 701 |® = 2(Gxy — Gy, J (2 — 1)) — 2(G2py — Gy,
J(xp — Tp1 — (Gxyy — Grpy)) — J(2p — Tppo1))
4||Gx,, — Gxn1|\>
d
< Nwn = 2pall* = 29l|20 — 20ea || + 64C | Gy — s |2
< (1 — 27+ 64C0%)||zp — Tp_1]*. (4.2).

< llon = 2as? = 2y 7 — wus | + 405 (
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By Proposition 2.1, we have

||xn — Tp—1 — T(N(una Un) - N(”ﬂ—h Un—l))||2

< Nlzn — Tt ||* = 27(N (Un, vn) — N(Un_1, Vn_1),
J(xp — 21 — T(N(tp, vy) — N(Up_1,0n-1)))
= |lzn — 2o 1 ||* = 27 (N (U, vp) — N (Up_1,Vn_1),
J(xp — x5 1)) — 27(N (tn, v) — N(tp_1,0n-1), J(Ty — Tp_1
—T(N(tn, V) = N(Up-1,0n-1))) = J (2 — Tn_1))
= |lzn — 2p1||* = 27(N (tn, vp) — N(tp_1,vy)
+N(Up_1,0n) — N(tUp_1,0n-1), J(xy, — Tp_1))
—27(N (tp, vy) — N(tUp—1,Vn-1), J(xp — Tp_1
—T(N(tn,vn) = N(up-1,05-1))) = J (20 — Tn-1))
= |lzn — 2p1||* = 27(N (tn, vp) — N(tp_1,00),
J(xp — xp—1)) — 27(N(up—1,0,) — N(tp—1,0n-1),
J(xp — Tp-1)) — 27((N (tn, V) — N(tp-1,0n-1), J(y, — Tp_1
—T(N(tn, vn) — N(tp-1,0n-1))) — J(xp — Tp-1)). (4.3)
Since N is strongly accretive with respect to the mappings T and A, we have
(N (tn,vn) = N(tp—1,00), J(2n — Tp-1)) + (N (tn-1,0n) = N(tUp-1,0n-1), J(xn — Tp_1))
> (t+s)llan — 2o (4.4)
Using (4.4) and (ii) of Proposition 2.1, (4.3) becomes
[ = @1 = T(N (tn, vn) = N(tp-1,0n-1))|”
< len = apa||* = 27(t + 8)[lon — 2|
e <4TQHN<um ) = Vit vm)H) | 15)
Using Lipschitz continuity of N in both the arguments and Algorithm 3.1,
we estimate the following
4d2pB (472||N(unvvn) - N(Un—1>vn—1)||>
d
2 472
= i (T 0) = N t) 5 Nt t1) = N0
2 472
< 4 (M5 (N ) = N )|+ N 00 = Nr,001)1))
< 6407-3(”]\[(7%7 Un) — N(umUnfl)HQ + IV (tns 1) — N(unflvvnfl)ua
< 64CT (@ [[on — vna [P+ B lup — wna|?)



< 64CT (P H*(A(wy), A(w1)) + BPH*(T (), T(20-1)))
< 6407 PP ||wy — w1 |)? + BPEE |70 — T0a|)?)
= 64CTH(an? + 7€2)) |20 — 2 |I* (4.6)

It is clear from the Lipschitz continuity of m that

[ m(zn) —m(zna) | < 0 20 —an | (4.7)
From (4.2)-(4.7), we have the following inequality:

| Znt1 —an | < Kl 2p — 20 ||

where k = 2(1 — 27+ 64C6%)2 + 20+ (1 — 27 (t +5) + 64CT3 (02n? + 32%€2))2 and 0 < k < 1
by (v).

Consequently, {z,} is a Cauchy sequence, and thus, converges to some = € B. Now
we prove that u, — u € T'(x) and v, — v € A(x). From Algorithm 3.1, we have

H Up+1 — Un H < H<T<xn+l)vT(xn)) < ¢ H Tpt+1 — Tn H

and
| Vi1 —vn || < H(A(Tng1), A(xn)) < 0l 2pg1 — 24 ||

which imply that the sequence {u,} and {v,} are Cauchy sequences in B. Let u, — u
and v, — v. Since Qx, G, T, A, N(.,.) and m are continuous in B, we have

r=2—Gr+m(z)+ Qx(Gx — 7(N(u,v)) —m(x)).
It remains to show that u € T'(z) and v € A(z). In fact,

d(u, T(x)) inf{||u—wl:weT(x)}
| w = un || +d(un, T(x))
| w—up || +H(T(zn), T (2))

lu = | +€ [ 2p — 2 |0

VARVANVANI

Hence d(u, T'(x)) = 0 and therefore u € T'(z). Similarly, we can prove that v € A(z). The
result then follows from Theorem 3.2.
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