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On a hierarchical estimator driven by a stabilized method for
the reactive incompressible Navier-Stokes equations

Rodolfo Araya, Abner Poza,
Frederic Valentin

PREPRINT 2008-01

SERIE DE PRE-PUBLICACIONES





On a hierarchical estimator driven by a

stabilized method for the reactive

incompressible Navier–Stokes equations

Rodolfo Araya 1, Abner H. Poza

Departamento de Ingenieŕıa Matemática
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1 Introduction

Detailed representation of flow structure passes necessarily by mesh refine-
ments which in turn demand prior knowledge on approximation errors. That
is the role played by a posteriori error estimators which require accuracy, in
the sense of being equivalent to the error, and affordability from computa-
tional viewpoint. Those needed features are, nevertheless, insufficient as long
as complex flows driven by the reactive incompressible Navier-Stokes model
are concerned. As a matter of fact, reliable error estimators must involve stable
and accurate finite element methods whenever we want appropriate adapted
meshes. Hence, this work is a twofold contribution in which a new unusual sta-
bilized finite element method is combined with a new a posteriori hierarchical
error estimator to solve reactive and advective dominate flows.

Unusual stabilized finite element methods are particularly desirable when it
comes to approach reactive dominate problems as generalized Stokes mod-
els [3,8] or reactive-advective-diffusive problems [19,26,30,31]. Roughly, those
methods are composed by the standard Galerkin terms subtracted (being this
the reason of its denomination) by a L2-inner product involving the residual of
strong equation balanced by the so-called stabilization parameter. Recently,
their effective forms have been recovered by enhancing polynomial spaces with
multi-scale functions which correspond to element-wise solution of original op-
erator with the right hand side defined in terms of residuals on elements and
edges. See [3,7,21,22] for further details.

The present work extends the unusual method introduced and analyzed in
[26] to the reactive incompressible Navier-Stokes equations adopting equal
order pair of interpolation spaces. What emerges is a finite element method
ready to deal with the matter of the compatibility between the pressure and
velocity spaces (in the sense of inf–sup condition) while it handles exponential
and parabolic boundary layers accurately [38]. In addition, the method will
take advantage of adapted meshes to overcome local over and undershooting
numerical solutions without asking for shock capturing methodologies [2,32].
Interested readers may find related works in [14,16].

Involve a posteriori error estimators to account for the quality of discrete so-
lutions of the Navier–Stokes equations has been addressed through residual-
based [12,34], goal oriented [10,11] or local problems error estimates [33,36].
Readers can find further references in [1,6,42]. In this work we adopt the hi-
erarchical approach first developed in [4] for the generalized Stokes equations.
Mesh adaptativity by hierarchical approach appears as an elegant technique
to construct a posteriori error estimators without demanding the well-know
saturation assumption [1,5]. The idea is to adopt an auxiliary linear problem
at the local level for which the solution is shown to be equivalent to the error
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but easier to be calculated. It is, actually, obtained by projecting the finite
element error onto the finite element space enhanced with bubble functions.

The outline of this manuscript is as follows: Some standard notations and
definitions finalize the current section. In Section 2 we introduce the reac-
tive Navier-Stokes equations and we state some classical results. The unusual
method is presented in Section 3. Section 4 concerns with the derivation and
analysis of the hierarchical estimator. The paper ends with several numerical
tests in Section 5.

1.1 Notations and Definitions

This section introduces definitions and notations used throughout. In what
follows, Ω ⊆ R

2 denotes an open bounded set with polygonal boundary Γ,
and x = (x1, x2) is a typical point in Ω. As usual, L2(Ω) is the space of square
integrable functions over Ω, L2

0(Ω) represents functions belonging to L2(Ω)
with zero average in Ω, and Hm(Ω) is composed by functions whose m first
derivatives belong to L2(Ω). We use the convention H0(Ω) = L2(Ω). Moreover,
(· , · )D stands for the inner product in L2(D) (or in L2(D)2, when necessary),
and ‖· ‖s,D (|· |s,D) the norm (seminorm) in Hm(D) (or Hm(D)2, if necessary).

From now on, we denote by {Th}h>0 a regular family of triangulations of
Ω composed by elements T and by Eh the set of all edges of Th with the
usual splitting Eh = EΩ ∪ EΓ, where EΩ stands for the edges lying in the
interior of Ω. As usual hT means the diameter of T , h = maxT∈Th

hT and
hF := |F |, F ∈ Eh. Also, for T ∈ Th, we denote by N (T ) the set of nodes of
T and by E(T ) the set of edges of T . Given T ∈ Th and F ∈ Eh we define the
following neighborhoods:

ωT :=
⋃

E(T )∩E(T ′)6=∅

T ′ , ω̃T :=
⋃

N (T )∩N (T ′)6=∅

T ′,

ωF :=
⋃

F∈E(T ′)

T ′ , ω̃F :=
⋃

N (F )∩N (T ′)6=∅

T ′.

Furthermore, for each F = ∂T ∩ ∂T ′ ∈ Eh and for a function q, one denotes
JqKF its jump, defined by:

JqKF (x) := lim
δ→0+

q(x + δnF ) − lim
δ→0−

q(x − δnF ) ,

where nF stands for the outward normal vector at the edge F with respect to
T . Note that JqKF = 0 if F ⊆ Γ.
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Finally, the following convention is adopted

a � b⇐⇒ a ≤ K b,

a ≃ b⇐⇒ a � b and b � a,

where the positive constant K is independent of h, σ and ν.

2 Model problem

The reactive stationary incompressible Navier-Stokes problem consists of find-
ing the velocity vector field u and the pressure scalar field p such that

(P )





−ν∆u + (∇u)u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

where the reaction and the viscosity coefficient σ and ν, respectively, are as-
sumed positive constant in Ω. Here, f is a regular given function representing
the source term.

Let us set H := H1
0 (Ω)

2
and Q := L2

0(Ω) and propose the following weak
formulation for the problem (P): Find (u, p) ∈ H ×Q such that

a(u,v) + b(u, q) + b(v, p) + c(u; u,v) = (f ,v)Ω ∀ (v, q) ∈ H ×Q, (2.1)

where the bilinear forms a(·, ·) and b(·, ·), and the trilinear form c(·, ·, ·) are
given by

a(u,v) := ν(∇u,∇v)Ω + σ(u,v)Ω , (2.2)

b(v, q) := − (q, div v)Ω , (2.3)

c(u; v,w) := ((∇v)u,w)Ω . (2.4)

Furthermore, we introduce the symmetric bilinear form d : Q×Q→ R by

d(p, q) :=
1

ν
(p, q)Ω ,

which induces the norms

‖v‖a := a(v,v)1/2 ∀v ∈ H , (2.5)

‖q‖d := d(q, q)1/2 ∀q ∈ Q , (2.6)
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as well as the norm on the product space H ×Q

‖(v, q)‖ :=

{
‖v‖2

a + ‖q‖2
d

}1/2

∀(v, q) ∈ H ×Q .

The next result states some inequalities which will be used in the sequel.

Lemma 1 Let a(·, ·) and b(·, ·) be the bilinear forms given by (2.2) and (2.3),
respectively, and let c(·, ·, ·) the trilinear form given by (2.4). Then

|a(v,w)| ≤ ‖v‖a‖w‖a ∀v,w ∈ H , (2.7)

|b(v, q)| ≤
√

2 ‖v‖a‖q‖d ∀(v, q) ∈ H ×Q , (2.8)

sup
v∈H

b(v, q)

‖v‖a
≥ αb

√
ν

σ + ν
‖q‖d ∀q ∈ Q , (2.9)

c(w; u,v) ≤ β |w|1,Ω|u|1,Ω|v|1,Ω ∀v,w ∈ H , (2.10)

where αb and β are positive constants depending only on Ω. Moreover, for all
u,v,w ∈ H such that div w = 0, and w · n = 0, there holds

c(w; u,v) = −c(w; v,u), (2.11)

c(w; v,v) = 0. (2.12)

PROOF. The proof follows from the norm definitions (2.5)-(2.6) and from
classical results in [28]. 2

The next classical result is included for sake of completeness and addresses
the well-posedness of (2.1).

Theorem 2 Assume that ν and f ∈ L2(Ω)2 satisfy the following condition:

|(f ,v)Ω| ≤ γ
ν2

β
|v|1,Ω ∀v ∈ H ,

for some fixed number γ ∈ [0, 1). Then, there exits an unique solution (u, p) ∈
H ×Q of (2.1) and it holds

|u|1,Ω ≤ γ
ν

β
. (2.13)

PROOF. See Theorem 2.4, Chapter IV in [28]. 2
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3 The Unusual Stabilized Method

This section proposes a stabilized finite element method to solve (2.1) and we
select the approximate subspaces Hh ⊂ H and Qh ⊂ Q as follow

Hh := {vh ∈ C(Ω)2 : vh|T ∈ Pk(T )2, ∀T ∈ Th} ∩ H ,

Qh := {qh ∈ C(Ω) : qh|T ∈ Pl(T ), ∀T ∈ Th} ∩Q ,

where k, l ∈ N
+.

Remark 3 The LBB condition prevents equal order interpolation spaces (k =
l) for the velocity and the pressure to be used along with the Galerkin method
(see [13]). The symptoms of this likely practitioner choice are numerical so-
lutions plagued by spurious oscillations. Unfortunately that is not the only
potencial source of instabilities. Indeed, dominate reaction and/or advection
flows are also badly approached by the classical Galerkin as soon as the un-
derlying flows include sharp boundary layers. 2

Next, we tackle both source of instabilities by proposing the following unusual
stabilized finite element method: Find (uh, ph) ∈ Hh ×Qh such that:

B((uh, ph), (vh, qh)) = F (vh, qh) ∀(vh, qh) ∈ Hh ×Qh , (3.14)

with

B((uh, ph), (vh, qh)) := a(uh,vh) + b(uh, qh) + b(vh, ph) + c(uh; uh,vh)

−
∑

T∈Th

(
(∇uh)uh − ν∆uh + σuh + ∇ph, τT [−(∇vh)uh − ν∆vh + σvh + ∇qh]

)

T

+
∑

T∈Th

(div uh, δT div vh)T , (3.15)

and

F (vh, qh) := (f ,vh)Ω −
∑

T∈Th

(
f , τT [−(∇vh)uh − ν∆vh + σvh + ∇qh]

)

T

.

The stability and accuracy of the method relies on the definition of parameters
δT and τT . Here, those piecewise constant functions are defined by

δT := ‖uh‖∞,T hT min{1, Re2T} , τT :=
h2

T

σ h2
T ξ(Re

1
T ) +

2 ν

mk
ξ(Re2T )

, (3.16)

with ξ(x) := max{1, x} and
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Re1T :=
2 ν

σ h2
T mk

, Re2T :=
‖uh(x)‖∞,T hT mk

4 ν
, mk := min

{
1

3
, 2Ck

I

}
.

The positive constant Ck
I is related to the inverse inequality

Ck
I h

2
T ‖∆vh‖2

0,T ≤ ‖∇vh‖2
0,T ∀vh ∈ Hh . (3.17)

Lemma 4 For all T ∈ Th, the parameters δT and τT given by (3.16) satisfy:

τT ‖uh‖∞,T ≤ 1

2
hT , (3.18)

τT ν ≤ 1

6
h2

T , (3.19)

τT σ ≤ min{hT σ
1/2 ν−1/2, 1}, (3.20)

δT ≤ ‖uh‖∞,ThT . (3.21)

PROOF. The result is a straight consequence of the definition of δT and τT .
2

Remark 5 The unusual method (3.14) extends the one primarily proposed
for the linear advective-diffusive model in [26]. Likewise, it coincides with the
Galerkin-Least-Square method [18] when σ vanishes as the stabilization pa-
rameter in [18] can be rewritten in a equivalent way as

τT =
h2

T mk

2 ν ξ(Re2T )
.

2

Remark 6 As far as the vanishing advection case is concerned, we recover
the method proposed in [8,3] by setting δT equals to zero and assuming linear
interpolation for both velocity and pressure spaces. Those underlined meth-
ods are obtained by enriching the linear finite element spaces with multi-scale
functions which are computed from local elliptic boundary value problem for the
velocity. On the other hand, enhancing the standard space for the pressure with
bubbles functions adds a divergence least-square term in the Galerkin method
analogous to the one used in (3.14) (see [23]) . Consequently, enriching space
approach stems as a general framework to build stable methods and to set up
the parameters τT and γ. 2

Remark 7 In order to handle discontinuous interpolation for the pressure in
(3.14), extra stability should be included and relied on inter-element boundary
jump pressure terms (see [25,40] for further discussion). As for higher order
continuous interpolation spaces, the method demands computing the inverse
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inequality constant exactly. This may be achieved in an elegant way by com-
puting the smaller generalized eigenvalue of the problem associated to (3.17)
in each element (see [20]). 2

Remark 8 It may be worth taking into account element-wise directional in-
formation of velocity field u in order to compute the characteristic element
length hT for advective dominate problems. This has been numericaly high-
lighted in [26] after having been formally derived in [24] within the Residual-
Free Bubble (RFB) framework. 2

4 An a posteriori error estimate

This section establishes a hierarchical a posteriori error estimator by extending
the ideas of [4] to the reactive Navier-Stokes equation (P ).

4.1 Preliminary results

By Ih : H −→ Hh we denote the Clément interpolation operator (cf. [15,17]).
For all T ∈ Th and all F ∈ E(T ) this operator satisfies

|v − Ihv|m,T � hn−m
T |v|n,ω̃T

, (4.1)

‖v − Ihv‖0,F � h
n− 1

2

F |v|n,ω̃F
, (4.2)

for all v ∈ Hn(Ω)2, and all 0 ≤ m ≤ 1, 1 ≤ n ≤ k + 1. We need in the sequel
some mesh–dependent constants defined as follows:

θT :=





ν−1/2 hT , σ = 0 ,

σ−1/2 min{hT σ
1/2 ν−1/2, 1} , σ > 0 .

θF :=





ν−1/2 h
1/2
F , σ = 0 ,

ν−1/4 σ−1/4 min{hF σ
1/2 ν−1/2, 1}1/2 , σ > 0 .

Hence, it can be easily shown that the Clément interpolation operator satifies

Lemma 9 For all T ∈ Th, F ∈ E(T ), v ∈ H1(Ω)2, there holds

‖v − Ihv‖0,T � θT ‖v‖a,ω̃T
, (4.3)

‖v − Ihv‖0,F � θF ‖v‖a,ω̃F
, (4.4)

‖Ihv‖a,T � ‖v‖a,ω̃T
. (4.5)
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PROOF. See Lemma 4 in [4]. 2

4.2 The auxiliary problem

In what follows, the functions e and E stand for the velocity and the pressure
approximation errors, i.e.,

e := u − uh ,

E := p− ph ,

which are indirectly estimated by the following auxiliary problem: Find (φ, ψ) ∈
H ×Q such that

a(φ,v) + d(ψ, q) = a(e,v) + b(e, q) + b(v, E) + l(u; uh,v) ∀(v, q) ∈ H ×Q,
(4.6)

where

l(u; uh,v) := c(u; u,v) − c(uh; uh,v).

Clearly, the well-posedeness of the above system arises from the ellipticity of
a(·, ·) and d(·, ·) on H and Q, respectively.

Next, we establish an equivalence between the norms of (e, E) ∈ H ×Q and
the norms of the solution (φ, ψ) ∈ H × Q of (4.6) which opens the door to
design an error estimate based on the functions (φ, ψ) only.

Theorem 10 There exist positive constants K1 and K2, independent of h,
such that

K1

{
‖φ‖2

a + ‖ψ‖2
d

}
≤ ‖e‖2

a + ‖E‖2
d ≤ K2

{
‖φ‖2

a + ‖ψ‖2
d

}
.

PROOF. First, note that using (2.10) and (2.13), we have that for v ∈ H

l(u; uh,v) = c(u; u,v) − c(uh; uh,v)

= c(u; e,v) + c(e; uh,v)

≤ β
{
|u|1,Ω|e|1,Ω|v|1,Ω + |e|1,Ω|uh|1,Ω|v|1,Ω

}

≤ β
{
2|u|1,Ω|e|1,Ω|v|1,Ω + |e|21,Ω|v|1,Ω

}

≤ β
{
2γ

ν

β
|e|1,Ω|v|1,Ω + |e|21,Ω|v|1,Ω

}

≤
{

2γ +
β

ν
|e|1,Ω

}
‖e‖a‖v‖a. (4.7)
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Furthermore, using (2.12) and following above steps closely it holds

l(u; uh, e) ≤
{
γ +

β

ν
|e|1,Ω

}
‖e‖2

a. (4.8)

Next, the upper and lower bound are addressed separately.

Upper bound: From equation (2.9) and setting q = 0 in (4.6), (2.7) and (4.7),
there holds

αb

√
ν

σ + ν
‖E‖d ≤ sup

v∈H

|b(v, E)|
‖v‖a

= sup
v∈H

|a(φ,v) − a(e,v) − l(u; uh,v) |
‖v‖a

≤ ‖φ‖a +

{
3 +

β

ν
|e|1,Ω

}
‖e‖a. (4.9)

In addition, by picking q = 0 and v = e in (4.6) and using (4.8) we arrive at

‖e‖2
a = a(φ, e) − b(e, E) − l(u; uh, e)

= a(φ, e) − d(ψ,E) − l(u; uh, e)

≤ ‖φ‖a‖e‖a + ‖ψ‖d‖E‖d +

{
γ +

β

ν
|e|1,Ω

}
‖e‖2

a , (4.10)

and we gather (4.9) and (4.10) to obtain

‖e‖2
a ≤ 1

αb

√
σ + ν

ν
‖φ‖a‖ψ‖d + ‖e‖a



‖φ‖a +

1

αb

√
σ + ν

ν

(
3 +

β

ν
|e|1,Ω

)
‖ψ‖d





+ ‖e‖2
a

{
γ +

β

ν
|e|1,Ω

}
.

Next, we assume |e|1,Ω to be sufficiently small in a way that there exists ε > 0
such that (see [36] for a related assumption)

γ +
ε2

2
+
β

ν
|e|1,Ω =: γ′ < 1. (4.11)

The existence of such of ε along with the inequality xy ≤ ε2x2

2
+

y2

2 ε2
, for all

x, y > 0, imply
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‖e‖2
a ≤ 1

αb

√
σ + ν

ν
‖ψ‖d‖φ‖a +

ε2

2
‖e‖2

a

+
1

2ε2

{
‖φ‖a +

1

αb

√
σ + ν

ν

(
3 +

β

ν
|e|1,Ω

)
‖ψ‖d

}2

+

{
γ +

β

ν
|e|1,Ω

}
‖e‖2

a

=
1

αb

√
σ + ν

ν
‖ψ‖d‖φ‖a + γ′ ‖e‖2

a

+
1

2ε2

{
‖φ‖a +

1

αb

√
σ + ν

ν

(
3 +

β

ν
|e|1,Ω

)
‖ψ‖d

}2

≤ 1

2αb

√
σ + ν

ν

[
‖ψ‖2

d + ‖φ‖2
a

]
+ γ′ ‖e‖2

a

+
1

ε2

{
‖φ‖2

a +
1

α2
b

(
σ + ν

ν

) (
3 +

β

ν
|e|1,Ω

)2

‖ψ‖2
d

}

≤
[

1

2αb

√
σ + ν

ν
+

1

ε2

]
‖φ‖2

a + γ′ ‖e‖2
a

+
1

αb

√
σ + ν

ν





1

2
+

1

ε2αb

√
σ + ν

ν

(
3 +

β

ν
|e|1,Ω

)2


 ‖ψ‖2

d .

Now, from the previous inequality and (4.11) we get

‖e‖2
a ≤ 1

1 − γ′

[
1

2αb

√
σ + ν

ν
+

1

ε2

]
‖φ‖2

a

+
1

1 − γ′

√
σ + ν

ν

1

αb





1

2
+

1

ε2αb

√
σ + ν

ν

(
3 +

β

ν
|e|1,Ω

)2



 ‖ψ‖2
d .

Finally, the upper bound follows from the above inequality and (4.9).

Lower bound: Taking v = φ, and q = 0 in (4.6), and using (2.8) and (4.7), it
holds

‖φ‖2
a = a(φ,φ)

= a(e,φ) + b(φ, E) + l(u,uh,φ)

≤ ‖e‖a‖φ‖a +
√

2 ‖φ‖a‖E‖d +

{
2γ +

β

ν
|e|1,Ω

}
‖e‖a‖φ‖a

≤
√

2 ‖φ‖a‖E‖d +

{
3 +

β

ν
|e|1,Ω

}
‖e‖a‖φ‖a,

then,
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‖φ‖a ≤
{

3 +
β

ν
|e|1,Ω

}
‖e‖a +

√
2 ‖E‖d . (4.12)

Next, setting v = 0 and q = ψ in (4.6), and using (2.8), we end up with

‖ψ‖2
d = d(ψ, ψ) = b(e, ψ) ≤

√
2 ‖e‖a‖ψ‖d ≤ ‖e‖2

a +
1

2
‖ψ‖2

d ,

which implies

‖ψ‖2
d ≤ 2 ‖e‖2

a . (4.13)

Hence, we gather (4.12) and (4.13) to get

‖φ‖2
a + ‖ψ‖2

d ≤ 2



1 +

{
3 +

β

ν
|e|1,Ω

}2


 ‖e‖2
a + 4 ‖E‖2

d .

Finally, from the bound (4.11) for ε, the following inequality holds

3 +
ε2

2
+
β

ν
|e|1,Ω ≤ 4 ,

and, thus, we obtain

‖φ‖2
a + ‖ψ‖2

d ≤ 34

{
‖e‖2

a + ‖E‖2
d

}
,

and the result follows. 2

From the definition of e and E, the auxiliar problem (4.6) is equivalent to

a(φ,v) + d(ψ, q) = (f ,v)Ω − a(uh,v) − b(uh, q) − b(v, ph) − c(uh; uh,v)
(4.14)

for all (v, q) in H ×Q. It can be rewritten, for sake of compactness, as

a(φ,v) + d(ψ, q) = Rh(v, q) ∀(v, q) ∈ H ×Q , (4.15)

where the right hand side Rh ∈ (H × Q)′ stands for the residual functional
given by

Rh(v, q) := (f ,v)Ω − a(uh,v) − b(uh, q) − b(v, ph) − c(uh; uh,v) .

12



Remark 11 The auxiliar problem (4.6) is decoupled. In fact, if one set v = 0

in (4.14), then problem (4.6) becomes

d(ψ, q) = −b(uh, q) , (4.16)

which leads to
ψ = ν div uh . (4.17)

Hence, if we pick in the sequel the test functions (v, 0) in (4.14) we arrive at

a(φ,v) = R1
h(v), (4.18)

where R1
h ∈ H ′ reads

R1
h(v) := (f ,v)Ω − a(uh,v) − b(v, ph) − c(uh; uh,v) .

2

An equivalent and useful expression for R1
h arises using integration by parts

which leads to

R1
h(v) =

∑

T∈Th

(RT ,v)T +
∑

F∈EΩ

(RF ,v)F ,

where RT ∈ L2(T )2 and RF ∈ L2(F )2 are given by

RT := (f + ν∆uh −∇ph − (∇uh)uh − σ uh)|T ,

and

RF := − Jεh · nKF .

Here εh := ν∇uh − ph I (where I stands for the R
2×2 identity matrix), and

thus, it is worth noting that, as ph is a continuous function in Ω, the residual
on the edges RF reduces to −Jν∇uh · nF KF . The following technical result
will be useful in the forthcoming proofs.

Lemma 12 For all vh ∈ Hh there holds

R1
h(vh) �

∑

T ∈Th

[
θT ‖RT‖0,T + ν−1/2 hT ‖uh‖∞,T‖div uh‖0,T

]
‖vh‖a,T .

PROOF. From the definition of R1
h and using (3.14) with qh = 0, there holds

R1
h(vh) = (f ,vh)Ω − a(uh,vh) − b(vh, ph) − c(uh; uh,v)

= −
∑

T ∈Th

(
RT , τT

[
(∇vh)uh + ν∆vh − σ vh

])

T

+
∑

T ∈Th

(div uh, δT div vh)T .

13



Next, from Hölder inequality and Lemma 4 it follows

|(RT , τT (∇vh)uh)T | ≤
∫

T
|τT | |RT (∇vh)uh|

≤ |τT | ‖RT‖0,T ‖∇vh‖0,T‖uh‖∞,T

� |τT | h−1
T θT ‖RT‖0,T ‖vh‖a,T‖uh‖∞,T

� θT ‖RT‖0,T‖vh‖a,T ,

and we can similarly deduce that

|(RT , τT ν∆vh)T | � θT ‖RT‖0,T‖vh‖a,T ,

and

|(RT , τT σ vh)T | ≤ θT ‖RT‖0,T‖vh‖a,T .

On the other hand, using (3.21) and Cauchy-Schwarz’s inequality, it holds

(div uh, δT div vh)T ≤
∫

T
|δT div uhdiv vh|

� ν−1/2 hT ‖uh‖∞,T‖div uh‖0,T‖vh‖a,T .

Finally, gathering overall estimates the result follows. 2

Remark 13 The characterization of ψ given in (4.17) replaced in Theorem
10 leads to the following equivalence result

K1

{
‖φ‖2

a + ν ‖div uh‖2
0,Ω

}
� ‖e‖2

a + ‖E‖2
d � K2

{
‖φ‖2

a + ν ‖div uh‖2
0,Ω

}
.

(4.19)

Therefore, the a posteriori error estimator would demand to evaluate ‖φ‖a

only. Such idea is pursued in the next section. 2

4.3 The hierarchical error estimator

Following closely the idea of [4], let W h be a finite element space such that
Hh ⊆ W h ⊆ H . Let us suppose that there exist M subspaces H i of W h

such that

W h = H0 +
M∑

i=1

H i ,

14



where H0 := Hh. Associated with each subspace H i a projection operator
Pi : H −→ H i is built from the solution of the local problem

a(Piv,wi) = a(v,wi) ∀wi ∈ H i , Piv ∈ H i .

Next, we define the a posteriori error estimator ηH by

ηH :=

{
M∑

i=1

a(Piφ, Piφ)

}1/2

,

where φ is the solution of (4.18), and we recall that Piφ is the solution of the
local problem: Find Piφ ∈ H i such that

a(Piφ,vi) = R1
h(vi) ∀vi ∈ H i .

In the seek for low cost computations, spaces H i are made local by associating
them to each element T ∈ Th and each edge F ∈ EΩ. From such construction,
the error estimator ηH decomposes as

ηH =




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PFφ)





1/2

. (4.20)

The next step consists of choosing appropriated spaces H i. This is accom-
plished by assuming H i spanned by bubble functions Hb requiring two ingre-
dients: First, the spaces Hb split as

Hb =





Hb
T for each T ∈ Th,

Hb
F for each F ∈ EΩ ,

where Hb
T ⊂ H1

0 (T )2 and Hb
F ⊂ H1

0 (ωF )2. Moreover, those bubble spaces are
affine–equivalent to a finite dimensional space on a reference configuration, so
that the following estimate holds

‖b‖2
0,T � h2

T |b|21,T ,

for all b ∈ Hb, and all T ∈ Th.

Secondly, those bubble spaces fulfill the following inf-sup conditions (LBB):
There exists β∗ > 0, independent of h, σ and ν, such that
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sup
bT ∈H

b

T

(bT ,RT )T

‖bT‖a,T
≥β∗ θT‖RT‖0,T ∀T ∈ Th ,

sup
bF ∈H

b

F

(bF ,RF )F

‖bF‖a,ωF

≥β∗ θF‖RF‖0,F ∀F ∈ EΩ ,

where ‖ · ‖a,D stands for the norm induced by the bilinear for a(·, ·) over the
set D ⊆ R

2.

Remark 14 As an example of bubble functions satisfying the (LBB) condi-
tions we have the standard polinomyals bubbles based on the barycentric co-
ordinates of each element T ∈ Th (for further details see Appendix B in [4]).
2

The next result is recalled as it is needed for the proof of the reliability.

Lemma 15 Suppose the (LBB) holds. Then,

R1
h(v) �

∑

T∈Th

a(PT φ, PTφ)1/2θ−1
T ‖v‖0,T

+
∑

F∈EΩ

[
a(PF φ, PFφ)1/2 +

∑

T ′⊂ωF

a(PT ′φ, PT ′φ)1/2
]
θ−1

F ‖v‖0,F ,

for all v in H.

PROOF. See Lemma 12 in [4]. 2

We are ready to prove the reliability of the error estimator.

Lemma 16 Let φ be the solution of (4.18). If the (LBB) holds, then

‖φ‖2
a � η2

H +
∑

T ∈Th

ν−1h2
T ‖uh‖2

∞,T‖div uh‖2
0,T .

PROOF. From Lemma 15 with v = φ − Ihφ, Cauchy-Schwarz’s inequality
and Lemma 9, there holds
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R1
h(φ − Ihφ) �

∑

T∈Th

a(PT φ, PT φ)1/2θ−1
T ‖φ − Ihφ‖0,T

+
∑

F∈EΩ

[
a(PF φ, PFφ)1/2 +

∑

T ′⊂ωF

a(PT ′φ, PT ′φ)1/2
]
θ−1

F ‖φ − Ihφ‖0,F

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PFφ, PFφ)






1/2

·



∑

T∈Th

θ−2
T ‖φ − Ihφ‖2

0,T +
∑

F ∈EΩ

θ−2
F ‖φ − Ihφ‖2

0,F





1/2

�



∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PFφ, PFφ)





1/2

‖φ‖a. (4.21)

On the other hand, using Cauchy-Schwarz’s inequality, the (LBB) condition
and the definition of PT φ we obtain

θT‖RT‖0,T ≤ 1

β∗
sup

bT ∈H
b

T

(bT ,RT )T

‖bT‖a,T
=

1

β∗
sup

bT ∈H
b

T

R1
h(bT )

bT‖a,T

=
1

β∗
sup

bT ∈H
b

T

a(PT φ, bT )

‖bT‖a,T
≤ 1

β∗
‖PT φ‖a,T . (4.22)

Now, from Lemmas 12 and 15, (4.21), (4.22), (4.5) and Cauchy-Schwarz’s
inequality, it comes that

‖φ‖2
a = a(φ,φ) = R1

h(φ)

= R1
h(φ − Ih φ) + R1

h(Ihφ)

�



∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PFφ, PF φ)





1/2

‖φ‖a+

∑

T ∈Th

θT ‖RT‖0,T‖Ihφ‖a,T +
∑

T ∈Th

ν−1/2hT ‖uh‖∞,T‖div uh‖0,T‖Ihφ‖a,T

�



∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PFφ, PF φ)





1/2

‖φ‖a+

∑

T ∈Th

a(PT φ, PTφ)1/2‖φ‖a,ω̃T
+

∑

T ∈Th

ν−1/2hT ‖uh‖∞,T‖div uh‖0,T‖φ‖a,ω̃T

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PFφ, PF φ)






1/2

‖φ‖a

+
∑

T ∈Th

ν−1/2hT ‖uh‖∞,T‖div uh‖0,T‖φ‖a,ω̃T
,

and the result follows. 2
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From the previous results we can state the following equivalence theorem.

Theorem 17 Let φ be the solution of (4.18), and assume the (LBB) holds.
Then

η2
H � ‖φ‖2

a � η2
H +

∑

T ∈Th

ν−1h2
T ‖uh‖2

∞,T‖div uh‖2
0,T ,

where ηH is given by (4.20).

PROOF. The upper bound has been stated in Lemma 16. For the lower
bound see Theorem 15 in [4]. 2

Finally, we come up with the main result of this work. From (4.19) and The-
orem 17, the finite element error can be estimated as follows.

Theorem 18 Let (u, p), (uh, ph) and φ be the solutions of (2.1), (4.13) and
(4.18), respectively, and suppose that the (LBB) holds. Then, the following
equivalence holds

K1

∑

T ∈Th

η̃2
H,T � ‖u−uh‖2

a+‖p−ph‖2
d � K2

∑

T ∈Th

[
η̃2

H,T +ν−1 h2
T ‖uh‖2

∞,T‖div uh‖2
0,T

]
,

where

η̃H,T :=



‖PT φ‖2

a,T +
1

2

∑

F ∈E(T )∩EΩ

‖PFφ‖2
a,F + ν ‖div uh‖2

0,T





1/2

. (4.23)

Remark 19 It is worth stressing that the previous results holds without having
assumed any saturation condition. 2

5 Numerical experiments

The adaptive scheme based on the a posteriori error estimator (4.23) and the
unusual stabilized finite element (3.14) are tested. Its ability to recover accu-
rate discrete solution without using a highly refined uniform mesh is validated
through three numerical experiments.

The first test concerns with the validation of theoretical results related to the
reliability and efficiency of the error estimator. To accomplish that, we adopt
an analytical solution as reference, and we compare the exact finite element
error to the estimated error. Afterward, no available analytical solutions ex-
ist for the remaining two tests and so the adaptive finite element scheme is

18



validated upon priori knowledge of the solution behavior. Overall numerical
results used equal-order [P1]

2 × P1 elements.

The adaptive procedure treated the nonlinearity by a Newton algorithm [35]
and initiate the process using a quasi-uniform mesh. At each step, we compute
the local error estimators η̃H,T for all T over the previous mesh Th, and refine
those elements T ∈ Th accordingly to

η̃H,T ≥ θmax{η̃H,T : T ∈ Th} ,

where θ ∈ (0, 1) is a prescribed parameter.

Compute numerical approximations of complex flows when ν ≪ 1 demanded
a continuation strategy [29] on the Reynolds number. In general, the process
initiated assuming ν = 1. When it came to adapt meshes, we used the solution
computed (after having been priorly interpolated on the current mesh [37])
on the previous mesh and set it as the guess solution for the Newton iteration
method on the current mesh.

For practical purposes, we used the software Triangle to generated adapted
meshes, as it allowed us to create successively refined meshes based on a hybrid
Delaunay refinement algorithm. This process provided a sequence of refined
meshes that form a hierarchy of nodes, but not a hierarchy of elements (for
details, see [39]).

5.1 An analytical solution

The domain is Ω = (0, 1)× (0, 1) and f is such that the exact solution of the
problem (P ) reads

u1(x, y) = −256x2(x− 1)2y(y − 1)(2y − 1) ,

u2(x, y) = −u1(y, x) ,

p(x, y) = 150(x− 0.5)(y − 0.5) .

The effectivity index defined by

Ei :=
η̃H

‖(u − uh, p− ph)‖
,

is expected to remain bounded as h goes to 0 through a sequence of uniform
meshes. The next two subsections are dedicated to validate theoretical results
on asymptotic limit cases.
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5.1.1 First case: σ = 0

First, we validate the stabilized scheme (3.14) with ν = 1 and we show that
it recovers the right orders of convergence and the effectivity index Ei stays
bounded and close to one when h → 0 (see Figure 1 and Table 1 ). Next,
we perform the same test with ν = 10−4 and point out the robustness of
methodology with respect to physical coefficients. Actually, no fundamental
differences appears in Figure 2 and Table 2 when we compare them to the one
obtained from the first case.

‖u− uh‖1,Ω

‖u− uh‖0,Ω

‖p − ph‖0,Ω

h
h2

log h

lo
g
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r

10.10.010.001

100

10

1

0.1

0.01

0.001

0.0001

Fig. 1. Convergence history for ν = 1 and σ = 0.

d.o.f ‖(u − uh, p − ph)‖ η̃H Ei

39 6.86325 5.20547 0.75845

123 3.30873 2.89566 0.87515

435 1.67288 1.53124 0.91533

1635 0.83904 0.77726 0.92637

6339 0.41972 0.39306 0.93647

24963 0.20985 0.19765 0.94185

99075 0.10491 0.09914 0.94500

Table 1
Exact error, a posteriori error estimator and effectivity index for ν = 1 and σ = 0.
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Fig. 2. Convergence history for ν = 10−4 and σ = 0.

d.o.f ‖(u − uh, p − ph)‖ η̃H Ei

39 652.07909 519.84385 0.79720

123 328.23434 287.19127 0.87495

435 167.04374 152.30331 0.91175

1635 83.87648 77.51751 0.92418

6339 41.96924 39.24102 0.93499

24963 20.98523 19.73516 0.94043

99075 10.49190 9.90076 0.94365

Table 2
Exact error, a posteriori error estimator and effectivity index for ν = 10−4 and
σ = 0.

5.1.2 Second case: σ = 1

Now, we reveal the zeroth order term influence on numerical results and its
impact on the adaptive strategy. We repeat the two tests used in the previous
case, and we note that both the stabilized scheme and the adaptive procedure
behaves as predicted by the theory.
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In Figures 3 and 4 we depict the convergence curves of the stabilized scheme
for different values of ν, and in Tables 3 and 4 the effectivity indexes are
highlighted for both cases. It is worth noting that the values are asymptotically
bounded and close to one.
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Fig. 3. Convergence history for ν = 1 and σ = 1.

d.o.f ‖(u − uh, p − ph)‖ η̃H Ei

39 6.88932 5.33808 0.77483

123 3.31042 2.90868 0.87864

435 1.67286 1.53223 0.91593

1635 0.83904 0.77739 0.92652

6339 0.41972 0.39308 0.93651

24963 0.20985 0.19765 0.94186

99075 0.10491 0.09914 0.94500

Table 3
Exact error, a posteriori error estimator and effectivity index for ν = 1 and σ = 1.
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Fig. 4. Convergence history for ν = 10−4 and σ = 1.

d.o.f ‖(u − uh, p − ph)‖ η̃H Ei

39 652.07909 519.84435 0.79721

123 328.23434 287.19131 0.87495

435 167.04374 152.30331 0.91175

1635 83.87648 77.51751 0.92418

6339 41.96924 39.24102 0.93499

24963 20.98523 19.73516 0.94043

99075 10.49190 9.90076 0.94365

Table 4
Exact error, a posteriori error estimator and effectivity index for ν = 10−4 and
σ = 1.

5.2 The lid-driven cavity problem

The lid-driven cavity is a standard test problem to validate numerical meth-
ods in fluid (see, for instance [27] and [41]). Details defining the problem are
depicted in Figure 5. The source function is set as f = 0.
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Ω

1

10

u = (1, 0)

u = (0, 0) u = (0, 0)

u = (0, 0)

Fig. 5. Boundary conditions for the lid-driven cavity problem and the initial mesh.

5.2.1 First case: σ = 0

We consider first the case ν = 1. Due to the change of boundary conditions,
two singularities appears at the top corners of the domain. Figure 6 shows
the final adapted mesh as well as the streamline contours associated with
such mesh. As expected, the error estimator lead elements to be concentrated
around the singularities.

Fig. 6. Lid–Driven Cavity problem for ν = 1 and σ = 0. Adaptive mesh and
streamlines. The number of nodes of the mesh is 1.526 nodes.
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Next, we set ν = 1/5000. In addition to the two corner singularities, now the
exact solution exhibits a complex vorticitity field. The error estimator behavior
is remarkable as the mesh captures the phenomena as shown in Figure 7.

Fig. 7. Lid–Driven Cavity problem for ν = 1/5000 and σ = 0. Adaptive mesh and
streamlines. The number of nodes of the mesh is 37.038 nodes.

5.2.2 Second case: σ = 1

The value of the diffusivity coefficients are ν = 10−2 and ν = 10−3. The pattern
showed by both flows are different from the previous example as reactive
boundary layers show up. They are captured by the error estimator as points
out the adaptive process in Figures 8 and 9.

Fig. 8. Lid–Driven Cavity problem for ν = 10−2 and σ = 1. Adaptive mesh and
streamlines. The number of nodes of the mesh is 1.255 nodes.
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Fig. 9. Lid–Driven Cavity problem for ν = 10−3 and σ = 1. Adaptive mesh and
streamlines. The number of nodes of the mesh is 1.626 nodes.

Figure 10 depicts the adaptive process that has taken place for the ν = 1/5000
case. The adapted meshes improves the quality of the numerical solution as
the vertical profile of the tangential velocity field shows in Figure 11. Indeed,
we note the boundary layer is utterly free of spurious of oscillations thanks to
the combined adaptive strategy.

MESH 1 MESH 2

MESH 3 MESH 4

Fig. 10. Lid–Driven Cavity problem for ν = 1/5000 and σ = 1. Sequence of adaptive
meshes. The final mesh has 5.458 nodes.
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Fig. 11. Lid–Driven Cavity problem for ν = 1/5000 and σ = 1. Tangential velocity
profiles at x = 0.5 using the sequence of adaptive meshes.

5.3 Flow over a circular cylinder

The domain geometry and the boundary conditions are shown in Figure 12.
The inflow velocity field is given by up = (1.2 y (0.41 − y)/0.412, 0)T (see [41]
for further details).

0.15m

0.15m

0.1m

0.16m

2.2m

u = (0, 0)

u = (0, 0)

u = up

∂u
∂n

= 0 0.41m

Fig. 12. Boundary conditions for the problem.

Fig. 13. Flow over a circular cylinder. The initial mesh.
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5.3.1 First case: σ = 0

In this case we set ν = 10−3, and so, we expect meshes to be locally refined
around the cylinder as a boundary layer is presented there. In Figure 14 a
zoom of the initial and final adapted meshes around the cylinder are depicted.
Isovalues of the magnitud of the velocity and the pressure indicate that nu-
merical solutions are qualitatively improved (see Figures 15 and 16).

Fig. 14. Flow over a circular cylinder. A zoom around the cylinder showing the
initial (left) and the final (right) meshes.

Fig. 15. Flow over a circular cylinder. Isolines of |u| from initial (left) and final
(right) meshes.
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Fig. 16. Flow over a circular cylinder. Isolines of the pressure from the initial (left)
and final (right) meshes.

5.3.2 Second case: σ = 1

.

Now, we validate a reactive flow using ν = 1, ν = 10−3, ν = 10−5. It is worth
pointing that the solutions of the latter case must be considered in average
terms once the real flow is turbulent. Stabilized methods used for turbulence
flow modeling is currently theme of researches (see for instance [9]).

Fig. 17. Flow over a circular cylinder. Zoom of the adaptive mesh using σ = 1 and
ν = 1 (left top), ν = 10−3 (left top) and ν = 10−5 (bottom).
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Figure 17 presents a zoom around the cylinder for the different values of ν.
The increased influence of the coefficient σ on the solutions as ν goes to zero
is noted. To show how well the adapted process improves the quality of the
approximate solution, the Figure 18 presents a zoom of the isovalues of the |u|
in the three cases. In addition, Figure 19 depicts the fully final adapted mesh
for the whole domain for the case ν = 10−5. The mesh is accuretly refined near
the cylinder and at the top and at the bottom of the domain. Finally, Figures
20 and 21 present the isolines of |u| and the pressure in the whole domain.

Fig. 18. Flow over a circular cylinder. Zoom of the isovalues |u| using σ = 1 and
ν = 1 (left top), ν = 10−3 (righ top) and ν = 10−5 (bottom).

Fig. 19. Flow over a circular cylinder with ν = 10−5 and σ = 1. The final adaptive
mesh. The number of nodes of the mesh is 84.409.
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Fig. 20. Flow over a circular cylinder with ν = 10−5 and σ = 1. Isolines of |u|.

Fig. 21. Flow over a circular cylinder with ν = 10−5 and σ = 1. Isolines of the
pressure.
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