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Abstract. The transmission eigenvalue problem is a challenging model in the inverse scattering theory and
has important applications in this topic. The aim of this paper is to analyze a C1 Virtual Element Method (VEM)
on polytopal meshes in Rd (d = 2, 3) for solving a quadratic and non-self-adjoint fourth-order eigenvalue problem
derived from the transmission eigenvalue problem. Optimal order error estimates for the eigenfunctions and a double
order for the eigenvalues are obtained by using the approximation theory for compact non-self-adjoint operators.
Finally, a set of numerical tests illustrating the good performance of the virtual scheme are presented.
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1. Introduction. The transmission eigenvalue problem can be stated as follows (see, for
instance, [20, 35]). Find κ ∈ C and w1, w2 ∈ L2(Ω) with w1 − w2 ∈ H2(Ω) such that

∆w1 + κ2nw1 = 0 in Ω,(1.1a)

∆w2 + κ2w2 = 0 in Ω,(1.1b)

w1 − w2 = 0 on Γ,(1.1c)

∂νw1 − ∂νw2 = 0 on Γ.(1.1d)

The system (1.1a)–(1.1b) together with the boundary conditions (1.1c)–(1.1d) corresponds to
the scattering problem for an isotropic inhomogeneous medium for the Helmholtz equation, where
Ω ⊆ Rd (d = 2, 3) is a Lipschitz bounded domain with boundary Γ := ∂Ω. Here, ν denotes the
outward unit normal vector to Γ, ∂ν denotes the normal derivative and n : Ω → R is a real value
function called the index of refraction such that n(x) =: n ∈ L∞(Ω) and n− 1 is strictly positive
(or strictly negative) almost everywhere in Ω. More precisely, we assume that there exist two
positive constant n∗ and n∗ such that

(1.2) 0 < n∗ ≤ n(x)− 1 ≤ n∗ <∞ ∀x ∈ Ω.

The transmission eigenvalue problem (1.1a)-(1.1d) is a non-linear and non-self-adjoint eigen-
value problem which plays an important role in inverse scattering theory (see [13, 12]). For in-
stance, the transmission eigenvalues can be determined from the far-field data of the scattered
wave and used to obtain estimates for the material properties of the scattering object. The numer-
ical solution of the transmission eigenvalue problem has attracted interests from many researchers
in the last years. For instance, several conforming and nonconforming finite element methods,
mixed formulations, among others have been proposed. We cite as a minimal sample of them
[14, 15, 16, 17, 21, 24, 34, 37, 39].
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The transmission eigenvalue problem is often solved by reformulating it as a fourth-order eigen-
value problem. More precisely, by introducing a new unknown u := w1 − w2 ∈ H2

0 (Ω), the model
problem (1.1a)-(1.1d) can be rewritten as follows:

(∆ + κ2n)
1

n− 1
(∆ + κ2)u = 0 in Ω.(1.3)

In [15] has been introduce and analyze a conforming C1 − C0 variational formulation in 2D,
using Argyris and Lagrange finite element spaces. A complete analysis of the method including
error estimates is proved using the theory for compact non-self-adjoint operators. However, the
construction of C1-conforming finite elements is difficult in general, since they usually involve a
large number of degrees of freedom. They are often viewed as prohibitively expensive due to their
high polynomial degree and complexity [19]. On the other hand, for the three-dimensional case,
there is not available in the literature a conforming finite element method to solve the fourth order
transmission eigenvalue problem (1.3).

The aim of the present paper is to introduce and analyze a virtual element method in 2D
and 3D to solve the fourth order transmission eigenvalue problem. The Virtual Element Method
(VEM) is a new technology introduced in [5] as a generalization of finite element method which is
characterized by the capability of dealing with very general polygonal/polyhedral meshes, including
“hanging nodes” and non-convex elements (see [11, 22, 23, 28, 29, 33] and refereneces therein).
It also permits to easily implement highly regular conforming discrete spaces which make the
method very feasible to solve fourth order problems. For instance, in 2D the method has been
applied in a wide range of problems: [2, 3, 8, 10, 30]. In the three-dimensional case, in [6] has
recently been introduced a C1-virtual element method to solve a fourth order partial differential
equation. Regarding the approximation by VEM of the transmission eigenvalue problem, in [31]
has been recently presented a C1-conforming virtual element method to solve the spectral problem
on general polygonal meshes (only 2D case). Optimal order error estimates for the eigenfunctions
and a double order for the eigenvalues are derived.

In this paper, we study a new VEM method to solve the transmission eigenvalue problem
in 2D and 3D. More precisely, the goal of this work is to introduce and analyze a C1 virtual
element discretization on polytopal meshes to approximate the fourth order transmission eigenvalue
problem. Since problem (1.3) is a non-linear equation regarding to the parameter κ2, we introduce
a new unknown, which leads a linear non-selfadjoint variational formulation of the problem written
in H2

0 (Ω)×L2(Ω) as in [38]. Then, a solution operator is introduced whose spectra is related with
the solutions of the transmission eigenvalue problem. Next, we use the fact that H2

0 (Ω) ⊂ L2(Ω)
to propose a conforming discrete formulation based on the virtual element spaces introduced in [2]
and [6]. Then, we employ the spectral theory for non-selfadjoint compact operators presented in
[32] and rather mild assumptions on the polygonal/polyhedral meshes to obtain that the resulting
C1-VEM scheme provides a correct approximation of the spectrum. In addition, optimal order
error estimates for the eigenfunctions and a double order for the eigenvalues are also obtained.
Moreover, we also remark that the discretization for three-dimensional transmission eigenvalue
problem is new on tetrahedral meshes and this case it employs 4 degrees of freedom per vertices,
which represents a significant proxy for the computational cost.

The paper is organized as follows. In Section 2, we introduce the weak formulation associ-
ated to the transmission eigenvalue problem, and formulate its spectral characterization with a
suitable solution operator. In Section 3, we present the definitions of the bi-dimensional and
three-dimensional C1 virtual element spaces. Then, a virtual element discrete formulation, and
its spectral characterization are presented in Section 4. In addition, we prove that the numerical
scheme provides a correct spectral approximation and establish optimal order error estimates for
the eigenvalues and eigenfunctions. Finally, in Section 5, we report some numerical tests that
confirm the theoretical analysis developed.
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Throughout the article we will use standard notations for Sobolev spaces, norms and seminorms.
Moreover, we will denote by C a generic constant independent of the mesh parameter h, which
may take different values in different occurrences.

2. The continuous spectral formulation. In this section we introduce a continuous vari-
ational formulation associated to the fourth order transmission eigenvalue problem (cf. (1.3)) and
its spectral characterization. With this aim, we multiply the identity (1.3) by w ∈ H2

0 (Ω) and we
arrive at the following quadratic eigenvalue problem: find κ ∈ C and 0 6= u ∈ H2

0 (Ω) such that
(2.1)∫

Ω

1

n− 1
∆u∆w + κ2

∫
Ω

∆u
( n

n− 1
w
)

+ κ2

∫
Ω

1

n− 1
u∆w + κ4

∫
Ω

n

n− 1
uw = 0 ∀w ∈ H2

0 (Ω).

One of the main difficulties of the variational formulation (2.1) is the non-linearity with respect
to the parameter κ2. For the theoretical analysis it is convenient to transform the above variational
problem into a linear eigenvalue problem. To do that, in this work we will consider the following
auxiliary variable denoted by z and defined as follows (see [38]):

z := κ2u in Ω.(2.2)

Now, we denote by H the product space H := H2
0 (Ω) × L2(Ω), endowed with the following

product norm

||(w, v)||H :=
(
||D2w||20,Ω + ||v||20,Ω

)1/2
,

where D2w denotes the Hessian matrix of w. Moreover, it is clear that the above norm is equivalent
with the usual norm in H2

0 (Ω)× L2(Ω).

Using (2.2) we arrive at the following weak formulation of the transmission eigenvalue problem:

Problem 1. Find (λ, (u, z)) ∈ C×H with (u, z) 6= 0 such that

(2.3) A((u, z), (w, v)) := a1(u,w) + a2(z, v) = λB((u, z), (w, v)) ∀(w, v) ∈ H,

where λ := −κ2 and a1(·, ·), a2(·, ·), B(·, ·) are sesquilinear forms defined as follows:

(2.4) a1 : H2
0 (Ω)×H2

0 (Ω)→ C, a1(u,w) :=

∫
Ω

1

n− 1
∆u∆w,

(2.5) a2 : L2(Ω)× L2(Ω)→ C, a2(z, v) :=

∫
Ω

zv,

and
(2.6)

B : H×H→ C, B((u, z), (w, v)) :=

∫
Ω

∆u
( n

n− 1
w
)

+

∫
Ω

1

n− 1
u∆w +

∫
Ω

n

n− 1
zw −

∫
Ω

uv.

Our goal is to introduce and analyze a conforming virtual element discretization in 2D and
3D to solve Problem 1. We observe that formulation (2.3) has been considered in [38] to write a
non-conforming C0IPG finite element discretization.

It is easy to check that the forms A(·, ·) and C(·, ·) satisfy the following bounds.

Lemma 2.1. There exist positive constants α0 and C that depend on the index of refraction n
such that

A((w, v), (w, v)) ≥ α0||(w, v)||2H,(2.7)



4 DAVID MORA, IVÁN VELÁSQUEZ

|A((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H,(2.8)

|B((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H,(2.9)

for all (u, z), (w, v) ∈ H.

According to Lemma 2.1, we are in a position to introduce the solution operator.

S : H −→ H
(f, g) 7−→ S(f, g) = (ũ, z̃)

defined as the unique solution (see Lemma 2.1) of the following source problem:

A((ũ, z̃), (w, v)) = B((f, g), (w, v)) ∀(w, v) ∈ H.(2.10)

Thus, we have that the linear operator S is well defined and bounded. Moreover, we have that
(λ, (u, z)) solves Problem 1 if and only if (µ, (u, z)) is an eigenpair of S, i.e. S(u, z) = µ(u, z), with
µ := 1/λ.

We observe that no spurious eigenvalues are introduced into the problem. In fact, if µ 6= 0,
then (0, z) is not an eigenfunction of the problem.

The following is an additional regularity result associated to the solution of the source problem
(2.10), and as consequence for the generalized eigenfunctions of the operator S.

Lemma 2.2. There exist s > 1/2 and a positive constant C depending on the index of refraction
n such that for all (f, g) ∈ H, the solution (ũ, z̃) of problem (2.10) satisfies (ũ, z̃) ∈ [H2+s(Ω)]2

and

||ũ||2+s,Ω + ||z̃||2+s,Ω ≤ C||(f, g)||H.

Proof. The estimate for ũ follows from the classical regularity result for the biharmonic problem
with its right-hand side in H−1(Ω) (see for instance [26, 15]). As a consequence, from the identity
(2.2) we obtain the estimate for z̃.

Now, from Lemma 2.2 and the fact that the inclusion [H2+s(Ω)]2 ↪→ H is compact, we obtain
that the operators S is compact. As consequence, we have the following characterization spectral
result.

Lemma 2.3. The spectrum of S satisfies sp(S) = {0} ∪ {µk}k∈N, where {µk}k∈N is a sequence
of complex eigenvalues which converges to 0 and their corresponding eigenspaces lie in [H2+s(Ω)]2.
In addition, µ = 0 is an infinite multiplicity eigenvalue of S.

Proof. The proof follows from the compactness of S and Lemma 2.2.

Since Problem 1 is non-self-adjoint, we need to deal with the adjoint operator S∗, which is
defined as:

S∗ : H −→ H
(f, g) 7−→ S(f, g) = (ũ∗, z̃∗)

defined as the unique solution (see Lemma 2.1) of the following source problem:

A((ũ∗, z̃∗), (w, v)) = B((w, v), (f, g)) ∀(w, v) ∈ H.(2.11)

It is simple to prove that if µ is an eigenvalue of S with multiplicity m, µ̄ is an eigenvalue of
S∗ with the same multiplicity m. In addition, a result analogous to Lemma 2.2 can be proven in
this case.



VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM 5

Lemma 2.4. There exist s > 1/2 and a positive constant C depending on the index of refraction
n such that for all (f, g) ∈ H, the solution (ũ∗, z̃∗) of (2.11) satisfies (ũ∗, z̃∗) ∈ [H2+s(Ω)]2 and

||ũ∗||2+s,Ω + ||z̃∗||2+s,Ω ≤ C||(f, g)||H.

3. Virtual element spaces. In this section, we will introduce a virtual element discretization
to solve the transmission eigenvalue problem. We start by presenting the virtual element spaces
in two and three dimensions to be used in the proposed method.

3.1. The bi-dimensional case. We begin with the mesh construction and the assumptions
considered to introduce the discrete virtual element spaces (see e.g [1, 5]). Let {Ωh}h be a sequence
of decompositions of Ω into general polygonal elements P . We will denote by hP the diameter
of the element P and by h the maximum of the diameters of all the elements of the mesh, i.e.,
h := maxP∈Ωh

hP . In addition, we denote by NP and NP
v the number of polygons in Ωh and the

number of vertices of P , respectively. Moreover, we denote by e a generic edge of {Ωh}h and for
all e ∈ ∂P , we define a unit normal vector νeP that points outside of P .

For the analysis of the scheme, we will make the following assumptions (see for instance, [5]):
there exists a positive real number CΩ such that, for every h and every P ∈ Ωh,

A2D
1 : P ∈ Ωh is star-shaped with respect to every point of a ball of radius CΩhP ;

A2D
2 : the ratio between the shortest edge and the diameter hP of P is larger than CΩ.

Now, for all m ∈ N, we will denote by Pm(S) the space of polynomials of degree up to m defined
on the subset S ⊆ R2.

We introduce on each element P ∈ Ωh the following finite dimensional space Ṽ 2D
h (P ) introduced

in [18].

Ṽ 2D
h (P ) :=

{
wh ∈ H2(P ) : ∆2wh ∈ P2(P ), wh|∂P ∈ C0(∂P ), wh|e ∈ P3(e) ∀e ∈ ∂P,

∇wh|∂P ∈ [C0(∂P )]2, ∂νe
P
wh|e ∈ P1(e) ∀e ∈ ∂P

}
.

Moreover, in Ṽ 2D
h (P ) we define the following sets of linear operators. For all wh ∈ Ṽ 2D

h (P ) we
consider

D1
2D: evaluation of wh at the NP

v vertices of P ;
D2

2D: evaluation of ∇wh at the NP
v vertices of P .

In order to introduce the local virtual space, we define the projector Π∆,2D
P : Ṽ 2D

h (P )→ P2(P )
defined as follows:

(3.1)


∫
P

D2(w −Π∆,2D
P w) : D2q = 0 ∀w ∈ Ṽ 2D

h (P ) ∀q ∈ P2(P ),

Π̂∆,2D
P w = ŵ; ∇̂Π∆,2D

P w = ∇̂w,

where, ŵ is defined as ŵ := 1
NP

v

∑NP
v

i=1 w( vi) for all w ∈ C0(∂P ) and vi, 1 ≤ i ≤ NP
v , are the

vertices of P . We refer to [10, 18] to prove that the operator Π∆,2D
P is computable from the output

values of the sets D1
2D and D2

2D.

We introduce on each element P ∈ Ωh the following local virtual space V 2D
h (P ) (see, for

instance, [2]).

V 2D
h (P ) :=

{
wh ∈ Ṽ 2D

h (P ) :

∫
P

(Π∆,2D
P wh)q =

∫
P

whq ∀q ∈ P2(P )

}
.
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Now, since V 2D
h (P ) ⊆ Ṽ 2D

h (P ) the projector Π∆,2D
P is well defined and computable in V 2D

h (P ).
In addition, P2(P ) ⊆ V 2D

h (P ), which guarantees the good approximation properties of the space.

Moreover, the sets of linear operators D1
2D and D2

2D constitutes a set of degrees of freedom for
V 2D
h (P ), we refer to [2, Lemma 2.3] for further details.

Now, we introduce the global virtual space by combining the local spaces V 2D
h (P ) and incor-

porating the homogeneous boundary conditions. For every decomposition Ωh of Ω into simple
polygons P , we define.

V 2D
h :=

{
wh ∈ H2

0 (Ω) : wh|P ∈ V 2D
h (P )

}
.

A set of degrees of freedom for V 2D
h is given by all pointwise values of wh on all vertices of

Ωh together with all pointwise values of ∇wh on all vertices of Ωh, excluding the vertices on th
boundary (where the values vanishes). Thus, the dimension of V 2D

h is three times the number of
interior vertices.

3.2. The three-dimensional case. In this section, we introduce the C1 local virtual space,
which has been recently introduced in [6]. Let Ωh be a discretization of Ω composed by polyhedrons
P such that:

A3D
1 : Each element P is star shaped with respect to a ball BP whose radius is uniformly com-

parable with the polyhedron diameter, hP .
A3D

2 : Each face f is star shaped with respect to a disc Bf whose radius is uniformly comparable
with the face diameter, hf .

A3D
3 : Given a polyhedron P all its edge lengths and face diameters are uniformly comparable

with respect to its diameter hP .

Now, we recall the definitions of the auxiliary local virtual spaces V ∇h (f), V ∆
h (f) and Ṽ 3D

h (P )
(see [6]), which are needed to define the local virtual space V 3D

h (P ) (cf. (3.2)) in 3D. For each face
f and polyhedron P , we introduce.

V ∇h (f) :=

{
wh ∈ H1(f) : ∆τwh ∈ P0(f), wh|∂f ∈ C0(∂f), wh|e ∈ P1(e) ∀e ∈ ∂f

∫
f

Π∇f wh =

∫
f

wh

}
,

V ∆
h (f) :=

{
wh ∈ H2(f) : ∆2

τwh ∈ P1(f), wh|∂f ∈ C0(∂f), wh|e ∈ P3(e) ∀e ∈ ∂f,

∇τwh|∂f ∈ [C0(∂f)]2, ∂νe
f
wh|e ∈ P1(e) ∀e ∈ ∂f,∫

f

Π∆
f whp1 =

∫
f

whp1 ∀p1 ∈ P1(f)

}
,

and

Ṽ 3D
h (P ) :=

{
wh ∈ H2(P ) : ∆2wh ∈ P2(P ), wh|SP

∈ C0(SP ),∇wh|SP
∈ [C0(SP )]3,

wh|f ∈ V ∆
h (f), ∂νf

P
wh|f ∈ V ∇h (f), ∀f ∈ ∂P

}
,

where ∆τ and ∇τ are the Laplace and gradient operators in the local face coordinates and ∂ν
denotes the normal derivative on each edge or face. In addition, Π∇f : H1(f) → P1(f) is the
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standard orthogonal projector introduced in [1, 5], in this case defined on each face f of P ; Π∆
f :

V ∆
h (f)→ P2(f) is the projection operator defined on each face f of P as the one defined in (3.1)

(see [6]) and SP denotes the skeleton (the union of all edges) of the polyhedron P .

Now, for all wh ∈ Ṽ 3D
h (P ) we consider the following sets of linear operators:

D1
3D: evaluation of wh at the NP

v vertices of P ;
D2

3D: evaluation of ∇wh at the NP
v vertices of P .

Next, we consider the projection operator Π∆,3D
P : Ṽ 3D

h (P )→ P2(P ) defined by
∫
P

D2(Π∆,3D
P wh − wh) : D2q = 0 ∀q ∈ P2(P ),∫

∂P

(Π∆,3D
P wh − wh)q = 0 ∀q ∈ P1(P ),

The above projection operator is computable and uniquely determined by the values of the linear
operators D1

3D and D2
3D.

We are in a position to introduce the local virtual space V 3D
h (P ).

(3.2) V 3D
h (P ) :=

{
wh ∈ Ṽ 3D

h (P ) :

∫
P

Π∆,3D
P whq =

∫
P

whq ∀q ∈ P2(P )

}
.

Now, we introduce the global virtual space by combining the local spaces V 3D
h (P ) and incorpo-

rating the homogeneous boundary conditions. For every decomposition Ωh of Ω into polyhedrons
P , we define.

(3.3) V 3D
h :=

{
wh ∈ H2

0 (Ω) : wh|P ∈ V 3D
h (P )

}
.

A set of degrees of freedom for V 3D
h is given by all pointwise values of wh on all vertices of

Ωh together with all pointwise values of ∇wh on all vertices of Ωh, excluding the vertices on th
boundary (where the values vanishes). Thus, the dimension of V 3D

h is four times the number of
interior vertices.

The virtual space (3.3) has been recently considered in [6] to obtain optimal error estimates
for fourth order PDEs in 3D. Here, we will consider the same space to propose a VEM schem for
the transmission eigenvalue problem.

4. Discrete spectral problem. In this section, we will introduce a virtual element dis-
cretization to approximate the spectrum of the transmission eigenvalue problem stated in Prob-
lem 1. Due to the discrete analysis holds both in the two and three-dimensional cases, in what
follows, we will omit the superscripts 2D and 3D used in Section 3. Moreover, for simplicity, we
assume that the index of refraction n is piecewise constant with respect to the decomposition Ωh,
i.e., n is constant on each polygon/polyhedron P ∈ Ωh.

Now, for all m ∈ N ∪ {0} and P ∈ Ωh, we define the following projectors:

Πm
P : L2(P )→ Pm(P );

∫
P

(v −Πm
P v)q = 0 ∀q ∈ Pm(P ),(4.1)

Π0
P∆ : H2(P )→ P0(P );

∫
P

(∆w −Π0
P∆w)q = 0 ∀q ∈ P0(P ).(4.2)

We refer to [2, 6, 8] to check that for all wh ∈ Vh(P ) the scalar functions Π2
Pwh and Π0

P∆wh are
computable from the degrees of freedom D1 and D2.
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Next, we decompose the continuous sesquilinear forms (2.4)-(2.5) in an element by element
contribution:

a1(u,w) :=
∑
P∈Ωh

aP1 (u,w) ∀(u,w) ∈ H2
0 (Ω),

a2(z, v) :=
∑
P∈Ωh

aP2 (z, v) ∀(z, v) ∈ L2(Ω).

Now, in order to propose the discrete scheme, we need to introduce some definitions. First, we
consider s∆,P (·, ·) and s0,P (·, ·) any hermitian positive definite forms satisfying:

α∗a
P
1 (wh, wh) ≤ s∆,P (wh, wh) ≤ α∗aP1 (wh, wh) ∀wh ∈ Vh(P ) Π∆

Pwh = 0,(4.3)

β∗a2(vh, vh) ≤ s0,P (vh, vh) ≤ β∗a2(vh, vh) ∀wh ∈ Vh(P ), ,(4.4)

where, α∗, β∗ and α∗, β∗ are positive constants independent of the element P .

Next, we define the discrete versions of the sesquilinear forms presented in (2.4)–(2.6) as follows:

a1h : Vh × Vh → C; a1h(uh, wh) :=
∑
P∈Ωh

aP1h(uh, wh),

a2h : Vh × Vh → C; a2h(zh, vh) :=
∑
P∈Ωh

aP2h(zh, vh),

Bh : Hh ×Hh → C; Bh((uh, zh), (wh, vh)) :=
∑
P∈Ωh

BPh ((uh, zh), (wh, vh)),

where Hh := Vh × Vh and

aP1h : Vh(P )× Vh(P )→ R, aP2h : Vh(P )× Vh(P )→ R, BPh : HPh ×HPh → R,

are local sesquilinear forms given by

aP1h(uh, wh) := aP1 (Π∆
P uh,Π

∆
Pwh) + n̂s∆,P (uh −Π∆

P uh, wh −Π∆
Pwh),(4.5)

aP2h(zh, vh) := aP2 (Π2
P zh,Π

2
P vh) + s0,P (zh −Π∆

P zh, vh −Π∆
P vh),(4.6)

BPh ((uh, zh), (wh, vh)) :=

∫
P

n

n− 1
Π0
P∆uhΠ2

Pwh +

∫
P

1

n− 1
Π2
PuhΠ0

P∆wh

+

∫
P

n

n− 1
Π2
P zhΠ2

Pwh −
∫
P

Π2
PuhΠ2

P vh,(4.7)

with HPh := Vh(P )× Vh(P ).

The following result establishes properties of consistency and stability for the local sesquilinear
forms aP1h(·, ·) and aP2h(·, ·).

Proposition 4.1. The local forms aP1h(·, ·) and aP2h(·, ·) satisfy the following properties:

• Consistency: for all h > 0 and for all P ∈ Ωh we have that

aP1h(q, wh) = aP1 (q, wh) ∀q ∈ P2(P ) ∀wh ∈ Vh(P ),(4.8)

aP2h(q, vh) = aP2 (q, vh) ∀q ∈ P2(P ) ∀vh ∈ Vh(P ).(4.9)

• Stability and boundedness: There exist positive constants α1, α2, β1, β2 depending on the
index of refraction n and independent of P , such that:

α1a
P
1 (wh, wh) ≤ aP1h(wh, wh) ≤ α2a

P
1 (wh, wh) ∀wh ∈ Vh(P );(4.10)

β1a
P
2 (vh, vh) ≤ aP2h(vh, vh) ≤ β2a

P
2 (vh, vh) ∀vh ∈ Vh(P ).(4.11)
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Proof. The proof follows standard arguments in the VEM literature, it is omitted.

Now, for all (uh, zh), (wh, vh) ∈ Hh, we introduce the discrete sesquilinear form

(4.12) Ah : Hh ×Hh → C; Ah((uh, zh), (wh, vh)) := a1h(uh, wh) + a2h(zh, vh).

As consequence of Proposition 4.1 we have the following result, which is the discrete version of
Lemma 2.1.

Lemma 4.1. There exist positive constants C and α that depend on the index of refraction n
such that for all (uh, zh), (wh, vh) ∈ Hh we have

Ah((wh, vh), (wh, vh)) ≥ α||(wh, vh)||2H,(4.13)

|Ah((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H,(4.14)

|Bh((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H.(4.15)

Proof. It is straightforward to prove the estimates (4.13)-(4.15) from Proposition 4.1.

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 2. Find (λh, (uh, zh)) ∈ C×Hh with (uh, zh) 6= 0 such that

(4.16) Ah((uh, zh), (wh, vh)) = λhBh((uh, zh), (wh, vh)) ∀(wh, vh) ∈ Hh.

In order to characterize the spectrum of Problem 2 we introduce the discrete version of the
solution operator S.

Sh : H −→ Hh ⊆ H
(f, g) 7−→ Sh(f, g) = (ũh, z̃h),

defined as the unique solution (as a consequence of Lemma 4.1 and the Lax-Milgram theorem) of
the following source problem

Ah((ũh, z̃h), (wh, vh)) = Bh((f, g), (wh, vh)) ∀(wh, vh) ∈ Hh.(4.17)

We have that operator Sh is well defined and uniformly bounded. Once more, as in the
continuous case, we have that (λ, (uh, zh)) solves Problem 2 if and only if (µh, (uh, zh)) is an
eigenpair of Sh, i.e., Sh(uh, zh) = µh(uh, zh), with µh := 1/λh.

4.1. Convergence and error estimates.. The aim of this section is to prove the conver-
gence properties and to obtain error estimates of the proposed virtual element scheme stated in
Problem 2 for the transmission eigenvalue problem. With this aim, we first establish that Sh → S
in norm as h → 0. Then, we will establish a similar convergence result for the corresponding
adjoint operators S∗h and S∗ of Sh and S, respectively.

First, we recall the following result on star-shaped polygons/polyhedrons, which is derived by
interpolation between Sobolev spaces (see for instance [25, Theorem I.1.4] from the analogous
result for integer values of s). We mention that this result has been stated in [5, Proposition 4.2]
for integer values and follows from the classical Scott-Dupont theory (see [9] and [2, Proposition
3.1]):

Proposition 4.2. There exists a positive constant C, such that for all w ∈ Hδ(P ) there exists
wπ ∈ Pk(P ), k ≥ 0 such that

|w − wπ|`,P ≤ Chδ−`P |w|δ,P 0 ≤ δ ≤ k + 1, ` = 0, . . . , [δ],

with [δ] denoting largest integer equal or smaller than δ ∈ R.
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The following is an interpolation result in the virtual space Vh (see [2, 6, 7]).

Proposition 4.3. Assume A1–A2 in the 2D case or A1–A3 in the 3D case are satisfied, let
w ∈ H2+s(Ω) with s ∈ (1/2, 1]. Then, there exist wI ∈ Vh and C > 0, independent of h, such that

‖w − wI‖2,Ω ≤ Chs|w|2+s,Ω.

Let Ph : H2(Ω)→ Vh be the projector with range Vh defined by the following relation

(4.18)

∫
Ω

(
z − Phz

)
vh = 0 ∀vh ∈ Vh.

The following lemma shows that Sh converges in norm to S as h goes to zero.

Lemma 4.2. There exist s ∈ (1/2, 1] and a positive constant C > 0 that depends on the index
of refraction n, both independent of the meshsize h such that: For all (f, g) ∈ H, if (ũ, z̃) = S(f, g)
and (ũh, z̃h) = Sh(f, g), then

|| (S − Sh) (f, g)||H ≤ Chs||(f, g)||H.

Proof. Let (f, g) ∈ H. As a consequence of Lemma 2.2, there exists s ∈ (1/2, 1] such that
(ũ, z̃) ∈ [H2+s(Ω)]2. Let (ũI ,Phz̃) ∈ Hh be such that Proposition 4.2 and (4.18) hold true. By
using the triangular inequality, we have

||(S − Sh)(f, g)||H = ||(ũ, z̃)− (ũh, z̃h)||H
≤ ||(ũ, z̃)− (ũI ,Phz̃)||H + ||(ũI ,Phz̃)− (ũh, z̃h)||H.(4.19)

Now, we define (wh, vh) := (ũh − ũI , z̃h −Phz̃) ∈ Hh, using the ellipticity of the sesquilinear form
Ah(·, ·) (cf. (2.7)) and the definition of the operators S and Sh, for all ũπ, z̃π ∈ P2(P ), we get

α||(wh, vh)||2H ≤ Ah((wh, vh), (wh, vh)) = Ah((ũh, z̃h), (wh, vh))−Ah((ũI ,Phz̃), (wh, vh))

= Bh((f, g), (wh, vh))−
∑
P∈Ωh

{
aP1h(ũI , wh) + aP2h(Phz̃, vh)

}
= Bh((f, g), (wh, vh))−

∑
P∈Ωh

{
{aP1h(ũI − ũπ, wh) + aP1 (ũπ − ũ, wh)}

+ {aP2h(Phz̃ − z̃π, vh) + aP2 (z̃π − z̃, vh)}+ {aP1 (ũ, wh) + aP2 (z̃, vh)}
}

=
∑
P∈Ωh

{BPh ((f, g), (wh, vh))−BP ((f, g), (wh, vh))}︸ ︷︷ ︸
G1,P

−
∑
P∈Ωh

{aP1h(ũI − ũπ, wh) + aP1 (ũπ − ũ, wh)}︸ ︷︷ ︸
G2,P

−
∑
P∈Ωh

{aP2h(Phz̃ − z̃π, vh) + aP2 (z̃π − z̃, vh)}︸ ︷︷ ︸
G3,P

=:
∑
P∈Ωh

G1,P −
∑
P∈Ωh

G2,P −
∑
P∈Ωh

G3,P ,(4.20)

where we have used the consistency properties (4.8) and (4.9).

In what follows, we will bound the terms G1,P , G2,P and G3,P . Indeed, for the term G1,P we
use the definitions of B(·, ·) and Bh(·, ·) (cf. (2.6) and (4.7), respectively) to obtain

G1,P =

∫
P

{ n

n− 1
Π0
P∆fΠ2

Pwh −
n

n− 1
∆fwh

}
︸ ︷︷ ︸

G11,P
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+

∫
P

{ 1

n− 1
Π2
P fΠ0

P∆wh −
1

n− 1
f∆wh

}
︸ ︷︷ ︸

G12,P

+

∫
P

{ n

n− 1
Π2
P gΠ2

Pwh −
n

n− 1
gwh

}
︸ ︷︷ ︸

G13,P

+

∫
P

{
Π2
P fΠ2

P vh − fvh
}

︸ ︷︷ ︸
G14,P

=: G11,P +G12,P +G13,P +G14,P .(4.21)

Now, let us bound each term on the right-hand side of (4.21). We start with the term G11,P : we
add and subtract the term n

n−1∆fΠ2
Pwh and we get

G11,P =

∫
P

n

n− 1

(
Π0
P∆f −∆f

)
Π2
Pwh +

∫
P

n

n− 1
∆f
(

Π2
Pwh − wh

)
.

Next, adding and subtracting the term
∫
P

n
n−1 (Π0

P∆f −∆f)wh and using the definition of Π2
P in

the last equality and we obtain

G11,P =

∫
P

n

n− 1

(
Π0
P∆f −∆f

)(
Π2
Pwh − wh

)
+

∫
P

n

n− 1
∆f
(

Π2
Pwh − wh

)
+

∫
P

(
Π0
P∆f −∆f

)( n

n− 1
wh −Π0

P

( n

n− 1
wh
))
.(4.22)

Now, using Cauchy-Schwarz inequality and the fact that n/(n− 1) ∈ L∞(Ω) we have from (4.22)
the following estimates

G11,P ≤ ||n/(n− 1)||L∞(P )

{
||Π0

P∆f −∆f ||0,P ||Π2
Pwh − wh||0,P

+ ||∆f ||0,P ||Π0
Pwh − wh||0,P + ||Π0

P∆f −∆f ||0,P ‖wh −Π2
Pwh‖0,P

}
≤ C||n/(n− 1)||L∞(P )||∆f ||0,P

{
h2
P |wh|2,P + hP |wh|1,P

}
≤ ChP ||n/(n− 1)||L∞(P )|f |2,P

{
|wh|2,P + |wh|1,P

}
.(4.23)

For the term G12,P , we add and subtract 1
n−1fΠ0

P∆wh, then we use the definition of Π0
P to

obtain

G12,P =

∫
P

{ 1

n− 1

(
Π2
P f − f

)
Π0
P∆wh +

1

n− 1
f
(

Π0
P∆wh −∆wh

)}
=

∫
P

{ 1

n− 1

(
Π2
P f − f

)
Π0
P∆wh

}
+

∫
P

{( 1

n− 1
f −Π0

P

( 1

n− 1
f
))(

Π0
P∆wh −∆wh

)}
.

Once again, by the Cauchy-Schwarz inequality and the fact that 1/(n− 1) ∈ L∞(Ω), we get

G12,P ≤ ||1/(n− 1)||L∞(P )

{
||Π2

P f − f ||0,P ||Π0
P∆wh||0,P

+ ‖f −Π0
P f‖0,P ||Π0

P∆wh −∆wh||0,P
}

≤ C||1/(n− 1)||L∞(P )

{
h2
P |f |2,P ||∆wh||0,P + ChP |f |1,P ||∆wh||0,P

}
≤ ChP ||1/(n− 1)||L∞(P )

{
|f |2,P + |f |1,P

}
|wh|2,P .(4.24)
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Now, to bound the term G13,P , we use the fact that n is piecewise constant, the definition of
Π2
P , the Cauchy-Schwarz inequality and n/(n− 1) ∈ L∞(Ω) to have

G13,P =

∫
P

{ n

n− 1
Π2
P gΠ2

Pwh −
n

n− 1
gwh

}
=

∫
P

n

n− 1

{
g(Π2

Pwh − wh)
}

=

∫
P

n

n− 1

{
(g −Π2

P g)(Π2
Pwh − wh)

}
≤ C||n/(n− 1)||L∞(P )||g −Π2

P g||0,P ||Π2
Pwh − wh||0,P

≤ Ch2
P ||n/(n− 1)||L∞(P )||g||0,P |wh|2,P .(4.25)

For the term G14,P , we use the definition of Π2
P and the Cauchy-Schwarz inequality to obtain

G14,P =

∫
P

(f −Π2
P f)(vh −Π2

P vh) ≤ ||f −Π2
P f ||0,P ||vh −Π2

P vh||0,P

≤ Ch2
P |f |2,P ||vh||0,P .(4.26)

Now, taking sum over P in the terms (4.23),(4.24),(4.25) and (4.26) and applying Cauchy-
Schwarz inequality for sequences we obtain∑

P∈Ωh

G1,P ≤ Chmax{||n/(n− 1)||L∞(Ω), ||1/(n− 1)||L∞(Ω)}||(f, g)||H||(wh, vh)||H.(4.27)

On the other hand, to bound the term
∑

P∈Ωh

G2,P , we use Cauchy-Schwarz inequality and the

stability and boundedness properties of aP1 (·, ·) (cf. (4.10)) to get∑
P∈Ωh

G2,P =
∑
P∈Ωh

{
aP1h(ũI − ũπ, wh) + aP1 (ũπ − ũ, wh)

}
≤
∑
P∈Ωh

{
aP1h(ũI − ũπ, ũI − ũπ)1/2aP1h(wh, wh) + aP1 (ũπ − ũ, ũπ − ũ)1/2aP1 (wh, wh)1/2

}
≤
∑
P∈Ωh

{
|ũI − ũπ|2,P |wh|2,P + |ũπ − ũ|2,P |wh|2,P

}
≤
∑
P∈Ωh

{
|ũI − ũ|2,P + 2|ũ− ũπ|2,P

}
|wh|2,P .

Next, from Propositions 4.3, 4.2 and Lemma 2.2, we have∑
P∈Ωh

G2,P ≤ Chs||(f, g)||H||(wh, vh)||H.(4.28)

To bound the expression
∑

P∈Ωh

G3,P , we use the Cauchy-Schwarz inequality and we add and

subtract the term z̃, to obtain∑
P∈Ωh

G3,P =
∑
P∈Ωh

{
aP2h(Phz̃ − z̃π, vh) + aP2 (z̃π − z̃, vh)

}
≤
∑
P∈Ωh

{
||Phz̃ − z̃||0,P + 2||z̃ − z̃π||0,P

}
||vh||0,P

=
∑
P∈Ωh

{
inf

vh∈Vh

||z̃ − vh||0,P + 2||z̃ − z̃π||0,P
}
||vh||0,P
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≤
∑
P∈Ωh

{
||z̃ − z̃I ||0,P + 2||z̃ − z̃π||0,P

}
||vh||0,P .

Hence, applying Propositions 4.3, 4.2 and Lemma 2.2 in the above inequality we deduce∑
P∈Ωh

G3,P ≤ Ch||(f, g)||H||(wh, vh)||H.(4.29)

Now, by combining (4.20) with (4.27), (4.28) and (4.29), we obtain

||(ũI ,Phz̃)− (ũh, z̃h)||H = ||(wh, vh)||H ≤
C

α
hs||(f, g)||H.(4.30)

Finally, the proof follows from (4.19) and (4.30) and Lemma 2.2.

Now, let S∗h : H→ H the adjoint operator of Sh. This operator is defined by S∗h(f, g) := (ũ∗h, z̃
∗
h),

where (ũ∗h, z̃
∗
h) is the unique solution of the following source problem:

Ah((wh, vh), (ũ∗h, z̃
∗
h)) = Bh((wh, vh), (f, g)) ∀(wh, vh) ∈ Hh.(4.31)

Now, we will show the convergence in norm of the operator S∗h (cf. (4.31)) to S∗ (cf. (2.11))
as h goes to zero.

Lemma 4.3. There exist a positive constant C that depends on the index of refraction n and
s ∈ (1/2, 1], both independent of the meshsize h, such that: For all (f, g) ∈ H, if (ũ∗, z̃∗) = S∗(f, g)
and (ũ∗h, z̃

∗
h) = S∗h(f, g), then

|| (S∗ − S∗h) (f, g)||H ≤ Chs||(f, g)||H.

Proof. The proof is obtained using the same arguments as those used to prove Lemma 4.2.

In what follows, we will establish convergence and obtain error estimates of our discrete scheme.
To do that, we will apply the abstract spectral theory from [4, 32] for non-selfadjoint compact
operators.

We first recall the definition of the spectral projectors. Let µ be a nonzero eigenvalue of S with
algebraic multiplicity m and let D be an open disk in the complex plane centered at µ, such that
µ is the only eigenvalue of S lying in D and ∂D∩ sp(S) = ∅. The spectral projectors E and E∗ are
defined as follows:

• The spectral projector of S relative to µ: E := (2πi)−1
∫
∂D(z − S)−1dz;

• The spectral projector of S∗ relative to µ: E∗ := (2πi)−1
∫
∂D(z − S∗)−1dz.

Moreover, E and E∗ are projections onto the space of generalized eigenvectors R(E) and R(E∗),
respectively. It is easy to check that R(E), R(E∗) ∈ [H2+s(Ω)]2 (see Lemmas 2.2 and 2.4).

As a consequence of the convergence in norm of Sh to S (cf. Lemma 4.2), there exist m eigen-

values (which lie in D) µ
(1)
h , . . . , µ

(m)
h of Sh (repeated according to their respective multiplicities)

which will converge to µ as h goes to zero.

Analogously, we introduce the following spectral projector Eh := (2πi)−1
∫
∂D(z − Sh)−1dz,

which is a projector onto the invariant subspace R(Eh) of Sh spanned by the generalized eigenvec-

tors of Sh corresponding to µ
(1)
h , . . . , µ

(m)
h .

On the other hand, we recall the definition of the gap δ̂ between two closed subspaces X and
Y of a Hilbert space H:

δ̂(X,Y) := max {δ(X,Y), δ(Y,X)} ,
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where
δ(X,Y) := sup

x∈X: ‖x‖H=1

δ(x,Y), with δ(x,Y) := inf
y∈Y
‖x− y‖H.

The following theorem establishes the error estimates for the approximation of eigenvalues and
eigenfunctions.

Theorem 4.1. There exists a strictly positive constant C that depends on the index of refraction
such that

δ̂(R(E), R(Eh)) ≤ Chs,(4.32)

|µ− µ̂h| ≤ Ch2s,(4.33)

where µ̂h := 1
m

m∑
k=1

µ
(k)
h and the constant s is as in Lemmas 2.2 and 2.4.

Proof. The estimate (4.32) follows as a direct consequence of [4, Theorem 7.1], by combining
the convergence in norm of Sh to S as h goes to zero stated in Lemma 4.2 and the fact that for
(f, g) ∈ R(E), ||(f, g)||[H2+s(Ω)]2 ≤ C||(f, g)||H. Therefore, the estimate (4.32) and Lemma 2.2.

Now, to prove the estimate (4.33), we will use [4, Theorem 7.2]. With this end, we assume that
S(uk, zk) = µ(uk, zk), k = 1, . . . ,m. Next, since A(·, ·) is an inner product in H, we can choose a
dual basis for R(E∗) denoted by (u∗k, z

∗
k) ∈ H satisfying

A((uk, zk), (u∗l , z
∗
l )) = δk,l.

From [4, Theorem 7.2], we have the following estimate:

(4.34) |µ− µ̂h| ≤
1

m

m∑
k=1

|〈(S − Sh)(uk, zk), (u∗k, z
∗
k)〉|+ C||(S − Sh)|R(E)||H||(S∗ − S∗h)|R(E∗)||H,

where 〈·, ·〉 denotes the corresponding duality pairing.

In what follows, we focus on finding upper bounds for the two terms on the right-hand side
above. Indeed, the second term can be easily bounded from Lemmas 4.2 and 4.3 as follows

(4.35) ||(S − Sh)|R(E)||H||(S∗ − S∗h)|R(E∗)||H ≤ Ch2s.

Now, we bound the first term on the right-hand side of (4.34) as follows: adding and subtracting
(wh, vh) ∈ Hh and using the definition of S and Sh, we obtain,

〈(S − Sh)(uk, zk), (u∗k, z
∗
k)〉 = A((S − Sh)(uk, zk), (u∗k, z

∗
k))

=
{
A((S − Sh)(uk, zk), (u∗k, z

∗
k)− (wh, vh))

}
+
{
B((uk, zk), (wh, vh))−Bh((uk, zk), (wh, vh))

}
+
{
Ah(Sh(uk, zk), (wh, vh))−A(Sh(uk, zk), (wh, vh))

}
,(4.36)

for all (wh, vh) ∈ Hh. For the first and the third bracket on the right hand side above, we can
repeat the same steps used in the proof of Theorem 4.1 in [31], to obtain that

(4.37) A((S − Sh)(uk, zk), (u∗k, z
∗
k)− (wh, vh)) ≤ Ch2s||(u∗k, z∗k)||H

and

Ah(Sh(uk, zk), (wh, vh))−A(Sh(uk, zk), (wh, vh)) ≤ Ch2s||(uk, zk)||H||(u∗k, z∗k)||H.(4.38)
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Finally, for the second bracket on the right-hand side of (4.36), we use the additional regularity
of (uk, zk) ∈ R(E) ⊂ [H2+s(Ω)]2 and repeating the same steps used to obtain (4.21) (in this case
with (uk, zk) ∈ [H2+s(Ω)]2 instead of (f, g) ∈ H), we get

Bh((uk, zk), (wh, vh))−B((uk, zk), (wh, vh)) ≤ Ch2s||(uk, zk)||H||(u∗k, z∗k)||H.(4.39)

Next, from (4.36), (4.37), (4.38) and (4.39), we have

(4.40) |〈(S − Sh)(uk, zk), (u∗k, z
∗
k)〉| ≤ Ch2s.

Therefore, the estimate (4.33) is obtained from (4.35) and (4.40). The proof is complete.

5. Numerical examples. We report in this section the results of some numerical tests carried
out with the discrete scheme presented in Problem 2 in the 2D case, which confirm the theoretical
results proved above. The numerical method has been implemented in a MATLAB code.

In order to compare our results with the presented in the literature of the transmission eigen-
value problem, we have chosen three configurations for the computational domain Ω:

Square domain: ΩS := (0, 1)× (0, 1),(5.1)

L-shaped domain: ΩL := (−1/2, 1/2)2\([0, 1/2]× [−1/2, 0]),(5.2)

Circular domain: ΩC := {(x, y) ∈ R2 : x2 + y2 < 1/4}.(5.3)

Fig. 5.1. Sample meshes: Ωs
h (top left), Ωt

h (top right), Ωdh
h (bottom left) and Ωv

h (bottom right).

On the other hand, we have tested the method by using different families of polygonal meshes
(see Figure 5.1):

• Ωsh: rectangular meshes;
• Ωth: triangular meshes;
• Ωdhh non-structured hexagonal meshes made of convex hexagons;
• Ωvh: Voronoi meshes which have been partitioned with NP number of polygons.
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Table 5.1
Test 1: Lowest transmission eigenvalues κih, i = 1, 2, 3, 4, computed on different families of meshes, on the

square domain ΩS and with index of refraction n = 16.

ΩS κ1h κ2h κ3h κ4h

N = 32 1.8864 2.4547 2.4608 2.8910
N = 64 1.8813 2.4469 2.4484 2.8726

Ωt
h N = 128 1.8800 2.4449 2.4453 2.8680

Order 2.00 2.00 2.00 2.00
Extrap. 1.8796 2.4442 2.4442 2.8664

N = 32 1.8936 2.4667 2.4773 2.9083
N = 64 1.8831 2.4499 2.4528 2.8771

Ωdh
h N = 128 1.8805 2.4457 2.4464 2.8691

Order 1.98 1.97 1.95 1.97
Extrap. 1.8796 2.4442 2.4442 2.8664

NP = 1024 1.8883 2.4611 2.4617 2.8948
NP = 4096 1.8816 2.4483 2.4484 2.8728

Ωv
h NP = 16384 1.8801 2.4452 2.4452 2.8680

Order 2.15 2.10 2.10 2.18
Extrap. 1.8797 2.4443 2.4443 2.8666

[21] [Argyris method] 1.8651 2.4255 2.4271 2.8178
[31] [VEM] 1.8796 2.4442 2.4442 2.8664

We have used successive refinements of an initial mesh (see Figure 5.1). The refinement pa-
rameters N and NP used to label each mesh are the number of elements on each edge of ΩS or
ΩL, and the number of polygons inside of the computational domain, respectively.

On the hand, to complete the choice of the VEM scheme, we had to fix the forms s∆,P (·, ·) and
s0,P (·, ·) satisfying (4.3) and (4.4), respectively. In particular, we have considered the form

sP (uh, wh) :=

NP
v∑

i=1

[uh( vi)wh( vi) + h2
vi
∇uh( vi) · ∇wh( vi)] ∀uh, wh ∈ Vh(P ),

where v1, . . . , vNP
v

are the vertices of P , h vi
corresponds to the maximum diameter of the elements

with vi as a vertex. Thus, we take s∆,P (·, ·) and s0,P (·, ·) in terms of sP (·, ·), properly scaled to
satisfy (4.3) and (4.4), respectively (see [2, 18, 30, 31] for further details).

5.1. Test 1: Square domain ΩS. In this numerical test, we have computed the four lowest
transmission eigenvalues kih, i = 1, 2, 3, 4, with three different choice of the index of refraction on
the square domain ΩS (cf. (5.1)).

We report in Tables 5.1 and 5.2 the lowest transmission eigenvalues kih, i = 1, 2, 3, 4, computed
with the discrete virtual scheme (4.16) with indexes of refraction n = 16 and n = 4, respectively.
We compare the performance of the proposed method with those presented in [21, 27, 31], so we
have included in the last row of Tables 5.1 and 5.2 the results reported in these references, for the
same problem. The tables also include computed orders of convergence, as well as more accurate
values extrapolated by means of a least-squares fitting.

We can appreciate from Tables 5.1 and 5.2 that the order of convergence of proposed virtual
element scheme (4.16) is quadratic (as predicted by the theory for convex domains). Moreover, we
show in Figure 5.2 the eigenfunctions corresponding to the four lowest transmission eigenvalues
with index of refraction n = 16.

Now, we test the properties of the virtual scheme by considering a non-constant index of
refraction n. More precisely, we consider the following index of refraction n(x, y) := 8 + x− y for
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Table 5.2
Test 1: Lowest transmission eigenvalues κih, i = 1, 2, 3, 4, computed on different families of meshes, on the

square domain ΩS and with index of refraction n = 4.

ΩS κ1h κ2h κ3h κ4h

N = 32 4.2558-1.1841i 4.2558+1.1841i 5.6065 5.6065
N = 64 4.2676-1.1567i 4.2676+1.1567i 5.5063 5.5063

Ωs
h N = 128 4.2707-1.1497i 4.2707+1.1497i 5.4835 5.4835

Order 1.99 1.99 2.14 2.14
Extrap. 4.2717-1.1474i 4.2717+1.1474i 5.4768 5.4768

N = 32 4.2516-1.1937i 4.2516+1.1937i 5.6458 5.7298
N = 64 4.2664-1.1595i 4.2664+1.1595 5.5164 5.5343

Ωdh
h N = 128 4.2704-1.1505i 4.2704+1.1505i 5.4861 5.4905

Order 1.91 1.91 2.09 2.16
Extrap. 4.2718-1.1473i 4.27181.1473i 5.4767 5.4779

NP = 1024 4.2573-1.1791i 4.2573+1.1791i 5.6053 5.6063
NP = 4096 4.2682-1.1554i 4.2682+1.1554i 5.5056 5.5059

Ωv
h NP = 16384 4.2708-1.1494i 4.2708+1.1494i 5.4834 5.4834

Order 1.99 1.99 2.17 2.16
Extrap. 4.2716-1.1474i 4.2716+1.1474i 5.4771 5.4769

[27] [Multigrid FEM] 4.2717-1.1474i 4.2717+1.1474i 5.4761 5.4761
[31] [VEM] 4.2718-1.1475i 4.2718+1.1475i 5.4779 5.4765

Fig. 5.2. Test 1: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right)
associated to the eigenvalues κ1h, κ2h, κ3h and κ4h, respectively.

all (x, y) ∈ (0, 1)2.

With this aim, we report in Table 5.3 the four lowest transmission eigenvalues on a square
domain ΩS with the family of meshes Ωth and N = 32, 64, 128. The table includes orders of
convergences as well as accurate values extrapolated by means of a least-squares fitting. We
compare the performance of the proposed method with those presented in [17]. Once again, it
can be clearly observed from Table 5.3 that the eigenvalue approximation order of our method is
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Table 5.3
Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4, 5 computed on the mesh Ωt

h and with index of
refraction n(x, y) := 8 + x− y for all (x, y) ∈ (0, 1)2.

ΩS κ1h κ2h κ3h κ4h κ5h

N = 32 2.8329 3.5512 3.5571 4.1374 4.5322
N = 64 2.8248 3.5418 3.5434 4.1225 4.5093

Ωt
h N = 128 2.8228 3.5395 3.5401 4.1189 4.5036

Order 2.03 2.03 2.03 2.05 2.02
Extrap. 2.8222 3.5387 3.5390 4.1178 4.5017

[17] 2.822052 3.538328 3.538691 4.117093 4.501074

Table 5.4
Test 2: Lowest transmission eigenvalues κih, i = 1, 2, 3, 4 computed on meshes Ωt

h and index of refraction
n = 16.

ΩL κ1h κ2h κ3h κ4h

N = 32 2.9706 3.1472 3.4237 3.5779
N = 64 2.9589 3.1414 3.4141 3.5691

Ωt
h N = 128 2.9549 3.1400 3.4114 3.5670

Order 1.53 1.96 1.82 2.00
Extrap. 2.9528 3.1394 3.4103 3.5662

[15] [Argyris method] 2.9553 - -
[31] [VEM] 2.9527 3.1395 3.4103 3.5662

quadratic.

5.2. Test 2: L-shaped domain ΩL. In this numerical test we consider an L-shaped domain
ΩL (cf. (5.2)). We take the index of refraction n = 16 and we compute the four lowest transmission
eigenvalues kih, i = 1, 2, 3, 4.

We show in Table 5.4 the lowest transmission eigenvalues κih computed by the discrete scheme
(4.16). In this case we have employed a family of uniform triangular meshes Ωth (see bottom left
picture in Figure 5.1). We compare our results with those reported in [15, 31]. The table includes
orders of convergence, as well as accurate values extrapolated by means of a least-squares fitting.

It can be seen from Table 5.4 that for the first eigenvalue, where the associated eigenfunction
presents a singularity, the method converges with order close to 1.54, which corresponds to the
Sobolev regularity for the biharmonic equation (see [26]). Instead, the method presents an optimal
order of convergence for the second, third and fourth transmission eigenvalues where the associated
eigenfunctions are smooter. Moreover, the results obtained by our virtual scheme agree perfectly
well with those reported in [15, 31].

Finally, Figure 5.2 illustrates the eigenfunctions corresponding to the four lowest transmission
eigenvalues computed in this test.

5.3. Test 3: Circular domain ΩC. We end the this section by computing the four lowest
transmission eigenvalues kih, i = 1, 2, 3, 4 on the circular domain ΩC (cf. (5.3)). We considered
a constant index of refraction n = 16 in order to compare our resutls with those showed in
[15, 17, 21, 31]. We have employed a family of polygonal meshes (see Figure 5.2) created with
PolyMesher [36].

Table 5.5 reports the four lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed with the
virtual method (4.16). The table also includes computed orders of convergence, as well as more
accurate values extrapolated by means of a least-squares fitting.
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Fig. 5.3. Test 2: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right)
associated to the eigenvalues κ1h, κ2h, κ3h and κ4h, respectively.

Table 5.5
Test 3: Lowest transmission eigenvalues κih, i = 1, 2, 3, 4 computed on the circular domain ΩC and with index

of refraction n = 16.

ΩC κ1h κ2h κ3h κ4h

NP = 1024 1.9961 2.6301 2.6308 3.2611
NP = 4096 1.9900 2.6173 2.6173 3.2349

Ωv
h NP = 16384 1.9885 2.6140 2.6140 3.2287

Order 2.03 1.97 2.03 2.08
Extrap. 1.9880 2.6129 2.6129 3.2268

[15] [Argyris method] 1.9881 - - -
[17] [C0-FEM] 1.9879 2.6124 2.6124 3.2255
[21] [Continuous method] 2.0301 2.6937 2.6974 3.3744
[31] [VEM] 1.9880 2.6129 2.6129 3.2267

Once again, it can be seen from Table 5.5 that the computed transmission eigenvalues converge
with an optimal quadratic order as predicted by the theory. Finally, in Figure 5.2, we present
the eigenfunctions corresponding to the four lowest transmission eigenvalues computed in this
numerical test.
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