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NUMERICAL APPROXIMATION OF OSCILLATORY
SOLUTIONS OF HYPERBOLIC-ELLIPTIC SYSTEMS OF

CONSERVATION LAWS BY MULTIRESOLUTION SCHEMES

STEFAN BERRESA, RAIMUND BÜRGERB, AND ALICE KOZAKEVICIUSC

Abstract. The generic structure of solutions of initial value problems of hy-
perbolic-elliptic systems, also called mixed systems, of conservation laws is
not yet fully understood. One reason for the absence of a core well-posedness
theory for these equations is the sensitivity of their solutions to the structure
of a parabolic regularization when attempting to single out an admissible so-
lution by the vanishing viscosity approach. There is, however, theoretical and
numerical evidence for the appearance of solutions that exhibit persistent os-
cillations, so-called oscillatory waves, which are (in general, measure-valued)
solutions that emerge from Riemann data or slightly perturbed constant data
chosen from the interior of the elliptic region. To capture these solutions,
usually a fine computational grid is required. In this work, a version of the
multiresolution method applied to a WENO scheme for systems of conservation
laws is proposed as a simulation tool for the efficient computation of solutions
of oscillatory wave type. The hyperbolic-elliptic 2× 2 systems of conservation
laws considered are a prototype system for three-phase flow in porous media
and a system modelling the separation of a heavy-buoyant bidisperse suspen-
sion. In the latter case, varying one scalar parameter produces elliptic regions
of different shapes and numbers of points of tangency with the borders of the
phase space, giving rise to different kinds of oscillation waves.

1. Introduction

1.1. Scope of the paper. We consider first-order systems of two scalar, nonlinear,
strongly coupled conservation laws

∂tφi + ∂xfi(φ1, φ2) = 0, i = 1, 2, x ∈ R, t > 0 (1.1)

subject to the initial condition

φi(x, 0) = φi,0(x), i = 1, 2, x ∈ R. (1.2)
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We recall that the system (1.1) is called hyperbolic at a point (φ1, φ2) if the Jacobian
Jf of the flux vector f = (f1, f2)T, evaluated at (φ1, φ2),

Jf (φ1, φ2) :=
(
Jij(φ1, φ2)

)
i,j=1,2

:=
(

∂fi

∂φj
(φ1, φ2)

)
i,j=1,2

,

has real eigenvalues, that is, if the discriminant

∆(φ1, φ2) :=
(
(J11 − J22)2 + 4J12J21

)
(φ1, φ2) (1.3)

is non-negative, and strictly hyperbolic if these eigenvalues are moreover distinct,
that is, if ∆(φ1, φ2) > 0. If ∆(φ1, φ2) < 0, then Jf (φ1, φ2) has a pair of complex
conjugate eigenvalues and (1.1) is called elliptic at that point. The set of all points
(φ1, φ2) at which (1.1) is elliptic is called elliptic region.

It is the purpose of this contribution to study numerically the solution behaviour
of (1.1), (1.2) when the initial data are chosen as a pair of constants from the elliptic
region, and where these constants are slightly perturbed on a small interval (cor-
responding to a small number of cells of a spatial discretization). For this setting,
and a particular system, Frid and Liu [22] observed highly oscillatory but strongly
localized solutions, which they termed oscillation waves. We herein capture, and
in part analyze, such oscillations first for the system studied in [22] (Model 1), and
then for a hyperbolic-elliptic system that emerges from a model of sedimentation of
a bidisperse suspension (Model 2) [6, 11]. The novelty of our approach is that we
employ a multiresolution (MR) method, which adaptively concentrates computa-
tional effort associated with a given numerical scheme for systems of conservation
laws on areas of strong variation of the solution. In our case, the method can be
advantageously employed to capture the oscillations due to the mixed-type nature
of the system.

1.2. Mixed-type systems of conservation laws. Our interest in mixed-type or
hyperbolic-elliptic systems of conservation laws originated in models of sedimenta-
tion of polydisperse suspensions. In this application, the governing equations are
a system of N scalar, nonlinear, strongly coupled conservation laws for the gen-
eral case of a suspension with particles of N species differing in size or density. If
particle species differ in density, then the phase space of admissible concentration
vectors contains regions where the system is non-hyperbolic (elliptic for N = 2).
See [11] for the analysis of some specific models; our treatment will be limited
to the case N = 2. Other applications of mixed-type systems include transonic
flow, traffic flow, one-dimensional unsteady flow of a van der Waals gas, propaga-
tion of phase boundaries in elastic bars, and multiphase flow (e.g., water, gas, oil)
in porous media. Of particular interest are systems of conservation laws model-
ing three-phase flow in porous media, since there are some similarities to systems
modeling polydisperse sedimentation.

In fact, models for multiphase flow in porous media formed the main stimulus
for intense research related to systems that change type. We refer to [19, 20, 30, 31,
40, 41] for overviews of the theory of mixed systems of conservation laws and their
applications; a concise review based on these papers is provided in [11, Sect. 6.2].
In practical numerical calculations, the existence of elliptic regions usually does
not compel computational instabilities, which is why the change of type was not
noticed at first; for example, some of the numerical calculations performed in [8] for
various systems of conservation laws modeling polydisperse sedimentation include
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the hyperbolic-elliptic case, but oscillations were not observed. For the latter model,
constructions of solutions by the front tracking method for the hyperbolic-elliptic
case corresponding to a bidisperse suspension with particles having different sizes
and densities are made in [4]. The examples in [4] start from “hyperbolic” initial
data, and it turns out that the solution not only avoids the elliptic region, but
presents some features that do not appear in the strictly hyperbolic case, including
the formation of a continuously varying steady-state solution due to the presence of
an umbilic point in the hyperbolic subregion. One reason for the lack of oscillations
is, of course, the numerical diffusion introduced by most numerical schemes, which
turns the solution the system of conservation laws into a solution that is similar to
the exact solution of a well-posed parabolic system.

Nevertheless, the existence of oscillatory solutions (which are measure-valued
solutions) for non-hyperbolic systems has been proved both analytically and nu-
merically [21]. In fact, using a first-order finite difference scheme, Frid and Liu [22]
showed that approximate solutions to Riemann problems with initial data inside
elliptic regions may present persistent large-amplitude oscillation waves. Numerical
studies have also shown that when one state belongs to the hyperbolic region and
the other to the elliptic, the solution is acceptable, but still displays some oscilla-
tions. On the other hand, when both states are located in the hyperbolic region,
the numerical solutions seem to be stable. It has furthermore been demonstrated
that solutions to Riemann problems with “hyperbolic” initial data avoid the ellip-
tic regions. The distinction between Riemann and more general Cauchy problems
is essential, since this avoidance of the elliptic region is not true for more general
Cauchy data [27, 45].

In general, the well-posedness theory for mixed systems of conservation laws is
not yet as developed as the theory of hyperbolic systems of conservation laws. In the
latter case, it is known that admissibility criteria or entropy conditions are required
to make the model well-posed. One of these criteria can be derived by adding a
diffusion term to the right-hand side of (1.1), and then to study the traveling
waves of the resulting convection-diffusion system when the regularizing diffusion
parameter tends to zero. On the other hand, to regard a mixed-type system as an
inviscid limit of a parabolic system is not entirely satisfactory since the stability
or admissibility of such shock waves may depend on the form of the regularizing
(nonlinear) diffusion matrices. Papers that discuss these or related issues include
[1, 3, 39, 40]. In particular, it is not clear what the physical diffusion matrix for
polydisperse sedimentation models (our Model 2) should look like. This problem
can possibly be resolved with the help of computational and experimental studies
of hydrodynamic diffusion [16, 34, 49].

Summarizing, we can say that although the mathematical and numerical theory
as well as the general understanding of mixed systems have advanced significantly
recently, most essential problems have remained unsolved and there exists no core
theory and there is no general agreement on admissibility criteria for mixed systems.

1.3. High-resolution and multiresolution schemes. High-resolution shock-
capturing schemes are a well-established tool for the accurate numerical solu-
tion of systems of conservation laws. Methods of this type include essentially
non-oscillatory (ENO) schemes [46], weighted essentially non-oscillatory (WENO)
schemes (see [47]), and non-oscillatory central schemes [33, 44]; see also [36, 48].
Clearly, resolution is gained by these methods at increased computational cost,
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for example when reconstructing the solution by higher order polynomials. The
multiresolution (MR) method has been devised (at least, originally) to reduce the
computational cost of high-resolution methods. The solution of a system of conser-
vation laws usually exhibits strong variations (shocks) in small regions but behaves
smoothly elsewhere. The MR technique adaptively concentrates computational ef-
fort on the regions of strong variation. It goes back to Harten [25] for hyperbolic
equations. See Chiavassa et al. [15] and Müller [43] for a recent review on MR
methods for hyperbolic conservation laws.

The MR method used herein, which is adapted from [12, 32], is based on grid
refinement to resolve gradients of a physically relevant quantity (see e.g. [28, 29])
and is based on WENO schemes together with a sparse point representation (SPR).
This version of the MR technique leads to an efficient and accurate scheme for
multi-species kinematic flow models, which form the general class of models that
includes our Model 2 (see [12]). The method employs interpolating wavelets [17,
26], which are efficiently combined with thresholding strategies to produce sparse
approximations on a nearly optimal grid.

1.4. Outline of the paper. In Section 2 the MR scheme is described. In Sec-
tion 2.1 we briefly recall the well-known MR framework by Harten [25, 26] for the
representation of a function by its point values on a sequence of nested dyadic
grids. In doing so, we keep the same notation as in our previous work [12, 13, 32],
to which we refer for details. Several variants of MR methods applied to solving
a differential equation differ in the evaluation of the differential operator. In this
work, we consider the adaptive WENO scheme proposed in [12] to evolve the solu-
tion on a non-equidistant sparse grid via the concepts of local scale and of a sparse
point representation (SPR) of a function, which go back to Holmström [28]. In
Section 2.2 we recall the concept of an SPR of a function. The SPR of the solution
is updated after each time step (of one application of an adaptive WENO scheme).
The update of the SPR is briefly addressed in Section 2.3. The reference numerical
scheme, namely a third-order WENO approximation built from flux vectors with
Lax-Friedrichs splitting combined with a TVD Runge-Kutta scheme, is outlined in
Section 2.4. The final MR algorithm is presented in Section 2.5.

In Section 3, the prototype hyperbolic-elliptic system from [22] is introduced
(Section 3.1) and numerical simulations for Model 1 with two different cases of initial
data (Examples 1 and 2) are presented (Section 3.2). In Section 4, an ellipticity
analysis and numerical simulations for Model 2 are presented. Model 2 emerges
from a general theory of sedimentation of polydisperse suspensions with N particle
species, which is presented in detail in [6, 9, 11] and is briefly outlined in Section 4.1
for the special case N = 2 we are interested in. This model for N = 2 still involves
three parameters, namely the exponent n of the hindrance factor, the ratio γ of the
densities of both particles (relative to the fluid), and the squared ratio δ of the sizes
of the smaller and the larger particles. The known properties of loss of hyperbolicity
of the model for particles with different densities, that is, the hyperbolic-elliptic
type behaviour for N = 2, are reviewed in Section 4.2. The size, location and
shape of the elliptic region depend on the values of these parameters. In particular,
we provide exact expression of the points of tangency of the border of the elliptic
region with that of the phase space. To prove that the region of ellipticity is indeed
the interior of one closed curve, we consider in Section 4.4 the symmetric case of
particles of equal size (δ = 1) and a “heavy-buoyant” system with γ = 1. It is also
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for this case that we present, in Section 4.5, MR simulations of oscillatory solutions.
Examples 3, 4, 5, and 6 correspond to the respective values n = 4, n = 8, n = 12
and n = 4.65, the latter of which corresponds to real experimental data [35]. In
general, it turns out that permanently oscillatory solutions appear if initial data
are chosen inside the elliptic region. Finally, some general conclusions are collected
in Section 5; in particular we comment on the realism of oscillatory solutions for
Model 2.

2. The multiresolution scheme

2.1. Multiresolution framework. Let (G0, G1, . . . , GLc) denote a family of uni-
form nested grids on the interval I := [a, b], where G0 := (x0

0, x
0
1, . . . , x

0
N0

) with
N0 = 2m, m ∈ N is the finest one corresponding to the finest resolution level, and
h0 := (b− a)/N0 is the finest cell length. The values of a function u on G0 are the
input data. The remaining grids are obtained recursively as follows: given a grid
Gk−1, we obtain Gk by removing the even-indexed grid points. Therefore

xk
j = xk−1

2j for 0 6 j 6 Nk = 2m−k, k = 1, . . . , Lc.

Thus, the representation of u on any coarser grid Gk, k = 1, . . . , Lc, can be obtained
directly from the finest level k = 0:

uk
j = u

(
xk

j

)
= u

(
x0

2kj

)
= u0

2kj for 0 6 j 6 Nk.

The function value at xk−1
2j−1 is obtained from the interpolation of the r = 2s con-

secutive points (uk
j−s, . . . , u

k
j+s−1) by an (r − 1)-th degree polynomial. For r = 4

we obtain the following interpolation formula for the value ũk−1
2j−1:

ũk−1
2j−1 =

1
16
·


5uk

0 + 15uk
1 − 5uk

2 + uk
3 for j = 1,

−uk
j−2 + 9uk

j−1 + 9uk
j − uk

j+1 for j = 2, . . . , Nk − 1,

uk
Nk−3 − 5uk

Nk−2 + 15uk
Nk−1 + 5uk

Nk
for j = Nk.

(2.1)

The interpolation errors, known as details, are

dk
j := uk−1

2j−1 − ũk−1
2j−1 for 1 6 j 6 Nk.

Thus, with the knowledge of uk := (uk
0 , uk

1 , . . . , uk
Nk

) and dk := (dk
0 , dk

1 , . . . , dk
Nk

), we
can exactly recover the representation of u on Gk−1. Therefore there is a bijective
linear transform, the so-called interpolating wavelet transform, between both reso-
lution levels, associating uk−1 to (dk, uk). Applying successively this procedure for
1 6 k 6 Lc, we can recover the values of u on the finest level of resolution from its
values on the coarsest level Lc and the sequence of all details from levels Lc to 1:

u0 ↔ (d1, u1)↔ (d1, d2, u2)↔ · · · ↔ (d1, d2, . . . , dLc , uLc) =: uM, (2.2)

where uM is the multiresolution representation [25] of u0 ≡ u. The details dk contain
information on the local smoothness of u. They will be used to flag the non-smooth
parts of the solution in the adaptive numerical method.

Multiresolution schemes achieve data compression and reduction of computa-
tional effort by considering only details dk

j that are larger in absolute value than a
level-dependent comparison value εk. This means that one computes the quantities

d̂k
j := trεk

(
dk

j

)
:=

{
0 if |dk

j | < εk,
dk

j if |dk
j | > εk,

1 6 j 6 Nk, 1 6 k 6 Lc, (2.3)
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where trεk
is the so-called thresholding or truncation operator with the threshold

parameters εk, 1 6 k 6 Lc. We here utilize the thresholding strategy εk = 2−kε0,
along with a given value ε0, see [12].

In our case, the thresholding operation yields a set of markers (Boolean flags)
that indicate whether |dk

j | > εk or not, that is, whether a position (j, k) in the MR
representation is significant or not. This information controls which point values
of u are included in the sparse point representation (SPR) of u. The computation
of this set of markers is formalized in [25], where an algorithm for the scalar case
is presented. In [12] Harten’s algorithm is adapted for the vectorial case.

2.2. Sparse point representation. According to [28], the SPR of a function u
is associated to a sparse grid Γ̄ with GLc ⊂ Γ̄ ⊂ G0, and consists of all exact point
values of u that correspond to positions belonging to Γ̄. The set Γ̄ consists of all
positions judged significant according to (2.3), plus all point values of the coarsest
grid, and certain safety points, which ensure that the SPR properly captures the
finite speed of propagation of information and the formation of shock waves.

To build the SPR, we use the same sparse data structure as in [12], which
is managed by the index set D̄ that flags whether a detail is significant or not.
Therefore, Γ̄ is the set of grid points flagged by D̄. The SPR of the vector-valued
solution of (1.1) is based on the union of the SPRs of both vector components,
since each solution component can be supported, and develop discontinuities, in
different subregions of the domain. This behaviour permits a simplification similar
to the one proposed in [14] for the Euler equations, where the SPR of the density
is sufficient to capture the variations of the smoothness of all remaining vector
components of the solution.

Consequently, to obtain the unified representation, we first compute index sets
D̄1 and D̄2, one for each component, that include the positions of the significant
coefficients and the positions of safety points, and then define D̄ := D̄1 ∪ D̄2. Then
we build an SPR for each vector component with respect to Γ̄, which is the set of
grid points from D̄ plus all points from the coarsest level, i.e. we define

Γ̄ :=
{
xk−1

2j−1| (j, k) ∈ D̄} ∪
{
xLc

0 , . . . , xLc

Lc

}
=

{
xk−1

2j−1| (j, k) ∈ D̄1 ∪ D̄2} ∪
{
xLc

0 , . . . , xLc

Lc

}
.

(2.4)

(See [12] for further information and the corresponding algorithms.)
Whenever needed for flux evaluations, values corresponding to positions not

contained in the SPR are interpolated from solution values belonging to the SPR. In
other words, values of positions not belonging to the SPR can be discarded, so that
the SPR presents a way of using the compression capabilities of MR representations.
The compression effect due to the computation can be quantified by the number of
details contained in the SPR, denoted Ns := #Γ̄. Of course, for a given function u,
Ns depends substantially on the thresholding strategy.

2.3. Updating the SPR of the numerical solution. The initial vector

Φ(x, 0) = Φ0(x) :=
(
φ1,0(x), φ2,0(x)

)T
, Φ0(x) ∈ Eφmax ,

is discretized initially on the finest mesh G0. For the first time step, the unified
SPR will be obtained from the SPRs of each one of its components, i.e.

u0
i :=

(
φi,0(x0

0), φi,0(x0
1), . . . , φi,0(x0

N0
)
)
, i = 1, 2. (2.5)
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In the second and all subsequent time steps of the WENO-MRS method, we need
to update the SPR from the respective previous time step. To obtain a new SPR
after a time iteration is completed (here, a TVD Runge-Kutta cycle), we utilize an
algorithm proposed in [28], which performs the wavelet transform only for those
points that correspond to significant positions, i.e. positions in D̄. To compute
the predictor, if any point value is needed that is not included in the SPR, the
value is recursively interpolated from a coarser scale. The algorithm will terminate,
since all function values of the coarsest grid belong to the SPR at any time step.
After this sparse wavelet transform, the thresholding and extension operations are
performed in order to update the flags. New point values to be included in the SPR
(if necessary) are obtained in the same way by interpolation from coarser levels.

The update of the solution from tn−1 to tn is performed for the solution values
φn

i (xk
j ) ≈ φi(xk

j , tn) for (j, k) ∈ D̄ ⊂ Γ̄, i = 1, 2, where Γ̄ is the sparse grid of SPR
at tn−1. After each time step, the SPR update process is repeated for each solution
component: new details are computed, new flags are determined, and according to
the new flags, positions are included on or excluded from the updated sparse grid.
In the case of inclusion, interpolated point values are associated to the new grid
position. Once updated versions of both sets D̄1 and D̄2 are available, the new
sparse grid Γ̄ is defined by (2.4).

2.4. Time and space discretizations. We assume that the SPR of the numerical
solution to be advanced over the next time step is already built, as explained in
Section 2.3, where the sparse grid is denoted by Γ̄. To simplify notation, we denote
by Φ̄ = (φ̄1, φ̄2)T the SPR of the solution vectors.

For the time discretization of the sample system ∂tΦ̄ = L(Φ̄) ≡ −∂xf(Φ̄), we
utilize the TVD Runge-Kutta scheme [46] of order and step number nRK = 3:

Φ̄(1)
j = Φ̄n

j + ∆tLj(Φ̄n), Φ̄(2)
j =

1
4

(
3Φ̄n

j + Φ̄(1)
j + ∆tLj(Φ̄(1))

)
,

Φ̄n+1
j =

1
3

(
Φ̄n

j + 2Φ̄(2)
j + 2∆tLj(Φ̄(2))

)
, j = 0, . . . , N0, n = 0, 1, 2, . . . .

(2.6)

The numerical fluxes that determine the evolution of (1.1) will be calculated
on Γ̄. A conservative semi-discrete approximation Φ̄i(t) = (φ̄1,i(t), φ̄2,i(t))T to the
exact solution Φ̄(xi, t) of (1.1) satisfies the system of ODEs

dΦ̄i

dt
+

1
∆xi

(
f̂ i+1/2 − f̂ i−1/2

)
= 0, (2.7)

where f̂ i+1/2 is the numerical flux associated with xi +∆xi+1/2, where xi ∈ Γ̄ and
∆xi := (∆xi+1 + ∆xi)/2. To guarantee flux upwinding, we apply a Lax-Friedrichs
flux splitting to each component of the exact flux function:

f(Φ) = f+(Φ) + f−(Φ), f±(Φ) :=
1
2
(
f(Φ)± αΦ

)
.

The parameter α should equal the spectral radius of Jf (Φ). For the case of Model 1,
we use α = 1 as starting point, then after the first iteration set

α = max
i∈Γ̄

max
{∣∣λ1(Φ̄i

)∣∣, ∣∣λ2(Φ̄i

)∣∣}, (2.8)

for values where λ1 and λ2 are the eigenvalues of the Jacobian of that model (see
(3.4) in Section 3). For Model 2, the fluxes are of the “kinematic flow” type fi(Φ) =
φivi(Φ) for i = 1, 2, where vi is a bounded velocity function (see Section 4.1), we
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employ the following formula, which corresponds to the case N = 2 of [12, Eq.
(2.10)] for kinematic flow models with a general number N of species:

α = max
i∈Γ̄

max
{∣∣v1

(
Φ̄i

)∣∣, ∣∣v2

(
Φ̄i

)∣∣}. (2.9)

Note that α is determined anew in each time step. Consequently, the value of ∆t
is also corrected in each time step respecting the condition α∆t/∆xi 6 CFL, where
CFL is the CFL number.

The numerical flux is obtained as sum of the WENO approximations for each
flux splitting components:

f̂ i+1/2 = f+,WENO
i+1/2 + f−,WENO

i+1/2 . (2.10)

The adaptive WENO scheme is described in detailed formulation in [12], and the
original version for uniform grids, in [52].

As pointed out in [12], the numerical fluxes are computed from data of the same
refinement level (local scale) such that all points involved in the computation of
one WENO flux vector have the same distance di = min{∆xi,∆xi+1}. If any
point is missing, we interpolate the corresponding solution value from a coarser
scale and obtain the necessary flux components. (This procedure is well defined,
since all values from the coarsest grid always belong to the SPR.) Values obtained
by interpolation are only auxiliary values to keep the stencil locally uniform. The
WENO approximations are computed exactly as is described in the literature, see
e.g. [46, Ch. 2]; details are omitted here. Due to the conservativity of the method
it is ensured that the total mass of each species is conserved.

2.5. Multiresolution algorithm. Now we present the MR scheme as an opera-
tion on the sparse grid Γ̄, in which numerical fluxes are computed by the adaptive
WENO procedure. We calculate the approximate solutions Φ̄n,0, n = 1, 2, . . . , until
the final time T is reached, by Algorithm 2.3 of [12], which is recalled here.

Algorithm 2.1.
t← 0
while t 6 T do

1. Φn(x) is given on the finest grid (n = 0) or on a sparse grid (n > 0).
Calculate its SPR associated to Γ̄ with Ns + 1 points.

2. Compute the local scale for each point of Γ̄ and if necessary, the aux-
iliary neighbors to compute the numerical fluxes with locally uniform
stencils.

3. Compute α (by (2.8) and (2.9) for Models 1 and 2, respectively) and
∆t ← CFL∆xi/α, considering the smallest scale present on Γ̄ and
respecting the CFL condition. Set t← t + ∆t.

4. Φ̄(0)
j ← Φn,0

j , xj ∈ Γ̄
do i = 1, . . . , nRK

(at this point, the values Φ̄(0)
j , . . . , Φ̄(i−1)

j for xj ∈ Γ̄ are known)
do k = 0, . . . , i− 1

L̄0

(
Φ̄(k)

)
← − 1

∆x0

f̂
0

1/2, L̄Ns

(
Φ̄(k)

)
← 1

∆xNs

f̂
0

Ns−1/2

L̄j

(
Φ̄(k)

)
← − 1

∆xj

(
f̂

0

j+1/2 − f̂
0

j−1/2

)
, xj ∈ Γ̄ \ {x0, xNs}

enddo
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Φ̄(i)
j ←

i−1∑
k=0

(
αikΦ̄(k)

j + ∆tβikL̄j

(
Φ̄(k)

))
, xj ∈ Γ̄

enddo
Φ̄n+1,0

j ← Φ̄(nRK)
j , xj ∈ Γ̄,

n← n + 1
endwhile

We herein consider initial-boundary value problems with zero-flux boundary con-
ditions. In this case, the interpolating wavelet transform and the WENO scheme are
modified at the boundaries in order to consider all information inside the domain.
Nevertheless Algorithm 2.1 still holds under these modifications. Our interest is,
however, focused on features of the solution in the interior of the computational
domain, which are not affected (at least for the small times we are interested in)
by the choice of boundary conditions.

3. A prototype hyperbolic-elliptic system (Model 1)

3.1. Description of Model 1. This model is a prototype of a mixed system of
conservation laws modelling three-phase flow in porous media [22] and is given by

wt + g(w)x = 0 (3.1)

for the unknowns for w =: (u, v)T with the flux function

g(u, v) :=
(

1√
3

(
v2

2
− u2

2
+ v

)
+ u,

1√
3

(uv − u) + v

)T

. (3.2)

The purpose of studying this system is that we wish to recover, by the MR method,
the strong oscillations observed in [22] provided that the initial data w(x, 0) =
w0(x), x ∈ R assume values from inside the elliptic region. In fact, we here assume
that the initial data are chosen inside the region

∇ :=
{
w = (u, v)T ∈ R2 | v < 1, v ±

√
3u ≥ −2

}
, (3.3)

which has the property that g(w) ∈ ∇ if w ∈ ∇, which in turn implies that the
solution w(·, t) of the system will assume values in ∇ whenever w0(x) ∈ ∇ for all
x ∈ R. For this reason we call ∇ an invariant region [22].

The eigenvalues of the Jacobian Jg are given by

λ1,2 = 1∓ 1√
3

√
u2 + v2 − 1, (3.4)

such that the system (3.1), (3.2) is of mixed type, being hyperbolic for ‖w‖22 =
u2 + v2 > 1 and elliptic for

w ∈ E1 :=
{
w = (u, v)T ∈ ∇ | u2 + v2 < 1

}
.

Note that E1 is tangent to each of the three sides of ∇. Moreover, the absolute
values of the eigenvalues are |λ1| = |λ2| = 1 on the boundary of the elliptic region
and increase toward the origin, where |λ1| = |λ2| = 2

√
3/3.
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Figure 1. Example 1 (Model 1, Riemann problem): profiles
of u (top) and v (bottom) at t = 0.0153, with marked significant
positions of the SPR. The CFL number is 0.125, as in [22].

3.2. Simulation of Model 1. We now revisit the simulations made in [22] and try
to find out where the oscillations come from. In [22] the initial datum chosen as a
constant which is perturbed at a small number of grid points in the vicinity of x = 0.
In one case considered in [22] (w0 = (u0, v0)T = (0.1, 0.2)T with the exception of
a vicinity of x = 0), oscillations can be observed, whereas in the other case of [22]
(w0 = (u0, v0)T = (−0.9, 0.1)T except for a vicinity of x = 0) oscillations are not
observed; rather, the solution consists of a small number of travelling discontinuities
satisfying an extended Lax shock admissibility criterion (i.e., the usual Lax shock
inequalities hold for the real parts of the eigenvalues).
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Figure 2. Example 1 (Model 1, Riemann problem): solution at
t = 0.0153 in the (u, v)-plane.
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Figure 3. Example 1 (Model 1, Riemann problem): number
of significant points, considering the finest resolution level with
N0 = 2p, p = 16, . . . , 20 points.

3.2.1. Example 1: Model 1 with Riemann initial data. To examine the anatomy of
oscillations, we consider a Riemann problem for (3.1), (3.2) with the initial datum

w(x, 0) = w0(x) :=

{
wL = (uL, vL)T = (0, 0)T ∈ E1 for x < 1,
wR = (uR, vR)T = (0,−1.5)T ∈ ∇\E1 for x > 1.

(3.5)

To focus on the development of oscillations the solution has been evolved only
over a small number of time steps up to finite time t = T = 0.0153. The corre-
sponding profiles of the components u and v of the solution are shown in Figure 1.
Outside the shown range of positions x, the solution is constant. Both profiles



12 BERRES, BÜRGER, AND KOZAKEVICIUS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1.0003  1.0004  1.0005  1.0006  1.0007  1.0008

x

u
N0=217

N0=218

N0=219

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 1.0003  1.0004  1.0005  1.0006  1.0007  1.0008

x

v
N0=217

N0=218

N0=219

Figure 4. Example 2 (Model 1, almost constant initial data):
profile of oscillations of u (top) and v (bottom) with refinements
considering the finest resolution level of the multiresolution with
2p points, p = 17, 18, 19.

present a mixed, partially oscillatory pattern composed by a smooth part of the so-
lution followed by strong oscillations. In addition, Figure 1 displays the momentary
significant positions, that is, the levels of multiresolution occupied by the SPR of
the solution, which are marked by ’+++’; similar information is included in some
of the plots of Figures 9, 11, 12, 14, 15, 16 and 17 for Examples 2–6.

Figure 2 shows the same solution as a trajectory in the (u, v)-plane connecting
the points (uL, vL) and (uR, vR). Apparently, the solution seems to avoid the elliptic
region E1. In preliminary computations (not shown here) it turned out that when
the Riemann initial data of the previous examples are interchanged (i.e., wL =
(0,−1.5)T, wR = (0, 0)T), then the spirals have the same clockwise orientation and
the propagation speed is also positive.
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Figure 5. Example 2 (Model 1, almost constant initial data):
solution after a few time steps for fine multiresolution scales vary-
ing from 216 to 220. Top: profile of u. Bottom: solution in phase
space.

Finally, Figure 3 illustrates the number of significant points used by the MR
scheme for fine levels from 216 to 220. The number of significant points maintained
by the MR representation is kept stable and at the same magnitude for all reso-
lutions. This is an important feature of the adaptive scheme, indicating that sig-
nificant positions are concentrated exactly where the solution varies strongly. The
threshold value ε0 considered for each number of point in the finest grid N0 = 2p,
p = 16, . . . , 20, was ε0 = 5 × 1012−p. Note that these numbers correspond to the
subdivision of the interval [a, b] = [0, 2] into N0 subintervals.

3.2.2. Example 2: Model 1 with almost constant initial data. In Example 2, we
simulate again Model 1, but the initial datum is chosen as w0(x) = (0, 0)T with
the exception of a few grid points near the origin; we refer to this as “almost
constant” initial data. Figure 4 compares numerically computed solution profiles
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corresponding to various numbers of points provided in the finest MR level. We
observe that the oscillation frequency of the numerical solution depends on the
meshsize of the finest grid. Specifically, we roughly observe that if the number
of discrete cells is doubled, then the number of appearing peaks is also doubled.
Nevertheless, the oscillations maintain the same patterns for different meshwidths
of the finest mesh. Figure 5 presents the spiraling dynamics after a few time steps
both by a profile of v and in the phase space u, v. Increasing the resolution does
not lead to some kind of convergence to a classical solution, but only increases the
strength of oscillations. Here and in Examples 3–6 for Model 2, the number N0

corresponds to the subdivision of the interval [a, b] = [0, 1] into N0 subintervals.

4. Settling of heavy-buoyant bidisperse suspensions (Model 2)

4.1. Description of Model 2. The goal of examining Model 2 is to analyze
whether oscillations similar to these observed for Model 1 also appear in another ex-
ample of multiphase flow. The comparison gives physical insights on the conditions
for oscillatory solution behaviour.

We consider a suspension composed of rigid spherical particles which are dis-
persed in a viscous fluid of density %f and viscosity µf . In the general case, the
particles belong to N different species having sizes (diameters) d1 > d2 > . . . > dN

and densities %1, . . . , %N , where di 6= dj or %i 6= %j for i 6= j. Model equations for
the three-dimensional motion of the mixture were derived in [11] from the mass
and linear momentum balances for the fluid and each solid species by introducing
constitutive assumptions and simplifying the model equations as a consequence of
a dimensional analysis. The one-dimensional version of the model goes back to
Masliyah [42] and Lockett and Bassoon [38], and is therefore frequently referred
to as “MLB model”. The relevant parameters are δi := d2

i /d2
1 and %̄i := %i − %f

for i = 1, . . . , N . Moreover, we introduce the vector %̄ := (%̄1, . . . , %̄N )T, the total
solids fraction φ := φ1 + · · · + φN , the viscosity parameter µ := −gd2

1/(18µf) < 0,
where g is the acceleration of gravity, and the hindered settling factor V = V (φ),
which may be chosen as

V (φ) =

{
(1− φ)n−2 if 0 6 φ 6 φmax,

0 otherwise,
n > 2, (4.1)

where φmax denotes a maximum solids volume fraction, which we here assume to
be a constant. Then the phase velocity of particle species i is

vi(Φ) = µV (φ)

[
δi(%̄i − %̄TΦ)−

N∑
m=1

δmφm(%̄m − %̄TΦ)

]
, i = 1, . . . , N. (4.2)

The present treatment is limited to the case N = 2. Taking into account that
δ1 = 1, we then obtain from (4.2) the equations

v1(Φ) = µV (φ)
(
(1− φ1)(%̄1 − %̄TΦ)− δ2φ2(%̄2 − %̄TΦ)

)
,

v2(Φ) = µV (φ)
(
(1− φ2)δ2(%̄2 − %̄TΦ)− φ1(%̄1 − %̄TΦ)

)
.

(4.3)

The relevant phase space for N = 2 is

Dφmax :=
{
Φ ∈ R2 | φ1 > 0, φ2 > 0, φ1 + φ2 6 φmax

}
.
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For one-dimensional batch settling of a suspension with initially given composition
in a closed vessel of depth L, the governing equation is

∂tΦ + ∂xf(Φ) = 0, x ∈ (0, L), t > 0,

f(Φ) =
(
f1(Φ), f2(Φ)

)T
, f1(Φ) = φ1v1(Φ), f2(Φ) = φ2v2(Φ),

(4.4)

where we consider the initial and zero-flux boundary conditions

Φ(x, 0) = Φ0(x), x ∈ [0, L], (4.5)

f |x=0 = f |x=L = 0. (4.6)

4.2. Mixed type property. For the model exposed in the previous section and
N = 2, the criterion for ellipticity is equivalent to the instability criterion by Batch-
elor and Janse van Rensburg [2]. In [11] it is shown that loss of hyperbolicity, that
is the occurrence of complex eigenvalues of Jf (Φ), provides an instability criterion
for polydisperse suspensions for arbitrary N . Instability regions for N = 2, 3 and
different choices of f(Φ) are determined in [7, 11]. In [6] it is proved that for equal-
density particles (%̄1 = · · · = %̄N = %s − %f) and arbitrary particle size distributions
with δi 6= δj for i 6= j, the system (4.4) with the flux vector f(Φ) defined via (4.3)
is strictly hyperbolic for all Φ ∈ D1 with φ1 > 0, . . . , φN > 0 and φ < 1. The
instability criterion for one-dimensional batch settling is the same as for the full
two- or three-dimensional model, in which the corresponding first-order system of
conservation laws is coupled with additional equations of motion for the mixture.

The consequences of lack of stability include the formation of blobs and “fin-
gers” in bidisperse sedimentation, increased sedimentation rates, decreased sepa-
ration quality of hydraulic classifiers, and non-homogeneous sediments in material
manufacturing by suspension processing [7]. These phenomena have indeed been
observed in experiments (e.g. by Weiland et al. [50]) under the circumstances pre-
dicted by the instability criterion. On the other hand, the hyperbolicity, and thus
stability result for equal-density spheres agrees with experimental evidence, since
instabilities never have been observed with this type of mixtures, but always involve
particles of different densities [50]. For one-dimensional kinematic models, such as
ours, lack of stability may lead to anomalous behaviour of the numerical solution,
for example to oscillations or a “locking” effect, i.e., heavy and buoyant particles
block each other within the vessel; such an example is presented in [5, Figure 10].
(The issue of physical realism will be further addressed in Section 5.)

Finally, for our case N = 2, it is convenient to introduce the parameter γ :=
%̄2/%̄1, and we set δ := δ2. Introducing the scaled variable x̃ := x/(%̄1µ) and
immediately switching back to x instead of x̃, we can rewrite (4.3), (4.4) in the
form (1.1), where the fluxes are defined by

f1(φ1, φ2) = φ1V (φ1 + φ2)
(
(1− φ1)(1− φ1 − γφ2)− δφ2

(
(1− φ2)γ − φ1

))
,

f2(φ1, φ2) = φ2V (φ1 + φ2)
(
δ(1− φ2)

(
(1− φ2)γ − φ1

)
− φ1(1− φ1 − γφ2)

)
.

(4.7)

The results of [6, 11] (see also [10]) can then be stated as follows: for equal-density
spheres, i.e., γ = 1, arbitrary δ ∈ (0, 1], and a hindered settling factor V = V (φ)
with V (φ) > 0 and V ′(φ) < 0 on [0, φmax) (for example, (4.1)) the system (1.1),
(4.7) is always strictly hyperbolic in the interior of Dφmax . On the other hand, for
γ 6= 1, the system (1.1), (4.7) may exhibit an appreciable ellipticity (instability)
region E2.



16 BERRES, BÜRGER, AND KOZAKEVICIUS

Figure 6. Shape of elliptic region E2(n, δ, γ): refer-
ence region E2(8, 1,−1) and variation of the parameter δ ∈
{0.1, 0.2, . . . , 0.8, 0.9, 1}. The arrow indicates how the closed curves
are ordered with respect to increasing values of δ.

In the remainder of the paper, we consider the sedimentation model only for
N = 2, for which the governing equations are (1.1) and (4.7), and we limit the
discussion to the hindered settling factor V (φ) given by (4.1). Consequently, the
parameters that appear in our analysis are the exponent n, the reduced density
ratio γ and the squared size ratio δ. We highlight the dependence of E2 on these
parameters by writing E2 = E2(n, γ, δ).

Values n between 4 and 6 are supported by theoretical predictions and have
been found suitable for many experimental systems; several works (e.g., [35]) utilize
n = 4.65. In [11] a selection of plots of E2(4.65, γ, δ) for various choices of γ and δ
are presented. It turns out that the ellipticity region is particularly large if γ < 0,
i.e., one of the species is “heavy”, with a density larger than that of the fluid,
and the other is “buoyant”, with a density smaller than that of the fluid. It is
the “heavy-buoyant” situation that is chosen for closer inspection in Examples 3, 4
and 5, while in Example 6 we set γ = 0, corresponding to a suspension with heavy
particles and a second “neutrally buoyant” species.

4.3. Elliptic region of Model 2. Numerical simulations indicate that the emer-
gence of strong oscillations associated to the elliptic degeneracy is related to the
location and shape of the elliptic region with respect to the invariance region.
Strong oscillations only appear when E2 is tangent to each side of Dφmax .

For homogenous initial data Φ0 which are slightly perturbed in E2 there appears a
spiral starting at Φ0 in the phase space. This spiraling indicates that perturbed data
want to escape from the elliptic region. Such an unbounded growth can be proved
for linearized systems: a Fourier transform in space shows that one component
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Figure 7. Shape of elliptic region E2(n, δ, γ): refer-
ence region E2(8, 1,−1) and variation of the parameter n ∈
{3, 4, 5, 6, 7, 8, 10, 12, 16, 24}. The arrow indicates how the closed
curves are ordered with respect to increasing values of n.

of the solution growths exponentially, leading to an unstable system [3]. Such a
growth can only be limited by the size of the elliptic region.

The shape, location and points of tangency of E2 with respect to Dφmax (the
set of all possible solution values) decide whether an “escape” or “fadeout” of the
oscillatory behavior is possible. In Model 1, the elliptic region E1 is tangent to each
side of the invariance region ∇. The fact that the perturbed data inside E1 want
to escape but can not leads to the wild oscillations.

To control (i.e. recover or avoid) the oscillatory behavior it is necessary to
analyze the shape of E2(n, γ, δ) and in particular to develop a criterion when it is
tangent to the boundary of Dφmax . To this end, the discriminant ∆ = ∆(φ1, φ2)
defined by (1.3), where f1 and f2 are given by (4.7), is evaluated on the axes φ2 = 0
and φ1 = 0 as well as on the antidiagonal φ1 + φ2 = 1. Noting that J12J21 = 0 if
φ1 = 0 or φ2 = 0, we obtain the discriminants

∆(φ1, 0) = (1− φ1)2n−4
(
nφ2

1 + (δ − 1− n)φ1 + 1− δγ
)2

> 0, (4.8)

∆(0, φ2) = (1− φ2)2n−4
(
δγnφ2

2 + (γ − δγn− δγ)φ2 + δγ − 1
)2

> 0. (4.9)

We are interested in choosing the parameters n, γ and δ in such a way that the
boundary ∂E2(n, γ, δ) of E2(n, γ, δ) is tangent to the coordinate axes φ1 = 0 and
φ2 = 0 (and to the anti-diagonal φ1 + φ2 = 1). We seek solutions 0 < φ1 < 1 and
0 < φ2 < 1 of ∆(φ1, 0) = 0 and ∆(0, φ2) = 0, respectively. Using (4.8) and (4.9),
we obtain the following candidate values for tangent points of ∂E2(n, γ, δ) with the
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coordinate axes:

φ1 =
1
2

+
1− δ

2n
±

√
r1(n, γ, δ)

2n
, r1(n, γ, δ) :=

(
n− (1− δ)

)2 + 4nδγ, (4.10)

φ2 =
1
2

+
δ − 1
2δn

±
√

r2(n, γ, δ)
2δγn

,

r2(n, γ, δ) := δ2γ2n2 + 2n(2δγ − δγ2 − δ2γ2) + γ2(1− δ)2.
(4.11)

Let us admit for a moment negative values of φ1 or φ2 for sake of the argument.
Equations (4.10) and (4.11) tell us that if ri(n, γ, δ) > 0, then there are two tangents
or crossing points ∂E2(n, γ, δ) with the φi-axis, i = 1, 2. However, it is impossible
that ∂E2(n, γ, δ) crosses one of these axes, since this would imply that ∆ < 0 on a
segment of positive length on one of these axes, in contradiction to (4.8) and (4.9).
We conclude that real solutions (if they exist) 0 < φ1 < 1 and 0 < φ2 < 1 of (4.10)
and (4.11) belong to portions of ∂E2(n, γ, δ) that are tangent to the φ1-axis and the
φ2-axes, respectively. Moreover, for γ = 0 the axis φ1 = 0 never exhibits a tangent
(since the left-hand side of (4.9) is then strictly positive for 0 < φ2 < 1), whereas
on the axis φ2 = 0 always tangents can be enforced for sufficiently large n.

On the antidiagonal φ1 + φ2 = 1, ∆ always vanishes, such that a single root
cannot be extracted. To get a hint on the structure of ∂E(n, γ, δ) close to the
antidiagonal, we write ∆(φ1, φ2) as

∆(φ1, φ2) = (1− φ1 − φ2)∆̃(φ1, φ2), (4.12)

and note that

∆̃(1− φ2, φ2) = (γ − 1)2
(
φ2

2(nδ − n) + φ2(n− nδ2 − δ − 1) + δ
)2

. (4.13)

We now solve the equation ∆̃(1− φ2, φ2) = 0 to obtain candidates for tangent
points. For δ = 1, we obtain φ1 = φ2 = 1/2. For δ 6= 1, the unique positive
solutions of this equation are

φ2 = r3(n, δ)±

√
δ

n(1− δ)
+

(
r3(n, δ)

)2
, r3(n, δ) := −1 + δ

2n

(
1

1− δ
− n

)
.

(4.14)

The quantity r3(n, δ) may have either sign, but for δ 6= 1, (4.14) has exactly one
positive solution φ2 = φ∗2. We have φ∗2 ∈ (0, 1] if and only if

nδ(1− δ) 6 1. (4.15)

For convenience, we define φ∗2 = 1/2 when δ = 1. In that case, φ∗2 is a tangent since
it is the intersection of a minima manifold with the antidiagonal, as shown in the
sequel for a representative special case.

So far we have focused on providing exact algebraic expressions for the points at
which ∂E2(n, γ, δ) is tangent to the boundary of D1. Of course, it is still necessary
to show that ∂E2(n, γ, δ) is a closed curve located within D1. Figure 6 suggests that
this is indeed the case. Of course, this observation cannot replace a rigorous proof;
but, on the other hand, we do not attempt here to provide a full characterization
by means of analysis, but rather construct some interesting cases for a numerical
simulation. A discussion of the shape of the curve ∂E2(n, γ, δ) will be limited to
the “symmetric heavy-buoyant” case δ = 1, γ = −1.
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4.4. Symmetric case δ = 1, γ = −1. Now we concentrate on the symmetric case
where δ = 1, γ = −1. On the axes φ1 = 0 and φ2 = 0 there are tangents at the
solutions of (4.10) and (4.11). Noting that r1(n,−1, 1) = r2(n,−1, 1) = n2 − 8n,
we obtain

φ1 = φ2 =
1
2
±
√

n2 − 8n

2n
, (4.16)

where the number of solutions depends on the existence of real roots. This means
that for n = 8, ∂2E(n,−1, 1) has one single tangent to each axis, which are located
at φ1 = 1/2 and φ2 = 1/2. For n < 8 there are no tangents to the axes, and for
n > 8 there are two tangents to each axis that are moving towards the values 0
and 1 in the limit n→∞.

Now it is shown that there is unique global minimum of the discriminant which
implies that the elliptic region is connected. On the diagonals φ1 = φ− φ2 (where
φ is fixed) for δ = 1 and γ = −1 the discriminant becomes

∆(φ− φ2, φ2) = (1− φ)2n−4
(
n2φ4 − 4n2φ2φ

3 − 2n2φ3 + 8n2φ2φ
2 + 4n2φ2

2φ
2

+ n2φ2 + 4nφ2 − 8n2φ2
2φ− 16φ2φ− 4n2φ2φ− 4nφ

+ 4 + 16φ2
2 + 4n2φ2

2

)
.

The expression ∆(φ−φ2, , φ2) assumes its unique minimum (for φ 6= 1) at φ2 = φ/2.
In turn, on this minimum line φ1 = φ2, the discriminant reads

∆(φ/2, φ/2) = 4µ2(1− φ)2n−3
(
1 + (1− n)φ

)
(for γ = −1, δ = 1). (4.17)

This expression has a local minimum at

φ =
3n− 4

2(n− 1)2
(4.18)

and its maximum at φ = 1. Thus, the global minimum of the discriminant has been
found. This implies the connectedness of level sets with given levels, in particular
that with vanishing discriminant.

4.5. Simulation of Model 2. In the numerical simulations for Model 2 (Exam-
ples 3 to 6), we illustrate how the oscillatory pattern depends on the shape, location,
and points of tangency of the elliptic region E2 = E2(n, γ, δ) with respect to Dφmax .

In all examples, the initial concentrations are constants that are disturbed at
only three grid cells. The perturbation is then introduced at the middle point and
at its two immediate neighbors of the discretization of the initial condition. This
middle point is in fact the corresponding middle value of the vector of positions of
the finest grid. Numerical tests show that the speed how fast the spiral develop
depends on the strength of perturbation, i.e. with a minor degree of perturbation
it takes longer to obtain the same number of peaks. However, the magnitude of
small perturbations does not affect the shape of the oscillations.

In Section 3.2, it has already been recognized for Model 1 that the grid pre-
cision eventually controls the number of oscillations. Therefore, for our numeri-
cal simulations, the finest resolution level necessary to define the discretization of
the initial condition contains N0 = 215 points. This parameter has been adapted
such that the examples are sufficiently fine to identify the desired effects, but still
coarse enough so that individual peaks of oscillations are visible. For a given vector
Φ0 = (φ1,0, φ2,0)T ∈ E2(n, γ, δ), we then start from (2.5). These initial fine-grid
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Figure 8. Example 3 (Model 2 with δ = 1, γ = −1, n = 4):
profiles of φ1 (top) and φ2 (bottom) at several times.

values are specified as follows, where i∗ is the vector index corresponding to the
middle point xm of the domain:

φi,0

(
x0

j

)
=


φi,0 if j < i∗ − 1 or j > i∗ + 1,
φi,0 + 0.002 if j = i∗ − 1 or j = i∗ + 1,
φi,0 − 0.004 if j = i∗,

i = 1, 2, j = 0, . . . , N0.

In Examples 3 to 6 we set δ = 1, %̄1 = 50, %̄2 ∈ {−50, 0} for the parameter choices
γ ∈ {−1, 0}, Φ0 = (0.2, 0.2), n ∈ {4, 4.65, 8, 12}, xm = 0.5, T = 2.5, and φmax = 1.0.

4.5.1. Examples 3, 4 and 5: Model 2 with n ∈ {4, 8, 12}, heavy-buoyant particles and
almost constant initial data. We now consider the parameters δ = 1 and γ = −1,
corresponding to a heavy-buoyant bidisperse suspension of equal-sized spheres, and
the exponents n = 4, n = 8, and n = 12 in Examples 3, 4, and 5, respectively. In
all numerical simulations the CFL number is set to 1.5, and the threshold value
is ε0 = 5 × 10−8. In Figure 8 the case n = 4 is illustrated, where no oscillations
occur. Comparing the top and bottom plots it can be seen that the profile of φ1 is
symmetric to that of φ2, and both profiles form a similarity solution, i.e. depend on
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Figure 9. Example 3 (Model 2 with δ = 1, γ = −1, n = 4).
Top: phase space. Bottom: profiles of φ1 and φ2 and significant
positions at t = 2.06.

(x−xm)/t only. The almost symmetry of the phase space plot (top plot of Figure 9)
with respect to the diagonal φ1 = φ2 confirms this observation of symmetry. Finally,
the number of grid points increases as t increases, but as the bottom plot of Figure 9
illustrates, the finest levels of multiresolution are occupied only near where the
solution is discontinuous.

In Figures 10–12 and 13–15 the corresponding solutions for the respective cases
n = 8 and n = 12 are presented. These figures indicate a strong connection
between the shape, location and tangency properties of the elliptic region E2 inside
Dφmax and the potential of oscillations. In the case n = 4, the elliptic region
E2(4,−1, 1) touches the boundary of D1 region only once on the antidiagonal φ1 +
φ2 = 1, leaving the axes φ1 = 0 and φ2 = 0 untouched (see Figure 7). Thus, for
large times it is expected that all oscillations disappear. However, for small times,
oscillations are generated while the solution is still contained by the elliptic region.
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Figure 10. Example 4 (Model 2 with δ = 1, γ = −1 and n = 8):
profiles of φ1 (top) and φ2 (bottom) at several times.

The elliptic region E2(8,−1, 1) touches each side of D1. For n = 12, the elliptic
region E2(12,−1, 1) touches line φ1 + φ2 = 1 once and each of the axes φ1 = 0 and
φ2 = 0 exactly twice, see Figure 6.

4.5.2. Example 6: Model 2 with n = 4.65, heavy-neutrally buoyant particles and
almost constant initial data. For n = 4.65, γ = 0, and δ = 1. The elliptic region
E2(4.65, 0, 1) touches the φ1-axis twice and stays away from the φ2-axis. Figures 16
and 17 show the corresponding numerical results, which are discussed in Section 5
in the light of experimental findings.

5. Conclusions

To put the present paper into the proper context, let us mention that it had been
known from [22] (see also [23, 24]) that initial value problems for hyperbolic-elliptic
systems develop strongly oscillating solutions when the initial datum is a slightly
perturbed constant chosen from the interior of the elliptic region. The fact that
for Model 1 the elliptic region E1 is tangent to each side of the invariant region ∇
was in the first place not considered crucial. In fact, the authors conjectured that
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Figure 11. Example 4 (Model 2 with δ = 1, γ = −1 and n = 8).
Top: evolution of the SPR. Bottom: phase space at t = 1.74.

similar oscillations would occur in the model of polydisperse sedimentation for
particles with different densities (Model 2) under standard choices of parameters
(in particular, n ≈ 5). However, some anomalous phenomena such as mutual
blocking of buoyant and heavy particles we observed and reported (see [5, Fig. 10];
that situation is comparable with our Example 3 (Figure 8)), but oscillations were
not observed. The absence of oscillations was first attributed to a wrong choice of
initial data or a strong numerical viscosity of the scheme. Only after ruling out
several possible reasons we realized that the shape, location, and number of points
of tangency of the elliptic region E2 = E2(n, γ, δ) with respect to the phase space
Dφmax is decisive for the appearance of oscillations. For the case of our Model 2,
as the discussion of Section 4.3 shows, cases with more than one point of tangency,
and which do give rise to oscillations, can be produced if the exponent n assumes
sufficiently large values. In fact, for Model 2 it seems that only in the case when
each side of the triangular phase space Dφmax is touched by the boundary of E2 we
may expect oscillations to occur. A situation where E2 comes close to the boundary
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Figure 12. Example 4 (Model 2 with δ = 1, γ = −1 and n = 8):
profiles of φ1 and φ2 with significant positions at t = 0.21 (top)
and t = 1.74 (bottom).

of Dφmax , but does not touch it, seems to cause oscillations to fade out as soon as
solution values exit the elliptic region.

Let us briefly comment on our use of the MR method to capture oscillatory
waves. The basic hypothesis is that adaptivity is needed whenever an “oscillation
wave” occurs. The concept of “oscillation wave” is coined in analogy to rarefaction
or shock waves. The necessity of refinement at an oscillatory wave can be quantified
by the compression rate, as is illustrated in Figure 3. However, by refining the finest
possible grid (i.e., replacing, for example, N0 by 2N0), Figure 4 suggests nothing
like convergence in the classical sense can be observed. Rather, when the cell width
is halved then also the period of an oscillatory cycle is halved. Note that the
shape (but not the period) of a sinusoidal wave is retained and probably also some
statistical average properties.
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Figure 13. Example 5 (Model 2 with δ = 1, γ = −1, n = 12):
profiles of φ1 (top) and φ2 (bottom) at several times.

Finally, let us point out that although Model 2 is spatially one-dimensional,
it still provides information about when the instability phenomena described in
Section 4.2, which are based on an at least two-dimensional model concept, are
likely to occur. This due to the fact that the multi-dimensional version of (4.4) is
given by the equation

∂tΦ +∇ · (Φ⊗ q + f(Φ)⊗ k) = 0,

where q is the volume-averaged mixture flow velocity and k is the upwards-pointing
unit vector, and that for a given vector Φ, the type of this equation coincides with
that of (4.4). For the case of bidisperse suspensions with δ ≈ 1 and γ ≈ −1,
the theoretical prediction of the onset of instabilities was found to be in good
agreement with experimental observations by [2]; that analysis, in turn, was based
on experimental data by Weiland et al. [50] (see also [18]), and is mainly based
on heavy-buoyant systems with δ ≈ 1, γ ≈ −1; these values correspond to our
(hypothetical) Examples 3, 4 and 5. More recently, Liu et al. [37] conducted a
particle-scale computational analysis of the same phenomenon and observed insta-
bilities. On the other hand, experimental observations of bidisperse suspensions
with heavy and neutrally buoyant particles, as considered in our Example 6, go
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Figure 14. Example 5 (Model 2 with δ = 1, γ = −1, n = 12).
Top: phase space. Bottom: profiles of φ1 and φ2 with significant
positions at time t = 0.55.

back to as early as Whitmore’s classical paper [51] published in 1955. At current it
is not yet clear whether numerical results such as those of Example 6 (Figures 16
and 17), which were obtained for the realistic exponent n = 4.65, have a direct
physical meaning or rather alert to some instability phenomenon that could be
captured by a multi-dimensional simulation only. Nevertheless, it is tempting to
interpret the peaks forming in the concentration profiles of Figures 16 and 17 as the
formation of particle clusters, which would be consistent with Whitmore’s obser-
vation concerning the structure of vertical currents (“streams”) in the sedimenting
system: “When the total concentration [φ in our terminology] exceeded 30–35%,
the streams became increasingly granular in appearance as though particles were
forming into loose conglomerates while falling” [51, p. 244].
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Figure 15. Example 5 (Model 2 with δ = 1, γ = −1, n = 12).
Top: phase space. Bottom: profiles of φ1 and φ2 with significant
positions at time t = 2.47.
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2

MA)

PRE-PUBLICACIONES 2008 - 2009

2008-01 Rodolfo Araya, Abner Poza, Frederic Valentin: On a hierarchical estimator
driven by a stabilized method for the reactive incompressible Navier-Stokes equations

2009-01 Carlo Lovadina, David Mora, Rodolfo Rodŕıguez: Approximation of the
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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