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Abstract

In this paper, we analyze a mixed-FEM and BEM coupling for a time-dependent eddy current problem
posed in the whole space and formulated in terms of the electric field E. The coupled problem is obtained
by first proposing a mixed formulation of the interior problem in order to handle efficiently the divergence
free constraint satisfied by E in the dielectric material. Next, we incorporate the far field effect to the
latter formulation through boundary integral equations defined on the coupling interface. We show that
the resulting degenerate parabolic problem (with saddle point structure) is well-posed and use Nédélec edge
elements and standard nodal finite elements to define a semi-discrete Galerkin scheme. Furthermore, we
introduce the corresponding backward-Euler fully-discrete formulation and analyze the asymptotic behavior
of the error in terms of the discretization parameters for both schemes.

Keywords: eddy current problem, saddle point problems, mixed finite elements, Nédélec finite elements,
boundary elements.

1 Introduction

The eddy current problem is naturally formulated in the whole space with decay conditions on the fields at
infinity; see, for instance, [5]. Consequently, to apply conventional numerical methods, such as the finite element
method (FEM), it is necessary to reduce the problem to a bounded domain. The most common approach consists
in restricting the equations to a sufficiently large computational domain containing the region of interest and
imposing an artificial homogeneous boundary condition on its border (which must be “sufficiently” far away
from the conductor). This strategy yields the difficulty of fixing a convenient cut-off distance a priori. Moreover,
in case of conductors with a “special” shape or a very large computational domain, a finite element mesh can
lead to a very large number of elements. On the other hand, methods based on boundary integral equations,
like the boundary element method (BEM), in general can not be directly applied because the equations are not
homogeneous and have variable coefficients.

Since the equations of the eddy current problem are complex only in a bounded region, techniques combining
BEM and FEM look convenient. The first FEM-BEM couplings for the eddy current model have been proposed
by engineers: [9], [10] (using the magnetic field H in the conductor and the Steklov-Poincaré operator) and [17]
(using the electric field E in the conductor and certain harmonic basis functions near its boundary Σ). From
a mathematical point of view, more recent results based on the well-known symmetric method by [14] are due
to [16] (using E in the conductor and H × n on Σ) and [19] (using H in the conductor and the normal trace
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of the magnetic induction on Σ) for the time-harmonic problem. Another FEM-BEM approach for the same
problem in terms of vector and scalar potentials has been also recently analyzed by [4].

When the conductor is multiply-connected, the approach mentioned above requires the construction of
cumbersome (and expensive) cutting surfaces in order to deal correctly with the discrete problem, see also
[7]. Recently, [2] showed that the time-harmonic H-based formulation of the eddy current problem (posed in
a bounded domain) admits a saddle point structure that is free from the above restriction. (See also [20] for
a similar strategy applied to the case of a time-dependent eddy current problem posed in the whole space.)
Such a formulation is obtained by solving the problem in a box Ω completely containing the conductor Ωc and
by introducing a Lagrange multiplier associated to the curl-free constraint satisfied by the magnetic field in
the insulating region Ωd := Ω \ Ωc surrounding the conductor. We adopt here the same point of view for the
problem under consideration.

Actually, our goal is to introduce a new method to solve the time-dependent eddy current problem, based
on a mixed-FEM and BEM coupling. We use as main variable a time primitive of E in Ω (see also [8]). The
divergence free condition in the insulating material is handled through a Lagrange multiplier, which gives rise to
a saddle point formulation in the interior domain. Besides, the integral representation of the electric field in the
complementary unbounded domain provides non-local boundary conditions for the interior mixed formulation.
This approach extends our previous work [1], where the eddy current problem is assumed to be posed in a
bounded domain.

A feature of our formulation is that the compact support of the current density is not necessarily assumed
to be completely contained in the conductor or in its exterior. Furthermore, we choose Ω simply connected
with a connected boundary in order to be able to introduce a certain scalar potential as a boundary variable
and use standard nodal finite elements to approximate it. On the other hand, in contrast with the formula-
tion given in [20], our approach fits well into the theory of monotone operators, because the reluctivity (the
inverse of the magnetic permeability) appears as a diffusion coefficient in the degenerate parabolic problem
at hand. Consequently, this approach seems convenient when the relation between the magnetic field and the
magnetic induction (given by the reluctivity) depends on the magnetic induction intensity, which is typical for
the ferromagnetic materials.

We perform a space discretization of our weak formulation by using Nédélec edge elements for the main
unknown and standard finite elements for the Lagrange multiplier and the boundary variable. We show that our
semi-discrete Galerkin scheme is uniquely solvable and provide error estimates in terms of the space discretization
parameter h. We also propose a fully-discrete Galerkin scheme based on a backward-Euler time-stepping. Here
again we provide error estimates that prove optimal convergence. Moreover, we obtain error estimates for the
eddy currents and the magnetic induction field.

The paper is organized as follows. In Section 2, we summarize some results from [12, 11, 13] concerning
tangential differential operators and traces in H(curl; Ω). In Section 3, we introduce the model problem. We
derive a symmetric mixed-FEM and BEM coupling of our problem in Section 4 and prove that it is uniquely
solvable in Section 5. The construction of a semi-discretization in space and the analysis of its convergence
are reported in Section 6. Finally, a backward Euler method is employed to obtain a time discretization of the
problem. The results presented in Section 7 prove that the resulting fully discrete scheme is convergent with
optimal order.

2 Preliminaries

We use boldface letters to denote vectors as well as vector–valued functions and the symbol |·| represents the
standard Euclidean norm for vectors. In this section Ω is a generic Lipschitz bounded domain of R3. We denote
by Γ its boundary and by n the unit outward normal to Ω. Let

(f, g)0,Ω :=
∫

Ω

fg

be the inner product in L2(Ω) and ‖·‖0,Ω the corresponding norm. As usual, for all s > 0, ‖·‖s,Ω stands
for the norm of the Hilbertian Sobolev space Hs(Ω) and |·|s,Ω for the corresponding seminorm. The space
H1/2(Γ) is defined by localization on the Lipschitz surface Γ. We denote by ‖·‖1/2,Γ the norm in H1/2(Γ) and
〈·, ·〉1/2,Γ stands for the duality pairing between H1/2(Γ) and its dual H−1/2(Γ). From now on we denote by
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γ : H1(Ω)→ H1/2(Γ) and γ : H1(Ω)3 → H1/2(Γ)3 the standard trace operator acting on scalar and vector fields
respectively.

2.1 Tangential differential operators and traces

We consider the space
L2
τ (Γ) :=

{
λ ∈ L2(Γ)3 : λ · n = 0

}
,

endowed with the standard norm in L2(Γ)3. We define the tangential trace γτ : C∞(Ω)3 → L2
τ (Γ) and the

tangential component trace πτ : C∞
(
Ω
)3 → L2

τ (Γ) as γτv := γv × n and πτv := n × (γv × n) respectively.
The previous traces can be extended by completeness to H1(Ω)3. The spaces H1/2

⊥ (Γ) := γτ (H1(Ω)3) and
H1/2
‖ (Γ) := πτ

(
H1(Ω)3

)
, are respectively endowed with the Hilbert norms

‖η‖
H

1/2
⊥ (Γ)

:= inf
w∈H1(Ω)3

{‖w‖1,Ω : γτw = η} ,

‖η‖
H

1/2
‖ (Γ)

:= inf
w∈H1(Ω)3

{‖w‖1,Ω : πτw = η} .

Let us notice that the density of H1/2(Γ)3 in L2(Γ)3 ensures that H1/2
⊥ (Γ) and H1/2

‖ (Γ) are dense subspaces of

L2
τ (Γ). We denote by H−1/2

⊥ (Γ) and H−1/2
‖ (Γ) the dual spaces of H1/2

⊥ (Γ) and H1/2
‖ (Γ) with L2

τ (Γ) as pivot
space, with duality pairing 〈·, ·〉⊥,Γ and 〈·, ·〉‖,Γ respectively.

We introduce the tangential differential operators

gradΓ ϕ := πτ (gradϕ) and curlΓ ϕ := γτ (gradϕ) ∀ϕ ∈ H2(Ω).

Let H3/2(Γ) := γ(H2(Ω)). It is well known that the previous operators depend only on the trace γ(ϕ) on Γ,
which implies that

gradΓ : H3/2(Γ)→ H1/2
‖ (Γ) and curlΓ : H3/2(Γ)→ H1/2

⊥ (Γ) (2.1)

are linear and continuous, cf. [13, Proposition 3.4]. Let H−3/2(Γ) be the dual space of H3/2(Γ) with L2(Γ) as
pivot space. We define

divΓ : H−1/2
‖ (Γ)→ H−3/2(Γ) and curlΓ : H−1/2

⊥ (Γ)→ H−3/2(Γ), (2.2)

by the dualities

〈divΓη, φ〉3/2,Γ = −〈η,gradΓ φ〉‖,Γ ∀φ ∈ H3/2(Γ) ∀η ∈ H−1/2
‖ (Γ),

〈curlΓξ, φ〉3/2,Γ = 〈ξ, curlΓ φ〉⊥,Γ ∀φ ∈ H3/2(Γ) ∀ξ ∈ H−1/2
⊥ (Γ).

(2.3)

The following proposition is proved in [13, Proposition 3.6].

Proposition 1 The operators gradΓ and curlΓ given in (2.1) can be extended to H1/2(Γ). Moreover, gradΓ :
H1/2(Γ) → H−1/2

⊥ (Γ) and curlΓ : H1/2(Γ) → H−1/2
‖ (Γ) are linear and continuous. Analogously, the transpose

operators introduced in (2.2) are also continuous for the following choice of spaces: divΓ : H1/2
⊥ (Γ)→ H−1/2(Γ)

and curlΓ : H1/2
‖ (Γ)→ H−1/2(Γ). Furthermore, analogous identities to (2.3) still hold for any φ ∈ H1/2(Γ), η ∈

H1/2
⊥ (Γ) and ξ ∈ H1/2

‖ (Γ). More precisely, we have

〈divΓη, φ〉1/2,Γ = −〈gradΓ φ,η〉⊥,Γ ∀φ ∈ H1/2(Γ) ∀η ∈ H1/2
⊥ (Γ),

〈curlΓξ, φ〉1/2,Γ = 〈curlΓ φ, ξ〉‖,Γ ∀φ ∈ H1/2(Γ) ∀ξ ∈ H1/2
‖ (Γ).

Let
H(curl; Ω) :=

{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
,

endowed with the norm
‖v‖H(curl;Ω) :=

(
‖v‖20,Ω + ‖curlv‖20,Ω

)1/2
. (2.4)
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Using the Green formula (see, for instance, [11] for the case of Lipschitz polyhedra and [13] for arbitrary Lipschitz
domains)

(u, curlv)0,Ω − (curlu,v)0,Ω = 〈γτu,πτv〉‖,Γ = −〈πτv,γτu〉⊥,Γ ∀u,v ∈ C∞(Ω)3,

and the density of C∞(Ω)3 in H(curl; Ω) (see, for instance, [21, Theorem 3.26]) and in H1(Ω), it follows that

γτ : H(curl; Ω)→ H−1/2
‖ (Γ), πτ : H(curl; Ω)→ H−1/2

⊥ (Γ)

are continuous. The space H0(curl; Ω) stands for the kernel of γτ in H(curl; Ω). The ranges of γτ and πτ are
characterized in the following result.

Theorem 2 Let
H−1/2 (divΓ; Γ) :=

{
λ ∈ H−1/2

‖ (Γ) : divΓλ ∈ H−1/2(Γ)
}

and
H−1/2 (curlΓ; Γ) :=

{
λ ∈ H−1/2

⊥ (Γ) : curlΓλ ∈ H−1/2(Γ)
}
.

Then
γτ : H(curl; Ω)→ H−1/2 (divΓ; Γ) , πτ : H(curl; Ω)→ H−1/2 (curlΓ; Γ)

are surjective and possess a continuous right inverse.
The spaces H−1/2 (divΓ; Γ) and H−1/2 (curlΓ; Γ) are dual to each other, when L2

τ (Γ) is used as pivot space,
i.e. the usual L2

τ (Γ)-inner product can be extended to a duality pairing 〈·, ·〉τ,Γ between H−1/2 (divΓ; Γ) and
H−1/2 (curlΓ; Γ). Moreover, the following integration by parts formula holds true

(u, curlv)0,Ω − (curlu,v)0,Ω = 〈γτu,πτv〉τ,Γ ∀u,v ∈ H(curl; Ω). (2.5)

Proof. See Theorem 4.1 and Lemma 5.6 of [13]. 2

Let Ω be a Lipschitz polyhedron. The following Theorem gives a characterization of the space

H−1/2 (divΓ0; Γ) :=
{
η ∈ H−1/2 (divΓ; Γ) : divΓη = 0

}
.

Theorem 3 Let O be a regular bounded open connected and simply connected subset of R3, such that Ω ⊂ O.
We set Ωext := O \Ω. Let H1 and H2 the spaces of the so-called harmonic Neumann fields associated to Ω and
Ωext respectively, i.e.

H1 := {v ∈ H(curl; Ω) ∩H(div; Ω) : curlv = 0, div v = 0, v · n|Γ = 0} ,
H2 := {v ∈ H(curl; Ωext) ∩H(div; Ωext) : curlv = 0, div v = 0, v · n|∂Ωext = 0} .

Let η ∈ H−1/2 (divΓ; Γ). Then, divΓη = 0 if and only if there exists λ ∈ H1/2(Γ), v1 ∈ H1 and v2 ∈ H2

such that
η = curlΓ λ+ πτv1 + πτv2|Γ.

Proof. See [12, Section 3]. 2

If Ω is simply-connected, it is well know that H1 = H2 = {0}; see, for instance, [6, Subsection 3.3]. Therefore,
the previous theorem implies

H−1/2 (divΓ0; Γ) = curlΓ(H1/2(Γ)).

Furthermore, if Γ is connected then ker(curlΓ) ∩ H1/2(Γ) = R; cf. [13, Corollary 3.7]. Consequently, the next
result follows immediately from Proposition 1.

Corollary 4 Let

H1/2
0 (Γ) :=

{
η ∈ H1/2(Γ) :

∫
Γ

η = 0
}
.

If Ω is simply connected and Γ is connected, then the operator

curlΓ : H1/2
0 (Γ)→ H−1/2 (divΓ0; Γ)

is an isomorphism.
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We will also use the normal trace γn : C∞(Ω)3 → L2(Γ) given by q 7→ γq · n. It is well known that this
operator can be extended to a continuous and surjective mapping (see, for instance, [21, Theorem 3.24])

γn : H(div; Ω)→ H−1/2(Γ),

where
H(div; Ω) :=

{
q ∈ L2(Ω)3 : div q ∈ L2(Ω)

}
is endowed with the norm ‖v‖H(div;Ω) :=

(
‖v‖20,Ω + ‖div v‖20,Ω

)1/2. We denote by H0(div,Ω) the kernel of γn

in H(div; Ω).

2.2 Basic spaces for time dependent problems

Since we will deal with a time-domain problem, besides the Sobolev spaces defined above, we need to introduce
spaces of functions defined on a bounded time interval (0, T ) and with values in a separable Hilbert space V ,
whose norm is denoted here by ‖·‖V . We use the notation C0([0, T ];V ) for the Banach space consisting of all
continuous functions f : [0, T ] → V . More generally, for any k ∈ N, Ck([0, T ];V ) denotes the subspace of
C0([0, T ];V ) of all functions f with (strong) derivatives of order at most k in C0([0, T ];V ), i.e.

Ck([0, T ];V ) :=
{
f ∈ C0([0, T ];V ) :

djf

dtj
∈ C0([0, T ];V ), 1 ≤ j ≤ k

}
.

We also consider the space L2(0, T ;V ) of classes of functions f : (0, T ) → V that are Böchner-measurable
and such that

‖f‖2L2(0,T ;V ) :=
∫ T

0

‖f(t)‖2V dt < +∞.

Furthermore, we will use the space

H1(0, T ;V ) :=
{
f ∈ L2(0, T ;V ) :

d

dt
f ∈ L2(0, T ;V )

}
,

where d
dtf is the (generalized) time derivative of f ; see, for instance [23, Section 23.5]. In what follows, we will

use indistinctly the notations
d

dt
f = ∂tf

to express the time derivative of f . Analogously, we define Hk(0, T ;V ) for all k ∈ N.

3 The model problem

We assume that the conductor is represented by a connected and bounded polyhedron Ωc ⊂ R3 with a Lipschitz
boundary Σ. We denote by Σi, i = 0, . . . , I the connected components of Σ and assume that Σ0 is the boundary
of the unbounded component of R3 \ Ωc. The unit normal vector n on Σ is pointed outwards.

Given a time-dependent compactly supported current density J , our aim is to find an electric field E(x, t)
and a magnetic field H(x, t) satisfying the following equations:

∂t (µH) + curlE = 0 in R3 × (0, T ), (3.1)
curlH = J + σE in R3 × [0, T ), (3.2)

div(εE) = 0 in
(
R3 \ Ωc

)
× [0, T ), (3.3)∫

Σi

εE · n = 0 in [0, T ), i = 0, · · · , I, (3.4)

H(x, 0) = H0(x) in R3, (3.5)

H(x, t) = O

(
1
|x|

)
and E(x, t) = O

(
1
|x|

)
as |x| → ∞, (3.6)
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where the asymptotic behavior (3.6) holds uniformly in [0, T ]. The electric permittivity ε, the electric conduc-
tivity σ, and the magnetic permeability µ are piecewise smooth real valued functions satisfying:

ε1 ≥ ε(x) ≥ ε0 > 0 a.e. in Ωc and ε(x) = ε0 a.e. in R3 \ Ωc,

σ1 ≥ σ(x) ≥ σ0 > 0 a.e. in Ωc and σ(x) = 0 a.e. in R3 \ Ωc,

µ1 ≥ µ(x) ≥ µ0 > 0 a.e. in Ωc and µ(x) = µ0 a.e. in R3 \ Ωc.

Let Ω ⊂ R3 be a connected and simply connected polyhedron with a connected boundary Γ := ∂Ω and
such that Ωc ∪ suppJ ⊂ Ω. We introduce Ωd := Ω \ Ωc and Ω′ := R3 \ Ω. We also denote by n the outward
normal unit vector on Γ. It is important to notice that, since σ = 0 in Ωd, (3.2) implies that J must satisfy the
compatibility conditions

divJ = 0 in Ωd and 〈γn(J |Ωd), 1〉1/2,Σi
= 0, i = 0, . . . , I, (3.7)

for all t ∈ (0, T ).
For reasons that will be clear later, we need to consider a modified electric field. To this end, let us denote

by Ωid, i = 0, . . . , I, the connected components of Ωd with ∂Ωid = Σi, i = 1, . . . , I, and ∂Ω0
d = Γ ∪ Σ0. We

introduce the function

F :=

 0 in Ωc ∪ Ω1
d ∪ · · · ∪ ΩId,

ψ in Ω0
d,

ψext in Ω′.

where ψ ∈ H1(Ω0
d) is the unique harmonic function satisfying γn (gradψ) = γnE on Γ and γ (ψ) = 0 on Σ0

and ψext is the unique harmonic function from

W 1(Ω′) :=

{
ϕ ∈ D′(Ω′); ϕ√

1 + |x|
∈ L2(Ω′), gradϕ ∈ L2(Ω′)3

}

satisfying the boundary condition γψext = γψ on Γ. It turns out that the shifted electric field E∗ := E −
ε0 gradF and the magnetic field H solve the equations:

∂t (µH) + curlE∗ = 0 in Ω× (0, T ),

curlH = J + σE∗ in Ω× [0, T ),

div(ε0E
∗) = 0 in Ωd × [0, T ),∫

Σi
ε0E

∗ · n = 0 in [0, T ), i = 0, · · · , I,

γ−n (E∗) = 0 on Γ× [0, T ),

γ−τ (E∗) = γ+
τ (E∗) on Γ× [0, T ),

γ−τ (H) = γ+
τ (H) on Γ× [0, T ),

∂t (µ0H) + curlE∗ = 0 in Ω′ × (0, T ),

curlH = 0 in Ω′ × [0, T ),

div(ε0E
∗) = 0 in Ω′ × [0, T ),

H(x, 0) = H0(x) in R3,

H(x, t) = O (1/ |x|) and E∗(x, t) = O (1/ |x|) as |x| → ∞.

(3.8)

It is important to notice that the change of variable leaves the electric field unchanged in the conductor since
E∗ = E in Ωc. In the equations above, γ+

τ refers to the tangential trace on Γ taken from Ω′ and γ−τ to the
tangential trace taken from Ω. We adopt the same convention for any other kind of trace operator.

In order to obtain a suitable variational formulation for the previous problem, we proceed as in [1, Section 3]

and introduce the variable u(x, t) :=
∫ t

0

E∗(x, s) ds. Next, we integrate the first equation of (3.8) with respect
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to t to obtain the expression H = −µ−1 curlu+H0 of the magnetic field in terms of u. This leads us to the
following formulation of the problem:

Find u : R3 × [0, T ]→ R3 such that:

σ∂tu+ curlµ−1 curlu = f in Ω× (0, T ),

divu = 0 in Ωd × [0, T ),∫
Σi
ε0u · n = 0 in [0, T ), i = 0, · · · , I,

u(x, 0) = 0 in R3

γ−n (u) = 0 on Γ× [0, T ),

π+
τ u = π−τ u on Γ× [0, T ),

γ−τ
(
µ−1

0 curlu
)

= γ+
τ

(
µ−1

0 curlu
)

on Γ× [0, T ),

curl curlu = 0 in Ω′ × [0, T ),

divu = 0 in Ω′ × [0, T ),

u(x, t) = O (1/ |x|) as |x| → ∞,

curlu(x, t) = O (1/ |x|) as |x| → ∞,

(3.9)

where
f := curlH0 − J . (3.10)

We assume that both J and curlH0 belong to L2(0, T ; L2(Ω)). Hence, the right handside f also belongs to
the same space. Moreover, we deduce from (3.7) and (3.10) that f inherits from J the same compatibility
conditions, i.e.,

div f = 0 in Ωd and 〈γn(f |Ωd), 1〉1/2,Σi
= 0, i = 0, . . . , I, (3.11)

for all t ∈ (0, T ). Let us also remark that equation (3.2) provides at the initial time t = 0 the relation

curlH0 = J(x, 0) + σ(x)E(x, 0) in R3. (3.12)

It then follows from our hypotheses on J and σ that the support of f is compact and contained in Ω.

4 The variational formulation

4.1 A mixed formulation in Ω

We introduce the space

M(Ωd) :=

{
q ∈ H1(Ωd) :

∫
Ωi

d

q = 0, and γq|Σi
= Ci, i = 0, . . . , I

}
.

It is well known that |·|1,Ωd
is a norm in M(Ωd) equivalent to the H1(Ωd)-norm. Let us consider now the kernel

V (Ω) := {v ∈ H(curl; Ω) : b(v, q) = 0 ∀q ∈M(Ωd)} (4.1)

of the bilinear form
b(v, q) := (εv,grad q)0,Ωd

.

Taking into account that ε is constant in R3 \Ωc, it straightforward to obtain the following characterization of
V (Ω).

Lemma 5 There holds

V (Ω) =
{
v ∈ H(curl; Ω) : div v = 0 in Ωd; γnv = 0 on Γ; 〈γnv, 1〉1/2,Σi

= 0, i = 0, . . . , I
}
.
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Let H(curl; Ωc)′ be the dual space of H(curl; Ωc) with respect to the pivot space

L2(Ωc, σ)3 :=
{
v : Ωc → R3 Lebesgue-measurable :

∫
Ωc

σ |v|2 <∞
}
.

We define
W0 :=

{
v ∈ L2(0, T ;V (Ω)) : v|Ωc ∈W 1(0, T ; H(curl; Ωc))

}
,

with
W 1(0, T ; H(curl; Ωc)) :=

{
v ∈ L2(0, T ; H(curl; Ωc)) : ∂tv ∈ L2(0, T ; H(curl; Ωc)′)

}
.

We also introduce

W :=
{
v ∈ L2(0, T ; H(curl; Ω)) : v|Ωc ∈W 1(0, T ; H(curl; Ωc))

}
.

Notice that W, endowed with the graph norm

‖v‖2W :=
∫ T

0

‖v(t)‖2H(curl;Ω) dt+
∫ T

0

‖∂tv(t)‖2H(curl;Ωc)′ dt,

is a Hilbert space and that W0 is a closed subspace of W.
We test the first equation of (3.9) with v ∈ V (Ω) and use the Green formula (2.5) to obtain the following

variational formulation:

Find u ∈ W0 such that

d

dt
(σu(t),v)0,Ωc

+
(
µ−1 curlu(t), curlv

)
0,Ω
−
〈
γτ
(
µ−1

0 curlu(t)
)
,πτv

〉
τ,Γ

= (f(t),v)0,Ω

for all v ∈ V (Ω). Next, we introduce a Lagrange multiplier p(t) to relax the divergence-free restriction (implicit
in the definition of V (Ω)) and end up with the mixed variational formulation:

Find u ∈ W and p ∈ L2(0, T ;M(Ωd)) such that

d

dt
[(u(t),v)σ + b(v, p(t))] +

(
µ−1 curlu, curlv

)
0,Ω
−
〈
γ−τ
(
µ−1

0 curlu(t)
)
,πτv

〉
τ,Γ

= (f(t),v)0,Ω

b(u(t), q) = 0

u|Ωc(0) = 0,

(4.2)

for all v ∈ H(curl; Ω) and for all q ∈ M(Ωd). Finally, testing curl curlu = 0 with grad r, r ∈ H1(Ω′), and
applying again (2.5) we deduce that

divΓ

[
γ+
τ

(
µ−1

0 curlu
)]

= 0.

Consequently, Corollary 4 shows that there exists a unique λ(t) ∈ H1/2
0 (Γ) such that

γ−τ
(
µ−1 curlu(t)

)
= curlΓ λ(t) on Γ for a.e. t ∈ (0, T ). (4.3)

With the last identity at hand, we can rewrite (4.2) as follows:

Find u ∈ W and p ∈ L2(0, T ;M(Ωd)) such that

d

dt
[(u(t),v)σ + b(v, p(t))] +

(
µ−1 curlu, curlv

)
0,Ω
− 〈curlΓ λ,πτv〉τ,Γ = (f(t),v)0,Ω

b(u(t), q) = 0

u|Ωc(0) = 0,

(4.4)

for all v ∈ H(curl; Ω) and for all q ∈M(Ωd).
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4.2 Non local boundary conditions on Γ

We deduce from the last four equations of (3.9) that u admits the following integral representation; see for
instance [16, Section 5]:

u(x) = curlx

∫
Γ

E(x,y)n× π+
τ u dSy −

∫
Γ

E(x,y)γ+
τ (curlu) dSy − gradx

∫
Γ

E(x,y) γ+
nu dSy (4.5)

for any x ∈ Ω′. Here, E is the fundamental solution of the Laplace equation in R3, i.e.,

E(x,y) :=
1

4π |x− y|
, x,y ∈ R3, x 6= y.

We will make repeated use of the integral operators formally defined below, for smooth densities φ : Γ→ R
and η : Γ→ R3, by:

Sφ(x) := γ

(
x 7→

∫
Γ

E(x,y)φ(y) dSy

)
,

V η(x) := πτ

(
x 7→

∫
Γ

E(x,y)η(y) dSy

)
,

Kη(x) := γ+
τ

(
x 7→ curlx

∫
Γ

E(x,y)η(y) dSy

)
,

K∗η(x) := π+
τ

(
x 7→ curlx

∫
Γ

E(x,y)n× η(y) dSy

)
− η(x),

Wη(x) := γ+
τ

[
x 7→ curlx

(
curlx

∫
Γ

E(x,y)n× η(y) dSy

)]
.

In the following theorem we summarize some fundamental tools concerning the properties of these integral
operators when mapping between Sobolev spaces.

Theorem 6 The linear mappings

S : H−1/2(Γ)→ H1/2(Γ), V : H−1/2
‖ (Γ)→ H1/2

‖ (Γ), K : H−1/2 (divΓ; Γ)→ H−1/2 (divΓ; Γ) ,

K∗ : H−1/2 (curlΓ; Γ)→ H−1/2 (curlΓ; Γ) , W : H−1/2 (curlΓ; Γ)→ H−1/2 (divΓ; Γ)

are bounded and satisfy the following properties:

• There exist α1 > 0 and α2 > 0 such that:

〈φ, Sφ〉1/2,Γ ≥ α1‖φ‖2−1/2,Γ ∀φ ∈ H−1/2(Γ) (4.6)

and

〈η,V η〉τ,Γ ≥ α2‖η‖2H−1/2(divΓ;Γ) ∀η ∈ H−1/2 (divΓ0; Γ) . (4.7)

• The operator W is related to S through the following identity:

〈Wλ,η〉τ,Γ = −〈curlΓη, S(curlΓλ)〉1/2,Γ ∀λ, η ∈ H−1/2 (curlΓ; Γ) . (4.8)

• The operator K∗ is the transpose of K, i.e.,

〈Kη, ξ〉τ,Γ = 〈η,K∗ξ〉τ,Γ ∀η ∈ H−1/2 (divΓ0; Γ) , ∀ξ ∈ H−1/2 (curlΓ; Γ) . (4.9)

Proof. See Theorems 6.1, 6.2 and 6.3 of [16]. 2

Finally, we will need the following result proved in Lemma 2.3 of [18].
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Lemma 7 For η ∈ H−1/2 (divΓ; Γ) we have that

div
(
x 7→

∫
Γ

E(x,y)η(y) dSy

)
=
∫

Γ

E(x,y)divΓη(y) dSy in L2(R3).

A coupled FEM-BEM formulation of (3.9) is obtained by relating the mixed formulation (4.4) of the interior
problem with (4.5) through the transmission conditions on Γ. We begin by applying γ+

τ ◦µ−1
0 curl to (4.5) and

using (4.3) to obtain
curlΓ λ = µ−1

0 Wπ+
τ u−K (curlΓ λ) . (4.10)

Next, we take the tangential trace π+
τ of both sides of (4.5) to derive

π+
τ u = π+

τ

(
x 7→ curlx

∫
Γ

E(x,y)n× π+
τ u dSy

)
− V γ+

τ (curlu)− gradΓ Sγ
+
nu,

or equivalently
K∗

(
µ−1

0 π+
τ u
)
− V (curlΓ λ)− µ−1

0 gradΓ Sγ
+
nu = 0.

Testing the previous equation with curlΓη, η ∈ H1/2
0 (Γ), yields

−〈curlΓ η,V (curlΓ λ)〉τ,Γ + µ−1
0 〈K(curlΓ η),πτu〉τ,Γ = 0 ∀η ∈ H1/2

0 (Γ).

Combining the last identity with (4.4) and (4.10), we obtain a symmetric mixed-FEM and BEM coupling for
our problem:

Find u ∈ W, p ∈ L2(0, T ;M(Ωd)) and λ ∈ L2(0, T ; H1/2
0 (Γ)) such that

d

dt
[(u(t),v)σ + b(v, p(t))] +

(
µ−1 curlu, curlv

)
0,Ω

+µ−1
0 〈S(curlΓπτu), curlΓπτv〉1/2,Γ + 〈K curlΓ λ(t),πτv〉τ,Γ = (f(t),v)0,Ω ,

−〈curlΓ η,V (curlΓ λ)〉τ,Γ + µ−1
0 〈K(curlΓ η),πτu〉τ,Γ = 0,

b(u(t), q) = 0,

u|Ωc(0) = 0,

(4.11)

for all v ∈ H(curl; Ω), η ∈ H1/2
0 (Γ) and q ∈M(Ωd).

In the sequel, for the theoretical analysis, it will be convenient to eliminate the boundary variable λ from
the previous formulation. To this end, we introduce the operator R : H−1/2(Γ)→ H1/2

0 (Γ) characterized by

〈curlΓ χ,V (curlΓRξ)〉τ,Γ = 〈ξ, χ〉1/2,Γ ∀χ ∈ H1/2
0 (Γ) ∀ξ ∈ H−1/2(Γ). (4.12)

It is straightforward to deduce from Corollary 4, Theorem 6 and the Lax-Milgramm lemma that R is well-defined
and bounded. Furthermore, the second equation of (4.11) may be equivalently written λ = µ−1

0 R(curlΓK∗πτu).
Consequently, (4.11) admits the following equivalent reduced form:

Find u ∈ W, p ∈ L2(0, T ;M(Ωd)) such that:

d

dt
[(u(t),v)σ + b(v, p(t))] +

(
µ−1 curlu, curlv

)
0,Ω

+ c(u,v) = (f(t),v)0,Ω ∀v ∈ H(curl; Ω),

b(u(t), q) = 0 ∀q ∈M(Ωd),

u|Ωc(0) = 0,

(4.13)

where c(·, ·) : H(curl; Ω)×H(curl; Ω)→ R is the bounded, symmetric and nonnegative bilinear form given by

c(u,v) := µ−1
0 〈(curlΓ ScurlΓ +K curlΓRcurlΓK∗)πτu,πτv〉τ,Γ ∀u,v ∈ H(curl; Ω).
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5 Existence and uniqueness.

From now on, we assume that Ωd satisfies the following topological assumption, which is necessary to prove
Corollary 10 below: there exists a set {ωj , j = 1, . . . , J} of admissible cuts of Ωd such that ∪Jj=1∂ωj ⊂ Σ and
any connected component of

Ω0
d := Ωd \

(
∪Jj=1ωj

)
is simply connected. This assumption is satisfied for any geometry in practice.

We introduce the space

V (Ωd) := {v ∈ H(curl; Ωd) : γτv = 0 on Σ; b(v, q) = 0 ∀q ∈M(Ωd)}

Notice that, as ε(x) = ε0 for all x ∈ Ωd,

V (Ωd) =
{
v ∈ H(curl; Ωd) : div v = 0 in Ωd, γτv = 0 on Σ, γnv = 0 on Γ,

〈γnv, 1〉1/2,Σi
= 0, i = 0, . . . , I

}
.

Let us clear up here that the shifted electric field E∗ has been introduced in order to obtain a variable u
with a vanishing normal component on Γ. This boundary condition will play a central role in the proof of the
following Lemma.

Lemma 8 The embedding of L2(Ωd)3 into V (Ωd) is compact.

Proof. It is well know that the spaces H0(curl; Ωd)∩H(div; Ωd) and H(curl; Ωd)∩H0(div; Ωd) are continuously
embedded in Hs(Ωd)3, for some s > 1/2; see, [6, Proposition 3.7]. Let ψ ∈ C∞0 (Ω) be such that 0 ≤ ψ ≤ 1 and
ψ ≡ 1 in Ωc. Notice that v = ψv + (1− ψ)v for any v ∈ V (Ωd) with

ψv ∈ H0(curl; Ωd) ∩H(div; Ωd) and (1− ψ)v ∈ H(curl; Ωd) ∩H0(div; Ωd).

Hence, v ∈ Hs(Ωd)3 and there exists C > 0 (depending only on Ωd and ψ) such that

‖v‖s,Ωd ≤ ‖ψv‖s,Ωd + ‖(1− ψ)v‖s,Ωd

≤ C0

(
‖ψv‖H(curl;Ωd) + ‖(1− ψ)v‖H(curl;Ωd)

)
≤ C‖v‖H(curl;Ωd).

The result follows now from the compactness of the embedding L2(Ωd)3 ↪→ Hs(Ωd)3. 2

We now recall the well-known Petree-Tartar Lemma; see, for instance [15, Chapter I, Theorem 2.1].

Lemma 9 Let X, Y and Z be three Banach spaces. Let A : X → Y and T : X → Z be linear and bounded
operators, with A injective and T compact. If there exists κ > 0 such that κ‖x‖X ≤ ‖Ax‖Y + ‖Tx‖Z for any
x ∈ X, then there exists α > 0 such that α‖x‖X ≤ ‖Ax‖Y for any x ∈ X.

Corollary 10 On the space V (Ωd), the seminorm v 7→ ‖curlv‖0,Ωd is equivalent to the H(curl; Ωd)-norm.

Proof. We apply Lemma 9 with X := V (Ωd) (endowed with the H(curl; Ωd)-norm) and Y = Z = L2(Ωd)3

and with bounded operators A : X → Y and T : X → Z given by

Av := curlv, Tv := v ∀v ∈ V (Ωd).

As T is compact (cf. Lemma 8), we only need to prove that A is injective.
Thanks to our topological hypothesis on Ωd (see the beginning of this section) we know from [6, Subsection

3.5] that for any v ∈ V (Ωd) there exists a unique vector potential ψ ∈ H(curl; Ωd) ∩H(div; Ωd) such that:

v = curlψ in Ωd, divψ = 0 in Ωd γτψ = 0 on Γ, γnψ = 0 on Σ,
〈γnψ, 1〉1/2,Γ = 〈γnψ, 1〉1/2,ωj

= 0, j = 1, . . . , J.

Hence, if curlv = 0, ∫
Ωd

v · v =
∫

Ωd

v · curlψ = 〈γτv,πτψ〉τ,Γ + 〈γτv,πτψ〉τ,Σ = 0,

which implies that v = 0 and the result follows. 2

With the aid of the last result, the proofs of the next two lemmas are similar to the corresponding ones from
Section 4 of [1].
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Lemma 11 The linear mapping E : H(curl; Ωc) → V (Ω) characterized, for any vc ∈ H(curl; Ωc), by
(Evc) |Ωc = vc and

µ−1
0 (curl Evc, curlw)0,Ωd

+ c(Evc,w) = 0 ∀w ∈ V (Ωd) (5.1)

is well defined and bounded.

Lemma 12 The inner product in V (Ω)

(u,v)V (Ω) := (u,v)σ +
(
µ−1 curlu, curlv

)
0,Ω

+ c(u,v) (5.2)

induces a norm ‖·‖V (Ω) that is equivalent to the H(curl; Ω) norm in V (Ω). Moreover, the following decompo-
sition is orthogonal with respect to the inner product (·, ·)V (Ω):

V (Ω) = Ṽ (Ωd)⊕ E(H(curl; Ωc)), (5.3)

where Ṽ (Ωd) is the subspace of V (Ω) obtained by extending by zero the functions of V (Ωd) to the whole domain
Ω.

Theorem 13 Problem (4.13) has a unique solution (u, p) and

max
t∈[0,T ]

‖u(t)‖20,Ωc
+
∫ T

0

‖u(t)‖2H(curl;Ω) dt ≤ C
∫ T

0

‖f(t)‖20,Ω dt, (5.4)

for some constant C > 0. Moreover, if we define λ = µ−1
0 R(curlΓK∗πτu) then (u, λ, p) is the unique solution

of Problem (4.11).

Proof. The second equation of (4.13) means that u ∈ W0. Hence, we can apply the orthogonal decomposition

(5.3) to write that u = ud + Euc, with ud ∈ L2(0, T ; Ṽ (Ωd)) and Euc ∈ E(W 1(0, T ; H(curl; Ωc))). It is easy to
show that the first component ud(t) of this decomposition solves the elliptic problem

µ−1
0 (curlud(t), curlv)0,Ωd

+ c(ud(t),v) = (f(t),v)0,Ωd
∀v ∈ V (Ωd), (5.5)

for a.e. t. On the other hand, uc satisfies the parabolic equation

d

dt
(uc(t),v)σ +

(
µ−1 curl Euc(t), curl Ev

)
0,Ω

+ c(Euc(t), Ev) = (f(t), Ev)0,Ω ∀v ∈ H(curl; Ωc),

with the initial condition uc(0) = 0. Now, using that c(·, ·) is nonnegative, we can proceed exactly as in [1,
Theorem 4.4] to prove the existence and uniqueness of uc and ud.

Notice that, for any q ∈ M(Ωd), the extension by zero of grad q to the whole Ω belongs to H(curl; Ω).
Hence, we deduce that the bilinear form b(·, ·) satisfies the inf-sup condition

sup
z∈H(curl;Ω)

b(z, q)
‖z‖H(curl;Ω)

≥ b(grad q, q)
‖grad q‖H(curl;Ω)

= ε0|q|1,Ωd ∀q ∈M(Ωd) (5.6)

and a similar reasoning to the one presented in [1, Theorem 4.4] proves that there exists a unique p(t) ∈M(Ωd)
satisfying

b(v, p(t)) = 〈G(t),v〉 ∀v ∈ H(curl; Ω) (5.7)

for all t ∈ [0, T ], where G ∈ C0([0, T ],H(curl; Ω)′) is given by

〈G(t),v〉 := − (u(t),v)σ −
∫ t

0

(
µ−1 curlu(s), curlv

)
0,Ω

ds−
∫ t

0

c(u(s),v) ds+
∫ t

0

(f(s),v)0,Ω ds.

We conclude that (u, p) solves (4.13) by differentiating the last identity with respect to t in the sense of
distributions.

The last assertion of the theorem follows directly from the definition of R. 2
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Lemma 14 The Lagrange multiplier p of Problem (4.11) vanishes identically.

Proof. Testing the first equation of (4.11) with grad q yields

d

dt
b(grad q, p(t)) + 〈K curlΓ λ(t),gradΓ q〉τ,Γ = (f(t),grad q)0,Ωd

= 0,

where the last equality follows from the compatibility conditions (3.7). Moreover, as divΓγτq = curl q · n in
H−1/2(Γ) for all q ∈ H(curl,Ω′), we have that

divΓ(K curlΓ λ) := divΓγ
+
τ

(
x 7→ curlx

∫
Γ

E(x,y) curlΓ λ(y) dSy

)

= curl
(

curlx

∫
Γ

E(x,y) curlΓ λ(y) dSy

)
· n.

Using the property curl curl = −∆ + grad div together with Lemma 7 and the fact that x 7→ E(x,y) solves
the Laplace equation in Ω′ lead us to the identity

curl
(

curlx

∫
Γ

E(x,y) curlΓ λ(y) dSy

)
=
∫

Γ

E(x,y)divΓ curlΓ λ(y) dSy = 0 in Ω′,

or equivalently,
divΓ(K curlΓ λ) = 0. (5.8)

This means that d
dtb(grad q, p(t)) = 0 for all q ∈ M(Ωd). Next, taking t = 0 in (5.7) and using the fact that

G(0) = 0 we deduce that t 7→ b(grad q, p(t)) vanishes identically in [0, T ] for all q ∈ M(Ωd). In particular
ε0|p(t)|21,Ωd

= b(grad p(t), p(t)) = 0 for all t ∈ [0, T ], and the result follows. 2

Remark 15 As a consequence of (3.12), f(x, 0) := curlH0 − J(x, 0) = 0. Hence, solving (5.5) at t = 0
shows that ud(x, 0) = 0 in Ωd and then, the global initial condition

u(x, 0) = 0 in Ω

holds true.

Theorem 16 If (u, λ, p) is the solution of Problem (4.11), then

γτ
(
µ−1

0 curlu
)

= curlΓ λ in H−1/2 (divΓ; Γ) . (5.9)

Proof. Testing the first equation of (4.11) with v ∈ C∞0 (Ωd) and using the previous lemma, we obtain

curl(µ−1 curlu)|Ωd = f |Ωd .

Testing again the first equation of (4.11) with a function v that belongs to the space

HΣ(curl; Ωd) := {v ∈ H(curl; Ωd); γτv = 0 on Σ}

we obtain
γτ (µ−1

0 curlu) = µ−1
0 Wπτu−K curlΓ λ in H−1/2 (divΓ; Γ) . (5.10)

Owing to (5.8) and (4.8) we deduce that

divΓ(γτ (µ−1
0 curlu)) = 0. (5.11)

The second equation of (4.11) implies that V (curlΓ λ)−µ−1
0 K∗πτu ∈ H−1/2 (curlΓ; Γ)∩ ker(curlΓ). Then,

there exists ϕ ∈ H1/2(Γ) such that (cf. Theorem 5.1 of [13])

V (curlΓ λ)− µ−1
0 K∗πτu = gradΓ ϕ.
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According to the definition of K∗, this equation may be written

πτu = πτ

(
x 7→ curlx

∫
Γ

E(x,y)n× πτu(y) dSy

)
− µ0V (curlΓ λ) + µ0 gradΓ ϕ. (5.12)

Let us now consider the unique harmonic function ψ ∈W 1(Ω′) satisfying the boundary condition ψ = ϕ on
Γ, and let z : Ω′ → R3 be given by

z(x) := curlx

∫
Γ

E(x,y)n× πτu(y) dSy − µ0

∫
Γ

E(x,y) curlΓ λ(y) dSy + µ0 gradψ. (5.13)

We deduce from (5.12) and (5.10) that

πτz = πτu and µ−1
0 γτ curl z = µ−1

0 γτ curlu. (5.14)

Moreover, (5.8) together with Lemma 7 show that div z = 0 in Ω′ and curl curlz = (−∆ + grad div)z = 0 in
Ω′. Consequently, taking into account that z satisfies adequate asymptotic conditions at infinity, this function
is also given by the following integral representation

z(x) = curlx

∫
Γ

E(x,y)n× πτu(y) dSy −
∫

Γ

E(x,y)γτ (curlu(y)) dSy + gradx

∫
Γ

E(x,y)γnz dSy.

Applying πτ to both sides of the previous equation yields

πτz = πτ

(
x 7→ curlx

∫
Γ

E(x,y)n× πτu(y) dSy

)
− V γτ (curlu) + gradΓ S(γnz).

Next, subtracting the last identity from (5.12) and using (5.14) provide

V (µ0 curlΓ λ− γτ (curlu)) = gradΓ(µ0ϕ− S(γnz)).

Finally, taking the duality product of this equation with µ0 curlΓ λ−γτ (curlu) ∈ H−1/2 (divΓ0; Γ) (cf. (5.11))
and using (4.6), give

α2‖µ0 curlΓ λ− γτ (curlu)‖2H−1/2(divΓ;Γ) ≤ 〈µ0 curlΓ λ− γτ (curlu),V (µ0 curlΓ λ− γτ (curlu))〉τ,Γ

= 〈µ0 curlΓ λ− γτ (curlu),gradΓ(µ0ϕ− Sγnz)〉τ,Γ = 0

and the result follows. 2

6 Analysis of the semi-discrete scheme

6.1 Well-posedness

Let {Th}h be a regular family of tetrahedral meshes of Ω such that each element K ∈ Th is contained either in
Ωc or in Ωd. As usual, h stands for the largest diameter of the tetrahedra K in Th. Furthermore, we denote by
{Th(Σ)}h and {Th(Γ)}h the families of triangulations induced by {Th}h on Σ and Γ respectively. We assume
that {Th(Σ)}h is quasi-uniform. From now on C denotes a positive constant independent of h and that may
take different values at different occurrences.

We define a semi-discrete version of (4.11) by means of Nédélec finite elements. The local representation of
the mth-order element of this family on a tetrahedron K is given by Nm(K) := P3

m−1 ⊕ Sm, where Pm is the

set of polynomials of degree not greater than m and Sm :=
{
p ∈ P̃3

m : x · p(x) = 0
}

, with P̃m being the set of
homogeneous polynomials of degree m. The corresponding global space Xh(Ω) to approximate H(curl; Ω) is
the space of functions that are locally in Nm(K) and have continuous tangential components across the faces
of the triangulation Th:

Xh(Ω) := {v ∈ H(curl; Ω) : v|K ∈ Nm(K) ∀K ∈ T } .
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On the other hand, we use standard mth-order Lagrange finite elements to approximate M(Ωd) and H1/2
0 (Γ):

Mh(Ωd) :=

{
q ∈ H1(Ωd) : q|K ∈ Pm ∀K ∈ Th,

∫
Ωi

d

q = 0, q|Σi
= Ci, i = 0, . . . , I

}

and
Λh(Γ) :=

{
ϑ ∈ H1/2

0 (Γ) : ϑ|F ∈ Pm ∀F ∈ Th(Γ)
}
.

We are now ready to introduce a semi-discretization of problem (4.11):

Find uh(t) : [0, T ]→ Xh(Ω), λh(t) : [0, T ]→ Λh(Γ) and ph(t) : [0, T ]→Mh(Ωd) such that

d

dt
[(uh(t),v)σ + b(v, ph(t))] +

(
µ−1 curluh, curlv

)
0,Ω

+µ−1
0 〈S(curlΓπτuh), curlΓπτv〉1/2,Γ + 〈K curlΓ λh(t),πτv〉τ,Γ = (f(t),v)0,Ω ,

−〈curlΓ η,V (curlΓ λh)〉τ,Γ + µ−1
0 〈K(curlΓ η),πτuh〉τ,Γ = 0

b(uh(t), q) = 0,

uh|Ωc(0) = 0.

(6.1)

for all v ∈ Xh(Ω), η ∈ Λh(Γ) and q ∈Mh(Ωd).

Remark 17 For piecewise smooth functions, the boundary integral operators in (6.1) are structurally equal to
those for second order elliptic problems. The terms involving the operator S and V are immediately written in
terms of integrals. The same happens with the terms involving K. In fact, for any η ∈ Λh(Γ) and v ∈ Xh(Ω),
we have ([16])

〈K curlΓ η,πτv〉τ,Γ =
∫

Γ

∫
Γ

curlΓ η(y) · πτv(x)
∂E(x,y)
∂n(x)

dSy dSx

+
∫

Γ

∫
Γ

gradxE(x,y)(curlΓ η(y) · n(x)) · πτv(x) dSy dSx

− 1
2

∫
Γ

curlΓ η(x) · πτv(x) dSx.

We proceed as in the continuous case to prove existence and uniqueness for (6.1). Indeed, letRh : H−1/2(Γ)→
Λh(Γ) be the operator characterized by

〈curlΓ χ,V (curlΓRhξ)〉τ,Γ = 〈ξ, χ〉1/2,Γ ∀χ ∈ Λh(Γ) ∀ξ ∈ H−1/2(Γ). (6.2)

Notice that (6.2) is a Galerkin discretization of the elliptic problem (4.12). Consequently, using Corollary 4, we
have the following Céa estimate

‖Rξ −Rhξ‖1/2,Γ ≤ C inf
η∈Λh(Γ)

‖Rξ − η‖1/2,Γ ∀ξ ∈ H−1/2(Γ). (6.3)

Here again, using that λh = µ−1
0 Rh(curlΓK∗πτuh) we deduce the following equivalent formulation of (6.1):

Find uh : [0, T ]→ Xh(Ω) and ph : [0, T ]→Mh(Ωd) such that,

d

dt
[(uh(t),v)σ + b(v, ph(t))] +

(
µ−1 curluh, curlv

)
0,Ω

+ ch(uh,v) = (f(t),v)0,Ω ∀v ∈ Xh(Ω)

b(uh(t), q) = 0 ∀q ∈Mh(Ωd)

uh|Ωc(0) = 0,
(6.4)
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where ch(·, ·) : Xh(Ω)×Xh(Ω)→ R is the uniformly bounded and nonnegative bilinear form given by:

ch(u,v) := µ−1
0 〈(curlΓ ScurlΓ +K curlΓRhcurlΓK∗)πτu,πτv〉τ,Γ ∀u,v ∈ Xh(Ω).

Notice that the discrete kernel

Vh(Ω) := {v ∈ Xh(Ω) : b(v, q) = 0 ∀q ∈Mh(Ωd)} .

of the bilinear form b is not a subspace of V (Ω). Let us also introduce the space

Vh(Ωd) := {v|Ωd : v ∈ Vh(Ω)} ∩HΣ(curl; Ωd).

The following result is a variation of Proposition 4.6 from [6].

Proposition 18 On the space Vh(Ωd), the seminorm w 7→ ‖curlw‖0,Ωd is equivalent to the usual norm in
H(curl; Ωd).

Proof. Let ϕh be an arbitrary function from Vh(Ωd). We consider the unique solution p ∈M(Ωd) of∫
Ωd

grad p · grad q =
∫

Ωd

ϕh · grad q ∀q ∈M(Ωd).

Reasoning as in the proof of Lemma 8 we deduce that there exists δ > 0 such that v := ϕh−grad p ∈ V (Ωd) ↪→
H1/2+δ(Ωd)3. In particular, there exits C1 > 0 independent of v such that

‖v‖1/2+δ,Ωd ≤ C1‖v‖H(curl;Ωd). (6.5)

Moreover, as curlv = curlϕh in Ωd, the Nédélec interpolant Ihv of v is well-defined, cf. [6, Lemma 4.7].
Actually, there exists C2 > 0 independent of v and h such that (cf. [6, Proposition 4.6])

‖Ihv‖0,Ωd ≤ C2

(
h‖curlϕh‖0,Ωd + ‖v‖1/2+δ,Ωd

)
. (6.6)

Now, following the strategy given in [15, Chapter III, Proposition 5.10], we are able to build a ph ∈Mh(Ωd)
such that Ih(grad p) = grad ph. Thus, ϕh = grad ph + Ihv and∫

Ωd

|ϕh|
2 =

∫
Ωd

ϕh · (grad ph + Ihv) =
∫

Ωd

ϕh · Ihv.

Then, the Cauchy-Schwarz inequality, (6.6) and (6.5) yield

‖ϕh‖0,Ωd ≤ ‖Ihv‖0,Ωd ≤ C2

(
h‖curlϕh‖0,Ωd + C1‖v‖H(curl;Ωd)

)
. (6.7)

Finally, Corollary 10 the fact that curlv = curlϕh show that there exists C > 0 independent of h such
that

‖ϕh‖0,Ωd ≤ C‖curlϕh‖0,Ωd

and the result follows. 2

From now on, the proof of the well-posedness of (6.1) runs parallel to the one given in the continuous case.
First of all, using Proposition (18) and the fact that {Th(Σ)}h is quasi-uniform, one can obtain the following
technical tool (cf. Lemma 5.3 and Lemma 5.4 of [1] for more details).

Lemma 19 The linear mapping Eh : Xh(Ωc)→ Vh(Ω) characterized by (Ehvc) |Ωc = vc and

µ−1
0 (curl Ehvc, curlw)0,Ωd

+ ch(Ehvc,w) = 0 ∀w ∈ Vh(Ωd) ∀vc ∈ Xh(Ωc) (6.8)

is well defined and bounded uniformly in h. Furthermore, the inner product

(u,v)Vh(Ω) := (u,v)σ +
(
µ−1 curlu, curlv

)
0,Ωd

+ ch(u,v) (6.9)

induces in Vh(Ω) a norm ‖·‖Vh(Ω) that is equivalent to the H(curl; Ω)-norm in Vh(Ω). Moreover, the decompo-

sition V (Ω) = Ṽh(Ωd)⊕Eh(H(curl; Ωc)) is orthogonal with respect to the inner product (·, ·)Vh(Ω), where Ṽh(Ωd)
is the subspace of Vh(Ω) obtained by extending by zero the functions of Vh(Ωd) to the whole domain Ω.
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Theorem 20 Problem (6.4) has a unique solution (uh, ph). Moreover, if λh := µ−1
0 Rh(curlΓK∗πτuh), then

(uh, λh, ph) is the unique solution of Problem (6.1).

Proof. The orthogonal decomposition provided by the last Lemma permits to split the principle variable uh
into two components. Each component is easily shown to be the unique solution of the problem obtained by
restricting (6.4) to the corresponding subspace of Vh(Ω), see the proof of Theorem 5.5 of [1] for more details.

The existence and uniqueness of the Lagrange multiplier ph is also obtained as in the aforementioned paper.
It is a direct consequence of the discrete inf-sup condition

sup
z∈Xh,Σ(Ωd)

b(z, q)
‖z‖H(curl;Ωd)

≥ ε0

(grad q,grad q)0,Ωd

‖grad q‖H(curl;Ωd)
= ε0|q|1,Ωd ∀q ∈Mh(Ωd). (6.10)

that follows immediately from the fact that grad(Mh(Ωd)) ⊂ Xh,Σ(Ωd). 2

6.2 Error estimates.

Consider the linear projection operator Πh : H(curl; Ω)→ Vh(Ω) defined by

Πhv ∈ Vh(Ω) : (Πhv, z)H(curl;Ω) = (v, z)H(curl;Ω) ∀z ∈ Vh(Ω). (6.11)

We deduce easily from (6.10) the following Céa estimate, cf. [15, Chapter II, Theorem 1.1],

‖v −Πhv‖H(curl;Ω) ≤ inf
z∈Xh(Ω)

‖v − z‖H(curl;Ω) ∀v ∈ V (Ω). (6.12)

We introduce the notations

a(v,w) :=
(
µ−1 curlv, curlw

)
0,Ω

, ρh(t) := u(t)−Πhu(t), δh(t) := Πhu(t)− uh(t)

and
βh(w) := ‖(R−Rh)curlΓK∗πτw‖1/2,Γ. (6.13)

Notice that, as a consequence of Proposition 18 and Lemma 19, we have that

‖v‖H(curl;Ω) = ‖v − Eh(v|Ωc) + Eh(v|Ωc)‖H(curl;Ω) ≤ C (‖v‖0,Ωc + ‖curlv‖0,Ω) (6.14)

for all v ∈ Vh(Ω). In particular,

‖δh(t)‖H(curl;Ω) ≤ C (‖δh(t)‖0,Ωc + ‖curl δh(t)‖0,Ω) ∀t ∈ [0, T ]. (6.15)

Lemma 21 Assume that the solution u of (4.11) belongs to H1(0, T ; H(curl; Ω)), then there exists a constant
C > 0 such that

sup
t∈[0,T ]

‖δh(t)‖2H(curl;Ω) +
∫ T

0

‖∂tδh(s)‖2σds

≤ C

[∫ T

0

‖∂tρh(t)‖2H(curl;Ω)dt+ sup
t∈[0,T ]

‖curlρh(t)‖20,Ω + sup
t∈[0,T ]

βh(u(t))2 +
∫ T

0

βh(∂tu(t))2dt

]
.

(6.16)

Proof. A straightforward computation yields

(∂tδh(t),v)σ + a(δh(t),v) + ch(δh(t),v) = −(∂tρh(t),v)σ

− a(ρh(t),v)− ch(ρh(t),v) + [ch(u(t),v)− c(u(t),v)] , (6.17)

for all v ∈ Vh(Ω). Then, it follows from (6.14) that

(∂tδh(t),v)σ + a(δh(t),v) + ch(δh(t),v)

≤ ‖∂tρh(t)‖σ‖v‖σ + C1 (‖v‖0,Ωc + ‖curlv‖0,Ω)
[
‖ρh(t)‖H(curl;Ω) + βh(u(t))

]
≤ 1

2
‖v‖2σ +

1
2µ1
‖curlv‖20,Ω + C2

[
‖∂tρh(t)‖2σ + ‖ρh(t)‖2H(curl;Ω) + βh(u(t))2

]
.
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Taking v = δh(t) in the last inequality and recalling that ch(·, ·) is nonnegative give

d

dt
‖δh(t)‖2σ + µ−1

1 ‖curl δh(t)‖0,Ω ≤ ‖δh(t)‖2σ + C3

[
‖∂tρh(t)‖2σ + ‖ρh(t)‖2H(curl;Ω) + βh(u(t))2

]
.

We now integrate over [0, t] (we recall that δh(0) = 0) and use Gronwall’s inequality to obtain

‖δh(t)‖2σ + µ−1
1

∫ t

0

‖curl δh(s)‖20,Ωds ≤ C4

∫ T

0

[
‖∂sρh(s)‖2σ + ‖ρh(s)‖2H(curl;Ω) + βh(u(s))2

]
ds. (6.18)

Analogously, taking v = ∂tδh(t) in (6.17) gives

‖∂tδh(t)‖2σ +
1
2
d

dt
[a(δh(t), δh(t)) + ch(δh(t), δh(t))]

= −(∂tρh(t), ∂tδh(t))σ −
d

dt
[a(ρh(t), δh(t)) + ch(ρh(t), δh(t))] + a(∂tρh(t), δh(t))

+ ch(∂tρh(t), δh(t)) +
d

dt
[ch(u(t), δh(t))− c(u(t), δh(t))]− [ch(∂tu(t), δh(t))− c(∂tu(t), δh(t))] .

Next, integrating over [0, t] and using the Cauchy-Schwartz inequality and (6.15) provide∫ t

0

‖∂sδh(s)‖2σds+ ‖curl δh(t)‖20,Ω

≤ C5

[
‖δh(t)‖2σ +

∫ t

0

‖δh(s)‖2σds+
∫ t

0

‖curl δh(s)‖0,Ωds+
∫ T

0

‖∂sρh(s)‖2H(curl;Ω)ds

+ sup
s∈[0,T ]

‖curlρh(s)‖20,Ω + sup
s∈[0,T ]

βh(u(s))2 +
∫ T

0

βh(∂su(s))2ds

]
.

Finally, using (6.18) we conclude that∫ t

0

‖∂sδh(s)‖2σds+ ‖curl δh(t)‖20,Ω

≤ C6

[∫ T

0

‖∂sρh(s)‖2H(curl;Ω)ds+ sup
s∈[0,T ]

‖curlρh(s)‖20,Ω + sup
s∈[0,T ]

βh(u(s))2 +
∫ T

0

βh(∂su(s))2ds

]
.

The result is now a direct consequence of the last inequality, (6.18) and (6.15). 2

Theorem 22 Let u and uh be the solutions of Problems (4.11) and (6.1) respectively. Assume that u ∈
H1(0, T ; H(curl; Ω)) and let eh(t) := u(t)− uh(t). There exists C > 0 such that

sup
t∈[0,T ]

‖eh(t)‖2H(curl;Ω) +
∫ T

0

‖eh(t)‖2H(curl;Ω) dt+
∫ T

0

‖∂teh(t)‖2σ dt

≤ C

{∫ T

0

[
inf

v∈Xh(Ω)
‖∂tu(t)− v‖2H(curl;Ω) + inf

χ∈Λh(Γ)
‖∂tλ(t)− χ‖21/2,Γ

]
dt

+ sup
[0,T ]

inf
χ∈Λh(Γ)

‖λ(t)− χ‖21/2,Γ + sup
t∈[0,T ]

inf
v∈Xh(Ω)

‖u(t)− v‖2H(curl;Ω)

} (6.19)

Proof. Recall that λ(t) = µ−1
0 RcurlΓK∗πτu(t). Hence, the regularity assumption on u implies that

λ ∈ H1(0, T ; H1/2
0 (Γ))

and ∂tλ(t) = µ−1
0 RcurlΓK∗πτ∂tu(t). It follows from (6.3) that

βh(u(t)) ≤ C inf
χ∈Λh(Γ)

‖λ(t)− χ‖1/2,Γ, βh(∂tu(t)) ≤ C inf
χ∈Λh(Γ)

‖∂tλ(t)− χ‖1/2,Γ. (6.20)
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Furthermore, since ∂tΠhu(t) = Πh(∂tu(t)), the result follows by writing eh(t) = ρh(t) + δh(t) and using
Lemma 21 and (6.12). 2

For any r ≥ 0, we consider the Sobolev space

Hr(curl;Q) :=
{
v ∈ Hr(Q)3 : curlv ∈ Hr(Q)3

}
,

endowed with the norm ‖v‖2Hr(curl;Q) := ‖v‖2r,Q+‖curlv‖2r,Q, where Q is either Ωc or Ωd. It is well known that
the Nédélec interpolant Ihv ∈ Xh(Q) is well defined for any v ∈ Hr(curl, Q) with r > 1/2; see for instance [3,
Lemma 5.1] or [6, Lemma 4.7]. We fix now an index r > 1/2 and introduce the space

X := {v ∈ H(curl; Ω) : v|Ωc ∈ Hr(curl; Ωc) and v|Ωd ∈ Hr(curl; Ωd)} (6.21)

endowed with the broken norm

‖v‖X := (‖v‖2Hr(curl;Ωc) + ‖v‖2Hr(curl;Ωd))
1/2.

Then, the Nédélec interpolation operator Ih : X→ Xh(Ω) is uniformly bounded and the following interpolation
error estimate holds true (see [7, Lemma 5.1] or [3, Proposition 5.6]):

‖v − Ihv‖H(curl;Ω) ≤ Chmin{r,m}‖v‖X ∀v ∈ X. (6.22)

Lemma 23 Let (u, p, λ) be the solution of (4.11). If we assume that

u ∈ H1(0, T ; X) and µ−1 curlu ∈ H1(0, T ; X),

then
inf

χ∈Λh(Γ)
‖λ(t)− χ‖1/2,Γ ≤ Chmin{r,m}‖µ−1 curlu(t)‖X (6.23)

and
inf

χ∈Λh(Γ)
‖∂tλ(t)− χ‖1/2,Γ ≤ Chmin{r,m}‖∂t(µ−1 curlu(t))‖X. (6.24)

Proof. Let IΓ
h be the 2D Nédélec interpolant on Th(Γ). Using commuting diagram property

πτ ◦ Ih = IΓ
h ◦ πτ

and recalling that curlΓ λ = γτ (µ−1 curlu) we obtain

πτ (Ih(µ−1 curlu)) = IΓ
h (πτ (µ−1 curlu)) = IΓ

h (n× γτ (µ−1 curlu))

= IΓ
h (n× curlΓ λ) = IΓ

h (gradΓ λ).

Then, we can find χ(t) ∈ Λh(Γ) such that (see the proof of Proposition 18 for a similar argument)

γτ (Ih(µ−1 curlu(t))) = curlΓ χ(t).

Now, by virtue of Corollary 4,

inf
χ∈Λh(Γ)

‖λ(t)− χ‖1/2,Γ ≤ C1 inf
χ∈Λh(Γ)

‖curlΓ λ(t)− curlΓ χ‖−1/2,Γ

≤ C1‖curlΓ λ(t)− γτIh(µ−1 curlu(t))‖−1/2,Γ

= C1‖γτ (Id − Ih)(µ−1 curlu(t))‖−1/2,Γ

≤ C2‖(Id − Ih)(µ−1 curlu(t))‖H(curl;Ω)

and (6.23) follows by using the interpolation error estimate (6.22).
Finally, the regularity assumption on µ−1 curlu allow us to write πτ (Ih(∂t(µ−1 curlu))) = IΓ

h (gradΓ ∂tλ)
and (6.24) follows by using the same arguments as above. 2

The following convergence result is a direct consequence of Theorem 22, Lemma 23 and the interpolation
error estimate (6.22).
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Corollary 24 Let l := min{r,m}. Under the assumptions of Lemma 23, there holds

sup
t∈[0,T ]

‖eh(t)‖2H(curl;Ω) +
∫ T

0

‖eh(t)‖2H(curl;Ω) dt+
∫ T

0

‖∂teh(t)‖2σ dt

≤ Ch2l

{
sup
t∈[0,T ]

‖u(t)‖2X + sup
t∈[0,T ]

‖µ−1 curlu(t)‖2X +
∫ T

0

‖∂tu(t)‖2X dt+
∫ T

0

‖∂t(µ−1 curlu(t))‖2X dt

}
.

Remark 25 Let us recall that

λ(t) = µ−1
0 R(curlΓK∗πτu(t)) and λh(t) = µ−1

0 Rh(curlΓK∗πτuh(t)).

Therefore, using (6.20) and the uniform boundedness of Rh, we obtain

µ0‖λ(t)− λh(t)‖1/2,Γ ≤ βh(u(t)) + ‖RhcurlΓK∗πτ (u− uh)(t)‖1/2,Γ

≤ C
{

inf
χ∈Λh(Γ)

‖λ(t)− χ‖1/2,Γ + ‖eh(t)‖H(curl;Ω)

}
.

Consequently, using Lemma 23 and Corollary 24 we have∫ T

0

‖λ(t)− λh(t)‖21/2,Γdt ≤ Ch
2l,

with l := min{r,m}.

7 Analysis of a fully-discrete scheme.

7.1 Well-posedness

We consider a uniform partition {tn := n∆t : n = 0, . . . , N} of [0, T ] with a step size ∆t := T
N . For any finite

sequence {θn : n = 0, · · · , N} we denote

∂̄θn :=
θn − θn−1

∆t
, n = 1, 2, . . . , N.

A fully-discrete version of problem (4.11) reads as follows:

For n = 1, · · · , N , find (unh, p
n
h, λ

n
h) ∈ Xh(Ω)×Mh(Ωd)× Λh(Γ) such that

(∂̄unh,v)σ + b(v, ∂̄pnh) + a(unh,v) + µ−1
0 〈S(curlΓπτunh), curlΓπτv〉1/2,Γ

+ 〈K curlΓ λnh(t),πτv〉τ,Γ = (f(tn),v)0,Ω ∀v ∈ Xh(Ω),

−〈curlΓ η,V (curlΓ λnh)〉τ,Γ + µ−1
0 〈K(curlΓ η),πτunh〉τ,Γ = 0 ∀η ∈ H1/2

0 (Γ),

b(unh, q) = 0 ∀q ∈Mh(Ωd),

u0
h|Ωc = 0,

p0
h = 0,

λ0
h = 0.

(7.1)
Writing the second equation of (7.1) λnh = µ−1

0 Rh(curlΓK∗πτunh) we can reformulate the problem as follows:

For n = 1, · · · , N , find (unh, p
n
h) ∈ Xh(Ω)×Mh(Ωd) such that

(∂̄unh,v)σ + b(v, ∂̄pnh) + a(unh,v) + ch(unh,v) = (f(tn),v)0,Ω ∀v ∈ Xh(Ω),

b(unh, q) = 0 ∀q ∈Mh(Ωd),

u0
h|Ωc = 0,

p0
h = 0 .

(7.2)
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Hence, at each iteration step we have to find (unh, p
n
h) ∈ Xh(Ω)×Mh(Ωd) such that

(unh,v)σ + ∆t [a(unh,v) + ch(unh,v)] + b(v, pnh) = Fn(v) ∀v ∈ Xh(Ω),

b(unh, q) = 0 ∀q ∈Mh(Ωd),

where
Fn(v) := ∆t(f(tn),v)0,Ω + (un−1

h ,v)σ + b(v, pn−1
h ).

The existence and uniqueness of (unh, λ
n
h) is a direct consequence of the Babuška-Brezzi theory. Indeed, the

bilinear form b satisfies the discrete inf-sup condition (6.10) and the bilinear form

(v,w) 7→ (v,w)σ + ∆t [a(v,w) + ch(v,w)]

is elliptic on its kernel Vh(Ω) (cf. Lemma 19).

7.2 Error estimates.

Lemma 26 Let ρn := u(tn)−Πhu(tn), δn := Πhu(tn)− unh, τn := ∂̄u(tn)− ∂tu(tn) and let βh be defined as
in (6.13). There exists C > 0 independent of h and ∆t such that

max
1≤k≤n

‖δk‖2H(curl;Ω) + ∆t
n∑
k=1

‖∂̄δk‖2σ ≤ C{∆t
n∑
k=1

[
‖∂̄ρk‖2H(curl;Ω) + ‖τ k‖2H(curl;Ω) + βh(∂tu(tk))2

]
+ max

1≤k≤n
‖ρk‖2H(curl;Ω) + max

1≤k≤n
βh(u(tk))2}. (7.3)

Proof. It is straightforward to show that

(∂̄δk,v)σ + a(δk,v) + ch(δk,v)

= −(∂̄ρk,v)σ − a(ρk,v) + (τ k,v)σ − ch(ρk,v) + ch(u(tk),v)− c(u(tk),v)
(7.4)

for any v ∈ Vh(Ω). Choosing v = δk in the last identity, recalling that ch(·, ·) is nonnegative and uniformly
bounded, and using the estimates

a(δk, δk) ≥ µ−1
1 ‖ curl δk‖20,Ω and (∂̄δk, δk)σ ≥

1
2∆t

(
‖δk‖2σ − ‖δ

k−1‖2σ
)
,

together with (cf. (6.15))

‖δk‖H(curl;Ω) ≤ C
[
‖δk‖σ + ‖curl δk‖0,Ω

]
k = 1, . . . , n (7.5)

and the Cauchy-Schwartz inequality lead us to the following inequality:

‖δk‖2σ − ‖δ
k−1‖2σ + ∆t µ−1

1 ‖ curl δk‖20,Ω

≤ ∆t
2T
‖δk‖2σ + C∆t

[
‖∂̄ρk‖2σ + ‖ρk‖H(curl;Ω) + ‖τ k‖2σ + βh(u(tk))2

]
.

(7.6)

Next, summing over k in

‖δk‖2σ − ‖δ
k−1‖2σ ≤

∆t
2T
‖δk‖2σ + C∆t

[
‖∂̄ρk‖2σ + ‖ρk‖2H(curl;Ω) + ‖τ k‖2σ + βh(u(tk))2

]
.

and using the discrete Gronwall’s Lemma (see, for instance, Lemma 1.4.2 from [22]) and the fact that δ0 = 0
yield

‖δn‖2σ ≤ C∆t
n∑
k=1

(
‖∂̄ρk‖2σ + ‖ρk‖2H(curl;Ω) + ‖τ k‖2σ + βh(u(tk))2

)
, (7.7)
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for n = 1, . . . , N . Inserting the last inequality in (7.6) and summing over k we have the estimate

‖δn‖2σ + ∆t
n∑
k=1

‖ curl δk‖20,Ω ≤ C∆t

(
n∑
k=1

‖∂̄ρk‖2σ +
n∑
k=1

‖ρk‖2H(curl;Ω) +
n∑
k=1

‖τ k‖2σ +
n∑
k=1

βh(u(tk))2

)
. (7.8)

Taking now v = ∂̄δk in (7.4) produces the identity

‖∂̄δk‖2σ + a(δk, ∂̄δk) + ch(δk, ∂̄δk)

= −(∂̄ρk, ∂̄δk)σ + (τ k, ∂̄δk)σ + a(∂̄ρk, δk−1) + ch(∂̄ρk, δk−1) + c(τ k, δk−1)

− ch(τ k, δk−1) + c(∂tu(tk), δk−1)− ch(∂tu(tk), δk−1)− 1
∆t

(γk − γk−1)

(7.9)

with γk := a(ρk, δk) + ch(∂̄ρk, δk) + c(u(tk), δk) − ch(u(tk), δk). On the other hand, as a(·, ·) and ch(·, ·) are
nonnegative, it is easy to check that

a(δk, ∂̄δk) ≥ 1
2∆t

[
a(δk, δk)− a(δk−1, δk−1)

]
, ch(δk, ∂̄δk) ≥ 1

2∆t

[
ch(δk, δk)− ch(δk−1, δk−1)

]
.

Using these inequalities together with the Cauchy-Schwartz inequality in (7.9) lead to

1
2
‖∂̄δk‖2σ +

1
2∆t

[
a(δk, δk)− a(δk−1, δk−1)

]
+

1
2∆t

[
ch(δk, δk)− ch(δk−1, δk−1)

]
≤ C

(
‖∂̄ρk‖2σ + ‖τ k‖2σ

)
+ a(∂̄ρk, δk−1) + ch(∂̄ρk, δk−1) + c(τ k, δk−1)− ch(τ k, δk−1)

+ c(∂tu(tk), δk−1)− ch(∂tu(tk), δk−1)− 1
∆t

(γk − γk−1).

Then, summing over k and recalling that ch(·, ·) is nonnegative, we deduce that

1
2

n∑
k=1

‖∂̄δk‖2σ +
1

2µ1∆t
‖curl δn‖20,Ω

≤ C1

n∑
k=1

(
‖∂̄ρk‖2σ + ‖τ k‖2σ

)
+

n∑
k=1

(θ1,k + θ2,k + θ3,k) +
1

∆t
|γn| ,

(7.10)

with θ1,k :=
∣∣∣a(∂̄ρk, δk−1)

∣∣∣, θ2,k :=
∣∣∣ch(∂̄ρk, δk−1)

∣∣∣, θ3,k :=
∣∣∣c(τ k, δk−1)− ch(τ k, δk−1)

∣∣∣ and

θ4,k :=
∣∣∣c(∂tu(tk), δk−1)− ch(∂tu(tk), δk−1)

∣∣∣ .
It is easy to obtain from the Cauchy-Schwartz inequality and (7.5) the bounds

n∑
k=1

θ1,k ≤
n∑
k=1

‖curl δk−1‖20,Ω + C2

n∑
k=1

‖curl ∂̄ρk‖20,Ω,

n∑
k=1

θ2,k ≤
n∑
k=1

[
‖δk−1‖2σ + ‖curl δk−1‖20,Ω + C3‖∂̄ρk‖2H(curl;Ω)

]
,

n∑
k=1

θ3,k ≤
n∑
k=1

[
‖δk−1‖2σ + ‖curl δk−1‖20,Ω + C4‖τ k‖2H(curl;Ω)

]
,

n∑
k=1

θ4,k ≤
n∑
k=1

[
‖δk−1‖2σ + ‖curl δk−1‖20,Ω + C5βh(∂tu(tk))2

]
,

|γn| ≤ ‖δn‖2σ +
1

4µ1
‖curl δn‖20,Ω + C6

[
‖curlρn‖20,Ω + βh(u(tn))2

]
.
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Substituting the last inequalities in (7.10) and using (7.8), we obtain

∆t
n∑
k=1

‖∂̄δk‖2σ + ‖curl δn‖20,Ω ≤ C7

{
∆t

n∑
k=1

[
‖∂̄ρk‖2H(curl;Ω) + ‖ρk‖2H(curl;Ω) + ‖τ k‖2H(curl;Ω)

+βh(u(tk))2 + βh(∂tu(tk))2
]

+ ‖curlρn‖20,Ω + βh(u(tn))2

}
.

The estimate (7.3) follows directly from a combination of the last inequality with (7.8) and (7.5). 2

Theorem 27 Let u and unh be the solutions of Problems (4.11) and (7.1) respectively. Assume that u ∈
H2(0, T ; X) and let en := u(tn)−unh. Then, there exists a constant C > 0, independent of h and ∆t, such that

max
1≤n≤N

‖en‖2H(curl;Ω) + ∆t
N∑
k=1

‖∂̄ek‖2σ

≤ C

{
max

1≤n≤N
inf

v∈Xh(Ω)
‖u(tn)− v‖2H(curl;Ω) + max

1≤n≤N
inf

ξ∈Λh(Γ)
‖λ(tn)− ξ‖21/2,Γ

+ ∆t
N∑
n=1

inf
ξ∈Λh(Γ)

‖∂tλ(tn)− η‖21/2,Γ +
∫ T

0

(
inf

v∈Xh(Ω)
‖∂tu(t)− v‖2H(curl;Ω)

)
dt

+ (∆t)2

∫ T

0

‖∂ttu(t)‖2H(curl;Ω) dt

}
.

Proof. The result is obtained by using (6.20) and Lemma 21 and proceeding as in Theorem 6.2 of [1]. 2

Finally, with the aid of Lemma 23, Theorem 27 and the interpolation error estimate (6.22), we deduce the
following asymptotic error estimate for our fully-discrete scheme.

Corollary 28 Under the assumptions of Lemma 23 and Theorem 27, there holds

max
1≤n≤N

‖en‖2H(curl;Ω) + ∆t
N∑
k=1

‖∂̄ek‖2σ ≤ Ch2l

{
max

1≤n≤N
‖u(tn)‖2X + max

1≤n≤N
‖µ−1 curlu(tn)‖2X

+ max
1≤n≤N

‖∂t(µ−1 curlu(tn))‖2X +
∫ T

0

‖∂tu(t)‖2X dt

}
+ C(∆t)2

∫ T

0

‖∂ttu(t)‖2σ dt,

with l := min{m, r}.

Remark 29 As λnh = µ−1
0 Rh(curlΓK∗πτunh)), we can proceed as in Remark 25 to obtain

∆t
n∑
k=1

‖λ(tn)− λnh‖21/2,Γ ≤ C[h2l + (∆t)2],

with l := min{r,m}.
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[10] Bossavit, A. & Vérité, J.-C. (1983) The TRIFOU code: Solving the 3-D eddy current by using H as
state variable, IEEE Trans. Magn., 19, 2465–2470.

[11] Buffa, A. & Ciarlet Jr., P. (2001) On traces for functional spaces related to Maxwell equations. I. An
integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci., 24, 9–30.

[12] Buffa, A. (2001) Hodge decompositions on the boundary of nonsmooth domains: the multi-connected
case, Math. Methods Appl. Sci., 11, 1491–1503.

[13] Buffa, A., Costabel, M. & Sheen, D. (2002) On traces for H(curl; Ω) in Lipschitz domains, J. Math.
Anal. Appl., 276, 845–867.

[14] Costabel, M. (1988) A symmetric method for the coupling of finite elements and boundary elements
In: J. R. Whiteman, ed. Proc. 6th Conf. on The Mathematics of Finite Elements and Applications VI,
Uxbridge: Academic Press, 281–288.

[15] Girault, V. & Raviart, P. A. (1986) Finite Element Methods for Navier Stokes Equations. New York:
Springer-Verlag.

[16] Hiptmair, R. (2002) Symmetric coupling for eddy current problems, SIAM J. Numer. Anal., 40, 41–65.

[17] Mayergoyz, I. D., Chari, M. V. K. & Konrad, A. (1983) Boundary Galerkin’s method for three-
dimensional finite element electromagnetic field computation, IEEE Trans. Magn., 19, 2333–2336.

[18] McCamy, R. & Stephan, E. (1984) Solution procedures for three-dimensional eddy-current problems,
J. Math. Anal. Appl., 101, 348–379.

[19] Meddahi, S. & Selgas, V. (2003) A mixed-FEM and BEM coupling for a three-dimensional eddy current
problem, M2AN Math. Model. Numer. Anal., 37, 291–318.

[20] Meddahi, S. & Selgas, V. (2008) An H-based FEM-BEM formulation for a time dependent eddy current
problem, Appl. Numer. Math, 58, 1061–1083.

[21] Monk, P. (2003) Finite Element Methods for Maxwell’s Equations. New York: Oxford University Press.

[22] Quarteroni, A. & Valli, A. (1994) Numerical Approximation of Partial Differential Equations. Berlin:
Springer-Verlag.

[23] Zeidler, E. (1990) Nonlinear Functional Analysis and its Applications. II/A. New York: Springer-Verlag.



Centro de Investigación en Ingenieŕıa Matemática (CI
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