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Abstract

In this paper we develop an a posteriori error analysis of a new momentum conservative
mixed finite element method recently introduced for the steady-state Navier–Stokes problem
in two and three dimensions. More precisely, by extending standard techniques commonly
used on Hilbert spaces to the case of Banach spaces, such us local estimates, and suitable
Helmholtz decompositions, we derive a reliable and efficient residual-based a posteriori error
estimator for the corresponding mixed finite element scheme on arbitrary (convex or non-
convex) polygonal and polyhedral regions. On the other hand, inverse inequalities, the
localization technique based on bubble functions, among other tools, are employed to prove
the efficiency of the proposed a posteriori error indicator. Finally, several numerical results
confirming the properties of the estimator and illustrating the performance of the associated
adaptive algorithm are reported.

Key words: Navier–Stokes; momentum conservativity; mixed finite element method; Banach
spaces; Raviart–Thomas elements; a posteriori; reliability; efficiency

Mathematics Subject Classifications (1991): 65N15, 65N30, 76D05, 76M10

1 Introduction

In this paper we continue the Banach spaces-based study of dual-mixed formulations for nonlin-
ear fluid-flow problems started in [10] (see [7, 11, 17, 16, 19] for recent extensions) by analyzing

∗This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile,
project Fondecyt 1180859, project 77190084 of the PAI Program: Convocatoria Nacional Subvención a la Insta-
lación en la Academia, and the Becas-Chile Programme for Chilean students; and by Universidad del B́ıo-B́ıo
through VRIP project 194608 GI/C.
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a reliable and efficient a posteriori error estimator for the momentum conservative mixed finite
element method proposed in [10] for the incompressible steady-state Navier–Stokes problem.
There, the velocity and a pseudostress tensor, defined in terms of the gradient of the velocity,
the pressure and the convective term, are introduced as main unknowns of the system which
allows, on the one hand, to preserve exactly conservation of momentum when the datum is in a
suitable polynomial space, and on the other hand, to compute other variables of interest, such
us the gradient of the velocity and the vorticity, through a simple postprocessing of the pseu-
dostress, tensor, without applying any numerical differentiation, thus avoiding further sources of
error. Then, the well-known Banach–Nečas–Babuška theory and the Banach fixed-point theorem
are applied to prove the unique solvability of the resulting continuous formulation. Utilizing the
same theoretical tools it can be proved that the associated Galerkin scheme defined by Raviart-
Thomas elements for the pseudostress and discontinuous piecewise polynomials for the velocity,
is well posed.

Now, one of the main tools widely utilized in the numerical analysis community to guarantee
a good convergence of most finite element methods, specially under the eventual presence of
singularities, is the so called a posteriori error estimator. This consists of a global quantity Θ
expressed in terms of calculable local indicators ΘT , defined on each element T of a given trian-
gulation T , which allows to estimate the finite element error in terms of a calculable quantity.
This information can be afterwards used to localize sources of error and construct an algorithm
to efficiently adapt the mesh. The estimator Θ is said to be efficient (resp. reliable) if there
exists C1 > 0 (resp. C2 > 0), independent of the meshsizes, such that

C1 Θ + h.o.t. ≤ ‖error‖ ≤ C2 Θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order.
Going back to our problem of interest, and regarding this powerful tool to improve the per-

formance of numerical methods for partial differential equations, we mention the pioneer works
[38], [41] and [42] (se also [4, Section 9.3]) where the authors introduced the first contributions
devoted to derive an a posteriori error analysis for the incompressible Navier-Stokes problem
in its classical velocity-pressure formulation. We refer also to [6] where the authors extend the
aforementioned contributions to the case of Dirac measures and [35] for an a posteriori error
analysis of a Discontinuous Galerkin scheme providing exactly-divergence free approximations
of the velocity.

On the other hand, the study of a posteriori error estimators for saddle-point problems has
been widely developed in the existing literature by many authors (see, e.g. [2], [3], [5], [8], [13],
[14], [27], [34], [36], [37], [40], and the references therein). The techniques employed in the above
list of contributions have been successfully applied to a quasi-optimal dual-mixed scheme (in
[23]) and to augmented-mixed formulations (in [29] and [12], respectively) of the Navier-Stokes
problem with constant and variable viscosity.

Our purpose now is to additionally contribute in the direction of the aforementioned works by
providing the a posteriori error analysis of the mixed variational approach introduced in [10]. To
that end, and since our formulation is defined on non-standard Banach spaces, we extend several
results usually utilized to analyze a posteriori error estimators in Hilbert spaces, to the context
of Banach spaces. According to this, the rest of this work is organized as follows. In Section 3
we recall from [10] the model problem and its continuous and discrete fully-mixed variational
formulations. Next in Section 4 we provide some preliminary results to be employed next to
derive and analyze our a posteriori error estimator. The kernel of the present work is given by
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Section 5, where we develop the a posteriori error analysis. In Section 5.1 we employ the global
continuous inf-sup condition, a Helmholtz decomposition, and the local approximation properties
of the Clément and Raviart-Thomas operators, to derive a reliable residual-based a posteriori
error estimator. Then, in Section 5.2 inverse inequalities, and the localization technique based
on element-bubble and edge-bubble functions to prove the efficiency of the estimator. Finally,
numerical results confirming the reliability and efficiency of the a posteriori error estimator and
showing the good performance of the associated adaptive algorithm, are presented in Section 6.

2 Preliminary notations

Let us denote by Ω ⊆ Rd, d ∈ {2, 3} a given bounded domain with polyhedral boundary Γ,
and denote by n the outward unit normal vector on Γ. Standard notations will be adopted for
Lebesgue spaces Lp(Ω), with p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with r ≥ 0, endowed with
the norms ‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω), respectively. Note that W 0,p(Ω) = Lp(Ω) and if p = 2, we
write Hr(Ω) in place of W r,2(Ω), with the corresponding Lebesgue and Sobolev norms denoted
by ‖·‖0,Ω and ‖·‖r,Ω, respectively. We also write |·|r,Ω for the Hr-seminorm. In addition, H1/2(Γ)
is the spaces of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉Γ we denote
the corresponding product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space S.
In turn, for any vector fields v = (vi)i=1,d and w = (wi)i=1,d we set the gradient, divergence and
tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=

d∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,d.

In addition, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div τ be the
divergence operator div acting along the rows of τ , and define the transpose, the trace, the
tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τ ji)i,j=1,d, tr(τ ) :=
d∑

i=1

τii, τ : ζ :=
d∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I,

where I is the identity tensor in Rd×d. For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
v w, (v,w)Ω :=

∫
Ω

v ·w, (v,w)Γ :=

∫
Γ

v ·w and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

Furthermore, we recall that the Hilbert space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm ‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω is standard in the realm of mixed
problems. However, in the sequel we will make use of the tensor version of H(div; Ω), namely

H(div ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

whose norm will be denoted ‖ · ‖div ,Ω. In turn, given p > 1, in what follows we will also employ
the non-standard Banach space H(divp ; Ω) defined by

H(divp ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ Lp(Ω)

}
,

endowed with the norm ‖τ‖divp ,Ω :=
(
‖τ‖20,Ω + ‖div τ‖2Lp(Ω)

)1/2
.
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3 The model problem and its conservative mixed formulation

In this section we recall from [10] the steady-state Navier–Stokes problem, its mixed variational
formulation, the associated Galerkin scheme, and the main results concerning the corresponding
solvability analysis.

3.1 The steady-state Navier–Stokes problem

Let Ω ⊆ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary Γ and let ν > 0, u and p
be the viscosity, the velocity and pressure, respectively, of a viscous fluid occupying the region
Ω, whose movement is described by the incompressible steady-state Navier–Stokes equations
with Dirichlet boundary condition:

−ν∆u + (u · ∇)u +∇p = f in Ω,

div u = 0 in Ω,

u = uD on Γ,

(p, 1)Ω = 0.

(3.1)

Above, f represents an external force acting on Ω and uD is the prescribed velocity on Γ,
satisfying the compatibility condition:

(uD · n, 1)Γ = 0. (3.2)

Now, in order to derive our mixed approach (see [10, Section 2.2] for details), we begin by
introducing the pseudostress tensor

σ := ν∇u − pI − u⊗ u in Ω.

Notice that from the incompressibility condition tr(∇u) = div u = 0 in Ω, there hold

div (u⊗ u) = (u · ∇)u in Ω and tr(σ) = −dp− tr(u⊗ u) in Ω.

According to the above, we can rewrite equations (3.1), equivalently, as follows

σd = ν∇u− (u⊗ u)d in Ω, −div σ = f in Ω,

u = uD on Γ, (tr(σ), 1)Ω = −(tr(u⊗ u), 1)Ω,
(3.3)

where the unknowns of the system are the tensor σ and the velocity u. The pressure p can be
easily computed as a postprocess of the solution by using

p = −1

d
(tr(σ) + tr(u⊗ u)) in Ω.

3.2 The mixed variational formulation and its well posedness

In this section we recall from [10, Section 2.3] the weak formulation of (3.3). To that end, we
define the spaces X := H(div4/3 ; Ω), M := L4(Ω) and

X0 :=
{
τ ∈ H(div4/3 ; Ω) : (tr(τ ), 1)Ω = 0

}
,
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and observe that the following decomposition holds:

X = X0 ⊕ P0(Ω)I,

where P0(Ω) is the space of constant polynomials on Ω. Then, the variational formulation of
(3.3) reads: Find (σ,u) ∈ X0 ×M, such that

a(σ, τ ) + b(τ ,u) + c(u; u, τ ) = F (τ ) ∀ τ ∈ X0,

b(σ,v) = G(v) ∀v ∈M,
(3.4)

where the bounded forms a : X× X→ R, b : X×M→ R and c : M×M× X→ R are defined
as

a(σ, τ ) :=
1

ν
(σd, τ d)Ω , b(τ ,v) := (div τ ,v)Ω, (3.5)

and

c(w; v, τ ) :=
1

ν
(w ⊗ v, τ d)Ω, (3.6)

and the functionals F ∈ X′0 and G ∈M′ as

F (τ ) := 〈τn,uD〉Γ and G(v) := −(f ,v)Ω. (3.7)

Notice that, from now on, the norms for the spaces X, M and the product space X×M, will
be denoted, respectively, by ‖ · ‖X, ‖ · ‖M and ‖(·, ·)‖ = ‖ · ‖X + ‖ · ‖M.

This problem is analyzed throughout [10, Section 3], and the well-posedness comes as a
result of a fixed-point strategy. In particular, we recall from [10, eq. (3.35)] the following inf-sup
condition:

sup
(τ ,v)∈X0×M

(τ ,v)6=0

a(ζ, τ ) + b(τ , z) + b(ζ,v) + c(u; z, τ )

‖(τ ,v)‖
≥ γ

2
‖(ζ, z)‖ ∀ (ζ, z) ∈ X0 ×M, (3.8)

with

γ := C̃
βmin{1, νβ}

νβ + 1
(3.9)

where C̃ and β are positive constants independent of the physical parameters. In particular, β
is the constant related with the inf-sup condition of the bilinear form b (cf. [10, Lemma 3.4]).

Next, we recall from [10, Theorem 3.7] the well-posedness of (3.4).

Theorem 3.1 Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ2

(
CF ‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
< 1,

where CF is the bounding constant of F (cf. [10, eq. (3.24)]) and γ is defined in (3.9). Then,
there exists a unique (σ,u) ∈ X0 ×M solution to (3.4). In addition, there exists C > 0, such
that

‖u‖M + ‖σ‖X ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
.
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In particular, it can be proved (see [10, Theorem 3.7]) that the velocity satisfies the following
estimate

‖u‖M ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
. (3.10)

The latter will be employed next in Section 5.1.
We now provide the converse of the derivation of (3.4). More precisely, the following theorem

establishes that if (σ,u) is the unique solution of (3.4), then

(
σ̃ := σ − 1

d |Ω|
(tr (u⊗ u), 1)ΩI,u

)
satisfies (3.3). We remark that there are not extra regularity assumptions on the data; only
f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) are required here.

Theorem 3.2 Let (σ,u) ∈ X0×M be the unique solution of (3.4). Then, σd = ν∇u− (u⊗u)d

in Ω, which implies that u ∈ H1(Ω), −div σ = f in Ω and u = uD on Γ.

Proof. First, it is clear that the identity −div σ = f in Ω follows from the second equation
of (3.4). On the other hand, the derivation of the rest of the identities follows from the first
equation of (3.4), considering suitable test functions and integrating by parts backwardly. We
omit further details. �

3.3 The mixed finite element method

Let {Th}h be a family of regular triangulations of Ω by triangles T in R2 or tetrahedra in R3 of
diameter hT , such that Ω = ∪{T : T ∈ Th} and define h := max{hT : T ∈ Th}. Now, given an
integer l ≥ 0 and a subset S of Rd, we denote by Pl(S) the space of polynomials of total degree
at most l defined on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as (see, for instance, [9]):

RTk(T ) := [Pk(T )]d ⊕ P̃k(T )x,

where x := (x1, . . . , xd)t is a generic vector of Rd and P̃k(T ) is the space of polynomials of total
degree equal to k defined on T . In this way, defining the finite element subspaces:

Xh :=
{
τ h ∈ X : ctτ h|T ∈ RTk(T ), ∀ c ∈ Rd, ∀T ∈ Th

}
⊆ X,

Mh :=
{

vh ∈M : vh|T ∈ [Pk(T )]d, ∀T ∈ Th
}
⊆ M,

and observing that
Xh = Xh,0 ⊕ P0(Ω)I with Xh,0 = Xh ∩ X0,

the Galerkin scheme associated with problem (3.4) reads: Find (σh,uh) ∈ Xh,0×Mh, such that

a(σh, τ h) + b(τ h,uh) + c(uh; uh, τ h) = F (τ h) ∀ τ h ∈ Xh,0,

b(σh,vh) = G(vh) ∀vh ∈Mh,
(3.11)

where the forms a, b and c, as well as the functionals F and G are defined in (3.5), (3.6) and
(3.7).

The following results, taken from [10, Theorem 4.5 and Theorem 4.8], respectively, provides
the well-posedness of (3.11) and the corresponding theoretical rate of convergence.
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Theorem 3.3 Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ̂2

(
CF ‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
< 1,

where CF is the bounding constant of F , independent of the physical parameters, and γ̂ is the
discrete version of γ (cf. (3.9)) given by

γ := Ĉ
β̂min{1, νβ̂}

νβ̂ + 1
,

where Ĉ is a positive constants independent of the physical parameters and β̂ is the constant
related with the discrete inf-sup condition of the bilinear form b. Then, there exists a unique
(σh,uh) ∈ Xh,0×Mh solution to (3.11). In addition, there exists C > 0, independent of h, such
that

‖uh‖M + ‖σh‖X ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
.

In particular, it can be proved (see [10, Theorem 3.7]) that the discrete velocity satisfies the
following estimate

‖uh‖M ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
. (3.12)

The latter will be employed next in Section 5.1.

Theorem 3.4 Assume that

4

νγγ̂

(
CF ‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
≤ 1

2
,

being CF the bounding constant of F (cf. [10, eq. (3.24)]), γ defined in (3.9) and γ̂ the discrete
version of γ (cf. [10, eq. (4.21)]). In addition, let (σ,u) ∈ X0 ×M and (σh,uh) ∈ Xh,0 ×Mh

be the unique solutions of problems (3.4) and (3.11), respectively. and assume further that
σ ∈ Hl+1(Ω), divσ ∈ Wl+1,4/3(Ω) and u ∈ Wl+1,4(Ω), for 0 ≤ l ≤ k. Then, there exists
C > 0, independent of h, such that

‖(σ − σh,u− uh)‖ ≤ C hl+1
{
|σ|Hl+1(Ω) + |divσ|Wl+1,4/3(Ω) + |u|Wl+1,4(Ω)

}
.

4 Preliminary results for the a posteriori error analysis

We start by introducing some useful notations to describe local information on elements and
edges or faces depending if d = 2 or d = 3, respectively. Let Eh be the set of edges or faces of
Th, whose corresponding diameters are denoted he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and we denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.

We also define unit normal vector ne on each edge or face by

ne := (n1, .., nd)t ∀ e ∈ Eh .
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Hence, when d = 2, we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and se, respec-
tively.

The usual jump operator [[·]] across internal edges or face are defined for piecewise continuous
matrix, vector, or scalar-valued functions ζ by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Finally, for
sufficiently smooth scalar ψ, vector v := (v1, .., vd)t, and tensor fields τ := (τij)1≤i,j≤d, for d = 2
we let

curl (ψ) :=
( ∂ψ
∂x2

, − ∂ψ
∂x1

)t
, rot (v) :=

∂v2

∂x1
− ∂v1

∂x2
, curl (v) =

(
curl (v1)t

curl (v2)t

)
,

curl (τ ) =

(
rot (τ 1)
rot (τ 2)

)
and γ∗(τ ) = τs

and for d = 3 we let

curl (v) = ∇× v , curl (τ ) =

curl (τ 1)
curl (τ 2)
curl (τ 3)

 and γ∗(τ ) =

τ 1 × n
τ 2 × n
τ 3 × n

 ,

where τ i is the i−th row of τ and the derivatives involved are taken in the distributional sense.
Let us now recall the main properties of the Raviart–Thomas interpolator (see e.g. [22])

and the Clément operator (see e.g. [18]) onto the space of continuous piecewise linear functions.
Given p > 1, let us define the space

Zp :=
{
τ ∈ H(divp; Ω) : τ |T ∈W1,p(T ), ∀T ∈ Th

}
,

and let
Πk

h : Zp → Xh :=
{
τ ∈ H(div; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th

}
,

be the Raviart–Thomas interpolation operator, which is well defined in Zp (see e.g. [22, Section
1.2.7]) and is characterized by the identities

(Πk
h(τ) · n, ξ)e = (τ · n, ξ)e ∀ ξ ∈ Pk(e), ∀ edge or face e of Th, (4.1)

and
(Πk

h(τ), ψ)T = (τ, ψ)T ∀ψ ∈ [Pk−1(T )]d, ∀ T ∈ Th (if k ≥ 1) .

Notice that, since Πk
h(τ) · ne ∈ Pk(e), from (4.1) we have that

Πk
h(τ) · ne = Pk

e (τ · ne) , (4.2)

where, for 1 ≤ r ≤ ∞, Pk
e : Lr(e)→ Pk(e) is the operator satisfying

8



∫
e
(Pk

e (v)− v)zh = 0 ∀ zh ∈ Pk(e), (4.3)

Notice that for r = 2, Pk
e coincides with the usual orthogonal projection. In addition, it is well

known (see e.g. [22, Lemma 1.41]) that the following identity holds

div(Πk
h(τ)) = Pk

h(divτ) ∀ τ ∈ Zp,

where, given 1 ≤ r ≤ ∞, Pk
h : Lr(Ω) → Mh :=

{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
is the

operator satisfying ∫
Ω

(P l
h(v)− v)zh = 0 ∀ zh ∈Mh.

The following lemma establishes the local approximation properties of Πk
h.

Lemma 4.1 Let p > 1. Then, there exists c1 > 0, independent of h, such that for each τ ∈
Wl+1,p(T ) with 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|τ −Πk
h(τ)|Wm,p(T ) ≤ c1

hl+2
T

ρm+1
T

|τ |Wl+1,p(T ),

where ρT is the diameter of the largest sphere contained in T . Moreover, there exists c2 > 0,
independent of h, such that for each τ ∈W1,p(T ), with div τ ∈ Wl+1,p(T ) and 0 ≤ l ≤ k, and
for each 0 ≤ m ≤ l + 1, there holds

|div τ − div (Πk
h(τ))|Wm,p(T ) ≤ c2

hl+1
T

ρmT
|div τ |Wl+1,p(T ).

Proof. See [10, Lemma 4.2] for details. �

Now, before introducing the following lemma, let us now recall some classical notation and
results. Let T̂ be a fixed reference element, which usually corresponds to the triangle with
vertices (1, 0), (0, 1), and (0, 0) in R2, or the tetrahedron with vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1), and (0, 0, 0) in R3. Any T ∈ Th can be obtained by mapping T̂ using an affine map.
By this we mean that for any T ∈ Th there is a map FT : T̂ → T such that FT (T̂ ) = T and
FT (x̂) = BT x̂+ bT where BT ∈ Rd × Rd is an invertible matrix and bT is a vector in Rd.

Given T ∈ Th and e ∈ Eh,T , we let ê be the face or edge of T̂ satisfying e = FT (ê). Then, the
following change of variable formula holds

(f, 1)e =
|e|
|ê|

(f ◦ FT , 1)ê =
|e|
|ê|

(f̂ , 1)ê. (4.4)

It is easy to prove that

P̂k
e (v) = Pk

ê (v̂) (4.5)

where, for 1 ≤ r ≤ ∞, Pk
ê : Lr(ê)→ Pk(ê) is defined as in (4.3).

Finally, let Pk
T̂

: L2(T̂ )→ Pk(T̂ ) be the usual orthogonal projector and nê the unit normal
vector on ê. Notice that

Pk
T̂

(τ̂) · nê|ê ∈ Pk(ê). (4.6)

Now we are in position of presenting the following lemma which extends the approximation
property of the Raviart–Thomas operator on edges or faces, originally given for Hilbert spaces
(cf. G.N. Gatica, 2019, private communication).
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Lemma 4.2 Let p > 1, T ∈ Th and e ∈ Eh,T . Then, there exists C > 0, independent of h, such
that

‖τ · n−Πk
h(τ) · n‖Lp(e) ≤ Ch1−1/p

e |τ |W1,p(T ) ∀ τ ∈W1,p(T ). (4.7)

Proof. We begin by proceeding similarly as in [25, Lemma 3.18]. In fact, given T ∈ Th and
e ∈ Eh,T , we let ê ∈ E

h,T̂
, be such that e = FT (ê). Then, given τ ∈ W1,p(T ), from (4.2), the

identities (4.4) and (4.5), and the property (4.6), we obtain

‖τ ·ne−Πk
h(τ) ·ne‖Lp(e) ≤

|e|1/p

|ê|1/p
‖τ̂ · n−Pk

ê (τ̂ · n)‖Lp(ê) ≤
|e|1/p

|ê|1/p
‖τ̂ ·nê−Pk

T̂
(τ̂) ·nê‖Lp(ê). (4.8)

Then, making use of the Rellich–Kondrachov Theorem (see [22, Theorem B.46]) with s = 1/p′

being p′ the real number satisfying 1/p + 1/p′ = 1, Ω = ê, and the trace theorem in W1,p(T̂ )
(see, for instance, [31, Theorem 1.5.1.3]), we obtain

‖τ̂ · nê −Pk
T̂

(τ̂) · nê‖Lp(ê) ≤ ĉ ‖τ̂ −Pk
T̂

(τ̂)‖W 1/p′,p(ê) ≤ Ĉ ‖τ̂ −Pk
T̂

(τ̂)‖
W1,p(T̂ )

. (4.9)

Next, since Pk
T̂
∈ L(W1,p(T̂ ),W1,p(T̂ )) and Pk

T̂
(q̂) = q̂ for all q̂ ∈ Pk(T̂ ), we can apply the

Lp-version of the Deny–Lions and Bramble–Hilbert lemmas (see, for instance, [22, Lemma B.67]
and [22, Lemma B.68], respectively) to Pk

T̂
, obtaining

‖τ̂ −Pk
T̂

(τ̂)‖
W1,p(T̂ )

≤ Ĉ|τ̂ |
W1,p(T̂ )

. (4.10)

Now, employing the scaling estimate in [22, Lemma 1.101], geometric results (see, for instance,
[22, Lemma 1.100]) and the fact that |T | ∼= hdT and he ∼= hT , the latter obtained thanks to the
fact that we are considering a regular triangulation, we deduce that

|τ̂ |
W1,p(T̂ )

≤ C̃‖BT ‖ |det(BT )|−1/p|τ |W1,p(T ) ≤ Ch
1−d/p
e |τ |W1,p(T ),

which, together with (4.8), (4.9), (4.10) and the fact that |e| ∼= hd−1
e completes the proof. �

Let us consider now the space H1
h =

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
. Then,

we denote by Ih : H1(Ω) −→ H1
h the well known Clément interpolation operator. The local

approximation properties of this operator are established in the following lemma (see [18]):

Lemma 4.3 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω)
there holds

‖v − Ihv‖0,T ≤ c1 hT |v|1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the set of elements intersecting T and e, respectively.

In what follows we will employ a tensor version of Πk
h, denoted by Πk

h : Zp → X, which
is defined row-wise by Πk

h and the vector version of Ih, denote by Ih : H1(Ω) → H1
h, defined

component-wise by Ih.

We end this section by establishing a suitable Helmholtz decomposition for H(divp ; Ω).
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Lemma 4.4 Let p > 1. Then, for each τ ∈ H(divp ,Ω) there exist

a) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that τ = ξ + curl w when d = 2,

b) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that τ = ξ + curl w when d = 3.

In addition, in both cases,

‖ξ‖W1,p(Ω) + ‖w‖1,Ω ≤ CHel‖τ‖divp ,Ω, (4.11)

where CHel is a positive constant independent of all the foregoing variables.

Proof. In what follows we prove the result for the two-dimensional case. The three-dimensional
case can be treated similarly by extending [24, Theorem 3.1] to the Lp case.

Let B a bounded convex polygonal domain containing Ω. Then, given τ ∈ H(divp ; Ω) we

let z ∈W1,p
0 (B) be the unique weak solution of the boundary value problem:

∆z = div τ in Ω, ∆z = 0 in B \ Ω, z = 0 on ∂B,

which, owing to the fact that B is convex, belongs to W2,p(B) and satisfies (see for instance
[31, Theorem 2.4.2.5]):

‖z‖W2,p(Ω) ≤ ‖z‖W2,p(B) ≤ ‖div τ‖Lp(Ω).

Then, we set ξ = (∇z)|Ω ∈W1,p(Ω) which clearly satisfies div ξ = ∆z = div τ in Ω and

‖ξ‖W1,p(Ω) ≤ ‖div τ‖Lp(Ω). (4.12)

Now, let ε := τ − ξ and observe that div ε = 0 in Ω. In addition, thanks to the continuous
embedding W 1,p(Ω) into L2(Ω) (see, for instance, [22, Theorem B.46]) and (4.12) we obtain that
ε ∈ L2(Ω) and

‖ε‖0,Ω ≤ ĉ
(
‖τ‖0,Ω + ‖ξ‖W1,p(Ω)

)
≤ c̃‖τ‖divp ,Ω.

In this way, since Ω is connected and ε ∈ L2(Ω) satisfies div ε = 0 in Ω, from [30, Chapter I,
Theorem 3.1] we conclude that there exists w = (w1, w2)t ∈ H1(Ω), such that

ε = τ − ξ = curl w in Ω, (4.13)

which can be chosen so that (w1, 1)Ω = (w2, 1)Ω = 0. In turn, the equivalence between ‖w‖1,Ω
and |w|1,Ω, together with (4.12) (4.13) and the continuous embedding from W 1,p(Ω) into L2(Ω),
imply

‖w‖1,Ω ≤ c|w|1,Ω = c‖curl w‖0,Ω ≤ c(‖τ‖0,Ω + ‖ξ‖W1,p(Ω)) ≤ c‖τ‖divp ,Ω.

Finally, the foregoing inequality and (4.12) confirm the stability estimate (4.11), thus finishing
the proof. �
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5 A posteriori error analysis

In this section we derive a residual-based a posteriori error estimator for the mixed method
(3.11). To that end, in what follows we assume that the hypothesis of Theorems 3.1 and 3.3
hold and let (σ,u) ∈ X0×M and (σh,uh) ∈ Xh,0×Mh be the unique solutions of the continuous
and discrete problems (3.4) and (3.11), respectively. Then, our global a posteriori error estimator
is defined by:

Θ =

{ ∑
T∈Th

Θ2
T

}1/2

+

{ ∑
T∈Th

‖f + divσh‖
4/3

L4/3(T )

}3/4

(5.1)

where, for each T ∈ Th, the local error indicator is defined as follows:

Θ2
T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥2

0,T

+
∑

e∈Eh,T (Γ)

h1/2
e ‖uD − uh‖2L4(e)

+ h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d −∇uD

)∥∥∥∥2

0,e

.

(5.2)
The main goal of the present section is to establish, under suitable assumptions, We begin

with the reliability of the estimator.

5.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 5.1 Assume that the data f and uD satisfy

8

νγγ̂

(
CF ‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
≤ 1. (5.3)

Then, there exist Crel > 0, independent of h, such that

‖(σ − σh,u− uh)‖ ≤ Crel Θ. (5.4)

We begin the derivation of (5.4) with the next preliminary lemma.

Lemma 5.2 Assume that the data f and uD satisfy (5.3). Let (σ,u) ∈ X0×M and (σh,uh) ∈
Xh,0 ×Mh solution to (3.4) and (3.11), respectively. Then, there exists a constant Cglob > 0,
independent of h, such that

‖(σ − σh,u− uh)‖ ≤ Cglob sup
(τ ,v)∈X0×M

(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
, (5.5)

where R : X0 ×M→ R is the residual functional

R(τ ,v) = a(σ − σh, τ ) + b(τ ,u− uh) + b(σ − σh,v) + c(u; u, τ )− c(uh; uh, τ ) (5.6)

for all (τ ,v) ∈ X0 ×M.
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Proof. First, using the inf-sup condition (3.8) for the error (ζ, z) = (σ − σh,u − uh), adding
and substracting suitable terms, using the notation introduced in (5.6), and the fact that

|c(u− uh; uh, τ )| ≤ 1

ν
‖uh‖M ‖u− uh‖M‖τ‖X,

it follows that

γ

2
‖(σ − σh,u− uh)‖ ≤ sup

(τ ,v)∈X0×M
(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
+ sup

τ∈X0
τ 6=0

c(u− uh; uh, τ )

‖τ‖X

≤ sup
(τ ,v)∈X0×M

(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
+

1

ν
‖uh‖M ‖u− uh‖M.

In this way, (5.5) follows straightforwardly from (3.12) and assumption (5.3). �
In turn, according to (3.4), (3.11) and the definition of the forms a, b and c, we find that,

for any (τ ,v) ∈ X0 ×M, there holds

R(τ ,v) = R1(τ ) +R2(v)

where

R1(τ ) = 〈τn,uD〉Γ −
1

ν
(σd

h, τ
d)Ω − (uh,div τ )Ω −

1

ν

(
uh ⊗ uh, τ

d
)

Ω
(5.7)

and
R2(v) = −(f ,v)Ω − (v,divσh)Ω.

Hence, the supremum in (5.5) can be bounded in terms of R1 and R2 as follows

‖(σ − σh,u− uh)‖ ≤ Cglob

{
‖R1‖X′0 + ‖R2‖M′

}
.

In this way, we have transformed (5.5) into an estimate involving global inf-sup conditions on
X0 and M, separately.

Throughout the rest of this section, we provide suitable upper bounds for R1 and R2. We
begin by establishing the corresponding estimate for R2, whose proof follows from a straight-
forward application of the Hölder inequality.

Lemma 5.3 There holds

‖R2‖M′ ≤

{ ∑
T∈Th

‖f + divσh‖
4/3

L4/3(T )

}3/4

.

Our next goal is to bound the remaining term ‖R1‖X′0 . With this aim in mind, in what
follows we introduce some technical results.

Lemma 5.4 There exists C1 > 0, independent of h, such that for each ξ ∈ W1,4/3(Ω) there
holds ∣∣R1(ξ −Πk

h(ξ))
∣∣ ≤ C1

∑
T∈Th

Θ2
1,T

1/2

‖ξ‖W1,4/3(Ω), (5.8)
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where

Θ2
1,T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥2

0,T

+
∑

e∈Eh,T (Γ)

h1/2
e ‖uD − uh‖2L4(e) .

Proof. We recall from the definition of R1 (cf. (5.7)) that

R1(ξ −Πk
h(ξ)) = 〈 (ξ −Πk

h(ξ))n, uD 〉Γ −
1

ν

(
σd
h, (ξ −Πk

h(ξ))d
)

Ω

− 1

ν

(
uh, div (ξ −Πk

h(ξ))
)

Ω
− 1

ν

(
uh ⊗ uh, (ξ −Πk

h(ξ))d
)
.

Applying a local integration by parts to the third term above, (4.1) and the fact that uD ∈ L2(Γ),
we obtain

R1(ξ −Πk
h(ξ)) =

∑
e∈Eh(Γ)

(
(ξ −Πk

h(ξ))n, uD − uh

)
e

+
∑
T∈Th

(
∇uh −

1

ν
(σh + (uh ⊗ uh))d, (ξ −Πk

h(ξ))

)
T

.

In turn, using Hölder and Cauchy-Schwarz inequalities, estimate (4.7) with p = 4/3, and the
approximation property (see [39, eq. (3.28)] for details)

‖τ − Πk
h(τ)‖0,T ≤ C h

1−d/4
T |τ |W1,4/3(T ) ∀ τ ∈W1,4/3(T ) ,

with C > 0 a constant independent of the meshsize, we obtain∣∣R1(ξ −Πk
h(ξ))

∣∣ ≤ ∑
e∈Eh(Γ)

‖uD − uh‖L4(e) C h
1/4
e |ξ|W1,4/3(Te)

+
∑
T∈Th

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥
0,T

C h
1−d/4
T |ξ|W1,4/3(T ),

with Te being the element that contains e.
Finally, from the subadditivity inequality we obtain

|R1(ξ −Πk
h(ξ))| ≤ Ĉ


( ∑

e∈Eh(Γ)

h1/2
e ‖uD − uh‖2L4(e)

)1/2( ∑
e∈Eh(Γ)

|ξ|4/3

W1,4/3(Te)

)3/4

+

( ∑
T∈Th

h
2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥2

0,T

)1/2( ∑
T∈Th

|ξ|4/3

W1,4/3(T )

)3/4
 ,

which clearly implies (5.8) and completes the proof. �

Lemma 5.5 Assume that uD ∈ H1(Γ) and let

Θ2
2,T := h2

T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d −∇uD

)∥∥∥∥2

0,e

.
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Then,

a) if d = 2, there exists C2 > 0, independent of h, such that

∣∣R1 (curl (w − Ihw))
∣∣ ≤ C2

∑
T∈Th

Θ2
2,T

1/2

‖w‖1,Ω ∀w ∈ H1(Ω). (5.9)

b) if d = 3, there exists Ĉ2 > 0, independent of h, such that

∣∣R1 (curl (w − Ihw))
∣∣ ≤ Ĉ2

∑
T∈Th

Θ2
2,T

1/2

‖w‖1,Ω ∀w ∈ H1(Ω).

Proof. In what follows we prove the result for d = 2 since the three dimensional follows analo-
gously.

Given w ∈ H1(Ω), we first notice from the definition of R1 in (5.7) that there holds

R1(curl (w − Ihw)) = 〈curl (w − Ihw)n,uD〉Γ −
1

ν

(
σd
h + (uh ⊗ uh)d, curl (w − Ihw)

)
Ω
.

Recalling that uD ∈ H1(Γ), now we apply the following integration by parts on the boundary Γ
given by (see, for instance, [21, Lemma 3.5, eq. (3.34)])

〈curl (w − Ihw)n,uD〉Γ = 〈∇uDs,w − Ihw〉Γ = 〈γ∗(∇uD),w − Ihw〉Γ,

and a local integration by parts, to obtain

R1(curl (w − Ihw)) = −
∑
T∈Th

(
curl

(
1

ν
(σh + (uh ⊗ uh))d

)
, w − Ihw

)
T

+
∑

e∈Eh(Ω)

([[
γ∗

(
1

ν
(σh + (uh ⊗ uh))d

)]]
, w − Ihw

)
e

+
∑

e∈Eh(Γ)

(
γ∗

(
1

ν
(σh + (uh ⊗ uh))d −∇uD

)
, w − Ihw

)
e

.

Hence, applying Cauchy-Schwarz inequality and the approximation properties of the Clément
interpolant (cf. Lemma 4.3), we obtain∣∣R1(curl (w − Ihw))

∣∣
≤ Ĉ


( ∑

T∈Th

h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,T

)1/2( ∑
T∈Th

‖w‖21,∆(T )

)1/2

+

( ∑
e∈Eh(Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Ω)

‖w‖21,∆(e)

)1/2

+

( ∑
e∈Eh(Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d −∇uD

)∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Γ)

‖w‖21,∆(e)

)1/2
 .
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Therefore, from the previous estimate and the fact that the number of triangles of the macro-
elements ∆(T ) and ∆(e) are uniformly bounded, we get (5.9) and conclude the proof. �

The following lemma combines Lemmas 5.4 and 5.5 and establishes the desired estimate for
R1.

Lemma 5.6 There exists C > 0, independent of h, such that

‖R1‖X′0 ≤ C

{ ∑
T∈Th

Θ2
T

}1/2

,

with ΘT defined as in (5.2).

Proof. For simplicity, we prove the result for the two-dimensional case. The three dimensional
case proceed analogously.

Let τ ∈ X0. It follows from Lemma 4.4 that there exist ξ ∈W1,4/3(Ω) and w ∈ H1(Ω), such
that τ = ξ + curl w and

‖ξ‖W1,4/3(Ω) + ‖w‖1,Ω ≤ CHel‖τ‖X. (5.10)

Now, noticing that owing to the Galerkin orthogonality there holds R1(τ h) = 0 for all τ h ∈ Xh,0,
it follows that

R1(τ ) = R1(τ − τ h) ∀τ h ∈ Xh,0.

In particular, for τ h defined as

τ h = Πk
hξ + curl (Ihw) + Cξ,wI, with Cξ,w = − 1

2|Ω|

(
tr
(
Πk

h(ξ) + curl (Ihw)
)
, 1
)

Ω
,

and observing that from the definition of R1 and the compatibility condition (3.2), there holds
R1(c I) = 0 for any constant c ∈ R, we obtain

R1(τ ) = R1(ξ −Πk
hξ) +R1(curl (w − Ihw)).

Hence, the proof follows from Lemmas 5.4 and 5.5, and estimate (5.10). �

We end this section by observing that the reliability estimate (5.4) is a direct consequence
of Lemmas 5.3 and 5.6.

5.2 Local efficiency of the a posteriori error estimator

We begin by establishing the main result of this section.

Theorem 5.7 There exists Crel > 0, independent of h, such that

Ceff Θ ≤ ‖(σ − σh,u− uh)‖+ h.o.t, (5.11)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that the proof of (5.11) makes frequent use of the identities provided
by Theorem 3.2. We begin with the estimates for the zero order terms appearing in the definition
of ΘT (cf. (5.2)).
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Lemma 5.8 There holds

‖f + divσh‖L4/3(T ) ≤ ‖σ − σh‖div4/3 ,T ∀T ∈ Th.

Proof. It suffices to recall, as established in Theorem 3.2, that f = −divσ in Ω. �

In order to derive the upper bounds for the remaining terms defining the global a posteriori
error estimator Θ (cf.(5.1)), we use results from [13], inverse inequalities, and the localization
technique based on element-bubble and edge-bubble functions. To this end, we now introduce
further notations and preliminary results. Given T ∈ Th and e ∈ Eh,T , we let φT and φe be
the usual element-bubble and edge(face)-bubble functions, respectively (see [43] for details). In
particular φT satisfies φT ∈ P3(T ), supp φT ⊆ T , φT = 0 on ∂T , and 0 ≤ φT ≤ 1 in T . Similarly,
φe|T ∈ P2(T ), supp φe ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh,T ′}, φe = 0 on ∂T\e and 0 ≤ φT ≤ 1 in ωe. We
also recall from [43] that, given k ∈ N∪{0}, there exists an extension operator L : C(e)→ C(ωe)
that satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L,
that is the componentwise application of L, is denoted by L. Additional properties of φT , φe
and L are collected in the following lemma.

Lemma 5.9 Given k ∈ N∪ {0}, there exist positive constants c1, c2, c3 and c4, depending only
on k and the shape regularity of the triangulations (minimum angle condition), such that, for
each triangle T and e ∈ Eh, there hold

‖φT q‖20,T ≤ ‖q‖20,T ≤ c1‖φ1/2
T q‖20,T ∀q ∈ Pk(T ), (5.12)

‖φeL(p)‖20,e ≤ ‖p‖20,e ≤ c2‖φ1/2
e p‖20,e ∀p ∈ Pk(e)

and
c3 h

1/2
e ‖p‖0,e ≤ ‖φ1/2

e L(p)‖0,T ≤ c4 h
1/2
e ‖p‖0,e ∀p ∈ Pk(e).

Proof. See Lemma 4.1 in [43]. �

In addition, given k ∈ N ∪ {0}, T ∈ Th and e ∈ Eh, in what follows we will make use of the
following inverse inequalities (see [22, Lemma 1.138]): There exist c1, c2 > 0, independent of
the meshsize, such that

‖v‖W1,4/3(T ) ≤ c1 h
−1+d/4
T ‖v‖0,T ∀ v ∈ Pk(T ), (5.13)

‖v‖L4(e) ≤ c2 h
(1−d)/4
e ‖v‖0,e ∀ v ∈ Pk(e). (5.14)

Now we recall the well-known inverse inequality result.
Finally, we recall the standard discrete trace inequality, which establishes the existence of a

positive constant c, depending only on the shape regularity of the triangulations, such that for
each T ∈ Th and e ∈ Eh,T , there holds

‖v‖20,e ≤ c
(
h−1
e ‖v‖20,T + he|v|21,T

)
∀ v ∈ H1(T ). (5.15)

The proof of (5.15) we refer to Theorem 3.10 in [1].
Now we proceed by deriving the estimates for the remaining terms defining Θ.
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Lemma 5.10 There exists C1 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥
0,T

≤ C1

{(
1 + h

1−d/4
T

)
‖u− uh‖L4(T ) + h

1−d/4
T

∥∥σ − σh

∥∥
0,T

}
∀T ∈ Th.

(5.16)

Proof. Given T ∈ Th, we define χT := ∇uh −
1

ν
(σh + (uh ⊗ uh))d in T . Then, applying (5.12)

to ‖χT ‖0,T , recalling the identity ∇u =
1

ν
(σ+ (u⊗u))d in Ω (cf. Theorem 3.2), integrating by

parts and using that φT = 0 on ∂T , we deduce

‖χT ‖20,T ≤ ‖φ
1/2
T χT ‖20,T =

(
∇uh −

1

ν
(σh + (uh ⊗ uh))d, φTχT

)
T

= (div (φTχT ),u− uh)T +
1

ν

(
φTχT , (σ

d − σd
h) + (u⊗ u)d − (uh ⊗ uh)d

)
T
.

Next, using the Hölder and Cauchy-Schwarz inequalities, the inverse inequality (5.13) with l = 1,
p = 4/3, m = 0 and q = 2, and the estimate (5.12), we obtain

‖χT ‖20,T ≤ c|φTχT |W1,4/3(T )‖u− uh‖L4(T ) +
1

ν
‖φTχT ‖0,T

∥∥(σ − σh)d + (u⊗ u− uh ⊗ uh)d
∥∥

0,T

≤ C h−1+d/4
T ‖χT ‖0,T ‖u− uh‖L4(T ) +

1

ν
‖χT ‖0,T

(∥∥σ − σh

∥∥
0,T

+
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
,

which implies

‖χT ‖0,T ≤ C h
−1+d/4
T ‖u− uh‖L4(T ) +

1

ν

(∥∥σ − σh

∥∥
0,T

+
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
. (5.17)

In turn, applying similar algebraic manipulation used in [10, Corollary 4.10], using Hölder in-
equality, estimates (3.10), (3.12), and the fact that the data are small enough, we deduce that∥∥u⊗ u− uh ⊗ uh

∥∥
0,T
≤
(
‖u‖L4(T ) + ‖uh‖L4(T )

)
‖u− uh‖L4(T ) ≤ C ‖u− uh‖L4(T ), (5.18)

with C > 0 independent of h. Finally, replacing (5.18) into (5.17) we obtain (5.16) and conclude
the proof. �

Lemma 5.11 Assume that uD is piecewise polynomial. Then, there exists C2 > 0, independent
of h, such that

h1/4
e ‖uD − uh‖L4(e) ≤ C2

{(
1 + h

1−d/4
T

)
‖u− uh‖L4(T ) + h

1−d/4
T

∥∥σ − σh

∥∥
0,T

}
(5.19)

for all e ∈ Eh,T (Γ).

Proof. Given e ∈ Eh(Γ), from (5.14), it follows that

‖uD − uh‖L4(e) ≤ Ch(1−d)/4
e ‖uD − uh‖0,e. (5.20)

Hence, from (5.20) and (5.15), we deduce that

‖uD − uh‖L4(e) ≤ C
{
h(−1−d)/4
e ‖u− uh‖0,T + h(3−d)/4

e |u− uh|1,T
}
. (5.21)

18



Now, using the Cauchy-Schwarz inequality and the fact that |T | ∼= hdT , we deduce that

‖u− uh‖0,T =
(
1, |u− uh|2

)1/2

T
≤ |T |1/4‖u− uh‖L4(T ) ≤ ch

d/4
T ‖u− uh‖L4(T ). (5.22)

In turn, using the identity ∇u =
1

ν
(σd + (u⊗ u)d) in Ω (cf. Theorem 3.2) and some algebraic

computations, we deduce that

|u− uh|1,T =

∥∥∥∥1

ν

(
(σ − σh)d + ((u⊗ u)− (uh ⊗ uh))d

)
+

1

ν
(σh + (uh ⊗ uh))d −∇uh

∥∥∥∥
0,T

≤ 1

ν

(∥∥σ − σh‖0,T +
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
+

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥
0,T

which together with (5.17) and (5.18), yields

|u− uh|1,T ≤ C
(
1 + h

−1+d/4
T

)
‖u− uh‖L4(T ) +

2

ν
‖σ − σh‖0,T . (5.23)

Therefore, (5.19) follows from estimates (5.21), (5.22) and (5.23), and the fact that he ≤ hT . �

Now we establish the estimates for the remaining terms defining Θ.

Lemma 5.12 There exist C3 > 0 and C4 > 0, independent of h, such that

hT

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥
0,T

≤ C3

{
‖u− uh‖L4(T ) + ‖σ − σh‖0,T

}
(5.24)

for all T ∈ Th and

h1/2
e

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥
0,e

≤ C4

{
‖u− uh‖L4(ωe) + ‖σ − σh‖0,ωe

}
(5.25)

for all e ∈ Eh(Ω).
Additionally, if uD is piecewise polynomial, there exists C5 > 0, independent of h, such that

h1/2
e

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d −∇uD

)∥∥∥∥
0,e

≤ C5

{
‖u− uh‖L4(Te) + ‖σ − σh‖0,Te

}
(5.26)

for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary face e belongs.

Proof. For the two-dimensional case, we proceed as in [20, Lemma 3.15], that is, we apply [28,

Lemmas 4.9, 4.10, and 4.15] to ζ :=
1

ν
(σ+ (u⊗ u))d = ∇u and ζh :=

1

ν
(σh + (uh ⊗ uh))d, and

the estimate ‖(u⊗ u)d − (uh ⊗ uh)d‖0,T ≤ ‖u⊗ u− uh ⊗ uh‖0,T , to obtain∥∥∥∥curl

(
1

ν
(σh + uh ⊗ uh)d

)∥∥∥∥2

0,T

≤ Ch−2
T

{
‖σ − σh‖20,T + ‖u⊗ u− uh ⊗ uh‖20,T

}
, (5.27)

∥∥∥∥[[γ∗(1

ν
(σh + uh ⊗ uh)d

)]]∥∥∥∥2

0,e

≤ Ch−1
e

{
‖σ − σh‖20,ωe

+ ‖u⊗ u− uh ⊗ uh‖20,ωe

}
(5.28)
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and∥∥∥∥γ∗(1

ν
(σh + uh ⊗ uh)d −∇uD

)∥∥∥∥2

0,e

≤ Ch−1
e

{
‖σ − σh‖20,Te

+ ‖u⊗ u− uh ⊗ uh‖20,Te

}
. (5.29)

Thus, using the estimate (5.18) it follows that (5.27), (5.28), and (5.29), imply (5.24), (5.25),
and (5.26), respectively. On the other hand, for the three-dimensional case the corresponding
estimates follow from using the results from Lemmas 4.9, 4.10, and 4.13 in [26], respectively. �

We remark that, for simplicity, we have assume that uD to be piecewise polynomial for the
derivation of (5.19) in Lemma 5.11 and (5.26) in Lemma 5.12. However, by assuming that uD is
sufficiently smooth, and proceeding similarly as in [15, Section 6.2] one can also obtain similar
estimates. In such a case, higher order terms given by the errors arising from suitable polynomial
approximations would appear in (5.19) and (5.26), which explains the eventual h.o.t in (5.11).

We end this section by remarking that the efficiency of Θ (cf. (5.11)) in Theorem 5.7 is now
a straightforward consequence of Lemmas 5.8, 5.10, 5.11 and 5.12. In turn, we emphasize that
the resulting positive constant, denoted by Ceff is independent of h.

6 Numerical results

This section serves to illustrate the performance and accuracy of our mixed finite element scheme
(3.11) along with the reliability and efficiency properties of the a posteriori error estimator Θ (cf.
(5.1)) derived in Section 5. In what follows, we refer to the corresponding sets of finite element
subspaces generated by k = 0 and k = 1, as simply RT0 − P0 and RT1 − P1, respectively.
Our implementation is based on a FreeFem++ code [32]. Regarding the implementation of the
Newton iterative method associated to (3.11) (see [10, Section 5] for details), the iterations
are terminated once the relative error of the entire coefficient vectors between two consecutive
iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol,

where ‖ · ‖`2 is the standard `2-norm in RN , with N denoting the total number of degrees of
freedom defining the finite element subspaces Xh and Mh stated in Section 3.3, and tol is a fixed
tolerance chosen as tol=1E-06. As usual, the individual errors are denoted by:

e(σ) := ‖σ − σh‖X, e(u) := ‖u− uh‖M, e(p) := ‖p− ph‖0,Ω,

e(∇u) := ‖∇u−Gh‖0,Ω, e(ω) := ‖ω − ωh‖0,Ω,

where the pressure p, the velocity gradient ∇u, and the vorticity ω := 1
2

(
∇u − (∇u)t

)
are

approximated, respectively, through the post-processing formulas (cf. [10, Section 4.4]):

ph = −1

d

(
tr(σh) + tr(uh ⊗ uh)− 1

|Ω|
(tr(uh ⊗ uh), 1)Ω

)
,

Gh =
1

ν

(
σd
h + (uh ⊗ uh)d

)
, ωh =

1

2ν

(
σh − σt

h

)
.
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Then, the global error and the effectivity index associated to the global estimator Θ are denoted,
respectively, by

e(σ,u) := e(σ) + e(u) and eff(Θ) :=
e(σ,u)

Θ
.

Moreover, using the fact that cN−1/d ≤ h ≤ C N−1/d, the experimental rate of convergence of
any of the above quantities will be computed as

r(�) := −d log(e(�)/e′(�))
log(N/N ′)

for each � ∈
{
σ,u, p,∇u,ω, (σ,u)

}
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations
with errors e and e′.

The examples to be considered in this section are described next. In all of them, for the
sake of simplicity, we choose the parameter ν = 1. Furthermore, the condition (tr(σh), 1)Ω = 0
is imposed via a penalization strategy using a scalar Lagrange multiplier (see [10, eq. (5.1)] for
details).

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error es-
timator Θ, whereas Examples 2 and 3 are utilized to illustrate the behavior of the associated
adaptive algorithm in 2D and 3D domains, respectively, which applies the following procedure
from [44]:

(1) Start with a coarse mesh Th.

(2) Solve the Newton iterative method associated to (3.11) for the current mesh Th.

(3) Compute the local indicator Θ̂T for each T ∈ Th, where

Θ̂T := ΘT + ‖f + divσh‖L4/3(T ), (cf. (5.2))

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Generate an adapted mesh through a variable metric/Delaunay automatic meshing algo-
rithm (see [33, Section 9.1.9]).

(6) Define resulting mesh as current mesh Th, and go to step (2).

Example 1: Accuracy assessment with a smooth solution in a square domain.

In our first example, we concentrate on the accuracy of the mixed method. We consider the
square domain Ω := (0, 1)2. The data f and uD are chosen so that a manufactured solution of
(3.1) is given by the smooth functions

u(x) :=

(
x2

1(x1 − 1)2 sin(x2)
2x1(x1 − 1)(2x1 − 1) cos(x2)

)
,

p(x) := cos(πx1) exp(πx2) ∀x := (x1, x2) ∈ Ω.

The results reported in Tables 6.1 and 6.2 are in accordance with the theoretical bounds
established in Theorem 3.4. In addition, we also compute the global a posteriori error indicator
Θ (cf. (5.1)), and measure its reliability and efficiency with the effectivity index. Notice that
the estimator remain always bounded.
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Example 2: Adaptivity in a 2D L-shape domain.

Our second example is aimed at testing the features of adaptive mesh refinement after the
a posteriori error estimator Θ (cf. (5.1)). We consider a L-shape contraction domain Ω :=
(−1, 1)2 \ (0, 1)2. The data f and uD are chosen so that the exact solution is given by

u(x) :=

(
− cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

)
,

p(x) :=
1− x1

(x1 − 0.02)2 + (x2 − 0.02)2
− p0 ∀x := (x1, x2) ∈ Ω,

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the pressure exhibit
high gradients near the vertex (0, 0).

Tables 6.3–6.6 along with Figure 6.1, summarizes the convergence history of the method
applied to a sequence of quasi-uniformly and adaptively refined triangulation of the domain.
Suboptimal rates are observed in the first case, whereas adaptive refinement according to the a
posteriori error indicator Θ yields optimal convergence and stable effectivity indexes. Notice how
the adaptive algorithms improves the efficiency of the method by delivering quality solutions
at a lower computational cost, to the point that it is possible to get a better one (in terms of
e(σ,u)) with approximately only the 0.6% of the degrees of freedom of the last quasi-uniform
mesh for the mixed scheme in both cases k = 0 and k = 1. In addition, we recall from [10,
Remark 4.6] that our Galerkin scheme (3.11) satisfies the property divσh = Pk

h(f) in Ω, where
Pk

h is the L2(Ω)-orthogonal projection onto Mh. In this way, using the fact that f does not live
in Mh, we illustrate the conservation of momentum in an approximate sense by computing the
`∞-norm for divσh + Pk

h(f), with k = 0, 1. As expected, these values are close to zero.
On the other hand, approximate solutions builded using the RT1−P1 scheme with 880, 554

degrees of freedom (54, 955 triangles), via the indicator Θ, are shown in Figure 6.2. In particular,
we observe in the computed magnitude of the velocity a vortex near the corner region of the L-
shape domain whereas the pressure exhibits high gradients in the same region. In turn, examples
of some adapted meshes for k = 0 and k = 1 are collected in Figure 6.3. We can observe a clear
clustering of elements near the corner region of the contraction as we expected.

Example 3: Adaptivity in a 3D L-shape domain.

To conclude, we replicate the Example 2 in a three-dimensional setting. However, this time
we consider the 3D L-shape domain Ω := (−0.5, 0.5) × (0, 0.5) × (−0.5, 0.5) \ (0, 0.5)3, and the
manufactured exact solutions adopt the form

u(x) :=

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 ,

p(x) :=
10x3

(x1 − 0.02)2 + (x3 − 0.02)2
− p0 ∀x := (x1, x2, x3) ∈ Ω,

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Similarly, Tables 6.7 and 6.8 along
with the Figure 6.4 confirm a disturbed convergence under quasi-uniform refinement and optimal
convergence rates when using adaptive refinement guided by the a posteriori error estimator Θ.
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N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

196 0.373 6.58E+00 – 1.39E-01 – 1.66E+00 – 1.61E+00 –
792 0.196 3.03E+00 1.110 4.30E-02 1.681 6.63E-01 1.317 8.32E-01 0.949

3084 0.098 1.51E+00 1.022 1.66E-02 1.399 2.97E-01 1.181 4.28E-01 0.980
12208 0.048 7.79E-01 0.965 7.79E-03 1.100 1.54E-01 0.955 2.35E-01 0.870
48626 0.028 3.84E-01 1.023 3.93E-03 0.993 7.16E-02 1.106 1.14E-01 1.042

196242 0.014 1.90E-01 1.011 1.91E-04 1.035 3.50E-02 1.027 5.66E-02 1.009

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) iter

9.53E-01 – 6.72E+00 – 1.26E+01 0.534 4
3.75E-01 1.335 3.07E+00 1.120 6.27E+00 0.490 3
1.67E-01 1.193 1.53E+00 1.027 3.23E+00 0.474 3
7.95E-02 1.075 7.86E-01 0.967 1.71E+00 0.461 3
3.97E-02 1.007 3.88E-01 1.022 8.53E-01 0.455 3
1.97E-02 1.005 1.92E-01 1.011 4.30E-01 0.446 3

Table 6.1: Example 1, RT0 −P0 scheme with quasi-uniform refinement.

In turn, some approximated solutions after four mesh refinement steps showing an analogous
behavior to its 2-D counterpart are collected in Figure 6.5, whereas snapshots of three meshes
via Θ are shown in Figure 6.6.
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Figure 6.1: Example 2, Log-log plot of e(σ,u) vs. N for quasi-uniform/adaptive refinements for
k = 0 and k = 1 (left and right plots, respectively).
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Figure 6.2: Example 2, initial mesh, computed magnitude of the velocity, and pressure field.
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Figure 6.3: Example 2, three snapshots of adapted meshes according to the indicator Θ for k = 0
and k = 1 (top and bottom plots, respectively).
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k = 0.
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Figure 6.5: Example 3, initial mesh, computed magnitude of the velocity, and pressure field.

Figure 6.6: Example 3, three snapshots of adapted meshes according to the indicator Θ for
k = 0.
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N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)
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e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P0
h(f)‖`∞ iter
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N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

1728 0.400 4.92E+02 – 2.57E+00 – 2.38E+01 – 3.43E+01 –
7168 0.190 5.59E+02 – 1.63E+00 0.637 1.95E+01 0.283 3.15E+01 0.121

27936 0.103 4.07E+02 0.464 5.84E-01 1.512 1.12E+01 0.813 1.78E+01 0.842
110816 0.051 1.96E+02 1.064 1.69E-01 1.803 5.38E+00 1.064 8.51E+00 1.068
443296 0.027 6.89E+01 1.506 4.00E-02 2.078 1.74E+00 1.627 3.07E+00 1.470

1776640 0.014 1.94E+01 1.827 5.92E-03 2.751 4.90E-01 1.827 8.48E-01 1.853

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P1
h(f)‖`∞ iter

1.62E+01 – 4.95E+02 – 8.42E+02 0.588 9.38E-13 4
1.55E+01 0.063 5.60E+02 – 7.56E+02 0.741 3.64E-12 4
8.95E+00 0.805 4.08E+02 0.466 5.46E+02 0.748 1.18E-11 3
3.95E+00 1.190 1.96E+02 1.065 2.64E+02 0.742 8.73E-11 3
1.38E+00 1.519 6.90E+01 1.506 9.41E+01 0.733 1.46E-10 3
3.62E-01 1.924 1.94E+01 1.827 2.64E+01 0.734 2.91E-10 3

Table 6.4: Example 2, RT1 −P1 scheme with quasi-uniform refinement.

N e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

552 6.48E+02 – 5.72E+00 – 3.78E+01 – 4.89E+01 –
920 7.29E+02 – 2.21E+00 3.722 3.10E+01 0.773 3.57E+01 1.230

1370 4.22E+02 2.741 7.42E-01 5.486 1.55E+01 3.475 2.21E+01 2.412
2110 1.84E+02 3.843 2.63E-01 4.808 6.77E+00 3.846 1.01E+01 3.629
3666 9.33E+01 2.462 2.54E-01 0.123 3.43E+00 2.458 5.38E+00 2.277
7256 6.25E+01 1.175 2.53E-01 0.016 2.32E+00 1.146 3.69E+00 1.109

12786 4.67E+01 1.027 1.84E-01 1.114 1.71E+00 1.076 2.73E+00 1.058
22746 3.54E+01 0.961 1.36E-01 1.041 1.29E+00 0.988 2.06E+00 0.978
44082 2.51E+01 1.035 9.48E-02 1.102 9.12E-01 1.040 1.47E+00 1.024
81474 1.88E+01 0.955 6.68E-02 1.138 6.77E-01 0.969 1.09E+00 0.973

161434 1.32E+01 1.024 4.67E-02 1.051 4.79E-01 1.013 7.71E-01 1.011
306256 9.72E+00 0.959 3.19E-02 1.191 3.51E-01 0.977 5.63E-01 0.983

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P0
h(f)‖`∞ iter

2.35E+01 – 6.53E+02 – 8.37E+02 0.780 4.55E-13 5
1.44E+01 1.913 7.31E+02 – 8.53E+02 0.858 3.64E-12 4
8.95E+00 2.394 4.23E+02 2.748 5.03E+02 0.841 1.82E-11 4
3.75E+00 4.031 1.85E+02 3.844 2.24E+02 0.825 8.73E-11 3
1.86E+00 2.532 9.36E+01 2.458 1.16E+02 0.809 3.49E-10 3
1.29E+00 1.066 6.27E+01 1.172 7.80E+01 0.804 1.05E-09 3
9.39E-01 1.136 4.69E+01 1.027 5.83E+01 0.804 1.26E-09 3
7.07E-01 0.986 3.56E+01 0.961 4.43E+01 0.803 1.91E-09 3
5.05E-01 1.014 2.52E+01 1.035 3.15E+01 0.801 2.66E-09 3
3.70E-01 1.019 1.88E+01 0.956 2.35E+01 0.800 4.57E-09 3
2.62E-01 1.008 1.33E+01 1.024 1.66E+01 0.796 5.15E-09 3
1.89E-01 1.022 9.75E+00 0.960 1.23E+01 0.795 9.30E-09 3

Table 6.5: Example 2, RT0 −P0 scheme with adaptive refinement via Θ.

28



N e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

1728 4.92E+02 – 2.57E+00 – 2.38E+01 – 3.43E+01 –
2742 4.61E+02 0.283 9.12E-01 4.491 1.19E+01 3.020 2.22E+01 1.889
4052 1.71E+02 5.076 1.36E-01 9.732 4.36E+00 5.122 6.91E+00 5.972
5974 3.16E+01 8.706 3.24E-02 7.413 7.54E-01 9.042 1.25E+00 8.795

10506 1.01E+01 4.051 3.21E-02 0.026 2.79E-01 3.522 4.71E-01 3.465
23492 4.89E+00 1.794 2.63E-02 0.493 1.30E-01 1.903 2.17E-01 1.927
57828 2.01E+00 1.974 4.43E-03 3.960 5.51E-02 1.902 9.24E-02 1.898

140672 8.40E-01 1.962 4.06E-03 0.194 2.22E-02 2.043 3.77E-02 2.018
372550 3.20E-01 1.985 5.55E-04 4.088 8.69E-03 1.928 1.45E-02 1.955
880554 1.34E-01 2.017 4.91E-04 0.284 3.48E-03 2.128 5.87E-03 2.107

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P1
h(f)‖`∞ iter

1.62E+01 – 4.95E+02 – 8.42E+02 0.588 9.38E-13 4
1.16E+01 1.457 4.62E+02 0.297 5.89E+02 0.784 7.28E-12 4
3.01E+00 6.901 1.71E+02 5.082 2.17E+02 0.789 2.55E-11 3
4.79E-01 9.466 3.16E+01 8.705 4.05E+01 0.781 1.75E-10 3
1.84E-01 3.386 1.01E+01 4.043 1.37E+01 0.738 9.60E-10 3
8.64E-02 1.879 4.92E+00 1.789 6.58E+00 0.747 2.15E-09 3
3.54E-02 1.982 2.01E+00 1.981 2.69E+00 0.748 6.81E-09 3
1.51E-02 1.921 8.44E-01 1.956 1.15E+00 0.735 9.34E-09 3
5.53E-03 2.057 3.20E-01 1.991 4.28E-01 0.748 1.14E-08 3
2.30E-03 2.039 1.35E-01 2.013 1.85E-01 0.727 2.21E-08 3

Table 6.6: Example 2, RT1 −P1 scheme with adaptive refinement via Θ.

N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

1464 0.354 1.02E+02 – 1.03E+00 – 9.34E+00 – 7.85E+00 –
11040 0.177 9.23E+01 0.147 6.52E-01 0.684 7.93E+00 0.243 6.64E+00 0.249
57624 0.101 8.27E+01 0.199 4.30E-01 0.757 6.37E+00 0.396 5.77E+00 0.255

285984 0.059 6.30E+01 0.509 2.32E-01 1.154 4.24E+00 0.762 4.39E+00 0.511
1518804 0.034 4.14E+01 0.756 1.11E-01 1.317 2.49E+00 0.956 3.02E+00 0.671

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) iter

4.52E+00 – 1.03E+02 – 1.16E+02 0.885 4
3.49E+00 0.387 9.29E+01 0.151 1.01E+02 0.922 4
2.85E+00 0.365 8.31E+01 0.203 8.87E+01 0.936 4
2.03E+00 0.636 6.32E+01 0.511 6.71E+01 0.943 3
1.35E+00 0.738 4.15E+01 0.757 4.40E+01 0.943 5

Table 6.7: Example 3, RT0 −P0 scheme with quasi-uniform refinement.
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

1464 1.02E+02 – 1.03E+00 – 9.34E+00 – 7.85E+00 –
5784 9.54E+01 0.143 7.29E-01 0.762 8.26E+00 0.266 6.85E+00 0.298

40293 8.30E+01 0.214 4.22E-01 0.844 5.92E+00 0.516 5.67E+00 0.292
155496 5.22E+01 1.031 1.69E-01 2.034 3.15E+00 1.399 3.68E+00 0.960

1050117 2.09E+01 1.435 4.41E-02 2.108 1.15E+00 1.582 1.58E+00 1.330

e(ω) r(ω) e(σ,u) r(σ,u) Θ eff(Θ) iter

4.52E+00 – 1.03E+02 – 1.16E+02 0.885 4
3.55E+00 0.532 9.61E+01 0.149 1.04E+02 0.921 4
2.62E+00 0.468 8.34E+01 0.218 8.87E+01 0.940 4
1.59E+00 1.111 5.24E+01 1.035 5.56E+01 0.941 3
5.80E-01 1.581 2.10E+01 1.436 2.27E+01 0.925 3

Table 6.8: Example 3, RT0 −P0 scheme with adaptive refinement via Θ.
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