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Abstract

In this paper, we analyse a nonlinear elliptic problem in a bounded domain, applying
the already known hybrid high-order (HHO) method. Our analysis follows known ap-
proaches to deal with diffusion linear problems, and take into account the nonlinear works
in elasticity. This approach allows us to obtain high-order approximation of unknowns, by
assembling a non-conforming discrete space based on degrees of freedom over the interior
volume of each element and on the faces of its boundary, through L2-projections. The prin-
cipal feature is the use of a gradient reconstruction operator, whose codomain in the current
context, is bigger than the considered in the linear case. On the other hand, the stabilization
term is the same as for the linear case. In addition, the construction does not depend on the
spatial dimension, and it offers the possibility to use general meshes with polytopal cells
and non-matching interfaces. The discrete unknowns are chosen such that they are sup-
ported over each element and its boundary. It is important to emphasize that the cell-based
unknowns can be eliminated locally by a Schur complement technique (also known as static
condensation). This allows us to obtain a more compact system, reducing significantly its
size, which is solved by Newton’s method. We establish the well-posedness of the nonlin-
ear discrete scheme, the stability of the method, and confirm that it is optimally convergent
in the energy norm and in the L2-norm, for the potential and its gradient, for smooth enough
solutions. In addition, we also establish the convergence of the L2-projection of the poten-
tial error and the super convergence of the reconstructive potential error, under the same
additional regularity assumption of the exact solution. The latter results, up to the author’s
knowledge, have not been proven before. Several numerical experiments confirm our the-
oretical results. We point out that this approach can be also applied/extended to deal with
other boundary conditions (such as nonhomogeneous Dirichlet, mixed or pure Neumann).
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‡Instituto de Matemática y Ciencias Afines (IMCA) and Universidad Nacional de Ingenierı́a (UNI), Lima, Perú,
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1 Introduction
The numerical resolution of nonlinear elliptic partial differential equations (PDEs) is nowadays
of great interest in the engineering practice. These arise in many areas, including differen-
tial geometry (the Monge-Ampère equation) [28], mass transportation (the Monge-Kantorovich
problem) [1, 43], dynamic programming (Bellman’s equation), fluid dynamics (the geostrophic
equations) [40], phase change problems governed by Stefan’s model [29], the modelling of phe-
nomena such as: glacier motion [35], incompressible turbulent flows in porous media [22], and
airfoil design [34]. We consider a class of nonlinear elliptic problems arising in heat conduction
and fluid mechanics, that reads as: Find u such that

−div(a(·,∇u)) = f in Ω, (1a)
u = 0 on ∂Ω, (1b)

where Ω ⊂ Rd, d ∈ {2, 3}, is a polytopal bounded connected domain, with Lipschitz boundary
∂Ω, a : Ω × Rd → Rd is a nonlinear function, and f represents the source term. The design
of convergent numerical schemes for the solution of such equations, is thus an important and
very active research topic. In this work, we focus in particular, in the well-known HHO method,
under certain hypothesis on nonlinear function a that will be described in the Section 2. The
homogeneous Dirichlet boundary condition (1b) is considered only for the sake of simplicity.
We can modify appropriately the mathematical analysis, to deal with more general boundary
conditions such as mixed boundary conditions, non-homogeneous Dirichlet boundary condi-
tion, and also Neumann boundary condition.

This approach has several advantageous features, initially described in [19, 18]: (i) it is
independent of the spatial dimension; (ii) it supports arbitrary polynomial orders k ≥ 0 on
fairly general meshes including, e.g., polyhedral elements and non-matching interfaces; (iii)
it is devised from local reconstruction operators and a linear local stabilization term; (iv) it is
efficiently parallelable (the local stencil only connects a mesh element with its faces); (v) it has
moderate computational costs, thanks to the possibility of locally eliminating, by static con-
densation, the volumetric unknowns for linearized versions of the problem (encountered, e.g.,
when solving the corresponding system of nonlinear algebraic equations by the Newton method
or Kačanov’s one).

It is important to point out that a kind of nonlinear elasticity problem, under weak hypothe-
ses, has been analysed with HHO approach in [6]. For a more general context, we refer to
[13, 14], where the authors analyse the p-Laplacian problem in Banach spaces, with a stabiliza-
tion term depending also of the nonlinearity. In the case of p = 2, we obtain the linear diffusion
problem described in [21], but with a slightly different definition for the reconstruction operator.
The case of p-Laplacian and Leray–Lions equations with pure Neumann boundary conditions is
analyse in [20, Chapter 7]. Albeit, in [13, 6] we can find part of the HHO analysis for (1), in this
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paper we propose another mathematical analysis (taking into account that we are dealing only
with the case p = 2). Moreover, we are able to deduce an a priori error estimate for L2-error of
reconstructive potential, which, up to author’s knowledgement, has not been established yet.

Conforming finite element methods on standard meshes have been considered in [31, 33], in
the context of elasticity for mixed formulation, while in [3], the authors deal with the p-laplacian
applying a continuous piecewise linear finite element approximation. Discontinuous Galerkin
(DG) methods on standard meshes have been considered in [42], while in [8], the authors apply
local discontinuous Galerkin (LDG) method for the same class of nonlinear elliptic problem we
study. Polytopal meshes have been considered in DG methods in [4], and also with in Virtual
Element (VE) method [47], based on a low-order approximation of the displacement field.

The lowest-order version of the HHO method (k = 0), can be linked with Hybrid Finite
Volume (HFV) methods in [19], when face unknowns are not eliminated by interpolation. Also,
HHO approach is related to Hybrid Mixed Mimetic (HMM) methods in [15]. Here, HMM
methods can be seen as the unified formulation for the Hybrid Finite Volume (HFV, [26]) meth-
ods, the Mixed Finite Volume (MFV, [24]) methods, and the Mimetic Finite Difference (MFD,
[46]) methods proposed in [44, 25]. It is important to mention that in [14] , the authors extend
the analysis proposed in [23] for Leray–Lions equations. Moreover, in the case of fully non-
linear models, one strategy to recover the high-order rate of convergence, seems to be defining
the gradient reconstruction operator in the full polynomial space Pk(T )d. For more details, we
refer to Section 4 in [16].

There is also a connection of HHO technique with other approaches, such as Hybridizable
Discontinuous Galerkin (HDG) methods in [12, Section 4], with the help of an equivalent mixed
formulation is necessary. Also, in [12, Section 2.4], we find a link with High-order mimetic
(HOM) approach, introduced in [39], and with the non-conforming version of the VE method
introduced in [2]. In addition, we find a unified analysis between HHO and VE methods in [38],
but differs from the standard VE method described in [45].

Finally, in [16], the authors show that the HHO method [19, 13], the non-conforming ver-
sions of MFD [39] and VE [45, 10] methods, can be included in the generic framework of
Gradient scheme (GS), which was originally developed for encompassing low numerical meth-
ods (k = 0). We point out that our analysis is not included, since the stabilization term is not
embedded into the discrete symmetric gradient operator. We refer to Remark 24 in [16], for
further details.

The rest of the paper is organized as follows. In Section 2, we introduce the continuous
model problem and discuss the well-posedness of a weak formulation of this one. In Section 3,
we introduce the discrete approximation spaces, where the unknowns of the HHO scheme will
be looked for. Moreover, we also introduce the potential and gradient reconstruction operators,
emphasizing their key properties. In Section 4, we introduce the discrete problem and study
its stability. In Section 5, we establish the well-posedness of the discrete problem, while in
Section 6 we perform the a priori error analysis. First, in the energy-norm, and then in the L2-
norm, under additional elliptic regularity assumptions. Finally, in Section 8, we present some
examples, which are in agreement with our theoretical results.
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2 Continuous setting
In this section we present the continuous problem, and give appropriate assumptions on the
function a that will let us to prove the well-posedness of the corresponding weak formulation.
Then, given f ∈ L2(Ω), we look for u : Ω → R, solution of the following class of nonlinear
elliptic problem:

−div(a(·,∇u)) = f in Ω, (2a)
u = 0 on ∂Ω, (2b)

where Ω ⊂ Rd, d ∈ {2, 3}, is a polytopal bounded connected domain, with Lipschitz boundary
∂Ω, while a : Ω× Rd → Rd is a nonlinear function.

Assumption 2.1 The vectorial nonlinear function a satisfies the following properties/hypotheses
(see [8]):

(H.1) Carathéodory condition: The function aj(x, ·), j = 1, ..., d, is continuous in Rd for almost
all x ∈ Ω, and aj(·, ζ), j = 1, ..., d, is measurable in Ω for all ζ ∈ Rd.

(H.2) Growth condition: There exist φj ∈ L2(Ω), j = 1, ..., d, andC > 0 such that |aj(x, ζ)| ≤
C(1 + |ζ|) + |φj(x)|, for almost all x ∈ Ω and for all ζ ∈ Rd.

(H.3) Ellipticity condition: The function a = (a1, · · · , ad) has continuous first order partial
derivatives in Rd, for almost all x ∈ Ω. In addition, there exists C > 0 such that

d∑
i,j=1

∂

∂ζj
ai(x, ζ)ζ̃iζ̃j ≥ C|ζ̃|2,

for all ζ := (ζi, ζj)
t, ζ̃ := (ζ̃i, ζ̃j)

t ∈ R2 and for almost all x ∈ Ω.

(H.4) Regularity condition: The function ai(x, ·), i = 1, ..., d, has continuous first order par-
tial derivatives in Rd for almost all x ∈ Ω. In addition, there exists C > 0 such that
for each i, j ∈ {1, · · · , d}, ∂

∂ζj
ai(x, ζ) satisfies the Carathéodory condition (H.1), and∣∣∣ ∂∂ζj ai(x, ζ)

∣∣∣ ≤ C, for all ζ ∈ Rd, and for almost all x ∈ Ω.

The weak formulation of problem (2), that will serve as a starting point for the development
and analysis of the HHO method, reads: Find u ∈ U := H1

0 (Ω) such that∫
Ω

a(x,∇u(x)) · ∇v(x) dx =

∫
Ω

f(x) v(x) dx ∀ v ∈ U. (3)

We remark that (H.1) - (H.2) guarantee that a is well defined, while (H.3) - (H.4) ensure
that the nonlinear operator in the left-hand side of (3) is strongly monotone and Lipschitz-
continuous, thanks to Theorem 32.6 in [48, page 240]. Finally, the well-posedness of the prob-
lem (3) follows after invoking Theorem 34.1 in [48, page 245].
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3 Discrete settings
In this section, we recall the notion of admissible mesh sequences, and reasonable assumptions
on such meshes, which are required to define the HHO scheme. First, we let (Th)h∈H be an
h-refined regular mesh sequence of Ω, consisting of polytopal meshes (cf. Chapter 1 in [20]),
withH being a countable set of positive numbers having 0 as its only accumulation point. Next,
for any h ∈ H, Th is a finite collection of nonempty, disjoint, open, polytope elements T with
diameter hT , such that ∪T∈ThT = Ω, and there is a matching simplicial submesh Jh such that
any simplex and any face in Jh belongs to just one element and face of Th. Besides, there exists
ρ > 0 (called the mesh regularity parameter), that is independent of h, such that for every
h ∈ H: (i) for any simplex S ∈ Jh of diameter hS and inradius rS , there holds ρ hS ≤ rS; and
(ii) ∀T ∈ Th , ∀S ∈ Jh : (S ⊆ T ⇒ ρ hT ≤ hS). As usual, we introduce h := maxT∈Th hT .
The regularity condition of the mesh sequence, ensures important geometric bounds on Th and
Fh, for any h ∈ H. We refer to Lemma 1.2 in [20] for more details in this context.

Given any Th, with h ∈ H, we call a face any hyperplanar closed connected subset F of Ω
with positive (d − 1)-dimensional measure, and such that: (1) either there exists T ∈ Th such
that F ⊂ ∂T ∩∂Ω (in this case, F is called a boundary face), or (2) there exist T1, T2 ∈ Th such
that F ⊂ ∂T1∩∂T2 (and then, F is called an interior face). Boundary faces are collected in Fb

h ,
interior faces are callected in the set Fint

h , and we set Fh := Fint
h ∪Fb

h . Now, by hF we denote
the diameter of a face F ∈ Fh. For each T ∈ Th, we define FT := {F ∈ Fh : F ⊂ ∂T}, and
then, given F ∈ FT , by nTF we denote the unit normal to F , outward to T .

Throughout this paper, given two different non negative numbers x, y, by x . y, we denote
the inequality x ≤ C y, where C is a positive constant that is independent of the nonhomoge-
neous, but may depend on the mesh regularity parameter ρ. In addition, we also introduce the
notation x ≈ y, which means that y . x and x . y.

It is important to emphasize that in this context, the very well-known inequalities and em-
beddings, are also valid. We remind here the discrete Poincaré-Wirtinger inequality [20, Re-
mark 1.46], i.e. given any T ∈ Th:

||w||T . hT ||∇w||T ∀w ∈ H1(T ) ∩ L2
0(T ) , (4)

which will be invoked in this paper. Other know results are, for example, the discrete Sobolev
embedding [13, Proposition 5.4], the discrete inverse inequality [17, Lemma 1.44], the discrete
and continuous trace inequalities [17, Lemmas 1.46 and 1.49].

Now, we recall the definition and properties of the L2-orthogonal projector. Given any
T ∈ Th and any integer l ≥ 0, we define the L2-orthogonal projector πlT : L1(T )→ Pld(T ) such
that: For all v ∈ L1(T ), πlTv is the unique polynomial in Pld(T ) that satisfies

(πlTv − v,∇w)T = 0 ∀w ∈ Pld(T ) .

We also introduce the so called elliptic projector π1,l
T : W 1,1(T ) → Pld(T ) such that: For all

v ∈ W 1,1(T ), π1,l
T v is a polynomial in Pld(T ) that satisfies (cf. Definition 1.39 in [20])(

∇(π1,l
T v − v),∇w

)
T

= 0 ∀w ∈ Pld(T ) ,

(π1,l
T v − v, 1)T = 0 .

For the next result, we set π0,l
T := πlT .
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Lemma 3.1 (Approximation properties). Given an integer l ≥ 0, T ∈ Th and κ ∈ {0, 1}.
Let πκ,lT be the L2-orthogonal projection or elliptic projector onto Pkd(T ). Then, for all s ∈
{κ, · · · , l + 1} and all v ∈ Hs(T ), there holds

|v − πκ,lT v|Hm(T ) ≤ C ′apph
s−m
T |v|Hs(T ) ∀m ∈ {0, · · · , s}. (5)

Moreover, assuming additionally that s ≥ 1, there holds for all F ∈ FT ,

|v − πκ,lT v|Hm(F ) ≤ C ′′apph
s−m−1/2
T |v|Hs(T ) ∀m ∈ {0, · · · , s− 1}. (6)

Here C ′app > 0 and C ′′app > 0 depend only on d, the regularity of the mesh, l, and s.

Proof. We refer to the proofs of Theorems 1.45 and 1.48 in [20]. �

3.1 Degrees of freedom (DOFs)
Let k ≥ 0 be fixed. For all T ∈ Th, we define the local space of DOFs as Uk

T := Pkd(T ) ×(∏
F∈FT P

k
d−1(F )

)
, where Pkd(T ) (resp., Pkd−1(F )) is spanned by the restrictions to T (resp., to

F ) of d-variate (resp., (d − 1)-variate) polynomials of total degree ≤ k. The global space of
DOFs on the domain Ω, is

Uk
h :=

(∏
T∈Th

Pkd(T )

)
×

( ∏
F∈Fh

Pkd−1(F )

)
.

The space Uk
h is equipped with the following discrete semi-norm, ‖ · ‖ε,h : Uk

h → R

‖vh‖2
ε,h :=

∑
T∈Th

‖vT‖2
ε,T , ‖vT‖2

ε,T := ‖∇vT‖2
T +

∑
F∈FT

h−1
F ‖vF − vT‖

2
F . (7)

For each T ∈ Th, we define the local reduction operator IkT : H1(T ) → Uk
T such that, for all

v ∈ H1(T ),
IkTv :=

(
πkTv, (π

k
Fv)F∈FT

)
∈ Uk

T , (8)

where πkT and πkF denote the usual L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ), respec-
tively. The corresponding global interpolation operator Ikh : H1(Ω)→ Uk

h is then defined, such
that for all v ∈ H1(Ω),

Ikhv :=
(
(πkTv)T∈Th , (π

k
Fv)F∈Fh

)
∈ Uk

h . (9)

3.2 Gradient and Potential reconstruction operators
Based on the local DOFs, we introduce reconstructions of the gradient and of the potential that
will be helpful in the formulation of the method. In what follows, (·, ·)T and (·, ·)F will denote
the usual L2-inner products on T ∈ Th and F ∈ Fh, respectively. We define the local discrete
gradient operator Gk

T : Uk
T → [Pkd(T )]d such that, given vT ∈ Uk

T , then, Gk
TvT ∈ [Pkd(T )]d

satisfies

(Gk
TvT ,φ)T = (∇vT ,φ)T +

∑
F∈FT

(vF − vT ,φ · nTF )F ∀φ ∈ [Pkd(T )]d, (10)

where, we recall that nTF is the unit normal to F pointing out of T . The following proposition
shows us the relation between the exact gradient and the discrete gradient operators.
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Proposition 3.1 (Commuting property). For all v ∈ H1(T ), there holds

Gk
T I

k
Tv = πkT (∇v) , (11)

where πkT acts componentwise.

Proof. For the sake of completeness, we rewrite the proof of Proposition 10 in [14]. First, we
fix T ∈ Th and φ ∈ [Pkd(T )]d. Then, plugging the definition (8) of IkT into (10), and applying
integration by parts, taking into account the definition of orthogonal projection, together with
the fact that divφ ∈ Pk−1

d (T ) ⊂ Pkd(T ) and that φ|F ·nTF ∈ Pkd−1(F ) for all F ∈ FT , we have

(Gk
T I

k
Tv,φ)T = (∇πkTv,φ)T +

∑
F∈FT

(πkFv − πkTv,φ · nTF )F

= −(πkTv, divφ)T +
∑
F∈FT

(πkFv,φ · nTF )F

= −(v, divφ)T +
∑
F∈FT

(v,φ · nTF )F

= (∇v,φ)T ,

where, we have applied integration by parts again. Then, the conclusion is derived and we end
the proof. �

Remark 3.1 In the Appendix of this paper, we show the relevance of introducing (10), with a
numerical example.

We also define the local potential reconstruction operator pk+1
T : U k

T → Pk+1
d (T ) such

that, for all vT := (vT , (vF )F∈FT ) ∈ Uk
T , pk+1

T vT ∈ Pk+1
d (T ) is the unique solution of

(∇pk+1
T vT −Gk

TvT ,∇w)T = 0 , ∀w ∈ Pk+1
d (T ), (12a)

(pk+1
T vT − vT , 1)T = 0 . (12b)

This operator satisfies the following orthogonal property (cf. Section 4 in [13]).

Corollary 3.1 (Euler equation). For all v ∈ H1(T ), there holds

(∇(pk+1
T IkTv − v),∇w)T = 0 ∀w ∈ Pk+1

d (T ). (13)

Proof. We have the following identity

(∇(pk+1
T IkTv−v),∇w)T = (∇pk+1

T IkTv−Gk
T I

k
Tv,∇w)T+(Gk

T I
k
Tv−∇v,∇w)T ∀w ∈ Pk+1

d (T ).

Then, the conclusion follows from (12a) and the commuting property (11). �

Remark 3.2 We observe from (12b) and the definition of πkT , that
(
pk+1
T IkTv, 1

)
T

= (πkTv, 1)T =
(v, 1)T . Then, there holds (

pk+1
T IkTv − v, 1

)
T

= 0 ∀T ∈ Th . (14)
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The following lemma is similar to the one established for the original Gradient reconstruc-
tion operator (defined for linear elliptic problems), and will be applied later in this paper (cf.
proof of Theorem 6.3).

Lemma 3.2 (Approximation properties for pk+1
T IkT ) . There exists a real number C > 0, de-

pending on ρ (mesh regularity parameter) and d, but independent of the polynomial degree, and
the meshsize. So that for any v ∈ Hs+2(T ), s ∈ {0, · · · , k}, there holds:∥∥v − pk+1

T IkTv
∥∥
T

+ h
1/2
T

∥∥v − pk+1
T IkTv

∥∥
∂T

+ hT
∥∥∇(v − pk+1

T IkTv)
∥∥
T

+h
3/2
T

∥∥∇(v − pk+1
T IkTv)

∥∥
∂T
≤ Chs+2

T ‖v‖Hs+2(T ) . (15)

Proof. The proof follows immediately from Theorems 1.1 and 1.2 in [14], and observing that
pk+1
T IkT is an elliptic projector, thanks to the Euler equation (13), fixing its constant by (14). �

4 Formulation
Here, we introduce the following subspace of Uk

h, which strongly incorporates the homoge-
neous Dirichlet boundary condition (2b):

Uk
h,0 :=

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F bh
}
. (16)

Proposition 4.1 The map ‖ · ‖ε,h : Uk
h → R, given in (7), defines a norm on Uk

h,0.

Proof. The proof follows the same ideas from the proof of Corollary 2.16 in [20].For the sake
of completeness, we proceed to establish this result. First, we notice that it is enough to prove

∀vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h,0 :
(
‖vh‖ε,h = 0 ⇒ vh = 0 ∈ Uk

h,0

)
.

We let vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h,0 be such that ‖vh‖ε,h = 0. This implies, from (7),
that there exists C0 ∈ R, such that

vF = vT = C0 ∀F ∈ FT , ∀T ∈ Th .

Since vF is single value on each F ∈ Fh and vF = 0 on Fb
h , we conclude that vh = 0 ∈ Uk

h,0,
and we end the proof. �

Hereafter, we recall that given vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h, we set vh ∈ Pkd(Th) such
that vh|T := vT , for all T ∈ Th.

Now, we consider the following discrete variational formulation of (3): Find uh ∈ Uk
h,0

such that, for any vh ∈ Uk
h,0,

Ah(uh,vh) := Nh(uh,vh) + sh(uh,vh) = (f, vh)0,Ω =: bh(vh), (17)

where the nonlinear form Nh : Uk
h ×Uk

h → R and the bilinear form sh : Uk
h ×Uk

h → R, are
assembled element-wise as

Nh(uh,vh) :=
∑
T∈Th

NT (uT ,vT ), and sh(uh,vh) :=
∑
T∈Th

sT (uT ,vT ), (18)
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from the local contributions NT : Uk
T ×Uk

T → R, and sT : Uk
T ×Uk

T → R, T ∈ Th, given by

NT (uT ,vT ) :=

∫
T

a(x,Gk
TuT (x)) ·Gk

TvT (x) dx, (19a)

sT (uT ,vT ) :=
∑
F∈FT

h−1
F

(
πkF (uF − P k

TuT ), πkF (vF − P k
TvT )

)
F
. (19b)

We recall that the local potential reconstruction P k
T : Uk

T → Pk+1
d (T ) is defined such that, for

all vT ∈ Uk
T ,

P k
TvT := vT + (pk+1

T vT − πkTpk+1
T vT ) . (20)

Next, we introduce the global discrete gradient operator Gk
h : Uk

h → [Pkd(Th)]d such that, for all
vh ∈ Uk

h,

Gk
hvh|T := Gk

TvT ∀T ∈ Th. (21)

Lemma 4.1 Let (Th)h∈H be an admissible mesh sequence and k ≥ 0. For any T ∈ Th, there
holds the following equivalence of local semi norms on Uk

T

‖vT‖2
ε,T ≈ ‖Gk

TvT‖2
T + sT (vT ,vT ) ∀vT ∈ Uk

T (22)

≈ ‖pk+1
T vT‖2

T + sT (vT ,vT ) ∀vT ∈ Uk
T . (23)

Besides, the hidden constant is independent of the meshsize and vT . Consequently, for all
vh ∈ Uk

h, there holds
‖vh‖2

ε,h ≈ ‖Gk
hvh‖2

0,Ω + sh(vh,vh) . (24)

Proof. We refer to the proofs of Lemma 4 in [19] and Lemma 5.2 in [13]. �

Remark 4.1 ‖Gk
hvh‖2

0,Ω + sh(vh,vh) is usually called energy norm.

Lemma 4.2 The nonlinear form Nh, defined in (18), is strongly monotone on Uk
h.

Proof. The strong monotonicity of Nh follows straightforwardly from (22) and (H.3). �

Lemma 4.3 (Consistency of sT ). Given T ∈ Th, we let sT be the stabilization bilinear form
defined in (18). Then, for each v ∈ Hr+2(T ), with r ∈ {0, · · · , k}, there holds

sT (IkTv, I
k
Tv)1/2 . hr+1

T ‖v‖Hr+2(T ) . (25)

Proof. We refer to the proof of Lemma 2.14 in [20]. We omit further details. �
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5 Well-posedness of (17)

Our purpose here, is to establish the unique solvability of (17). To this aim, we notice that the
assumptions (H.3) and (H.4) on the coefficients ai, imply that the nonlinear operator induced by
a is strongly monotone and Lipschitz continuous on [L2(Ω)]d (see, e.g. [30, 32]). This ensures
the existence of C1 , C2 > 0, such that for all θ , θ̃ ∈ [L2(Ω)]d, there hold∫

Ω

(
a(·,θ)− a(·, θ̃)

)
· (θ − θ̃) ≥ C1 ||θ − θ̃||20,Ω , (26)

and

||a(·,θ)− a(·, θ̃)||0,Ω ≤ C2 ||θ − θ̃||0,Ω . (27)

Next result shows that the nonlinear operator Ah is also Lipschitz continuous.

Lemma 5.1 There exists CLC > 0, independent of the meshsize, such that

||Ah(vh, ·)− Ah(wh, ·)||Uk,∗
h,0
≤ CLC ||vh −wh||ε,h ∀vh , wh ∈ Uk

h,0 , (28)

where Uk,∗
h,0 represents the dual of Uk

h,0.

Proof. Given vh , wh , zh ∈ Uk
h,0, we notice that

Ah(vh, zh)− Ah(wh, zh) =
∑
T∈Th

[(
a(·, Gk

TvT )− a(·, Gk
TwT ), Gk

TzT

)
T

+ sT (vT −wT , zT )
]
.

Now, noticing that (H.4) also implies that a is Lipschitz continuous on [L2(T )]d, for each T ∈
Th, we have, after applying Cauchy-Schwarz inequality, that

|Ah(vh, zh)− Ah(wh, zh)| .
∑
T∈Th

||Gk
T (vT −wT )||T ||Gk

hzT ||T + sT (vT −wT , zT ) .

Next, we take into account Minkowski inequality, to derive

|Ah(vh, zh)− Ah(wh, zh)| .(∑
T∈Th

||Gk
T (vT −wT )||2T + sT (vT −wT ,vT −wT )

)1/2 (∑
T∈Th

||Gk
TzT ||2T + sT (zT , zT )

)1/2

.

Then, (28) follows after invoking Lemma 4.1. �

Lemma 5.2 There exists CSM > 0, independent of the meshsize, such that

Ah(vh,vh −wh)− Ah(wh,vh −wh) ≥ CSM ||vh −wh||2ε,h ∀vh , wh ∈ Uk
h . (29)
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Proof. Let vh , wh ∈ Uk
h . Thanks to the definition of Ah, we derive

Ah(vh,vh −wh)− Ah(wh,vh −wh)

=
∑
T∈Th

(
a(·, Gk

TvT )− a(·, Gk
TwT ), Gk

TvT −Gk
TwT

)
T

+ sh(vh −wh,vh −wh) .

Next, applying (26), we obtain

Ah(vh,vh −wh)− Ah(wh,vh −wh) ≥ C1

∑
T∈Th

||Gk
T (vT −wT )||2T + sh(vh −wh,vh −wh) .

Finally, applying Lemma 4.1 again, (29) is concluded. �
In order to exhibit that bh ∈ Uk,∗

h,0, we require the following result.

Lemma 5.3 There exists CP > 0, independent of the meshsize, such that

||vh||0,Ω ≤ CP ||vh||ε,h ∀vh ∈ Uk
h,0 . (30)

Proof. We refer to the proof of Lemma 2.15 in [20] �
An immediate consequence of Lemma 5.3, is the boundedness of linear functional bh. This

allows us to ensure the unique solvability of the nonlinear HHO formulation (17).

Theorem 5.1 There is one and only one solution uh ∈ Uk
h,0 of (17), which satisfies

||uh||ε,h ≤
1

CSM

(
CP||f ||0,Ω + ||Ah(0, ·)||Uk,∗

h,0

)
. (31)

Proof. Thanks to Lemmas 5.1 and 5.2, the existence and uniqueness of the solution of (17) is
consequence of a well known result in nonlinear functional analysis (see, e.g. Theorem 3.3.23
in Chapter III of [41, page 50], or Theorem 35.4 in [48, page 251]). On the other hand, (31)
is obtained taking into account the strong monotonicity of Ah, (17), and Lemma 5.3. We omit
further details. �

6 Error analysis
In this Section, we obtain a priori error estimates of the method, in the energy-norm and also in
L2-norm, under additional regularity assumption on exact solution. We emphasize that the anal-
ysis presented here is quite different to the one shown/described in [13], since we are dealing
just with a kind of nonlinear version of the 2-Laplacian problem.

The following result will help us to conclude the error estimates of the method. From now
on, we let u ∈ U be the exact solution of (3), and uh ∈ Uk

h,0 be the unique solution of (17) on
the mesh Th. We define the consistency error as the linear functional Eh(u; ·) : Uk

h,0 → R such
that Eh(u; ·) := Ah(I

k
hu, ·)− bh(·).

For the sake of completeness, we introduce the following notations for the flux and potential
fields, and their approximations. First, we recall that σ := a(·,∇u) and ûh := Ikhu. Next, for
each T ∈ Th, we introduce

σT := a(·, Gk
TuT ) , ûT := IkTu and σ̂T := a(·, Gk

T ûT ) .
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Lemma 6.1 (Consistency error estimate). Let u ∈ H1
0 (Ω) be the unique solution of (3). Let

(Th)h∈H be a regular mesh family. Let a polynomial degree k ≥ 0 be fixed, and for all h ∈ H,
we take the additional regularity u ∈ Hr+2(Th) and a(·,∇u) ∈ Hr+1(Th), for some r ∈
{0, · · · , k}. Then, there holds

sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u;vh) . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖Hr+1(Th)d

)
. (32)

Proof. We adapt the proof of Theorem 16 in [6]. Using the definition (17), fixing vh ∈ Uk
h,0,

we obtain

Eh(u;vh) =
∑
T∈Th

(
σ̂T , G

k
TvT

)
T

+ sh(ûh,vh)− (f, vh)0,Ω

=
∑
T∈Th

(
σ̂T − σ, Gk

TvT
)
T

+ sh(ûh,vh)

+
∑
T∈Th

(
σ, Gk

TvT
)
T
− (f, vh)0,Ω . (33)

Considering, for any T ∈ Th, the definition (10) of Gk
T with φ := πkTσ ∈ [Pkd(T )]d, we

have that ∑
T∈Th

(
Gk
TvT ,σ

)
T

=
∑
T∈Th

{(
σ,∇vT

)
T

+
∑
F∈FT

(
πkTσ · nTF , vF − vT

)
F

}
, (34)

where we have used the fact that ∇vT ∈ [Pk−1
d (T )]d, together with the definition of the L2-

orthogonal projector πkT componentwise.
On the other hand, knowing that vh|T = vT for all T ∈ Th, and f = −∇ · σ a.e. in Ω, and

after integrating by parts element by element, we get that

(f, vh)0,Ω =
∑
T∈Th

{(
σ,∇vT

)
T

+
∑
F∈FT

(
σ · nTF , vF − vT

)
F

}
, (35)

where we have additionally taken into account that σ ∈ H(div; Ω), (vF )F∈Fh is single valued,
and vF = 0 ∀F ∈ Fb

h .
Now, replacing (34) and (35) in (33), we deduce

Eh(u;vh) =
∑
T∈Th

(
a(·, Gk

T ûT )− a(·,∇u), Gk
TvT

)
T

+ sh(ûh,vh)

+
∑
T∈Th

∑
F∈FT

(
a(·,∇u)− πkTa(·,∇u) · nTF , vF − vT

)
F
. (36)

Then, after applying Cauchy-Schwarz and Minkowski inequalities, we obtain

|Eh(u;vh)| . T1/2 ||vh||ε,h , (37)
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where

T :=
∑
T∈Th

||a(·, Gk
T ûT )− a(·,∇u)||2T︸ ︷︷ ︸

T1

+
∑
T∈Th

∑
F∈FT

hF ||a(·,∇u)− πkTa(·,∇u)||2F︸ ︷︷ ︸
T2

+ sh(ûh, ûh)︸ ︷︷ ︸
T3

.

(38)

To bound T1, we apply the Lipschitz continuity (27) with θ := ∇u, θ̃ := Gk
hûh, and invoke

the optimal approximation properties of Gk
T I

k
T (cf. (11)) together with (5), with m = 1 and

s = r + 2, to deduce

T1 .
∑
T∈Th

‖∇u−Gk
T ûT‖2

T .
∑
T∈Th

h
2(r+1)
T ‖u‖2

Hr+2(T ) . (39)

Now, thanks to (11) again, we derive

T2 .
∑
T∈Th

h
2(r+1)
T ||a(·,∇u)||2[Hr+1(T )]d . (40)

Finally, invoking Lemma 4.3, we bound T3, and (32) is straightforwardly implied. We end the
proof. �

Theorem 6.1 (Energy error estimate). Under the same assumptions and notations given in
Lemma 6.1, there holds, for some r ∈ {0, · · · , k}:

‖uh − Ikhu‖ε,h . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖[Hr+1(Th)]d

)
. (41)

Moreover, applying Lemma 4.1, there holds

‖∇u−Gk
huh‖0,Ω + sh(uh,uh)

1/2 . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖[Hr+1(Th)]d

)
. (42)

Proof. First, we take into account the strong monotonicity of nonlinear form Ah, and obtain

||uh − Ikhu||2ε,h .Ah(uh,uh − Ikhu) − Ah(I
k
hu,uh − Ikhu)

= bh(uh − Ikhu) − Ah(I
k
hu,uh − Ikhu)

= Eh(u; Ikhu− uh)

. sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u;vh) ||uh − Ikhu||ε,h ,

and then, we deduce

||uh − Ikhu||ε,h . sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u;vh) . (43)

Thus, (41) follows once we apply Lemma 6.1. The proof of (42) relies on Lemma 4.1. We omit
further details. �
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Let us turn our attention to the L2-norm for the volumetric part of the error uh − Ikhu, that
is eh := πkhu− uh, where πkhu|T := πkTu and uh|T := uT . To this aim, we rewrite problem (17)
as: Find uh ∈ Vh := Uk

h,0 such that, for any vh ∈ Vh,

[Ah(uh),vh] := [Nh(uh),vh] + sh(uh,vh) = (f, vh)0,Ω =: [Fh,vh], (44)

where [·, ·] represents the duality product, V (h) := Uk
h, Ah : V (h)→ V (h)′ and Nh : V (h)→

V (h)′ are the nonlinear operators induced by Ah and Nh, respectively.
Now, we can ensure the existence of the Gâteaux derivative of Nh at each zh ∈ V (h), thanks

to the assumption (H.1), as the bounded bilinear form DNh(zh) : V (h)× V (h)→ R, given by

DNh(zh)(vh,wh) = lim
t→0

[Nh(zh + tvh),wh]− [Nh(zh),wh]

t

= lim
t→0

∑
T∈Th

{(
a(·, Gk

TzT + tGk
TvT ), Gk

TwT

)
T
−
(
a(·, Gk

TzT ), Gk
TwT

)
T

}
t

=
∑
T∈Th

(
lim
t→0

a(·, Gk
TzT + tGk

TvT )− a(·, Gk
TzT )

t
, Gk

TwT

)
T

=
∑
T∈Th

∫
T

Da(·, Gk
TzT )Gk

TvT ·Gk
TwT ∀vh , wh ∈ V (h) . (45)

As consequence, we define DAh(zh) : V (h)× V (h)→ R as the bilinear form

DAh(zh)(vh,wh) := DNh(zh)(vh,wh) + sh(vh,wh) ∀vh , wh ∈ V (h) . (46)

In what follows, we assume that the jacobian tensor Da(·,θ) is symmetric for all θ ∈
[L2(Ω)]d, and that DNh is hemi-continuous, that is for any vh , wh ∈ V (h), the mapping R 3
µ→ DNh(vh + µwh)(wh, ·) ∈ V (h)′ is continuous. Thus, applying the mean value theorem,
there exists ũh ∈ V (h), a convex combination of Ikhu and uh, such that

DNh(ũh)(I
k
hu− uh,vh) = [Nh(I

k
hu)− Nh(uh),vh] ∀vh ∈ V (h) . (47)

Further, it follows from (46) and (47), that

DAh(ũh)(I
k
hu− uh,vh) = [Ah(I

k
hu)− Ah(uh),vh] ∀vh ∈ V (h) . (48)

Next, we establish the following linear auxiliary problem with additional elliptic regularity
assumption: Given g ∈ L2(Ω), we let z ∈ U := H1

0 (Ω) be the unique solution of

−div(K̃∇z)) = g in Ω, (49a)
z = 0 on ∂Ω, (49b)

with K̃ ∈ [L∞(Th)]d×d, such that K̃|T := Da(·, Gk
TuT ), for each T ∈ Th. Assuming further

regularity on K̃ so that z ∈ U ∩ H2(Ω) and K̃∇z ∈ [H1(Ω)]d, there exists Cell > 0 only
depending on Ω, such that:

||z||H2(Ω) ≤ Cell ||g||0,Ω and ||K̃∇z||H1(Ω)d ≤ Cell ||g||0,Ω . (50)
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This holds, for example, when Ω is convex, and the tensor K̃ is symmetric and Lipschitz con-
tinuous (cf. [36]). We also consider the HHO formulation of problem (49): Find zh ∈ Vh such
that

DAh(ũh)(zh,vh) = (g, vh)0,Ω =: [F̃h,vh] ∀vh ∈ Vh. (51)

We emphasize that invoking Theorem 4.16 in [20] with r = 0, and applying (50), we derive

||Ikhz − zh||ε,h . h ||g||0,Ω . (52)

Further, we introduce another nonlinear operator N̂h : [L2(Ω)]d → [L2(Ω)]d as

[N̂h(θ), ζ] :=
∑
T∈Th

(
a(·,θ|T ), ζ

)
T
∀θ , ζ ∈ [L2(Ω)]d. (53)

Then, the corresponding Gâteaux derivative of N̂h at each θ ∈ [L2(Ω)]d is given by

DN̂h(θ)(η, ζ) :=
∑
T∈Th

(
Da(·,θ|T )η, ζ

)
T
, ∀η , ζ ∈ [L2(Ω)]d. (54)

Now, assuming thatDN̂h is hemi-continuous, we ensure that there exists θ̂ ∈ [L2(Ω)]d, a convex
combination of∇u and πkh∇u, such that

DN̂h(θ̂)(∇u− πkh∇u, ζ) = [N̂h(∇u)− N̂h(π
k
h∇u), ζ] ∀ ζ ∈ [L2(Ω)]d. (55)

Then, introducing θ̂T := θ̂|T , we set K̂ ∈ [L∞(Th)]d×d such that K̂|T := Da(·, θ̂T ), and we
can derive the following representation of DN̂h(θ̂) as the bilinear form

DN̂h(θ̂)(η, ζ) :=
∑
T∈Th

(
K̂η, ζ

)
T
, ∀η , ζ ∈ [L2(Ω)]d . (56)

Theorem 6.2 (Error estimate of L2−projection of the potential) Under the same hypothesis
given in Theorem 6.1, and assuming that K̂ ∈ [W 1,∞(Th)]d×d. Let a integer k ≥ 0 be fixed,
and for all h ∈ H, we take the additional regularity u ∈ Hq+2(Th) and a(·,∇u) ∈ Hq+1(Th),
for some q ∈ {0, · · · , k}. Then, for k ≥ 1, there holds

‖πkhu− uh‖0,Ω . hq+2
((

1 + |K̂|[W 1,∞(Th)]d×d
)
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
. (57)

Moreover, when k = 0, assuming that f ∈ H1(Th), there holds

‖π0
hu−uh‖0,Ω . h2

((
1+|K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th)+‖a(·,∇u)‖[H1(Th)]d+‖f‖H1(Th)

)
. (58)

Proof. From problem (51), with g := πkhu− uh ∈ L2(Ω) and vh := Ikhu− uh ∈ Vh, we derive

||πkhu− uh||20,Ω = [F̃h, I
k
hu− uh] = DAh(ũh)(zh, I

k
hu− uh) .
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Now, as DAh(ũh) is symmetric, we apply (48) to deduce

||πkhu− uh||20,Ω = [Ah(I
k
hu)− Ah(uh), zh]

=
{

[Ah(I
k
hu), zh − Ikhz] − [Fh, zh − Ikhz]

}
︸ ︷︷ ︸

T1

+
{

[Ah(I
k
hu), Ikhz] − [Fh, I

k
hz]
}

︸ ︷︷ ︸
T2

.

(59)

Since T1 in (59) corresponds to the consistency error of (44), Eh(u; zh − Ikhz), we invoke (32)
with r = q, and after taking into account (52), we obtain

|T1| . hq+1
(
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
‖Ikhz − zh‖ε,h

. hq+1
(
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
h ‖πkhu− uh‖0,Ω . (60)

On the other hand, we notice that T2 in (59) is the consistence term Eh(u; Ikhz). Here, we
consider two cases.

(i.A) k ≥ 1. We proceed as in the derivation of (36), to have

Eh(u; Ikhz) =
∑
T∈Th

(
a(·, πkT∇u)− a(·,∇u), πkT∇z

)
T︸ ︷︷ ︸

J1

+
∑
T∈Th

∑
F∈FT

(
[a(·,∇u)− πkTa(·,∇u)] · nTF , πkF z − πkT z

)
F︸ ︷︷ ︸

J2

(61)

−sh(Ikhu, Ikhz).︸ ︷︷ ︸
J3

We bound J2 applying Cauchy-Schwarz, resulting

|J2| ≤

(∑
T∈Th

∑
F∈FT

‖a(·,∇u)− πkTa(·,∇u)‖2
F

)1/2(∑
T∈Th

∑
F∈FT

‖πkF z − πkT z‖2
F

)1/2

,

By approximation property (6), with m = 0 and s := q + 1, we obtain

‖a(·,∇u)− πkTa(·,∇u)‖F . h
q+1/2
T ||a(·,∇u)||Hq+1(T )d . (62)

Similarly, applying approximation property (6), we infer

‖πkF z − πkT z‖F ≤ ||z − πkT z||F . h
3/2
T ‖z‖H2(T ). (63)

Then, from (62), (63), and (50), with g := πkhu− uh, we derive

|J2| . hq+2||a(·,∇u)||Hq+1(Th)‖πkhu− uh‖0,Ω. (64)
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Now, we bound J3, using (25) with r := q for u, and r := 0 for z, and the first elliptic
regularity estimate in (50), yielding to

|J3| ≤ sh(I
k
hu, I

k
hu)1/2 sh(I

k
hz, I

k
hz)1/2

. hq+1 ‖u‖Hq+2(Th) h ‖z‖H2(Ω)

. hq+2 ‖u‖Hq+2(Th) ‖πkhu− uh‖0,Ω. (65)

Finally, to bound J1, we invoke the bilinear form (56), obtaining

J1 =DN̂h(θ̂)(∇u− πkh∇u, πkh∇z)

=
∑
T∈Th

(
K̂(∇u− πkT∇u), πkT∇z

)
T

=
∑
T∈Th

(
K̂(∇u− πkT∇u), πkT∇z − π0

T∇z
)
T︸ ︷︷ ︸

J1,1

+
∑
T∈Th

(
∇u− πkT∇u, K̂π0

T∇z − π0
T (K̂π0

T∇z)
)
T︸ ︷︷ ︸

J1,2

.

Invoking (H.4), the fact that ||πkT∇z − π0
T∇z||T ≤ ||∇z − π0

T∇z||T , and that K̂ is uniformly
bounded, we apply approximation property (5) and the first elliptic regularity estimate in (50),
and deduce

|J1,1| . hq+2 ||u||Hq+2(Th) ||πkhu− uh||0,Ω . (66)

In order to bound J1,2, we notice that π0
T (K̂π0

T∇z) = (π0
TK̂)(π0

T∇z), where π0
TK̂ is defined

componentwise. Then, since K̂ ∈ [W 1,∞(Th)]d×d, we invoke the tensorial version of Theorem
1.45 in [20], and establish that ||K̂ − π0

TK̂||[W 0,∞(T )]d×d . hT |K̂|[W 1,∞(Th)]d×d . Now, after
applying again approximation properties (5) as in (66), it yields

|J1,2| . |K̂|[W 1,∞(Th)]d×d h
q+2 ‖u‖Hq+2(Th) ‖πkhu− uh‖0,Ω . (67)

Then, from (64), (65), (66), and (67), we deduce the estimate for Eh(u; Ikhz) in (61), and (57) is
concluded.
(i.B) k = 0. We can rewrite

Eh(u; I0
hz) =[A(I0

hu)− A(uh), I
0
hz]

=
∑
T∈Th

(
a(·, π0

T∇u), π0
T∇z

)
T

+ sh(I
0
hu, I

0
hz) −

∑
T∈Th

(f, π0
T z)T . (68)

Playing with the definition of π0
T , we obtain

(f, π0
T z)T = (π0

Tf, z)T = (π0
Tf − f, z − π0

T z) + (f, z)T . (69)

17



Then, from (68) and (69), and the fact (π0
T∇z − ∇z, π0

Ta(·,∇u))T = 0 for all T ∈ TT , we
deduce

Eh(u; I0
hz) =

∑
T∈Th

(
a(·, π0

T∇u), π0
T∇z

)
T
− (f, z)Ω

+ sh(I
0
hu, I

0
hz) +

∑
T∈Th

(π0
Tf − f, π0

T z − z)T

=
∑
T∈Th

(
a(·, π0

T∇u)− a(·,∇u), π0
T∇z

)
T︸ ︷︷ ︸

T1

+
∑
T∈Th

(
a(·,∇u)− π0

Ta(·,∇u), π0
T∇z −∇z

)
T︸ ︷︷ ︸

T2

+ sh(I
0
hu, I

0
hz)︸ ︷︷ ︸

T3

+
∑
T∈Th

(π0
Tf − f, π0

T z − z)T︸ ︷︷ ︸
T4

. (70)

T2, T3 and T4 are bounded by applying Cauchy-Schwarz inequality and very well-known ap-
proximation property (5). Then, after take into account the first elliptic regularity estimate in
(50), we find

|T2| .h2 ||a(·,∇u)||[H1(Th)]d ||π0
hu− uh||0,Ω (71)

|T3| .h2 ||u||H2(Th) ||π0
hu− uh||0,Ω (72)

|T4| .h2 ||f ||H1(Th) ||π0
hu− uh||0,Ω . (73)

Now, we aim to bound the remaining term T1. First, we notice that

T1 =DN̂h(θ̂)(∇u− π0
h∇u, π0

h∇z)

=
∑
T∈Th

(
K̂(∇u− π0

T∇u), π0
T∇z

)
T

=
∑
T∈Th

(
∇u− π0

T∇u, K̂π0
T∇z − π0

T (K̂π0
T∇z)

)
T
.

Then, proceeding in analogous way for bounding J1,2, we derive

|T1| . |K̂|[W 1,∞(Th)]d×d h
2 ‖u‖H2(Th) ‖πkhu− uh‖0,Ω . (74)

As a result, we establish

|Eh(u; I0
hz)| . h2

((
1 + |K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th) + ‖a(·,∇u)‖[H1(Th)]d + ‖f‖H1(Th)

)
,

(75)

and the estimate (58) is implied. �
Now, we establish another important result.
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Theorem 6.3 (L2-error estimate of reconstructive potential). Under the same assumptions
of Theorem 6.2, elliptic regularity (50), we have, for k ≥ 1:

‖pk+1
h uh − u‖0,Ω . hq+2

((
1 + |K̂|[W 1,∞(Th)]d×d

)
‖u‖Hq+2(Th) + ‖a(·,∇u)‖Hq+1(Th)d

)
, (76)

for some q ∈ {0, · · · , k}. Moreover, when k = 0, assuming that f ∈ H1(Th), there holds

‖p1
hu−uh‖0,Ω . h2

((
1+|K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th) +‖a(·,∇u)‖H1(Th)d+‖f‖H1(Th)

)
. (77)

Proof. We proceed as in the proof of Theorem 2.32 from [20]. First, we take u

̂

h := pk+1
h Ikh(u),

and applying triangle inequality, we have

‖pk+1
h uh − u‖0,Ω ≤ ‖u− u

̂

h‖0,Ω︸ ︷︷ ︸
T1

+ ‖pk+1
h (ûh − uh)‖0,Ω︸ ︷︷ ︸

T2

. (78)

Next, after invoking (15) with s := q, we derive

T1 . hq+2‖u‖Hq+2(Th) . (79)

Now, using the local Poincaré-Wirtinger (4) and the fact(
pk+1
T (ûT − uT )− π0

T (ûT − uT ), 1
)
T

= 0 ∀T ∈ Th ,

we obtain, after applying triangle inequality

T2
2 .

∑
T∈Th

{
‖pk+1

h (ûh − uh)− π0
T (ûT − uT )‖2

T + ||π0
T (ûT − uT )||2T

}
.
∑
T∈Th

h2
T‖∇pk+1

T (ûT − uT )‖2
T︸ ︷︷ ︸

E1

+
∑
T∈Th

‖π0
T (ûT − uT )‖2

T︸ ︷︷ ︸
E2

. (80)

We observe that, E1 is bounded thanks to Lemma 4.1 and Theorem 6.1, while the boundedness
of E2 is deduced by invoking Theorem 6.2. Finally, (79) and (80) help us to bound (78), and we
conclude the proof.

�

7 Other boundary conditions
Here, we briefly discuss how the HHO scheme is written for non-homogeneous Dirichlet,
mixed, and nonhomogeneous Neumann boundary conditions, and hint at the modifications re-
quired for establishing the corresponding a priori error estimates.
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7.1 Nonhomogeneous Dirichlet boundary conditions
We consider the nonlinear problem

− div(a(·,∇u)) = f in Ω , u = g on ∂Ω , (81)

with g ∈ H1/2(∂Ω). Denoting by γ : H1(Ω) → H1/2(∂Ω) the trace operator, the continuous
weak formulation is expressed as: Find u ∈ H1

g (Ω) := {w ∈ H1(Ω) : γ(w) = g} such that

(a(·,∇u),∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω) . (82)

Now, if we decompose u = u0 + ug, such that u0 ∈ H1
0 (Ω) and ug ∈ H1

g (Ω), then we can
rewrite (82) as: Find u0 ∈ H1

0 (Ω) such that

(a(·,∇u0 +∇ug),∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω) . (83)

The problem (83) is well-posed, since its associated nonlinear form results to be also Lipschitz
continuous and strongly monotone in H1

0 (Ω). Now, to establish the HHO discrete scheme
corresponding to (83), we follow the ideas given in Subsection 7.1 in [13], and introduce
wg,h :=

(
(wg,T )T∈Th , (wg,F )F∈Fh

)
∈ Uk

h such that

wg,T = 0 ∀T ∈ Th , wg,F = 0 ∀F ∈ Fint
h , wg,F = πkFg ∀F ∈ Fb

h .

In order to show a procedure to compute uh, the HHO-approximation of the solution of (83),
we decompose it as uh := u0,h + wg,h, with u0,h ∈ Uk

h,0. As a result, the proposed HHO
formulation reads as: Find u0,h ∈ Uk

h,0 such that

Ah(u0,h + wg,h,vh) = bh(vh) ∀vh ∈ Uk
h,0 , (84)

withAh and bh defined as in (17). The well-posedness of (84) also relies on Lipschitz continuity
and strong monotonocity properties. It is not difficult to establish similar results to Theorems
6.1, 6.2 and 6.3 in this situation.

7.2 Mixed boundary conditions
We consider a nonlinear problem (2) with mixed boundary conditions, for which we assume
that there exists a partition {ΓD,ΓN} of the boundary Γ := ∂Ω, such that Γ = ΓN ∪ ΓD,
◦
ΓN ∩

◦
ΓD = ∅ and |ΓD| > 0. Then, the nonlinear problem with mixed boundary conditions

reads as: Find u : Ω→ R such that

−div(a(·,∇u)) = f in Ω , (85a)
a(·,∇u) · n = gN on ΓN , (85b)

u = gD on ΓD , (85c)

where f ∈ L2(Ω), gN ∈ L2(ΓN), gD ∈ H1/2(ΓD), and n denotes the exterior unit normal to
Γ. We notice that (85) does not degenerate into the pure Neumann case. The continuous weak
formulation of (85) reads as: Find u ∈ H1

∗ (Ω) := {w ∈ H1(Ω) : w|ΓD = gD} such that

(a(·,∇u),∇v)Ω = (f, v)Ω + (gN , v)ΓN ∀v ∈ H1
D(Ω) := {w ∈ H1(Ω) : w|ΓD = 0} . (86)

The well-posedness of (86) follows from [27]. Next, for the HHO discretization, we require the
following hypothesis.
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Assumption 7.1 Th fits the partition {ΓD,ΓN}, in the sense that we can define two sets, FD
h :=

{F ∈ Fb
h : F ⊂ ΓD} and FN

h := {F ∈ Fb
h : F ⊂ ΓN}, such that FD

h ∪ FN
h = Fb

h .

Next, we introduce the discrete spaces

Uk
h,gD,D

:= {wh ∈ Uk
h : wF = πkFgD ∀F ∈ FD

h} . (87)

Then, the HHO discretization of (86) reads as: Find uh ∈ Uk
h,gD,D

such that

Ah(uh,vh) = (f, vh)Ω +
∑
F∈FN

h

(gN , vF )F =: bh(vh) ∀vh ∈ Uk
h,0,D . (88)

with Ah defined as in (17). Now, to compute uh, we can proceed as described in the previ-
ous subsection. This motivates the introduction of wgD,h

:=
(

(wgD,T )T∈Th , (wgD,F )F∈Fh

)
∈

Uk
h,gD,D

, such that

wgD,T = 0 ∀T ∈ Th , wgD,F = 0 ∀F ∈ Fint
h , wgD,F = 0 ∀F ∈ FN

h .

After that, we compute uh = u0,h + wgD,h
, where u0,h ∈ Uk

h,0,D verifies

Ah(u0,h + wgD,h
,vh) = (f, vh)Ω +

∑
F∈FN

h

(gN , vF )F =: bh(vh) ∀vh ∈ Uk
h,0,D , (89)

where the nonlinear form Ah is defined as in (17).

7.3 Nonhomogeneous Neumann boundary condition
Now, we consider a nonlinear problem with pure Neumann condition: Find u : Ω → R such
that

−div(a(·,∇u)) = f in Ω , (90a)
a(·,∇u) · n = g on Γ , (90b)∫

Ω

u = 0 , (90c)

where f ∈ L2(Ω), g ∈ L2(Γ). We look for the continuous weak solution in the Hilbert space

U := {v ∈ H1(Ω) : (v, 1)Ω = 0} . (91)

The corresponding weak formulation to (90) is given as: Find u ∈ U such that

(a(·,∇u),∇v)Ω = (f, v)Ω + (g, v)Γ ∀v ∈ U . (92)

Now, applying the HHO approach, we seek the discrete weak solution of (92) in the discrete
space

Uk,0
h :=

{
vh ∈ Uk

h :
∑
T∈Th

(vT , 1)T = 0

}
. (93)
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Then, the associated discrete HHO scheme reads as: Find uh ∈ Uk,0
h such that

Ah(uh,vh) = (f, vh)Ω +
∑
F∈Fh

(g, vF )F =: bh(vh) ∀vh ∈ Uk,0
h . (94)

with the nonlinear form Ah given as in (17). The problem (94) has been analised in a more
general context in [20, Chapter 6], but the authors have only developed the a priori error analysis
for the p-Laplacian nonlinear operator, which does not satisfy our hypotheses here, unless p = 2
(that is the linear Laplacian operator). Their a priori error analysis does not cover our proposed
kind of nonlinear operators.

8 Numerical results
In this section we present a comprehensive set of numerical tests with different boundary con-
ditions, each of one with its corresponding explicit exact solution. We start by introducing the
families of polytopal meshes we consider in our numerical computations. We call them: Simpli-
cial I (cf. Figure 14), Cartesian (cf. Figure 15), Hexagonal (cf. Figure 18), and Tilted hexagonal
(cf. Figure 19), which can be downloaded from https://github.com/wareHHOuse/
diskpp. Other families of meshes are called Graduated (Cartesian with hanging nodes) as in
Figure 16 and Fractured (cf. Figure 20), which can be founded in FVCA 5 benchmark [37]. We
also consider a family of Trapezoidal (cf. Figure 17) and uniform refined simplicial (Simplicial
II) meshes (cf. Figure 21).

We remark that Example (8.1) provides HHO approximations for the nonlinear model prob-
lem (2), while Examples (8.2)-(8.5) solve (84), testing the robustness of the scheme considering
smooth and non-smooth solutions. Examples (8.6)-(8.7) deal with (85) and (90), respectively.
In all examples, we compute the following errors:

I L2-projection of potential error: ‖πkhu− uh‖0,Ω,

I Flux error: ‖∇u−Gk
huh‖0,Ω,

I Reconstructive potential error: ‖u− pk+1
h uh‖0,Ω.

We also remak that we have considered different families of polytopal meshes, and three nonlin-
ear functions a, that satisfy the hypotheses (H.1), (H.2), (H.3), and (H.4). The list of examples
with their corresponding nonlinear function a, the exact solution, domain, polytopal meshes
considered (see Section 8.8), and type of boundary conditions (B.C.), are resumed in Table 1.

For each one of the examples presented here, we approximate the exact solution with piece-
wise polynomials of degree at most k, with k ∈ {0, 1, 2, 3, 4}. Besides, the experimental order
of convergence (rate), is computed as

rate = log(eT /eT̃ )/ log(hT /hT̃ ) ,

where eT and eT̃ represent the errors associated to two consecutive meshes T and T̃ , respec-
tively.

The nonlinear algebraic system, obtained from (17), is solved by Newton’s method with the
initial guess given by the solution of the associated Poisson problem. This choice leads to a
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considerable reduction of the number of iterations, instead of using the usual null initial guess.
We also consider a tolerance of 10−10 for the corresponding residual, and fixed the maximum
number of Newton’s iterations in 10. The number of iterations needed to attain the prescribed
tolerance, in all the examples presented here, is ≤ 5.

Ex. a(·, ζ) u Ω Polytopal Mesh B.C.

1
(

1 + 1
1+|ζ|2

)
ζ sin(πx) sin(πy) Square

Fractured
Dirichlet

Hexagonal
2

(
1 + exp(−|ζ|2)

)
ζ exp(x+ πy) Square Graduated Dirichlet

3
(

2 + 1
1+|ζ|

)
ζ cos

(
π
2
y
)

+ χ(x)x3.5 Square Simplicial III Dirichlet

4
(

2 + 1
1+|ζ|

)
ζ cos

(
π
2
y
)

+ χ(x)x3.5 L-shaped Simplicial II Dirichlet

5
(

2 + 1
1+|ζ|

)
ζ r2/3 sin(2θ/3) L-shaped Simplicial II Dirichlet

6
(
1 + exp(−|ζ|2)

)
ζ sin(πx) sin(πy) Square

Cartesian
Mixed

Hexagonal

7
(

1 + 1
1+|ζ|2

)
ζ exp(x+ πy) Square

Trapezoidal
Neumann

Tilted

Table 1: Summary of data for the 7 examples

The computational code is based on the one developed by Di Pietro in [19], which is de-
scribed in [9]. However, we have implemented the computations of the modified versions of the
discrete gradient and potential operators (cf. (10) and (12)). The static condensation procedure
has been implemented right after the assembling of the local matrices of the linearized problem
over the global system. This allows us to recompute, on each iteration, the volumetric terms.

8.1 Example 1
We consider the nonlinear problem (2) with homogeneous Dirichlet boundary condition, defined
in the convex domain Ω := (0, 1)2, and with nonlinear coeffcient a(·, ζ) :=

(
1 + 1

1 + |ζ|2

)
ζ,

for all ζ ∈ R2. The datum f is chosen so that the exact solution is given by the smooth
function u(x, y) = sin(πx) sin(πy). Here, we consider two families of polytopal meshes: a
nonconforming one, that we have called Fractured in Table 1 (cf. Figure 20), and conforming
meshes with hexagonal-dominant cells (cf. Figure 18). Tables 2 and 3 show the history of
convergence of potential, flux, and reconstructive potential errors, when the exact solution is
approximated with piecewise polynomials of degree at most k ∈ {0, 1, 2, 3, 4}, computed
using families of Fractured and Hexagonal meshes, respectively. From both tables, we notice
that the scheme converges with the order of convergence of the aforementioned errors behaves
as O(hk+2), O(hk+1) and O(hk+2), respectively. These are in agreement with Theorems 6.1
and 6.2. Figures 1 and 3 resume the information provided in Tables 2 and 3, respectively.
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Table 2: Histories of convergence of potential, flux, and reconstructive potential errors, consid-
ering k ∈ {0, 1, 2, 3, 4} (Example 1 - Fractured meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.82e-01 3.70e-02 1.00e-02 3.89e-03 1.70e-03
3.12e-02 5.14e-02 1.821 5.58e-03 2.725 1.10e-03 3.185 2.98e-04 3.701 1.00e-04 4.074
1.56e-02 1.36e-02 1.917 7.69e-04 2.860 9.06e-05 3.600 1.55e-05 4.262 2.91e-06 5.103
7.81e-03 3.53e-03 1.952 1.01e-04 2.937 6.45e-06 3.819 5.86e-07 4.737 5.52e-08 5.733
3.91e-03 9.00e-04 1.976 1.27e-05 2.994 4.24e-07 3.936 1.96e-08 4.907 9.41e-10 5.885
1.95e-03 2.27e-04 1.979 1.59e-06 2.990 2.71e-08 3.954 6.31e-10 4.943 1.52e-11 5.927

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.04e-01 3.08e-02 9.07e-03 3.40e-03 1.36e-03
3.12e-02 2.91e-02 1.837 7.68e-03 1.999 1.88e-03 2.265 4.20e-04 3.013 1.39e-04 3.284
1.56e-02 7.80e-03 1.898 1.78e-03 2.106 2.60e-04 2.855 3.57e-05 3.556 7.19e-06 4.268
7.81e-03 2.08e-03 1.907 3.53e-04 2.343 2.81e-05 3.215 2.39e-06 3.904 2.20e-07 5.041
3.91e-03 5.39e-04 1.955 6.15e-05 2.523 2.46e-06 3.519 1.27e-07 4.248 5.91e-09 5.227
1.95e-03 1.37e-04 1.972 9.97e-06 2.617 1.88e-07 3.701 6.38e-09 4.295 1.50e-10 5.275

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.94e-01 3.82e-02 1.01e-02 3.90e-03 1.70e-03
3.12e-02 5.37e-02 1.850 5.71e-03 2.737 1.10e-03 3.189 2.98e-04 3.702 1.00e-04 4.075
1.56e-02 1.41e-02 1.926 7.83e-04 2.868 9.08e-05 3.601 1.55e-05 4.262 2.91e-06 5.103
7.81e-03 3.65e-03 1.956 1.02e-04 2.942 6.46e-06 3.820 5.86e-07 4.737 5.52e-08 5.733
3.91e-03 9.30e-04 1.977 1.29e-05 2.997 4.24e-07 3.937 1.96e-08 4.907 9.41e-10 5.885
1.95e-03 2.35e-04 1.980 1.60e-06 2.992 2.71e-08 3.954 6.31e-10 4.943 1.52e-11 5.927

(a) Fractured (b) Hexagonal

Figure 1: Rates of convergence of potential error vs. h (Example 1)
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Table 3: Histories of convergence of potential, flux, and reconstructive potential errors, consid-
ering k ∈ {0, 1, 2, 3, 4} (Example 1 - Hexagonal meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.79e-01 3.14e-02 7.13e-03 2.88e-03 1.19e-03
2.59e-02 4.73e-02 1.920 4.92e-03 2.675 8.04e-04 3.148 2.26e-04 3.669 6.94e-05 4.096
1.29e-02 1.23e-02 1.939 6.78e-04 2.844 6.67e-05 3.572 1.11e-05 4.329 1.92e-06 5.151
6.47e-03 3.15e-03 1.968 8.98e-05 2.930 4.67e-06 3.854 3.97e-07 4.824 3.75e-08 5.699
3.24e-03 8.06e-04 1.973 1.15e-05 2.969 3.02e-07 3.959 1.31e-08 4.927 6.22e-10 5.927

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.96e-01 2.05e-02 6.27e-03 2.53e-03 1.34e-03
2.59e-02 7.63e-02 1.361 4.83e-03 2.082 1.18e-03 2.412 3.10e-04 3.027 1.18e-04 3.499
1.29e-02 2.87e-02 1.404 1.11e-03 2.114 1.83e-04 2.676 3.15e-05 3.280 5.72e-06 4.346
6.47e-03 1.08e-02 1.416 2.07e-04 2.428 2.53e-05 2.865 2.66e-06 3.584 2.32e-07 4.646
3.24e-03 3.99e-03 1.438 3.28e-05 2.666 3.09e-06 3.039 1.94e-07 3.785 8.22e-09 4.828

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.96e-01 3.19e-02 7.17e-03 2.88e-03 1.19e-03
2.59e-02 5.04e-02 1.960 4.97e-03 2.682 8.06e-04 3.153 2.26e-04 3.670 6.95e-05 4.097
1.29e-02 1.28e-02 1.962 6.83e-04 2.847 6.67e-05 3.575 1.11e-05 4.329 1.92e-06 5.151
6.47e-03 3.27e-03 1.981 9.03e-05 2.932 4.67e-06 3.855 3.97e-07 4.824 3.75e-08 5.699
3.24e-03 8.31e-04 1.981 1.16e-05 2.970 3.02e-07 3.959 1.31e-08 4.927 6.22e-10 5.927

(a) Fractured (b) Hexagonal

Figure 2: Rates of convergence of flux error vs. h (Example 1)
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(a) Fracture (b) Hexagonal

Figure 3: Rates of convergence of reconstructive potential errors (Example 1)

(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 4: Rates of convergence of potential, flux and reconstructive potential errors (Example
2)
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(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 5: Rates of convergence of potential, flux and reconstructive potential errors (Example
3)

8.2 Example 2
Here, we solve the HHO discrete nonlinear scheme (84), corresponding to the nonlinear prob-
lem (81). We take Ω := (0, 1)2 as the domain, and the nonlinear coefficient a(·, ζ) :=(
1 + exp(−|ζ|2)

)
ζ, for all ζ ∈ R2. We choose the data f and g so that the solution u is

the smooth function given by u(x, y) := exp(x + π y). The family of meshes considered for
this example, corresponds to a (nonconforming) graduated rectangular meshes (cf. Figure 16).
Figure 4 shows the well behavior of the potential, flux and reconstructive potential errors, mea-
sure in the L2−norm, with respect to the nonhomogeneous. Table 4 contains their respective
histories of convergence, which are in agreement with Theorems 6.1, 6.2 and 6.3. We point
out that for k = 4, round-off errors are probably affecting the flux error in the last refinement
iteration mesh. On the other hand, the apparent super-convergence phenomenon for the flux er-
ror (for k ∈ {0, 1, 2}) meshes, could be linked to the fact that the mesh quality improves when
refining.
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Table 4: Histories of convergence of potential, flux, and reconstructive potential errors, consid-
ering k ∈ {0, 1, 2, 3, 4} (Example 2 - Graduated meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.74e-01 1.84e-02 1.42e-03 8.61e-05 4.33e-06
1.25e-01 4.74e-02 1.878 2.48e-03 2.895 9.37e-05 3.921 2.81e-06 4.940 7.05e-08 5.939
6.25e-02 1.22e-02 1.953 3.19e-04 2.959 5.97e-06 3.973 8.86e-08 4.985 1.11e-09 5.984
3.12e-02 3.10e-03 1.979 4.03e-05 2.975 3.76e-07 3.980 2.78e-09 4.984 1.75e-11 5.982
1.56e-02 7.77e-04 1.995 5.07e-06 2.992 2.36e-08 3.995 8.69e-11 4.999 2.72e-13 6.004

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.23e-01 1.18e-02 5.38e-04 3.92e-05 2.20e-06
1.25e-01 4.75e-02 1.372 2.84e-03 2.054 5.88e-05 3.192 2.78e-06 3.818 7.69e-08 4.835
6.25e-02 1.58e-02 1.592 5.92e-04 2.263 5.86e-06 3.327 1.85e-07 3.910 2.53e-09 4.927
3.12e-02 4.84e-03 1.700 1.15e-04 2.360 5.57e-07 3.389 1.19e-08 3.945 8.09e-11 4.955
1.56e-02 1.41e-03 1.778 2.13e-05 2.427 5.12e-08 3.443 7.58e-10 3.977 3.47e-12 4.543

Reconstructive Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.79e-01 1.86e-02 1.43e-03 8.64e-05 4.33e-06
1.25e-01 4.82e-02 1.889 2.50e-03 2.896 9.41e-05 3.922 2.81e-06 4.940 7.07e-08 5.939
6.25e-02 1.24e-02 1.959 3.21e-04 2.960 6.00e-06 3.973 8.89e-08 4.985 1.12e-09 5.984
3.12e-02 3.13e-03 1.982 4.06e-05 2.976 3.78e-07 3.980 2.79e-09 4.984 1.75e-11 5.982
1.56e-02 7.85e-04 1.996 5.10e-06 2.992 2.37e-08 3.995 8.71e-11 4.999 2.74e-13 5.998

8.3 Example 3
Now, we consider a nonhomogeneous Dirichlet nonlinear problem, defined in the convex do-
main Ω = (−1, 1)2. The nonlinear coefficient is setting as a(·, ζ) :=

(
2 + 1

1+|ζ|

)
ζ, for all

ζ ∈ R2, and the exact solution is given by u(x, y) = cos
(
π
2
y
)

+ χ(x)x3.5, where χ(x) denotes
the characteristic function on [0, 1] with respect to x. The HHO approximations are computed
considering a family of uniform refined simplicial meshes, that we have called Simplicial-III
(cf. Figure 22). We remark that u ∈ H4(Ω) but does not belong to H4+ε(Ω), for all ε > 0. We
report the histories of convergence of the potential, flux and reconstructive potential errors, with
respect to the nonhomogeneous, in Table 5. The results are in agreement with the corresponding
versions of Theorems 6.1, 6.2 and 6.3, since the solution u has a limited regularity. This is the
reason why we observe the optimal rates of convergence only for k ∈ {0, 1, 2}. In Figure 5 we
display convergence results for the refined triangulations and polynomial degrees up to 4.
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Table 5: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 3 - Simplicial-III meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 5.27e-01 1.17e-01 5.74e-03 1.06e-03 4.29e-04
5.18e-02 1.39e-01 2.302 1.46e-02 3.600 4.66e-04 4.346 7.85e-05 4.512 1.44e-05 5.881
2.59e-02 3.52e-02 1.985 1.83e-03 2.997 3.54e-05 3.720 3.39e-06 4.531 8.51e-07 4.077
1.29e-02 8.82e-03 1.985 2.29e-04 2.982 2.42e-06 3.848 1.99e-07 4.067 4.52e-08 4.211
6.47e-03 2.21e-03 2.008 2.86e-05 3.013 1.62e-07 3.915 1.29e-08 3.965 3.60e-09 3.667
3.24e-03 5.52e-04 2.004 3.58e-06 3.007 1.10e-08 3.897 9.54e-10 3.768 2.65e-10 3.774

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 1.90e-01 1.76e-02 1.20e-03 4.90e-04 9.81e-05
5.18e-02 1.09e-01 0.953 4.98e-03 2.187 2.32e-04 2.845 4.04e-05 4.321 1.50e-05 3.246
2.59e-02 5.73e-02 0.934 1.27e-03 1.967 2.95e-05 2.973 4.55e-06 3.149 8.28e-07 4.183
1.29e-02 2.91e-02 0.971 3.22e-04 1.973 4.17e-06 2.805 3.29e-07 3.768 7.52e-08 3.441
6.47e-03 1.46e-02 0.997 8.09e-05 2.001 5.44e-07 2.952 3.69e-08 3.171 1.04e-08 2.873
3.24e-03 7.33e-03 1.000 2.03e-05 2.000 7.08e-08 2.950 4.85e-09 2.933 1.45e-09 2.844

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 5.35e-01 1.17e-01 5.77e-03 1.06e-03 4.29e-04
5.18e-02 1.42e-01 2.301 1.47e-02 3.600 4.68e-04 4.348 7.85e-05 4.513 1.44e-05 5.881
2.59e-02 3.58e-02 1.984 1.84e-03 2.997 3.55e-05 3.721 3.40e-06 4.531 8.51e-07 4.077
1.29e-02 8.97e-03 1.985 2.30e-04 2.982 2.43e-06 3.848 1.99e-07 4.067 4.52e-08 4.211
6.47e-03 2.24e-03 2.008 2.87e-05 3.013 1.63e-07 3.915 1.29e-08 3.965 3.60e-09 3.667
3.24e-03 5.61e-04 2.004 3.59e-06 3.007 1.10e-08 3.897 9.55e-10 3.769 2.65e-10 3.774

8.4 Example 4
Here, we consider the same problem as in Example 8.3, but defined in theL-shaped domain Ω =
(−1, 1)2/[0, 1] × [−1, 0], which is clearly non-convex. We choose a family of uniform refined
simplicial meshes (named Simplicial-II) (cf. Figure 21), to establish the HHO formulation. In
Figure 6 we display convergence results for the refined triangulations and polynomial degrees
up to 4. Despite the non-convexity of the domain, which could not help to ensure the additional
regularity require for the L2-error estimate of the potential as well as of the reconstructive
potential, the obtained results behave similarly to the ones provided in Example (8.3) (in a
convex domain), and are still in agreement with Theorems 6.1, 6.2 and 6.3.
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(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 6: Rates of convergence of potential, flux and reconstructive potential errors (Example
3)
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Table 6: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 4 - Simplicial-II meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 4.91e-01 1.05e-01 5.05e-03 9.89e-04 3.96e-04
5.18e-02 1.29e-01 1.624 1.32e-02 2.520 4.19e-04 3.023 7.32e-05 3.163 1.33e-05 4.123
2.59e-02 3.26e-02 1.985 1.66e-03 2.994 3.22e-05 3.701 3.17e-06 4.530 7.41e-07 4.164
1.29e-02 8.17e-03 1.985 2.08e-04 2.981 2.21e-06 3.846 1.76e-07 4.143 3.89e-08 4.227
6.47e-03 2.04e-03 2.008 2.60e-05 3.013 1.47e-07 3.922 1.12e-08 3.996 3.06e-09 3.683
3.24e-03 5.11e-04 2.004 3.25e-06 3.006 9.87e-09 3.910 8.05e-10 3.806 2.27e-10 3.766

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.12e-01 1.59e-02 1.01e-03 4.06e-04 8.74e-05
5.18e-02 9.14e-02 0.244 4.60e-03 1.505 2.05e-04 1.936 3.57e-05 2.955 1.27e-05 2.343
2.59e-02 5.11e-02 0.838 1.19e-03 1.957 2.66e-05 2.942 3.95e-06 3.176 7.34e-07 4.114
1.29e-02 2.65e-02 0.942 3.00e-04 1.969 3.77e-06 2.804 2.87e-07 3.761 6.52e-08 3.472
6.47e-03 1.34e-02 0.987 7.56e-05 1.999 4.93e-07 2.949 3.20e-08 3.176 9.05e-09 2.863
3.24e-03 6.74e-03 0.997 1.90e-05 2.000 6.40e-08 2.951 4.20e-09 2.938 1.27e-09 2.845

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 4.96e-01 1.06e-01 5.07e-03 9.90e-04 3.96e-04
5.18e-02 1.31e-01 1.620 1.33e-02 2.520 4.20e-04 3.025 7.32e-05 3.164 1.33e-05 4.123
2.59e-02 3.31e-02 1.984 1.67e-03 2.994 3.23e-05 3.702 3.17e-06 4.530 7.41e-07 4.164
1.29e-02 8.29e-03 1.984 2.08e-04 2.981 2.21e-06 3.846 1.76e-07 4.143 3.89e-08 4.227
6.47e-03 2.08e-03 2.008 2.61e-05 3.013 1.48e-07 3.922 1.12e-08 3.996 3.07e-09 3.683
3.24e-03 5.19e-04 2.004 3.26e-06 3.006 9.89e-09 3.910 8.05e-10 3.806 2.27e-10 3.766

8.5 Example 5
We consider again the L-shaped domain Ω := (−1,−1)2\[0, 1] × [−1, 0], with Γ := ∂Ω, and
another nonlinear coefficient, given by a(·, ζ) :=

(
2 + 1

1+|ζ|

)
ζ, for all ζ ∈ R2. We choose the

data f and g, so that the solution exact u is the non-smooth function given (in polar coordinates)
by u(r, θ) = r2/3 sin(2θ/3). We point out that u ∈ H1+ 2

3
−s(Ω), for some s > 0. We test again

over a family of uniform refined simplicial meshes (cf. Figure 21). In Figure 7 we display
the rates of convergence corresponding to the potential, flux and reconstructive potential errors,
vs. h, considering polynomials degrees up to 4. The histories of convergence of these errors,
are reported in Table 7. We observe that the potential and reconstructive potential errors go to
zero at a rate that behaves as O(h4/3), while the flux error decreases to zero as O(h2/3), for
polynomial degrees up to 4.
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(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 7: Rates of convergence of potential, flux and reconstructive potential errors (Example
5)

8.6 Example 6
Here, we consider the nonlinear problem with mixed boundary conditions (85), defined in the
domain Ω := (0, 1)2, with ΓN = {1} × [0, 1] and ΓD := Γ\ΓN . The chosen nonlinear
coefficient is given by a(·, ζ) :=

(
1 + exp(−|ζ|2)

)
ζ, for all ζ ∈ R2, while the data f , gD

and gN are chosen such that the solution u is given again by u(x, y) = sin(πx) sin(πy). We
remark that with this choice, gD = 0. We solve the HHO nonlinear scheme 88, considering
two families of polytopal meshes. The first one is a family of Cartesian meshes (cf. Figure 15),
and the second one is a family of Hexagonal-dominant meshes (cf. Figure 18). Tables 8 and
9 report the histories of convergence of the potential, flux and reconstructive potential errors,
for the family of Cartesian and the Hexagonal meshes, respectively. We notice certain super-
convergence phenomenon for the flux error on the Cartesian (for k ∈ {0, 1, 2}) and Hexagonal
(for k ∈ {0, 1}) meshes, which could be related to the fact that the mesh quality improves when
refining. The numerical results provided by this example support the conjecture that the present
approach might behave quite well even in a case not fully covered by the theoretical results.
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Table 7: Histories of convergence of potential, flux, and reconstructive potential errors, consid-
ering k ∈ {0, 1, 2, 3, 4} (Example 5 - Simplicial II meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 3.89e-02 8.98e-03 4.41e-03 2.60e-03 1.79e-03
5.18e-02 1.86e-02 0.894 4.02e-03 0.977 1.76e-03 1.112 9.80e-04 1.183 6.33e-04 1.265
2.59e-02 8.30e-03 1.166 1.68e-03 1.261 7.05e-04 1.323 3.78e-04 1.375 2.33e-04 1.441
1.29e-02 3.54e-03 1.222 6.83e-04 1.288 2.81e-04 1.318 1.48e-04 1.347 8.87e-05 1.386
6.47e-03 1.47e-03 1.271 2.75e-04 1.319 1.12e-04 1.334 5.82e-05 1.350 3.45e-05 1.370
3.24e-03 6.03e-04 1.291 1.10e-04 1.326 4.45e-05 1.334 2.30e-05 1.342 1.35e-05 1.352

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.78e-01 7.89e-02 4.91e-02 3.49e-02 2.63e-02
5.18e-02 1.21e-01 0.474 5.02e-02 0.551 3.10e-02 0.557 2.20e-02 0.559 1.66e-02 0.559
2.59e-02 7.93e-02 0.607 3.17e-02 0.661 1.96e-02 0.663 1.39e-02 0.664 1.05e-02 0.664
1.29e-02 5.12e-02 0.628 2.00e-02 0.659 1.24e-02 0.659 8.78e-03 0.660 6.63e-03 0.660
6.47e-03 3.27e-02 0.648 1.27e-02 0.665 7.82e-03 0.666 5.54e-03 0.667 4.18e-03 0.667
3.24e-03 2.08e-02 0.654 8.00e-03 0.664 4.94e-03 0.665 3.50e-03 0.666 2.64e-03 0.665

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 6.71e-02 1.39e-02 5.77e-03 3.12e-03 2.04e-03
5.18e-02 2.62e-02 1.142 5.24e-03 1.180 2.12e-03 1.216 1.12e-03 1.242 7.04e-04 1.294
2.59e-02 1.03e-02 1.352 1.99e-03 1.401 7.96e-04 1.412 4.15e-04 1.434 2.53e-04 1.479
1.29e-02 4.04e-03 1.337 7.61e-04 1.376 3.05e-04 1.379 1.57e-04 1.392 9.39e-05 1.420
6.47e-03 1.60e-03 1.344 2.95e-04 1.375 1.18e-04 1.375 6.06e-05 1.382 3.58e-05 1.397
3.24e-03 6.35e-04 1.336 1.15e-04 1.362 4.60e-05 1.361 2.36e-05 1.363 1.39e-05 1.371

(a) Cartesian (b) Hexagonal

Figure 8: Potential error vs. h
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(a) Cartesian (b) Hexagonal

Figure 9: Flux error vs. h

Table 8: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 6 - Cartesian meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 2.07e-01 3.60e-02 1.48e-02 7.43e-03 2.88e-03
3.12e-02 5.06e-02 2.029 7.17e-03 2.321 1.93e-03 2.933 3.74e-04 4.303 2.07e-04 3.786
1.56e-02 1.28e-02 1.985 9.43e-04 2.927 1.45e-04 3.731 2.34e-05 3.996 3.45e-06 5.909
7.81e-03 3.21e-03 1.995 1.20e-04 2.982 9.60e-06 3.924 7.85e-07 4.908 5.87e-08 5.889
3.91e-03 8.04e-04 2.002 1.49e-05 3.014 6.05e-07 3.996 2.49e-08 4.986 9.36e-10 5.982
1.95e-03 2.01e-04 1.992 1.86e-06 2.994 3.78e-08 3.984 7.82e-10 4.976 1.47e-11 5.970

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 9.31e-02 3.61e-02 1.14e-02 6.26e-03 2.88e-03
3.12e-02 3.76e-02 1.306 9.57e-03 1.910 3.08e-03 1.882 9.44e-04 2.723 2.19e-04 3.712
1.56e-02 1.12e-02 1.749 2.47e-03 1.956 4.10e-04 2.911 5.91e-05 3.999 8.69e-06 4.653
7.81e-03 2.97e-03 1.916 4.91e-04 2.332 4.16e-05 3.309 3.39e-06 4.130 2.48e-07 5.143
3.91e-03 7.60e-04 1.970 7.68e-05 2.682 3.28e-06 3.670 1.76e-07 4.279 6.40e-09 5.284
1.95e-03 1.91e-04 1.984 1.04e-05 2.872 2.24e-07 3.857 9.53e-09 4.187 1.75e-10 5.173

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 2.19e-01 3.76e-02 1.48e-02 7.44e-03 2.88e-03
3.12e-02 5.32e-02 2.035 7.30e-03 2.360 1.93e-03 2.936 3.75e-04 4.301 2.08e-04 3.787
1.56e-02 1.34e-02 1.993 9.58e-04 2.930 1.45e-04 3.731 2.34e-05 3.999 3.45e-06 5.909
7.81e-03 3.35e-03 1.999 1.21e-04 2.986 9.61e-06 3.925 7.85e-07 4.908 5.87e-08 5.889
3.91e-03 8.38e-04 2.003 1.50e-05 3.017 6.05e-07 3.997 2.49e-08 4.986 9.36e-10 5.982
1.95e-03 2.09e-04 1.993 1.87e-06 2.995 3.78e-08 3.984 7.82e-10 4.976 1.47e-11 5.970
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(a) Cartesian (b) Hexagonal

Figure 10: Rates of convergence of potential, flux and reconstructive potential errors (Example
6)

Table 9: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 6 - Hexagonal)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.55e-01 2.71e-02 8.64e-03 4.68e-03 1.92e-03
2.59e-02 4.05e-02 1.935 4.97e-03 2.446 1.12e-03 2.949 3.39e-04 3.786 9.48e-05 4.340
1.29e-02 9.55e-03 2.073 7.01e-04 2.811 9.64e-05 3.517 1.43e-05 4.540 2.05e-06 5.502
6.47e-03 2.34e-03 2.041 9.53e-05 2.893 6.55e-06 3.897 5.00e-07 4.863 3.57e-08 5.870
3.24e-03 5.84e-04 2.005 1.23e-05 2.958 4.20e-07 3.971 1.62e-08 4.962 5.76e-10 5.966

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.94e-01 2.34e-02 1.07e-02 5.15e-03 2.53e-03
2.59e-02 7.06e-02 1.460 6.72e-03 1.800 2.09e-03 2.360 5.84e-04 3.140 1.82e-04 3.793
1.29e-02 2.63e-02 1.415 1.75e-03 1.931 3.39e-04 2.607 5.49e-05 3.392 8.31e-06 4.430
6.47e-03 9.98e-03 1.406 3.17e-04 2.474 4.48e-05 2.932 4.47e-06 3.635 3.13e-07 4.751
3.24e-03 3.71e-03 1.431 4.80e-05 2.730 5.43e-06 3.053 3.08e-07 3.867 1.06e-08 4.891

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.74e-01 2.77e-02 8.74e-03 4.69e-03 1.92e-03
2.59e-02 4.38e-02 1.989 5.03e-03 2.462 1.12e-03 2.960 3.40e-04 3.787 9.49e-05 4.341
1.29e-02 1.02e-02 2.085 7.08e-04 2.814 9.66e-05 3.521 1.44e-05 4.540 2.05e-06 5.503
6.47e-03 2.49e-03 2.051 9.59e-05 2.898 6.56e-06 3.898 5.00e-07 4.864 3.57e-08 5.870
3.24e-03 6.18e-04 2.014 1.24e-05 2.960 4.20e-07 3.972 1.62e-08 4.963 5.76e-10 5.966
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8.7 Example 7
This example, as the previous one, is also not covered by the current analysis. We are interested
in solving the nonhomogeneous Neumann nonlinear problem (90), with Ω := (0, 1)2, and
a(·, ζ) :=

(
1 + 1

1+|ζ|2

)
ζ, for all ζ ∈ R2. The data f and g are chosen so that the solution u is

given by the smooth function u(x, y) = exp(x+πy)− (exp(1 +π)− exp(π)− exp(1) + 1)/π.
Following what we discussed in Subsection 7.3, we proceed to solve the nonlinear HHO scheme
(94), considering one family of Trapezoidal meshes (cf. Figure 17), and another of Tilted
hexagonal-dominant meshes (cf. Figure 19). Since the HHO discrete space includes the zero
mean value condition of its elements, and knowing that it is not simple to find a basis of such
space, we circumvent this searching by imposing this restriction through a Lagrange multiplier.
We have applied this strategy in [9], where we have solved the Poisson problem with Neumann
boundary condition applying the HHO method. The numerical results are displayed in Figure
12, while the histories of convergence of the potential, flux and reconstructive potential errors,
with respect to the nonhomogeneous, are reported in Tables 10 (for the family of Trapezoidal
meshes), and 11 (for the family of Tilted meshes). They give numerical evidence that the current
a priori error analysis could be extended to this kind of boundary conditions.

(a) Trapezoidal (b) Tilted

Figure 11: Rates of convergence of potential error vs. h (Example 7)
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Table 10: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 7 - Trapezoidal meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.32e-01 2.81e-02 2.48e-03 1.84e-04 1.16e-05
3.42e-02 4.12e-02 1.907 4.20e-03 3.109 1.95e-04 4.156 7.46e-06 5.244 2.39e-07 6.347
1.72e-02 1.13e-02 1.885 5.68e-04 2.914 1.34e-05 3.896 2.60e-07 4.882 4.18e-09 5.890
8.59e-03 2.93e-03 1.943 7.33e-05 2.948 8.74e-07 3.935 8.44e-09 4.938 6.84e-11 5.923
4.30e-03 7.44e-04 1.979 9.30e-06 2.984 6.33e-08 3.795 2.69e-10 4.980 1.09e-12 5.979

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 7.61e-02 1.17e-02 1.13e-03 7.94e-05 4.78e-06
3.42e-02 3.04e-02 1.505 2.94e-03 2.265 1.57e-04 3.229 5.92e-06 4.250 1.87e-07 5.305
1.72e-02 1.34e-02 1.191 7.32e-04 2.025 2.04e-05 2.968 3.98e-07 3.928 6.41e-09 4.907
8.59e-03 6.45e-03 1.051 1.84e-04 1.988 2.59e-06 2.968 2.57e-08 3.946 2.09e-10 4.933
4.30e-03 3.21e-03 1.009 4.63e-05 1.992 3.27e-07 2.991 1.63e-09 3.984 6.66e-12 4.979

Potential reconstructive
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.44e-01 2.84e-02 2.49e-03 1.85e-04 1.16e-05
3.42e-02 4.36e-02 1.954 4.25e-03 3.108 1.97e-04 4.156 7.50e-06 5.243 2.40e-07 6.347
1.72e-02 1.19e-02 1.895 5.74e-04 2.913 1.35e-05 3.896 2.62e-07 4.882 4.19e-09 5.890
8.59e-03 3.07e-03 1.945 7.42e-05 2.947 8.81e-07 3.934 8.44e-09 4.946 6.87e-11 5.923
4.30e-03 7.81e-04 1.980 9.42e-06 2.983 6.37e-08 3.798 2.71e-10 4.972 1.10e-12 5.980

(a) Trapezoidal (b) Tilted

Figure 12: Rates of convergence of flux error vs. h (Example 7)
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Table 11: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4} (Example 7 - Tilted meshes)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.34e-01 1.80e-02 1.21e-03 6.35e-05 1.16e-05
3.42e-02 3.32e-02 2.287 2.46e-03 3.259 8.48e-05 4.357 2.23e-06 5.480 2.39e-07 6.347
1.72e-02 8.52e-03 1.979 3.26e-04 2.939 5.72e-06 3.924 7.57e-08 4.924 4.18e-09 5.890
8.59e-03 2.18e-03 1.964 4.22e-05 2.947 3.73e-07 3.931 2.48e-09 4.925 6.84e-11 5.923
4.30e-03 5.52e-04 1.984 5.36e-06 2.980 2.39e-08 3.974 7.93e-11 4.973 1.09e-12 5.979

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.03e-01 9.57e-03 7.12e-04 3.50e-05 4.78e-06
3.42e-02 4.56e-02 1.327 1.86e-03 2.681 8.55e-05 3.470 2.29e-06 4.460 1.87e-07 5.305
1.72e-02 1.85e-02 1.309 3.48e-04 2.442 1.00e-05 3.115 1.49e-07 3.977 6.41e-09 4.907
8.59e-03 7.13e-03 1.377 6.35e-05 2.449 1.19e-06 3.071 9.49e-09 3.966 2.09e-10 4.933
4.30e-03 2.65e-03 1.428 1.14e-05 2.478 1.44e-07 3.057 5.98e-10 3.995 6.66e-12 4.979

Potential reconstructive
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.50e-01 1.82e-02 1.22e-03 6.37e-05 1.16e-05
3.42e-02 3.67e-02 2.308 2.48e-03 3.265 8.52e-05 4.358 2.24e-06 5.481 2.40e-07 6.347
1.72e-02 9.16e-03 2.018 3.28e-04 2.941 5.74e-06 3.925 7.59e-08 4.924 4.19e-09 5.890
8.59e-03 2.29e-03 1.995 4.24e-05 2.948 3.75e-07 3.932 2.48e-09 4.925 6.87e-11 5.923
4.30e-03 5.74e-04 2.003 5.39e-06 2.980 2.39e-08 3.974 7.95e-11 4.973 1.10e-12 5.980

(a) Trapezoidal (b) Tilted

Figure 13: Rates of convergence of reconstructive potential error vs. h (Example 7)
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8.8 Families of polytopal meshes

(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 14: Family of Simplicial-I meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 15: Family of Cartesian meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 16: Family of Graduated meshes (with hanging nodes) in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 17: Family of Trapezoidal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 18: Family of Hexagonal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 19: Family of Tilted Hexagonal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 20: Family of Tilted Fractured meshes in a square domain.
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 21: Family of Simplicial-II meshes in L-shaped domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 22: Family of Simplicial-III meshes in Square domain

Conclusions
In this paper, we have developed a complete a priori error analysis for a class of elliptic non-
linear problems, applying the HHO method. It is well known that there are previous works
for nonlinear problems in the context of HHO methods, as Leray - Lions equations [13, 14],
nonlinear elasticity [6], nonlinear Signorini boundary conditions [11], quasi-Newtonian Stokes
problem [49], and nonlinear poroelasticity [5, 7]. However, the contibution of this work re-
lies on Theorems 6.2, and 6.3, which establish the convergence of the L2-projection of the
potential error (||πkhu− uh||0,Ω) and the super-convergence of the reconstructive potential error
(||pk+1

h uh − u||0,Ω), respectively. Up to author’s knowledge, these errors estimates have not
been proven before. It is important to remark that according to what has been discussed in [13,
Section 4.1] for nonlinear problems, we need to consider a variant of the gradient reconstruction
operator Gk

T . Otherwise, the rates of convergence will not be the expected. We provide a brief
discussion on this in the Appendix 9, which includes a numerical comparison.

We have presented seven computational examples, considering three different nonlinear co-
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efficients that verify the Hypotheses (H.1)-(H.4), and several admissible families of polytopal
meshes, with or without hanging nodes (see Table 1). Numerical examples, provided in this
paper, confirm our theoretical results, even for other boundary conditions not covered by us in
the present work. In particular, Example 8.5, whose solution is non-smooth, gives us the mo-
tivation to develop an a posteriori error analysis for nonlinear elliptic problems. This could be
the subject of future work.

9 Appendix
Here, we compare the effect of using the standard Gradient reconstruction operator given in
[19] and the variant of the Gradient reconstruction operator (with extended codomain, from
∇Pk+1

d (T ) to [Pkd(T )]d) introduced in [13], when solving nonlinear elliptic problems with the
HHO method. To clarify the difference, we solve the nonlinear HHO scheme associated to the
Example 8.1, with a family of Trapezoidal meshes (cf. Figure 17), considering both kind of
Gradient reconstruction operators.

In Figures 23, 24 and 26, we display the rates of convergence of the potential, flux and
reconstructive potential errors, with respect to the meshsize. The boxes on the left hand side
corresponds to the results obtained when using the Standard gradient reconstruction operator,
while the ones on the right hand side are the respective to the Extended gradient reconstruction
operator. They are also reported in Tables 12 and 13. As expected, the numerical results as-
sociated to the Extended gradient reconstruction operator are in agreement with our theoretical
results.

On the other hand, we notice that using the Standard gradient reconstruction operator, the
rates of convergence of the potential and reconstructive potential errors, for k = 0 and k = 1,
are the expected ones. For greater values of k, we observe a notorious loss in the rate of
convergence. Respect to the flux error, we only recover the optimal rate of convergence for
k = 0 when using the Standard gradient reconstruction operator. Indeed, for k = 0, both
approaches have the same optimal approximation properties, thank to∇P1(T ) = [P0(T )]d.

(a) Standard (b) Extended

Figure 23: Rates of the Potential error vs. h (appendix example)

48



(a) Standard (b) Extended

Figure 24: Rates of the Flux error vs. h (appendix example)

Table 12: Histories of convergence of potential, flux, and reconstructive potential errors, con-
sidering k ∈ {0, 1, 2, 3, 4}, using Standard gradient reconstruction operator (appendix example)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.57e-01 5.37e-02 1.49e-02 5.09e-03 2.49e-03
3.91e-02 6.44e-02 2.001 7.96e-03 2.759 1.70e-03 3.143 3.92e-04 3.706 1.65e-04 3.926
1.95e-02 1.63e-02 1.973 1.09e-03 2.851 1.35e-04 3.638 4.21e-05 3.206 1.40e-05 3.547
9.77e-03 4.11e-03 1.995 1.38e-04 2.992 1.43e-05 3.250 7.48e-06 2.499 2.36e-06 2.574
4.88e-03 1.03e-03 1.994 1.75e-05 2.982 2.31e-06 2.625 1.81e-06 2.048 4.96e-07 2.246

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 1.05e-01 6.83e-02 2.25e-02 1.03e-02 1.42e-02
3.91e-02 4.52e-02 1.223 1.66e-02 2.046 5.84e-03 1.951 4.85e-03 1.087 3.77e-03 1.916
1.95e-02 2.21e-02 1.031 4.33e-03 1.928 2.24e-03 1.378 2.66e-03 0.862 9.73e-04 1.947
9.77e-03 1.10e-02 1.004 1.23e-03 1.826 9.95e-04 1.173 1.36e-03 0.975 4.31e-04 1.178
4.88e-03 5.56e-03 0.986 4.49e-04 1.450 4.81e-04 1.049 6.90e-04 0.973 2.05e-04 1.073

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.74e-01 5.53e-02 1.50e-02 5.10e-03 2.50e-03
3.91e-02 6.80e-02 2.013 8.12e-03 2.774 1.70e-03 3.146 3.96e-04 3.691 1.68e-04 3.906
1.95e-02 1.71e-02 1.980 1.11e-03 2.856 1.38e-04 3.613 4.49e-05 3.131 1.45e-05 3.523
9.77e-03 4.31e-03 1.998 1.41e-04 2.990 1.56e-05 3.152 8.48e-06 2.412 2.46e-06 2.565
4.88e-03 1.08e-03 1.996 1.79e-05 2.971 2.78e-06 2.485 2.07e-06 2.030 5.21e-07 2.235
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(a) Standard (b) Extended

Figure 25: Rates of the Reconstructive potential error vs. h (appendix example)

Table 13: Histories of convergence of potential, flux, and reconstructive potential errors, consid-
ering k ∈ {0, 1, 2, 3, 4}, using Extended gradient reconstruction operator (appendix example)

Potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.57e-01 5.33e-02 1.44e-02 4.73e-03 2.32e-03
3.91e-02 6.44e-02 2.001 7.93e-03 2.754 1.66e-03 3.126 3.44e-04 3.788 1.48e-04 3.982
1.95e-02 1.63e-02 1.973 1.09e-03 2.852 1.26e-04 3.698 2.68e-05 3.670 6.25e-06 4.546
9.77e-03 4.11e-03 1.995 1.38e-04 2.991 9.50e-06 3.743 1.08e-06 4.645 1.03e-07 5.937
4.88e-03 1.03e-03 1.994 1.73e-05 2.993 6.22e-07 3.928 3.36e-08 5.000 1.93e-09 5.728

Flux
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 1.38e-01 3.80e-02 1.01e-02 3.85e-03 1.55e-03
3.91e-02 6.10e-02 1.184 9.81e-03 1.958 2.28e-03 2.156 6.33e-04 2.611 2.05e-04 2.923
1.95e-02 2.83e-02 1.103 2.46e-03 1.990 3.43e-04 2.723 5.76e-05 3.445 1.29e-05 3.976
9.77e-03 1.35e-02 1.073 5.85e-04 2.077 4.20e-05 3.036 4.13e-06 3.812 4.47e-07 4.866
4.88e-03 6.59e-03 1.032 1.40e-04 2.059 4.99e-06 3.069 2.58e-07 3.995 1.39e-08 5.005

Reconstructive potential
k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.74e-01 5.48e-02 1.45e-02 4.73e-03 2.32e-03
3.91e-02 6.80e-02 2.013 8.07e-03 2.769 1.66e-03 3.130 3.44e-04 3.788 1.48e-04 3.982
1.95e-02 1.71e-02 1.980 1.11e-03 2.859 1.27e-04 3.698 2.68e-05 3.671 6.25e-06 4.546
9.77e-03 4.31e-03 1.998 1.40e-04 2.993 9.52e-06 3.745 1.08e-06 4.646 1.03e-07 5.937
4.88e-03 1.08e-03 1.996 1.75e-05 2.994 6.23e-07 3.928 3.36e-08 5.000 1.93e-09 5.728
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(a) Standard (b) Extended

Figure 26: Rates of the reconstructive potential error vs. h (appendix example)
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