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Abstract

We propose and analyze a new mixed finite element method for the problem of steady double-
diffusive convection in a fluid-saturated porous medium. More precisely, the model is described by
the coupling of the Brinkman–Forchheimer and double-diffusion equations, in which the originally
sought variables are the velocity and pressure of the fluid, and the temperature and concentration
of a solute. Our approach is based on the introduction of the further unknowns given by the fluid
pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, thus yielding a fully-mixed
formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equation requires
the velocity to live in a smaller space than usual, we partially augment the variational formulation
with suitable Galerkin type terms, which forces both the temperature and concentration scalar fields
to live in L4. As a consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in
a suitable H(div)-type Banach space. The resulting augmented scheme is written equivalently as
a fixed point equation, so that the well-known Schauder and Banach theorems, combined with the
Lax–Milgram and Banach–Nečas–Babuška theorems, allow to prove the unique solvability of the
continuous problem. As for the associated Galerkin scheme we utilize Raviart–Thomas spaces of
order k ≥ 0 for approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive
vectors, whereas continuous piecewise polynomials of degree ≤ k+ 1 are employed for the velocity,
and piecewise polynomials of degree ≤ k for the temperature and concentration fields. In turn,
the existence and uniqueness of the discrete solution is established similarly to its continuous
counterpart, applying in this case the Brouwer and Banach fixed-point theorems, respectively.
Finally, we derive optimal a priori error estimates and provide several numerical results confirming
the theoretical rates of convergence and illustrating the performance and flexibility of the method.
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§GIMNAP-Departamento de Matemática, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, and CI2MA,

Universidad de Concepción, Casilla 160-C, Concepción, Chile, email: royarzua@ubiobio.cl.
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1 Introduction

The phenomenon of double-diffusive convection, in which two scalar fields, such as heat and concentra-
tion of a solute, affect the density distribution in a fluid-saturated porous medium, has a wide range of
applications, including processes arising in chemical engineering, energy technology, geophysics, and
oceanography. In particular, some applications include groundwater system in karst aquifers, chemical
processing, convective flow of carbon nanotubes, propagation of biological fluids, and simulation of
bacterial bioconvection and thermohaline circulation problems (see, e.g. [1, 3, 6, 19, 33] to name a
few). In this regard, we remark that much of the research in porous medium has been focused on the
use of Darcy’s law. However, this constitutive equation becomes unreliable to model the flow of fluids
through highly porous media at higher Reynolds numbers, as in the above applications. To avoid this
inconvenient, a first alternative is to employ the Brinkman model [5], which describes Stokes flows
through array of obstacles, and therefore can be applied precisely to that kind of media. Another
possible option is the Forchheimer law [20], which accounts for faster flows by including a nonlin-
ear inertial term. According to the above, the Brinkman–Forchheimer equation (see, e.g. [11, 29]),
which combines the advantages of both models, has been used for fast flows in highly porous media.
Moreover, this fact has motivated the introduction of the corresponding coupling with a system of
advection-diffusion equations (also called double-diffusion equations), through convective terms and
the body force.

In this context, and up to the authors’ knowledge, one of the first works in analyzing the coupling
of the incompressible Brinkman–Forchheimer and double-diffusion equations is [26]. In there, the
authors propose a velocity-pressure-temperature-concentration variational formulation and discuss the
corresponding analysis of existence, uniqueness, and regularity of solution. To that end, a Galerkin
method was employed to prove that the problem has at least one solution and that, under a smallness
data assumption, a uniqueness result is established. Later on, the global solvability of a time-dependent
double-diffusive convection system coupled with a linearized version of the Brinkman–Forchheimer
equations was introduced and analyzed in [28]. In particular, the authors prove that the global
solvability in L2-spaces holds true for the 3-dimensional case. More recently, in [32] a finite volume
method was adopted to solve the coupling of the unsteady Brinkman–Forchheimer and double-diffusion
equations. The focus of this work was on the validity of the Brinkman–Forchheimer model when
various combinations of the thermal Rayleigh number, inclination angle, permeability ratio, thermal
conductivity and buoyancy ratio are considered. Meanwhile, a H(div)-conforming method for double-
diffusion equations but coupled with the stationary Navier–Stokes–Brinkman model was analyzed in
[6]. Here, the solvability analysis results as a combination of compactness arguments and fixed-point
theory. The corresponding numerical scheme is based on Brezzi–Douglas–Marini (BDM) elements
of order k for the velocity, discontinuous elements of order k − 1 for the pressure, and Lagrangian
finite elements of order k for temperature and the concentration of a solute. We observe that this
formulation produces exactly divergence-free velocity approximations.

According to the above bibliographic discussion, the goal of the present paper is to develop and
analyze a new fully-mixed formulation for the coupling of the steady Brinkman–Forchheimer and
double-diffusion equations and study its numerical approximation by a mixed finite element method.
To that end, unlike previous works, we introduce the pseudostress tensor as in [10] and subsequently
eliminate the pressure unknown using the incompressibility condition. In turn, and in order to enforce
conservation of momentum in a physically compatible way, we proceed similarly to [7, 9] and introduce
the pseudoheat and pseudodiffusive vectors as additional unknowns. Furthermore, the difficulty given
by the fact that the fluid velocity lives in H1 instead of L2 as usual, is resolved as in [10, 23] by
augmenting the variational formulation with residuals arising from the constitutive equation and the
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Dirichlet boundary condition on the velocity, which forces both the temperature and concentration
fields to live in L4, and consequently the pseudoheat and pseudodiffusive vectors in a suitable H(div)-
type Banach space. Then, following [15, 23] and [9], we combine classical fixed-point arguments
with the Lax–Milgram and Banach–Nečas–Babuška theorems to prove the well-posedness of both
the continuous and discrete formulations. In particular, for the continuous formulation, and under a
smallness data assumption, we prove existence and uniqueness of solution by means of a fixed-point
strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point theorems are
employed. Using similar arguments (but applying Brower’s fixed-point theorem instead of Schauder’s
for the existence result) we prove the well-posedness of the discrete problem for arbitrary conforming
discrete spaces. In addition, applying an ad-hoc Strang-type lemma in Banach spaces, we are able
to derive the corresponding a priori error estimates. Next, employing Raviart–Thomas spaces of
order k ≥ 0 for approximating the pseudostress tensor, the pseudoheat and pseudodiffusive vectors,
continuous piecewise polynomials of degree k + 1 for velocity, and piecewise polynomials of degree k
for the temperature and concentration fields, we prove that the method is convergent with optimal
rate.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section 2 we introduce the
model problem and derive its augmented fully-mixed variational formulation. Next, in Section 3 we
establish the well-posedness of this continuous scheme by means of a fixed-point strategy and Schauder
and Banach fixed-point theorems. The corresponding Galerkin system is introduced and analyzed in
Section 4, where the discrete analogue of the theory used in the continuous case is employed to prove
existence and uniqueness of solution. In Section 5, an ad-hoc Strang-type lemma in Banach spaces is
utilized to derive the corresponding a priori error estimate and the consequent rates of convergence.
Finally, in Section 6 we report some numerical experiments illustrating the accuracy and flexibility of
our augmented fully-mixed finite element method.

Preliminary notations

Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev
spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular, given a non-negative
integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm are
simplified to ‖ · ‖m,Ω and | · |m,Ω, respectively. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts,
will stand for the natural norm of either an element or an operator in any product functional space.
In turn, for any vector field v = (vi)i=1,n, we let ∇v and div(v) be its gradient and divergence,
respectively. Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be
the divergence operator div acting along the rows of τ , and define the transpose, the trace, the tensor
inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τij ζij , and τ d := τ − 1

n
tr (τ ) I,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
,
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equipped with the usual norm ‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω, is a standard Hilbert space in the

realm of mixed problems. In addition, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ)
denotes its dual. Also, by 〈·, ·〉Γ we will denote the corresponding product of duality between H−1/2(Γ)
and H1/2(Γ) (and also between H−1/2(Γ) and H1/2(Γ)). Finally, throughout the rest of the paper we
employ 0 to denote a generic null vector (or tensor), and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters, which
may take different values at different places.

2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

2.1 The model problem

In what follows we consider the model introduced in [26], which is given by a steady double-diffusive
convection system in a fluid saturated porous medium. More precisely, we focus on solving the coupling
of the incompressible Brinkman–Forchheimer and double-diffusion equations, which reduces to finding
a velocity field u, a pressure field p, a temperature field φ1 and a concentration field φ2, both defining
a vector φ := (φ1, φ2), such that

−ν∆u + K−1u + F |u|u +∇p = f(φ) in Ω,

div(u) = 0 in Ω,

−div(Q1∇φ1) + R1 u · ∇φ1 = 0 in Ω,

−div(Q2∇φ2) + R2 u · ∇φ2 = 0 in Ω,

(2.1)

with parameters ν := Da µ̃/µ and F := ϑ Da R1, where Da stands for the Darcy number, µ̃ the viscosity,
µ the effective viscosity, R1 the thermal Rayleigh number, R2 the solute Rayleigh number, and ϑ is a
real number that can be calculated experimentally. In addition, the external force f is defined by

f(φ) := − (φ1 − φ1,r) g +
1

%
(φ2 − φ2,r) g, (2.2)

with g representing the potential type gravitational acceleration, φ1,r the reference temperature, φ2,r

the reference concentration of a solute, both of them living in L4(Ω), and % is another parameter
experimentally valued that can be assumed to be ≥ 1 (see [26, Section 2] for details). In turn, the
permeability, thermal diffusion and concentration diffusion tensors are denoted, respectively, by K,Q1

and Q2 living in L∞(Ω). Moreover, K and the inverses of Q1 and Q2, are uniformly positive definite
tensors, which means that there exist positive constants CK, CQ1 , and CQ2 , such that

v ·K(x)v ≥ CK |v|2 and v ·Q−1
j (x)v ≥ CQj |v|2 ∀v ∈ Rn, ∀x ∈ Ω, j ∈ {1, 2}. (2.3)

Equations (2.1) are complemented with Dirichlet boundary conditions for the velocity, the tempera-
ture, and the concentration fields, that is

u = uD, φ1 = φ1,D, and φ2 = φ2,D on Γ, (2.4)

with given data uD ∈ H1/2(Γ), φ1,D ∈ H1/2(Γ) and φ2,D ∈ H1/2(Γ). Owing to the incompressibility
of the fluid and the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility
condition ∫

Γ
uD · n = 0. (2.5)
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In addition, due to the first equation of (2.1), and in order to guarantee uniqueness of the pressure,
this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a fully-mixed formulation for (2.1)–(2.4), in which the Dirichlet bound-
ary conditions become natural ones, we now proceed as in [10] (see similar approaches in [15, 16]),
and introduce as further unknowns the pseudostress tensor σ, the pseudoheat vector ρ1, and the
pseudodiffusive vector ρ2, which are defined by

σ := ν∇u− p I and ρj := Qj ∇φj − Rj φj u, j ∈ {1, 2}, in Ω. (2.6)

In this way, applying the trace operator to σ and utilizing the incompressibility condition div(u) = 0
in Ω, one arrives at

p = − 1

n
tr (σ) in Ω. (2.7)

Hence, replacing back (2.7) in the first equation of (2.6), we find that our model problem (2.1)–(2.4)
can be rewritten, equivalently, as follows: Find (σ,u) and (ρj , φj), j ∈ {1, 2}, in suitable spaces to be
indicated below such that

1

ν
σd = ∇u in Ω,

−div(σ) + K−1u + F |u|u = f(φ) in Ω,

Q−1
j ρj + Rj Q−1

j φj u = ∇φj in Ω,

−div(ρj) = 0 in Ω,

u = uD and φ = φ
D

on Γ,∫
Ω

tr (σ) = 0,

(2.8)

where the Dirichlet datum for φ is certainly given by φ
D

:= (φ1,D, φ2,D). At this point we stress that,
as suggested by (2.7), p is eliminated from the present formulation and computed afterwards in terms
of σ by using that identity. This fact, justifies the last equation in (2.8), which aims to ensure that
the resulting p does belong to L2

0(Ω). Notice also that further variables of interest, such as the velocity
gradient ∇u, the heat vector ρ̃1 := Q1∇φ1 and the diffusive vector ρ̃2 := Q2∇φ2, can be computed,
respectively, as follows

∇u =
1

ν
σd, ρ̃1 = ρ1 + R1 φ1 u, and ρ̃2 = ρ2 + R2 φ2 u. (2.9)

2.2 The fully-mixed variational formulation

In this section we derive our fully-mixed formulation for the coupled system given by (2.8). To that
end, we multiply the first equation of (2.8) by a tensor τ ∈ H(div; Ω), integrate the resulting expression
by parts, and use the identity σd : τ = σd : τ d and the Dirichlet boundary condition u = uD on Γ,
to get

1

ν

∫
Ω
σd : τ d +

∫
Ω

u · div(τ ) = 〈τn,uD〉Γ ∀ τ ∈ H(div; Ω). (2.10)
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In order to have more flexibility for choosing the finite element subspaces, but at the same time avoiding
the incorporation of new terms in the resulting variational equation, we now proceed similarly as in
[22] (see also [23]), and replace u in the second term of the left-hand side of (2.10) by the expression
arising from the second equation in (2.8), that is

u = K
(
div(σ)− F |u|u + f(φ)

)
.

In this way, we arrive at the variational formulation: Find σ ∈ H(div; Ω) and u (in a suitable space
to be specified below), such that

1

ν

∫
Ω
σd : τ d +

∫
Ω

K div(σ) ·div(τ )− F

∫
Ω

K |u|u ·div(τ ) = 〈τn,uD〉Γ −
∫

Ω
K f(φ) ·div(τ ), (2.11)

for all τ ∈ H(div; Ω). Since K ∈ L∞(Ω) and div(τ ) ∈ L2(Ω), the term K|u|u · div(τ ) forces the
velocity u, and consequently the test function v, to live in L4(Ω). In order to deal with this fact, we
first observe, applying the Cauchy–Schwarz and Hölder inequalities, and then the continuous injection
i4 of H1(Ω) into L4(Ω) (see, e.g., [30, Theorem 1.3.4]), that∣∣∣∣∫

Ω
K |w|u · div(τ )

∣∣∣∣
≤ ‖K‖∞ ‖w‖0,4;Ω ‖u‖0,4;Ω ‖div(τ )‖0,Ω ≤ ‖K‖∞ ‖i4‖2 ‖w‖1,Ω ‖u‖1,Ω ‖τ‖div;Ω,

(2.12)

for all w,u ∈ H1(Ω) and τ ∈ H(div; Ω). However, we notice from (2.11) that the lack of a test
function in the space where u lives (now in H1(Ω)), makes the well-posedness analysis of (2.11) non-
viable. Then, aiming to circumvent this inconvenient, we propose to enrich our formulation with
the following residual terms arising from the constitutive equation (first equation of (2.8)) and the
Dirichlet boundary condition u = uD on Γ:

κ1

∫
Ω

{
∇u− 1

ν
σd
}

: ∇v = 0,

κ2

∫
Γ

u · v = κ2

∫
Γ

uD · v,
(2.13)

for all v ∈ H1(Ω), where κ1, κ2 are positive parameters to be specified later. We now recall (see, e.g.,
[21, 4, 24]) that there holds

H(div; Ω) = H0(div; Ω)⊕ R I,

where

H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω

tr (τ ) = 0
}
.

Hence, decomposing τ ∈ H(div; Ω) as τ = τ 0 + c I, with τ 0 ∈ H0(div; Ω) and c ∈ R, noticing that
τ d = τ d

0 and div(τ ) = div(τ 0), and using the last equation of (2.8) and the compatibility condition
(2.5), we deduce that both σ and τ can be considered hereafter in H0(div; Ω). Therefore, from (2.11)
and (2.13), we arrive at the variational problem: Find (σ,u) ∈ H0(div; Ω)×H1(Ω) such that

A((σ,u), (τ ,v)) +Bu((σ,u), (τ ,v)) = FD(τ ,v) + Fφ(τ ,v), (2.14)

for all (τ ,v) ∈ H0(div; Ω)×H1(Ω), where given w ∈ H1(Ω), A and Bw are the bilinear forms defined,
respectively, as

A((σ,u), (τ ,v)) :=
1

ν

∫
Ω
σd : τ d+

∫
Ω

K div(σ)·div(τ )+κ1

∫
Ω

{
∇u− 1

ν
σd
}

: ∇v+κ2

∫
Γ

u·v, (2.15)
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and

Bw((σ,u), (τ ,v)) := − F

∫
Ω

K |w|u · div(τ ), (2.16)

whereas, given ϕ := (ϕ1, ϕ2) in a suitable space defined next, FD and Fϕ are the bounded linear
functionals defined by

FD(τ ,v) := 〈τn,uD〉Γ + κ2

∫
Γ

uD · v, Fϕ(τ ,v) := −
∫

Ω
K f(ϕ) · div(τ ). (2.17)

On the other hand, for the double-diffusion equations in (2.8) we proceed as in [9] (see also [7, 13,
14]). In fact, multiplying the third and fourth equations of (2.8) by suitable test functions ηj and ψj ,
j ∈ {1, 2}, respectively, integrating by parts and using the Dirichlet boundary condition φ = φ

D
on

Γ, we get ∫
Ω

Q−1
j ρj · ηj +

∫
Ω
φj div(ηj) + Rj

∫
Ω

Q−1
j φj u · ηj =

〈
ηj · n, φj,D

〉
Γ
,∫

Ω
ψj div(ρj) = 0,

(2.18)

for all (ηj , ψj) in spaces to be derived below. In this regard, we begin by noting that for Qj ∈ L∞(Ω),
j ∈ {1, 2}, and u ∈ H1(Ω), the first and third terms in the first equation of (2.18) are well defined
if ρj , ηj ∈ L2(Ω), and if φj , and consequently the test function ψj , are chosen to live in L4(Ω),

respectively. In this way, since the latter forces both div(ρj) and div(ηj) to live in L4/3(Ω), we now
introduce the Banach space

H(div4/3; Ω) :=
{
η ∈ L2(Ω) : div(η) ∈ L4/3(Ω)

}
,

equipped with the norm
‖η‖div4/3;Ω := ‖η‖0,Ω + ‖div(η)‖0,4/3;Ω.

Notice that H(div; Ω) ⊂ H(div4/3; Ω). Moreover, as remarked in [9, eq. (2.5)] (see also [13, eq. (3.2)]),

the right-hand side of (2.18) is well defined in the sense that ηj · n ∈ H−1/2(Γ), j ∈ {1, 2}, for all
ηj ∈ H(div4/3; Ω). Thus, the weak formulation for the double-diffusion equations in (2.8) reads: Find
(ρj , φj) ∈ H(div4/3; Ω)× L4(Ω), j ∈ {1, 2}, such that

aj(ρj ,ηj) + b(ηj , φj) + cj(u;φj ,ηj) = Gj(ηj) ∀ηj ∈ H(div4/3; Ω),

b(ρj , ψj) = 0 ∀ψj ∈ L4(Ω),
(2.19)

where, given w ∈ H1(Ω), aj , b, and cj(w; ·, ·) are the forms defined, respectively, as

aj(ρj ,ηj) :=

∫
Ω

Q−1
j ρj · ηj , b(ηj , ψj) :=

∫
Ω
ψj div(ηj),

cj(w;ψj ,ηj) := Rj

∫
Ω

Q−1
j ψj w · ηj ,

(2.20)

for all ρj ,ηj ∈ H(div4/3; Ω) and ψj ∈ L4(Ω). In turn, Gj is the bounded linear functional defined by

Gj(ηj) :=
〈
ηj · n, φj,D

〉
Γ

∀ηj ∈ H(div4/3; Ω) . (2.21)
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Then, the augmented fully-mixed formulation for the coupled problem (2.8) reduces to (2.14) and
(2.19), that is: Find (σ,u) ∈ H0(div; Ω) ×H1(Ω) and (ρj , φj) ∈ H(div4/3; Ω) × L4(Ω), j ∈ {1, 2},
such that

A((σ,u), (τ ,v)) +Bu((σ,u), (τ ,v)) = FD(τ ,v) + Fφ(τ ,v),

aj(ρj ,ηj) + b(ηj , φj) + cj(u;φj ,ηj) = Gj(ηj),

b(ρj , ψj) = 0,

(2.22)

for all (τ ,v) ∈ H0(div; Ω)×H1(Ω) and for all (ηj , ψj) ∈ H(div4/3; Ω)× L4(Ω).

3 Analysis of the coupled problem

In this section we combine the Lax–Milgram, Banach–Nečas–Babuška, and Babuška-Brezzi theories,
with the classical Schauder and Banach fixed-point theorems, to prove the well-posednees of (2.22)
under a suitable smallness assumption on the data.

3.1 Preliminaries

We begin by recalling the Banach–Nečas–Babuška theorem, which is the Banach version of the gener-
alized Lax–Milgram lemma in Hilbert spaces (see for instance [21, Theorem 1.1]). More precisely, we
have the following result [18, Theorem 2.6].

Theorem 3.1 Let H be a reflexive Banach space, and let a : H×H→ R be a bounded bilinear form.
In addition, assume that

(i) there exists α > 0 such that

sup
0 6=v∈H

a(u, v)

‖v‖H
≥ α ‖u‖H ∀u ∈ H, (3.1)

(ii) there holds
sup
u∈H

a(u, v) > 0 ∀ v ∈ H, v 6= 0. (3.2)

Then, for each F ∈ H′ there exists a unique u ∈ H such that a(u, v) = F (v) ∀ v ∈ H, and the
following a priori estimate holds:

‖u‖H ≤
1

α
‖F‖H′ .

Let us now discuss the stability properties of the forms involved in (2.22). In fact, using (2.12) and
performing simple computations, we deduce from (2.15), (2.16), and (2.20) that the forms A,Bw, aj , b
and cj(w; ·, ·), j ∈ {1, 2}, are bounded as indicated in what follows∣∣A((σ,u), (τ ,v)

∣∣ ≤ CA ‖(σ,u)‖ ‖(τ ,v)‖, , (3.3)∣∣Bw((σ,u), (τ ,v))
∣∣ ≤ F ‖K‖∞ ‖w‖0,4;Ω ‖u‖0,4;Ω ‖div(τ )‖0,Ω

≤ F ‖K‖∞ ‖w‖0,4;Ω ‖i4‖ ‖u‖1,Ω ‖div(τ )‖0,Ω

≤ F ‖K‖∞ ‖i4‖2 ‖w‖1,Ω ‖u‖1,Ω ‖div(τ )‖0,Ω ,

(3.4)
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∣∣aj(ρj ,ηj)∣∣ ≤ ‖Q−1
j ‖∞ ‖ρj‖div4/3;Ω ‖ηj‖div4/3;Ω , (3.5)∣∣b(ηj , ψj)∣∣ ≤ ‖ηj‖div4/3;Ω ‖ψj‖0,4;Ω , (3.6)

and ∣∣cj(w;φj ,ηj)
∣∣ ≤ Rj ‖Q−1

j ‖∞ ‖w‖0,4;Ω ‖φj‖0,4;Ω ‖ηj‖div4/3;Ω

≤ Rj ‖Q−1
j ‖∞ ‖i4‖ ‖w‖1,Ω ‖φj‖0,4;Ω ‖ηj‖div4/3;Ω ,

(3.7)

where CA is a positive constant depending on ν, ‖K‖∞, κ1, and κ2. In addition, employing the Cauchy–
Schwarz and Young inequalities, and recalling the definition of f (cf. (2.2)), it is readily seen that
FD, Fϕ and Gj (cf. (2.21)) are bounded, which means that there exist constants CD, CF , CG > 0,
such that ∣∣FD(τ ,v)

∣∣ ≤ CD

{
‖uD‖0,Γ + ‖uD‖1/2,Γ

}
‖(τ ,v)‖, (3.8)∣∣Fϕ(τ ,v)

∣∣ ≤ CF ‖g‖0,4;Ω

(
‖ϕ‖0,4;Ω + ‖φ

r
‖0,4;Ω

)
‖(τ ,v)‖, (3.9)

and ∣∣Gj(ηj)∣∣ ≤ CGj ‖φj,D‖1/2,Γ ‖ηj‖div4/3;Ω, (3.10)

where CD := max
{

1, κ2 ‖γ0‖
}

, CF := ‖K‖∞, φ
r

:= (φ1,r, φ2,r) ∈ L4(Ω), and CGj is a positive constant
depending on ‖i4‖ (cf. [7, Lemma 3.5]). Next, we let V be the kernel of the operator induced by the
bilinear form b, that is

V :=
{
η ∈ H(div4/3; Ω) : div(η) = 0 in Ω

}
,

and observe, thanks to the definition of aj (cf. (2.20)) and the fact that the inverses of Qj are uniformly
positive definite tensors (cf. (2.3)), that aj is elliptic on V, that is

aj(η,η) ≥ αj ‖η‖2div4/3;Ω ∀η ∈ V, (3.11)

with αj = CQj . In turn, according to [9, Lemma 2.1] with p = 4/3, we know that there exists a
constant β > 0 such that b verify the following inf-sup condition

sup
06=η∈H(div4/3;Ω)

b(η, ψ)

‖η‖div4/3;Ω
≥ β ‖ψ‖0,4;Ω ∀ψ ∈ L4(Ω) . (3.12)

We end this section by recalling, for later use, that there exist positive constants c1(Ω) and c2(Ω)
such that (see [21, Lemma 2.3] and [27, Theorem 5.11.2], respectively, for details)

‖τ d‖20,Ω + ‖div(τ )‖20,Ω ≥ c1(Ω) ‖τ‖20,Ω ∀ τ ∈ H0(div; Ω) (3.13)

and
‖∇v‖20,Ω + ‖v‖20,Γ ≥ c2(Ω) ‖v‖21,Ω ∀v ∈ H1(Ω). (3.14)

3.2 A fixed-point approach

We now rewrite (2.22) as an equivalent fixed-point equation. To this end, we first let S : H1(Ω) ×
L4(Ω)→ H1(Ω) be the operator defined as

S(w,ϕ) := u ∀ (w,ϕ) ∈ H1(Ω)× L4(Ω), (3.15)
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where (σ,u) ∈ H0(div; Ω)×H1(Ω) is the unique solution (to be confirmed below) of the problem:

A((σ,u), (τ ,v)) +Bw((σ,u), (τ ,v)) = FD(τ ,v) + Fϕ(τ ,v), (3.16)

for all (τ ,v) ∈ H0(div; Ω) ×H1(Ω). In turn, for each j ∈ {1, 2} we let S̃j : H1(Ω) → L4(Ω) be the
operator given by

S̃j(w) := φj ∀w ∈ H1(Ω), (3.17)

where (ρj , φj) ∈ H(div4/3; Ω)× L4(Ω) is the unique solution (to be confirmed below) of the problem:

aj(ρj ,ηj) + b(ηj , φj) + cj(w;φj ,ηj) = Gj(ηj) ∀ηj ∈ H(div4/3; Ω),

b(ρj , ψj) = 0 ∀ψj ∈ L4(Ω),
(3.18)

so that we can introduce S̃(w) := (S̃1(w), S̃2(w)) ∈ L4(Ω) for all w ∈ H1(Ω). Consequently, we can
define the operator T : H1(Ω)→ H1(Ω) as

T(w) := S(w, S̃(w)) ∀w ∈ H1(Ω), (3.19)

and realize that solving (2.22) is equivalent to finding u ∈ H1(Ω) such that

T(u) = u. (3.20)

3.3 Well-definedness of T

We begin by establishing a result that provides sufficient conditions under which the operator S (cf.
(3.15)) is well-defined, or equivalently, the problem (3.16) is well-posed.

Lemma 3.2 Assume that for δ ∈ (0, 2ν) we choose κ1 ∈ (0, 2δ) and κ2 > 0. Then, there exists r1 > 0
such that for each r ∈ (0, r1), and for each (w,ϕ) ∈ H1(Ω)×L4(Ω) satisfying ‖w‖1,Ω ≤ r, the problem
(3.16) has a unique solution (σ,u) ∈ H0(div; Ω)×H1(Ω). Moreover, there exists a constant cS > 0,
independent of (w,ϕ), such that there holds

‖S(w,ϕ)‖1,Ω

= ‖u‖1,Ω ≤ ‖(σ,u)‖ ≤ cS

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖ϕ‖0,4;Ω + ‖φ

r
‖0,4;Ω

)}
.

(3.21)

Proof. We proceed as in [10, Lemma 3.2]. In fact, given (w,ϕ) ∈ H1(Ω)×L4(Ω), we observe from (2.15)
and (2.16) that A+Bw is clearly a bilinear form. Then, thanks to (3.3) and (3.4), we find that there
exists a positive constant, which we denote by ‖A+ Bw‖, only depending on ν, ‖K‖∞, ‖i4‖, κ1, κ2, F,
and ‖w‖1,Ω, such that∣∣(A+Bw)((σ,u), (τ ,v))

∣∣ ≤ ‖A+Bw‖ ‖(σ,u)‖ ‖(τ ,v)‖,

for all (σ,u), (τ ,v) ∈ H0(div; Ω)×H1(Ω). In turn, from the definition of A (cf. (2.15)), we have

A((τ ,v), (τ ,v)) =
1

ν
‖τ d‖20,Ω +

∫
Ω

K div(τ ) · div(τ )− κ1

ν

∫
Ω
τ d : ∇v + κ1 ‖∇v‖20,Ω + κ2 ‖v‖20,Γ,

and hence, using (2.3), and Cauchy–Schwarz and Young’s inequalities, we obtain that for any δ > 0
and for all (τ ,v) ∈ H0(div; Ω)×H1(Ω), there holds

A((τ ,v), (τ ,v)) ≥ 1

ν

(
1− κ1

2δ

)
‖τ d‖20,Ω + CK ‖div(τ )‖20,Ω + κ1

(
1− δ

2ν

)
‖∇v‖20,Ω + κ2 ‖v‖20,Γ.
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In this way, applying the inequalities (3.13) and (3.14), we can define the constants

α0(Ω) := min

{
1

ν

(
1− κ1

2δ

)
,
CK

2

}
, α1(Ω) := min

{
c1(Ω)α0(Ω),

CK

2

}
,

α2(Ω) := c2(Ω) min

{
κ1

(
1− δ

2ν

)
, κ2

}
,

(3.22)

which are positive thanks to the hypotheses on δ, κ1, and κ2. In this way, it follows that

A((τ ,v), (τ ,v)) ≥ αA ‖(τ ,v)‖2 ∀ (τ ,v) ∈ H0(div; Ω)×H1(Ω), (3.23)

with αA := min
{
α1(Ω), α2(Ω)

}
, which shows that A is elliptic on H0(div; Ω) ×H1(Ω). Therefore,

combining now (3.4) and (3.23), and using the injection i4, we deduce that for all (τ ,v) ∈ H0(div; Ω)×
H1(Ω) there holds

(A+Bw)((τ ,v), (τ ,v)) ≥
{
αA − F ‖K‖∞ ‖i4‖2 ‖w‖1,Ω

}
‖(τ ,v)‖2.

Consequently, requiring ‖w‖1,Ω ≤ r1, with

r1 =
αA

2 F ‖K‖∞ ‖i4‖2
, (3.24)

we arrive at

(A+Bw)((τ ,v), (τ ,v)) ≥ αA
2
‖(τ ,v)‖2 ∀ (τ ,v) ∈ H0(div; Ω)×H1(Ω). (3.25)

Summing up, and owing to the hypotheses on κ1 and κ2, we have proved that for any (w,ϕ) ∈
H1(Ω)× L4(Ω) such that ‖w‖1,Ω ≤ r1, the bilinear form A+Bw and the functional FD + Fϕ satisfy
the hypotheses of the Lax–Milgram theorem (see, e.g., [21, Theorem 1.1]), which guarantees the well-
posedness of (3.16). Finally, using (3.25) with (τ ,v) = (σ,u), (3.16), and the bounds of FD and Fϕ
(cf. (3.8) and (3.9)), we readily obtain that

αA
2
‖(σ,u)‖ ≤ CD

(
‖uD‖0,Γ + ‖uD‖1/2,Γ

)
+ CF ‖g‖0,4;Ω

(
‖ϕ‖0,4;Ω + ‖φ

r
‖0,4;Ω

)
,

which implies (3.21) with cS := 2 max
{
CD, CF

}
/αA, thus completing the proof. �

Now, we establish the well-posedness of problem (3.18), or equivalently, that the operator S̃ (cf.
(3.17)) is well-defined. To that end, let us consider the space H := H(div4/3; Ω) × L4(Ω) and the
bilinear form Aj : H×H→ R, j ∈ {1, 2}, defined by

Aj((ρj , φj), (ηj , ψj)) := aj(ρj ,ηj) + b(ηj , φj) + b(ρj , ψj), (3.26)

for all (ρj , φj), (ηj , ψj) ∈ H. Then, owing to (3.5), (3.6), (3.11), (3.12), and a direct application of
[18, Proposition 2.36], we deduce, equivalently, that Aj satisfies the following inf-sup condition:

sup
0 6=(ηj ,ψj)∈H

Aj((χj , ϕj), (ηj , ψj))
‖(ηj , ψj)‖

≥ γj ‖(χj , ϕj)‖ ∀ (χj , ϕj) ∈ H, (3.27)

where γj > 0 is the constant defined by

γj :=
αj β

2

β2 +
(
2β + ‖Q−1

j ‖∞
)(
αj + ‖Q−1

j ‖∞
) . (3.28)

In this way, bearing in mind (3.27), we are able to establish the following result.
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Lemma 3.3 There exists r2 > 0 such that for each r ∈ (0, r2), for each w ∈ H1(Ω) satisfying
‖w‖1,Ω ≤ r, and for each j ∈ {1, 2}, the problem (3.18) has a unique solution (ρj , φj) ∈ H(div4/3; Ω)×
L4(Ω), j ∈ {1, 2}. Moreover, there exists a constant c

S̃
> 0, independent of w, such that there holds

‖S̃(w)‖0,4;Ω = ‖(φ1, φ2)‖0,4;Ω ≤
2∑
j=1

‖(ρj , φj)‖ ≤ c
S̃
‖φ

D
‖1/2,Γ. (3.29)

Proof. We proceed as in [7, Theorem 3.6]. In fact, given w ∈ H1(Ω) and j ∈ {1, 2}, we begin by
defining the bilinear form

Aj,w((ρj , φj), (ηj , ψj)) := Aj((ρj , φj), (ηj , ψj)) + cj(w;φj ,ηj), (3.30)

where Aj and cj(w; ·, ·) are the forms defined in (3.26) and (2.20), respectively. Then, the problem
(3.18) can be rewritten, equivalently, as: Find (ρj , φj) ∈ H := H(div4/3; Ω)× L4(Ω) such that

Aj,w((ρj , φj), (ηj , ψj)) = Gj(ηj) ∀ (ηj , ψj) ∈ H. (3.31)

Therefore, in order to conclude the well-definedness of S̃, in the sequel we use the Banach–Nečas–
Babuška theorem (cf. Theoremm 3.1) to prove that problem (3.31) is well-posed. Indeed, given
(χj , ϕj), (η̃j , ψ̃j) ∈ H with (η̃j , ψ̃j) 6= 0, we first deduce from (3.30) and (3.7) that

sup
0 6=(ηj ,ψj)∈H

Aj,w((χj , ϕj), (ηj , ψj))

‖(ηj , ψj)‖
≥
|Aj((χj , ϕj), (η̃j , ψ̃j))|

‖(η̃j , ψ̃j)‖
−
|cj(w;ϕj , η̃j)|
‖(η̃j , ψ̃j)‖

≥
|Aj((χj , ϕj), (η̃j , ψ̃j))|

‖(η̃j , ψ̃j)‖
− Rj ‖Q−1

j ‖∞ ‖i4‖ ‖w‖1,Ω ‖(χj , ϕj)‖,

which, together with (3.27) and the fact that (η̃j , ψ̃j) ∈ H is arbitrary, implies

sup
0 6=(ηj ,ψj)∈H

Aj,w((χj , ϕj), (ηj , ψj))

‖(ηj , ψj)‖
≥
(
γj − Rj ‖Q−1

j ‖∞ ‖i4‖ ‖w‖1,Ω
)
‖(χj , ϕj)‖ ∀ (χj , ϕj) ∈ H.

Consequently, requiring now ‖w‖1,Ω ≤ r2, with

r2 := min
{
r1

2, r
2
2

}
and rj2 :=

γj

2 Rj ‖Q−1
j ‖∞ ‖i4‖

, (3.32)

we find that

sup
0 6=(ηj ,ψj)∈H

Aj,w((χj , ϕj), (ηj , ψj))

‖(ηj , ψj)‖
≥ γj

2
‖(χj , ϕj)‖ ∀ (χj , ϕj) ∈ H. (3.33)

On the other hand, for a given (χj , ϕj) ∈ H, we observe that

sup
(ηj ,ψj)∈H

Aj,w((ηj , ψj), (χj , ϕj)) ≥ sup
06=(ηj ,ψj)∈H

Aj,w((ηj , ψj), (χj , ϕj))

‖(ηj , ψj)‖

= sup
0 6=(ηj ,ψj)∈H

Aj((ηj , ψj), (χj , ϕj)) + cj(w;ψj ,χj)

‖(ηj , ψj)‖
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which, employing again (3.7), yields

sup
(ηj ,ψj)∈H

Aj,w((ηj , ψj), (χj , ϕj))

≥ sup
0 6=(ηj ,ψj)∈H

Aj((ηj , ψj), (χj , ϕj))
‖(ηj , ψj)‖

− Rj ‖Q−1
j ‖∞ ‖i4‖ ‖w‖1,Ω ‖(χj , ϕj)‖.

Therefore, using the symmetry of Aj and the inf-sup condition (3.27), and considering ‖w‖1,Ω ≤ r2

(cf. (3.32)), we obtain

sup
(ηj ,ψj)∈H

Aj,w((ηj , ψj), (χj , ϕj)) ≥
γj
2
‖(χj , ϕj)‖ > 0 ∀ (χj , ϕj) ∈ H, (χj , ϕj) 6= 0. (3.34)

In this way, it is clear from (3.33) and (3.34) that Aj,w satisfies the hypotheses of the Banach–Nečas–
Babuška theorem (cf. Theorem 3.1), which guarantees the well-posedness of (3.18). Finally, using
(3.33) with (χj , ϕj) = (ρj , φj), (3.31), and the continuity bound of Gj (cf. (3.10)), we get

γj
2
‖(ρj , φj)‖ ≤ CGj ‖φj,D‖1/2,Γ, (3.35)

which gives (3.29) with c
S̃

:= max
{
c
S̃1
, c

S̃2

}
and c

S̃j
:= 2CGj/γj , j ∈ {1, 2}, thus ending proof. �

Now, concerning the practical choice of the stabilization parameters κ1 and κ2, and particularly for
sake of the computational implementation of the Galerkin method to be introduced and analyzed later
on, we first select the midpoints of the corresponding feasible intervals for δ and κ1, namely δ = ν and
κ1 = δ, respectively. Then, in order to define κ2, we aim to maximize the constant α2(Ω) in (3.22),
which is attained by taking κ2 = κ1

(
1− δ

2ν

)
. In this way, we propose to consider:

κ1 = ν and κ2 =
ν

2
. (3.36)

3.4 Solvability analysis of the fixed-point equation

Having proved the well-posedness of the uncoupled problems (3.16) and (3.18), which ensures that the
operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed point
of the operator T. For this purpose, in what follows we verify the hypothesis of the Schauder and
Banach fixed-point theorems. We begin the analysis with the following straightforward consequence
of Lemmas 3.2 and 3.3.

Lemma 3.4 Given r ∈ (0, r0), with r0 := min{r1, r2}, r1 as in (3.24) and r2 as in (3.32), we let Wr

be the closed and convex subset of H1(Ω) defined by

Wr :=
{

w ∈ H1(Ω) : ‖w‖1,Ω ≤ r
}
. (3.37)

In addition, we take the stabilization parameters κ1 and κ2 as in Lemma 3.2 (particularly, as suggested
in (3.36)), and assume that the data satisfy

cT

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
≤ r. (3.38)

Then T(Wr) ⊆ Wr.
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Proof. Given w ∈Wr, we let φ := S̃(w) and observe that certainly (w,φ) satisfies the hypotheses
of Lemma 3.2. Hence, employing the corresponding estimate (3.21) in combination with (3.29), we
get

‖T(w)‖1,Ω = ‖S(w, S̃(w))‖1,Ω = ‖S(w,φ)‖1,Ω

≤ cS

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
c
S̃
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
≤ cT

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
,

(3.39)

with cT := cS max
{

1, c
S̃

}
. In this way, (3.39) and assumption (3.38) imply that T(w) ∈Wr, which

proves that T(Wr) ⊆Wr. �

Next, we aim to prove the continuity and compactness properties of T, which basically will be direct
consequences of the following two auxiliary lemmas for the operators S and S̃, respectively.

Lemma 3.5 Let r ∈ (0, r1) with r1 given as in (3.24). Then there exists a positive constant CS

independent of r, such that

‖S(w,ϕ)− S(w̃, ϕ̃)‖1,Ω ≤
1

‖i4‖ r1
‖S(w,ϕ)‖1,Ω ‖w − w̃‖0,4;Ω + CS ‖g‖0,4;Ω ‖ϕ− ϕ̃‖0,4;Ω (3.40)

for all (w,ϕ), (w̃, ϕ̃) ∈ H1(Ω)× L4(Ω) such that ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r.

Proof. Given (w,ϕ), (w̃, ϕ̃) ∈ H1(Ω) × L4(Ω), such that ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r, we let (σ,u), (σ̃, ũ) ∈
H0(div; Ω)×H1(Ω) be the corresponding solutions of (3.16), so that u := S(w,ϕ) and ũ := S(w̃, ϕ̃).
Then, using the bilinearity of A and Bw for any w, it follows easily from (3.16) that

(A+Bw̃)((σ,u)− (σ̃, ũ), (τ ,v)) =
(
Bw̃ −Bw

)
((σ,u), (τ ,v)) + Fϕ−ϕ̃(τ ,v),

for all (τ ,v) ∈ H0(div; Ω)×H1(Ω). Hence, taking (τ ,v) = (σ,u)− (σ̃, ũ) in the foregoing identity,
and then employing the ellipticity of A + Bw (cf. (3.25)), the fact that | |w̃| − |w| | ≤ |w̃ − w|, the
boundedness property of Bw (cf. (3.4)), and the definition and continuity of Fϕ (cf. (2.17), (3.9)) in
combination with Cauchy–Schwarz and Hölder’s inequalities, we readily get

αA
2
‖(σ,u)− (σ̃, ũ)‖2 ≤

(
Bw̃ −Bw

)
((σ,u), (σ,u)− (σ̃, ũ)) + Fϕ−ϕ̃((σ,u)− (σ̃, ũ))

≤
{
F ‖K‖∞ ‖i4‖ ‖u‖1,Ω‖w − w̃‖0,4;Ω + CF ‖g‖0,4;Ω‖ϕ− ϕ̃‖0,4;Ω

}
‖(σ,u)− (σ̃, ũ)‖,

which, together with the definition of r1 (cf. (3.24)) and the fact that u = S(w,ϕ), implies (3.40)
with constant CS := 2CF /αA, thus ending the proof. �

Lemma 3.6 Let r ∈ (0, r2) with r2 given as in (3.32). Then there holds

‖S̃(w)− S̃(w̃)‖0,4;Ω ≤
1

‖i4‖ r2
‖S̃(w)‖0,4;Ω ‖w − w̃‖0,4;Ω, (3.41)

for all w, w̃ ∈ H1(Ω) such that ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r.

Proof. We prooced as in [7, Theorem 3.7]. In fact, given w, w̃ ∈ H1(Ω) such that ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r,
for each j ∈ {1, 2} we let (ρj , φj), (ρ̃j , φ̃j) ∈ H := H(div4/3; Ω) × L4(Ω) be the solution of (3.18)

(equivalently of (3.31)), so that (φ1, φ2) = (S̃1(w), S̃2(w)) = S̃(w) and (φ̃1, φ̃2) = (S̃1(w̃), S̃2(w̃)) =
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S̃(w̃). Then, using the linearity of the form Aj,w (cf. (3.30)), we deduce after simple computations
that

Aj,w((ρj − ρ̃j , φj − φ̃j), (ηj , ψj)) = − cj(w − w̃;φj ,ηj) ∀ (ηj , ψj) ∈ H.

Then, employing (3.33) with (χj , ϕj) = (ρj − ρ̃j , φj − φ̃j) ∈ H and the continuity bound of cj(w; ·, ·)
(cf. (3.7)), we obtain

γj
2
‖(ρj , φj)− (ρ̃j , φ̃j)‖ ≤ sup

06=(ηj ,ψj)∈H

−cj(w − w̃;φj ,ηj)

‖(ηj , ψj)‖
≤ Rj ‖Q−1

j ‖∞ ‖φj‖0,4;Ω ‖w − w̃‖0,4;Ω ,

which, together with the definition of r2 (cf. (3.32)) and the fact that φj = S̃j(w), implies (3.41) and
conclude the proof. �

As a consequence of Lemmas 3.5 and 3.6 we establish the following result providing an estimate
needed to derive next the required continuity and compactness properties of the operator T.

Lemma 3.7 Let r ∈ (0, r0), with r0 := min{r1, r2}, r1 as in (3.24) and r2 as in (3.32). Then, for all
w, w̃ ∈Wr (cf. (3.37)), there holds

‖T(w)−T(w̃)‖1,Ω

≤ cT
‖i4‖ r0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
‖w − w̃‖0,4;Ω.

(3.42)

Proof. Let w, w̃ ∈ Wr, such that u = T(w) and ũ = T(w̃). Then, from the definition of T (cf.
(3.19)), and Lemmas 3.5 and 3.6 (cf. (3.40) and (3.41)), we deduce that

‖T(w)−T(w̃)‖1,Ω = ‖S(w, S̃(w))− S(w̃, S̃(w̃))‖1,Ω

≤ 1

‖i4‖ r1
‖T(w)‖1,Ω ‖w − w̃‖0,4;Ω + CS ‖g‖0,4;Ω ‖S̃(w)− S̃(w̃)‖0,4;Ω

≤
(

1

‖i4‖ r1
‖T(w)‖1,Ω +

CS

‖i4‖ r2
‖g‖0,4;Ω ‖S̃(w)‖0,4;Ω

)
‖w − w̃‖0,4;Ω.

Hence, using (3.29) and the fact that CS cS̃ is bounded by cT, and then bounding ‖T(w)‖1,Ω by (3.39)
instead of by r, we conclude from the foregoing inequality that

‖T(w)−T(w̃)‖1,Ω ≤
cT
‖i4‖

{
1

r1

(
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω ‖φr

‖0,4;Ω

)
+

(
1

r1
+

1

r2

)
‖g‖0,4;Ω ‖φD

‖1/2,Γ

}
‖w − w̃‖0,4;Ω .

(3.43)

Finally, (3.42) follows from (3.43) by noting that both 1/r1 and 1/r2 are bounded by 1/r0. �

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.8 Let r ∈ (0, r0), with r0 := min{r1, r2}, r1 as in (3.24) and r2 as in (3.32). Assume that
the stabilization parameters κ1 and κ2 are taken as in Lemma 3.2, and that the data satisfy (3.38).
Then T : Wr →Wr is continuous and T(Wr) is compact.

Proof. The required result follows straightforwardly from estimate (3.42), the compactness of the
injection i4 : H1(Ω) → L4(Ω) (see, e.g., [30, Theorem 1.3.5]), and the well-known fact that every
bounded sequence in a Hilbert space has a weakly convergent subsequence. We omit further details
and refer to [8, Lemma 3.8]. �

Finally, the main result of this section is stated as follows.

15



Theorem 3.9 Assume the same hypothesis of Lemma 3.8. Then the operator T has a fixed point u ∈
Wr (cf. (3.37)). Equivalently, the coupled problem (2.22) has a solution (σ,u) ∈ H0(div; Ω)×H1(Ω)
and (ρj , φj) ∈ H(div4/3; Ω)× L4(Ω), j ∈ {1, 2}, with u ∈Wr. Moreover, there holds

‖(σ,u)‖ ≤ cT

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
(3.44)

and
2∑
j=1

‖(ρj , φj)‖ ≤ c
S̃
‖φ

D
‖1/2,Γ. (3.45)

In addition, if the data satisfy

cT
r0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
< 1 , (3.46)

then the aforementioned fixed point (equivalently, the solution of (2.22)) is unique.

Proof. The equivalence between (2.22) and the fixed point equation (3.20), together with Lemmas 3.4
and 3.8, confirm the existence of solution of (2.22) as a direct application of the Schauder fixed-point
theorem [12, Theorem 9.12-1(b)]. In addition, it is clear that the estimate (3.45) follows from (3.29),
whereas combining (3.21) with (3.29) we obtain (3.44) (cf. (3.39)). On the other hand, using the
estimate (3.42) and the continuous injection i4 of H1(Ω) into L4(Ω), we easily obtain

‖T(w)−T(w̃)‖1,Ω

≤ cT
r0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
‖w − w̃‖1,Ω

which, thanks to (3.46) and the Banach fixed-point theorem, yields the uniqueness. �

4 The Galerkin scheme

In this section, we introduce and analyze the corresponding Galerkin scheme for the fully-mixed
formulation (2.22). The solvability of this scheme is addressed following analogous tools to those
employed throughout Section 3.

4.1 Preliminaries

We begin by considering arbitrary finite dimensional subspaces

Hσh ⊆ H0(div; Ω), Hu
h ⊆ H1(Ω), Hρ

h ⊆ H(div4/3; Ω), Hφ
h ⊆ L4(Ω), (4.1)

whose specific choices are postponed to Section 4.3 below. Hereafter, h := max
{
hT : T ∈ Th} stands

for the size of a regular triangulation Th of Ω̄ made up of triangles T (when n = 2) or tetrahedra
T (when n = 3) of diameter hT . In what follows, we set φ

h
:= (φ1,h, φ2,h), ϕ

h
:= (ϕ1,h, ϕ2,h)

∈ Hφ
h := Hφ

h ×Hφ
h. Then the Galerkin scheme associated with (2.22) reads: Find (σh,uh) ∈ Hσh ×Hu

h

and (ρj,h, φj,h) ∈ Hρ
h ×Hφ

h, j ∈ {1, 2}, such that

A((σh,uh), (τ h,vh)) +Buh((σh,uh), (τ h,vh)) = FD(τ h,vh) + Fφ
h
(τ h,vh),

aj(ρj,h,ηj,h) + b(ηj,h, φj,h) + cj(uh;φj,h,ηj,h) = Gj(ηj,h),

b(ρj,h, ψj,h) = 0,

(4.2)
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for all (τ h,vh) ∈ Hσh ×Hu
h and (ηj,h, ψj,h) ∈ Hρ

h × Hφ
h. We now develop the discrete analogue of the

fixed-point approach utilized in Section 3.2. To this end, we first consider the operator Sh : Hu
h×Hφ

h →
Hu
h defined by

Sh(wh,ϕh) := uh ∀ (wh,ϕh) ∈ Hu
h ×Hφ

h, (4.3)

where (σh,uh) ∈ Hσh ×Hu
h is the unique solution (to be confirmed below) of the problem:

A((σh,uh), (τ h,vh)) +Bwh((σh,uh), (τ h,vh)) = FD(τ h,vh) + Fϕ
h
(τ h,vh), (4.4)

for all (τ h,vh) ∈ Hσh ×Hu
h . In turn, for each j ∈ {1, 2} we let S̃j,h : Hu

h → Hφ
h be the operator given

by
S̃j,h(wh) := φj,h ∀wh ∈ Hu

h , (4.5)

where (ρj,h, φj,h) ∈ Hρ
h ×Hφ

h is the unique solution (to be confirmed below) of the problem:

aj(ρj,h,ηj,h) + b(ηj,h, φj,h) + cj(wh;φj,h,ηj,h) = Gj(ηj,h) ∀ηj,h ∈ Hρ
h,

b(ρj,h, ψj,h) = 0 ∀ψj,h ∈ Hφ
h,

(4.6)

and then we set S̃h(wh) := (S̃1,h(wh), S̃2,h(wh)) ∈ Hφ
h for all wh ∈ Hu

h . Hence, introducing the
operator Th : Hu

h → Hu
h as

Th(wh) := Sh(wh, S̃h(wh)) ∀wh ∈ Hu
h , (4.7)

we realize that solving (4.2) is equivalent to seeking a fixed point of Th, that is: Find uh ∈ Hu
h such

that
Th(uh) = uh. (4.8)

4.2 Solvability Analysis

We begin by remarking that the same tools employed in the proof of Lemma 3.2 can be used now
to prove the unique solvability of (4.4). In fact, it is straightforward to see that for each wh ∈ Hu

h ,
the bilinear form A + Bwh is bounded with a constant depending on ν, F, ‖K‖∞, ‖i4‖, κ1, κ2, and
‖wh‖1,Ω. In addition, under the same assumptions from Lemma 3.2 on the stabilization parameters,
we find that for each wh ∈ Hu

h , A + Bwh is elliptic on Hσh ×Hu
h with the same constant obtained in

(3.25). In turn, it is clear that for each ϕ
h
∈ Hφ

h, the functional Fϕ
h

is linear and bounded as in (3.9).
The foregoing discussion and the Lax–Milgram theorem allow us to conclude the following result.

Lemma 4.1 Let r̃ ∈ (0, r1), with r1 given as in (3.24), and assume that κ1 and κ2 are taken as in

Lemma 3.2. Then, for each (wh,ϕh) ∈ Hu
h × Hφ

h satisfying ‖wh‖1,Ω ≤ r̃, the problem (4.4) has a
unique solution (σh,uh) ∈ Hσh ×Hu

h . Moreover, with the same constant cS > 0 from (3.21), which is
independent of (wh,ϕh), there holds

‖Sh(wh,ϕh)‖1,Ω

= ‖uh‖1,Ω ≤ ‖(σh,uh)‖ ≤ cS
{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖ϕ

h
‖0,4;Ω + ‖φ

r
‖0,4;Ω

)}
.

(4.9)

We emphasize here that there is no restriction on Hσh and Hu
h , and hence they can be chosen as any

finite element subspaces of H0(div; Ω) and H1(Ω), respectively.
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On the other hand, in order to analyze problem (4.6), we need to incorporate further hypotheses

on the discrete spaces Hρ
h and Hφ

h. For this purpose, we now let Vh be the discrete kernel of b, i.e.,

Vh =
{
ηh ∈ Hρ

h : b(ηh, ψh) = 0 ∀ψh ∈ Hφ
h

}
. (4.10)

Then, we assume that the following discrete inf-sup conditions hold:

(H.1) for each j ∈ {1, 2} there exists a constant α̃j > 0, independent of h, such that

sup
0 6=ηh∈Vh

aj(ηh,χh)

‖ηh‖div4/3;Ω
≥ α̃j ‖χh‖div4/3;Ω ∀χh ∈ Vh , (4.11)

(H.2) there exists a constant β̃ > 0, independent of h, such that

sup
0 6=ηh∈H

ρ
h

b(ηh, ψh)

‖ηh‖div4/3;Ω
≥ β̃ ‖ψh‖0,4;Ω ∀ψh ∈ Hφ

h . (4.12)

Specific examples of spaces verifying (H.1) and (H.2) are described later on in Section 4.3. Notice
that (4.11) is more general, and hence less restrictive, than assuming that the bilinear forms aj are
elliptic in Vh. In other words, the latter is not necessary but only a sufficient condition for (4.11),
which is precisely what we apply below in Section 4.3 for a particular choice of subspaces. In turn,
unless Vh is contained in V, which occurs in many cases but not always, the Vh-ellipticity of aj does
not follow from its eventual V-ellipticity.

Next, we consider the bilinear form Aj (cf. (3.26)) restricted to the discrete space Hh := Hρ
h ×Hφ

h.
Thus, employing (3.5), (4.11), and (4.12), and applying again [18, Proposition 2.36], we are able to
show that Aj verifies the following discrete inf-sup condition

sup
0 6=(ηj,h,ψj,h)∈Hh

Aj((χj,h, ϕj,h), (ηj,h, ψj,h))

‖(ηj,h, ψj,h)‖
≥ γ̃j ‖(χj,h, ϕj,h)‖ ∀ (χj,h, ϕj,h) ∈ Hh, (4.13)

where γ̃j (cf. (3.28)), a positive constant independent of h, is defined by

γ̃j :=
α̃j β̃

2

β̃2 +
(
2 β̃ + ‖Q−1

j ‖∞
)(
α̃j + ‖Q−1

j ‖∞
) . (4.14)

We are now in a position to establish the discrete version of Lemma 3.3.

Lemma 4.2 There exists r̃2 > 0 such that for each r̃ ∈ (0, r̃2), and for each wh ∈ Hu
h satisfying

‖wh‖1,Ω ≤ r̃, the problem (4.6) has a unique solution (ρj,h, φj,h) ∈ Hρ
h × Hφ

h, for each j ∈ {1, 2}.
Moreover, there exists a constant c

S̃h
> 0, independent of wh, such that there holds

‖S̃h(wh)‖0,4;Ω = ‖(φ1,h, φ2,h)‖0,4;Ω ≤
2∑
j=1

‖(ρj,h, φj,h)‖ ≤ c
S̃h
‖φ

D
‖1/2,Γ . (4.15)

Proof. Given wh ∈ Hu
h , we proceed analogously to the proof of Lemma 3.3 and utilize the continuity

bound of cj (cf. (3.7)), and the discrete inf-sup condition of Aj (4.13), to deduce that for each wh ∈ Hu
h

satisfying ‖wh‖1,Ω ≤ r̃2, with

r̃2 := min
{
r̃1

2, r̃
2
2

}
and r̃j2 :=

γ̃j

2 Rj ‖Q−1
j ‖∞ ‖i4‖

, j ∈ {1, 2} , (4.16)
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Aj,wh (cf. (3.30)) satisfies the discrete inf-sup condition

sup
0 6=(ηj,h,ψj,h)∈Hh

Aj,wh((χj,h, ϕj,h), (ηj,h, ψj,h))

‖(ηj,h, ψj,h)‖
≥ γ̃j

2
‖(χj,h, ϕj,h)‖ ∀ (χj,h, ϕj,h) ∈ Hh . (4.17)

Therefore, owing to the fact that for finite dimensional linear problems, surjectivity and injectivity
are equivalent, we conclude from (4.17) and Theorem 3.1 that for each j ∈ {1, 2} there exists a unique

(ρj,h, φj,h) ∈ Hρ
h ×Hφ

h satisfying

Aj,wh((ρj,h, φj,h), (ηj,h, ψj,h)) = Gj(ηj,h) ∀ (ηj,h, ψj,h) ∈ Hh , (4.18)

which means that (4.6) is well-posed. In addition, proceeding similarly to (3.29) we obtain (4.15),
with c

S̃h
:= max

{
c
S̃1,h

, c
S̃2,h

}
and c

S̃j,h
:= 2CGj/γ̃j , j ∈ {1, 2}, which ends the proof. �

We now proceed to analyze the fixed-point equation (4.8). We begin with the discrete version of
Lemma 3.4, whose proof, being a simple translation of the arguments proving that lemma, is omitted.

Lemma 4.3 Let r̃ ∈ (0, r̃0), with r̃0 := min{r1, r̃2}, r1 as in (3.24) and r̃2 as in (4.16), and let Wr̃

be the bounded subset of Hu
h defined by

Wr̃ :=
{

wh ∈ Hu
h : ‖wh‖1,Ω ≤ r̃

}
. (4.19)

Assume that κ1 and κ2 are taken as in Lemma 3.2, and that the data satisfy

cTh

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
≤ r̃, (4.20)

where cTh := cS max
{

1, c
S̃h

}
. Then Th(Wr̃) ⊆Wr̃.

Next, we address the discrete counterparts of the auxiliary Lemmas 3.5 and 3.6, whose proofs, being
almost verbatim of the continuous ones, are omitted. We just remark that Lemma 4.5 below is derived
using the discrete inf-sup condition (4.13). Thus, we simply state the corresponding results as follows.

Lemma 4.4 Let r̃ ∈ (0, r1) with r1 given as in (3.24). Then, with the same constant CS > 0 from
(3.40), which is independent of r̃, there holds

‖Sh(wh,ϕh)− Sh(w̃h, ϕ̃h)‖1,Ω

≤ 1

‖i4‖ r1
‖Sh(wh,ϕh)‖1,Ω ‖wh − w̃h‖0,4;Ω + CS ‖g‖0,4;Ω ‖ϕh − ϕ̃h‖0,4;Ω

for all (wh,ϕh), (w̃h, ϕ̃h) ∈ Hu
h ×Hφ

h such that ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r̃.

Lemma 4.5 Let r̃ ∈ (0, r̃2) with r̃2 given as in (4.16). Then there holds

‖S̃h(wh)− S̃h(w̃)‖0,4;Ω ≤
1

‖i4‖ r̃2
‖S̃h(wh)‖0,4;Ω ‖wh − w̃h‖0,4;Ω

for all wh, w̃h ∈ Hu
h such that ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r̃.
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As a straightforward consequence of Lemmas 4.4 and 4.5, and the continuous injection i4 of H1(Ω)
into L4(Ω), we can prove the Lipschitz-continuity of the operator Th (cf. Lemma 3.7).

Lemma 4.6 Let r̃ ∈ (0, r̃0), with r̃0 := min{r1, r̃2}, r1 as in (3.24) and r̃2 as in (4.16). Then, with
same constant cTh > 0 from (4.20), for all wh, w̃h ∈Wr̃ (cf. (4.19)) there holds

‖Th(wh)−Th(w̃h)‖1,Ω

≤ cTh
r̃0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
‖wh − w̃h‖1,Ω.

(4.21)

We are now in position of establishing the well-posedness of (4.2).

Theorem 4.7 Assume the same hypothesis of Lemma 4.3 and that the data satisfy

cTh
r̃0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
< 1. (4.22)

Then, the operator Th has a unique fixed point uh ∈ Wr̃ (cf. (4.19)). Equivalently, the coupled

problem (4.2) has a unique solution (σh,uh) ∈ Hσh ×Hu
h and (ρj,h, φj,h) ∈ Hρ

h × Hφ
h, j ∈ {1, 2}, with

uh ∈Wr̃. Moreover, there holds

‖(σh,uh)‖ ≤ cTh

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
(4.23)

and
2∑
j=1

‖(ρj,h, φj,h)‖ ≤ c
S̃h
‖φ

D
‖1/2,Γ. (4.24)

Proof. It follows similarly to the proof of Theorem 3.9. Indeed, we first notice from Lemma 4.3
that Th maps the ball Wr̃ into itself. In turn, it is easy to see from (4.21) (cf. Lemma 4.6) that
Th : Wr̃ → Wr̃ is continuous, and hence the existence result follows from the Brouwer fixed-point
theorem [12, Theorem 9.9-2]. In addition, it is clear that the estimate (4.24) follows from (4.15),
whereas combining (4.9) with (4.15), we obtain (4.23) (cf. (4.20)). On the other hand, the estimate
(4.21) and the assumption (4.22) show that Th is a contraction mapping, which, thanks to the Banach
fixed-point theorem, implies the uniqueness result and concludes the proof. �

4.3 Specific finite element subspaces

In this section, we introduce specific finite element subspaces satisfying (4.1) and the crucial discrete
inf-sup conditions given by hypotheses (H.1) and (H.2). These discrete spaces arise naturally as
consequence of the same analysis developed in [10, 23] and [9, Section 3] (see also [13, Section 5]).
Then, with the same notations from Section 4.1, for each T ∈ Th we let RTk(T ) be the local Raviart–
Thomas element of order k ≥ 0, i.e., RTk(T ) := [Pk(T )]n ⊕ Pk(T ) x, where x := (x1, . . . , xn)t is a
generic vector of Rn and Pk(T ) is the space of polynomials defined on T of degree ≤ k. Then, the
finite element subspaces on Ω are defined as

Hσh :=
{
τ h ∈ H0(div; Ω) : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rn, ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ [Pk+1(T )]n ∀T ∈ Th

}
,

Hρ
h :=

{
ηh ∈ H(div4/3; Ω) : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ L4(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th

}
.

(4.25)
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It is clear from (4.25) that div(Hρ
h) ⊆ Hφ

h, and hence (4.10) becomes

Vh =
{
ηh ∈ Hρ

h : div(ηh) = 0 in Ω
}
.

This fact together with the uniform positiveness of tensors Q−1
j (cf. (2.3)), imply that the bilinear

forms aj (cf. (2.20)) are Vh-elliptic with the same constants αj defined in (3.11), and thus the
assumption (H.1) is trivially satisfied. In turn, we know from [13, Lemma 5.5] (see also [7, Lemma
4.4] or [9, Lemma 3.3] with p = 4/3) that there holds (H.2).

We end this section by collecting next the approximation properties of the finite element subspaces
Hσh , Hu

h , Hρ
h, and Hφ

h (cf. (4.25)), whose derivations can be found in [21], [24], and [9, Section 3.1]
(see also [13, Section 5.5]):

(APσh ) there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each τ ∈
Hl(Ω) ∩H0(div; Ω) with div (τ ) ∈ Hl(Ω), there holds

dist (τ ,Hσh ) := inf
τh∈Hσ

h

‖τ − τ h‖div;Ω ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,Ω

}
.

(APu
h) there exists C > 0, independent of h, such that for each l ∈ (0, k+1], and for each u ∈ Hl+1(Ω),

there holds
dist (v,Hu

h) := inf
vh∈Hu

h

‖v − vh‖1,Ω ≤ C hl ‖v‖l+1,Ω.

(APρh) there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each η ∈ Hl(Ω)
with div(η) ∈Wl,4/3(Ω), there holds

dist (η,Hρ
h) := inf

ηh∈H
ρ
h

‖η − ηh‖div4/3;Ω ≤ C hl
{
‖η‖l,Ω + ‖div(η)‖l,4/3;Ω

}
.

(APφ
h) there exists C > 0, independent of h, such that for each l ∈ (0, k+1], and for each ψ ∈Wl,4(Ω),

there holds
dist (ψ,Hφ

h) := inf
ψh∈Hφh

‖ψ − ψh‖0,4;Ω ≤ C hl ‖φ‖l,4;Ω.

5 A priori error analysis

In this section, we first derive a Céa estimate for our Galerkin scheme with arbitrary finite element
subspaces satisfying the hypothesis stated in Section 4.2. Next, using the specific discrete spaces
stated in Section 4.3, we establish the corresponding rates of convergence. In fact, let (σ,u) ∈
H0(div; Ω)×H1(Ω) and (ρj , φj) ∈ H(div4/3; Ω)× L4(Ω), j ∈ {1, 2}, with u ∈Wr (cf. (3.37)), be the

unique solution of the coupled problem (2.22), and let (σh,uh) ∈ Hσh ×Hu
h and (ρj,h, φj,h) ∈ Hρ

h×Hφ
h,

j ∈ {1, 2}, with uh ∈ Wr̃ (cf. (4.19)), be the unique solution of the discrete coupled problem (4.2).
Then, we are interested in obtaining an a priori estimate for the error

‖(σ,u)− (σh,uh)‖+
2∑
j=1

‖(ρj , φj)− (ρj,h, φj,h)‖.

To this end, we establish next an ad-hoc Strang-type estimate. In what follows, given a subspace Xh

of a generic Banach space (X, ‖ · ‖X), we set for each x ∈ X

dist (x,Xh) := inf
xh∈Xh

‖x− xh‖X .
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Lemma 5.1 Let H be a reflexive Banach space, and let a : H×H→ R be a bounded bilinear form with
induced operator A ∈ L(H,H′), such that a satisfies the hypotheses of Theorem 3.1. Furthermore, let
{Hh}h>0 be a sequence of finite dimensional subspaces of H, and for each h > 0, consider a bounded
bilinear form ah : Hh × Hh → R with induced operator Ah ∈ L(Hh,H

′
h), such that ah|Hh×Hh satisfies

the hypotheses of Theorem 3.1 as well, with constant α̃ independent of h. In turn, given F ∈ H′, and
a sequence of functionals {Fh}h>0, with Fh ∈ H′h for each h > 0, we let u ∈ H and uh ∈ Hh be the
unique solutions, respectively, to the problems

a(u, v) = F (v) ∀ v ∈ H, (5.1)

and
ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh. (5.2)

Then, there holds

‖u− uh‖H ≤ CS,1 dist (u,Hh) + CS,2

{
‖F − Fh‖H′h + ‖a(u, ·)− ah(u, ·)‖H′h

}
, (5.3)

where CS,1 and CS,2 are the positive constants given by

CS,1 :=

(
1 +

2 ‖A‖
α̃

+
‖Ah‖
α̃

)
and CS,2 :=

1

α̃
. (5.4)

Proof. We proceed similarly to the proof of [31, Theorem 11.1]. Indeed, employing the inf-sup condition
of the bilinear form ah (cf. (3.1)), the identities (5.1) and (5.2), and the continuity of A, Ah, F , and
Fh, we obtain

‖u− uh‖H ≤
(

1 +
‖A‖
α̃

)
dist (u,Hh) +

1

α̃

{
‖F − Fh‖H′h + inf

wh∈Hh
‖a(wh, ·)− ah(wh, ·)‖H′h

}
, (5.5)

where

‖a(wh, ·)− ah(wh, ·)‖H′h := sup
06=vh∈Hh

a(wh, vh)− ah(wh, vh)

‖vh‖H
.

Then, inspired by [13, Lemma 6.1], we notice that

a(wh, vh)− ah(wh, vh)

‖vh‖H
=

a(wh, vh)− a(u, vh) + a(u, vh)− ah(u, vh) + ah(u, vh)− ah(wh, vh)

‖vh‖H

≤
(
‖A‖+ ‖Ah‖

)
‖u− wh‖H +

a(u, vh)− ah(u, vh)

‖vh‖H
,

which implies

inf
wh∈Hh

‖a(wh, ·)− ah(wh, ·)‖H′h ≤
(
‖A‖+ ‖Ah‖

)
dist (u,Hh) + ‖a(u, ·)− ah(u, ·)‖H′h . (5.6)

Hence, replacing (5.6) back into (5.5) we obtain (5.3) and conclude the proof. �

In order to apply Lemma 5.1, we now observe that the problems (2.22) and (4.2) can be rewritten
as two pairs of corresponding continuous and discrete formulations, namely

(A+Bu)((σ,u), (τ ,v)) = (FD + Fφ)(τ ,v) ∀ (τ ,v) ∈ H0(div; Ω)×H1(Ω),

(A+Buh)((σh,uh), (τ h,vh)) = (FD + Fφ
h
)(τ h,vh) ∀ (τ h,vh) ∈ Hσh ×Hu

h ,
(5.7)
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and
Aj,u((ρj , φj), (ηj , ψj)) = Gj(ηj) ∀ (ηj , ψj) ∈ H(div4/3; Ω)× L4(Ω),

Aj,uh((ρj,h, φj,h), (ηj,h, ψj,h)) = Gj(ηj,h) ∀ (ηj,h, ψj,h) ∈ Hρ
h ×Hφ

h,
(5.8)

where the forms Aj,u and Aj,uh are defined as in (3.30).

The following lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖.

Lemma 5.2 There exists a positive constant C̃S,1, independent of h, such that

‖(σ,u)− (σh,uh)‖ ≤ C̃S,1

{
dist (σ,Hσh ) + dist (u,Hu

h)
}

+
1

r1
‖u‖1,Ω ‖u− uh‖1,Ω + CS ‖g‖0,4;Ω ‖φ− φh‖0,4;Ω ,

(5.9)

where r1 and CS are defined in (3.24) and (3.40), respectively.

Proof. From (3.25) we know that the bounded bilinear forms A+Bu and A+Buh are elliptic with the
same constant αA

2 . In addition, it is clear that FD + Fφ and FD + Fφ
h

are bounded linear functionals

in H0(div; Ω) ×H1(Ω) and Hσh ×Hu
h , respectively. Then, applying Lemma 5.1 to the context given

by (5.7), we find that

‖(σ,u)− (σh,uh)‖ ≤ C̃S,1

{
dist (σ,Hσh ) + dist (u,Hu

h)
}

+ C̃S,2

{
‖Fφ − Fφ

h
‖(Hσ

h×H
u
h)′ + ‖Bu((σ,u), ·)−Buh((σ,u), ·)‖(Hσ

h×H
u
h)′

}
,

(5.10)

where, according to (5.4), the estimates (3.3), (3.4), and the fact that u ∈Wr,uh ∈Wr̃ (cf. (3.37),
(4.19)), there holds

C̃S,1 := 1 +
2

αA

(
3CA + F ‖K‖∞ ‖i4‖2

(
2 r + r̃

))
and C̃S,2 :=

2

αA
. (5.11)

Next, using the definition of Fϕ (cf. (2.17)) and its continuity bound (cf. (3.9)), and applying Hölder’s
inequality, we readily get

‖Fφ − Fφ
h
‖(Hσ

h×H
u
h)′ ≤ CF ‖g‖0,4;Ω ‖φ− φh‖0,4;Ω. (5.12)

In turn, from the continuity bound of Bw (cf. (3.4)) and the fact that
∣∣|u|− |uh|∣∣ ≤ |u−uh|, it follows

that
‖Bu((σ,u), ·)−Buh((σ,u), ·)‖(Hσ

h×H
u
h)′ ≤ F ‖K‖∞ ‖i4‖2 ‖u‖1,Ω ‖u− uh‖1,Ω. (5.13)

Thus, replacing (5.12) and (5.13) back into (5.10), and using the explicit expression of C̃S,2 (cf. (5.11)),
we find that

‖(σ,u)− (σh,uh)‖ ≤ C̃S,1

{
dist (σ,Hσh ) + dist (u,Hu

h)
}

+
2 F ‖K‖∞ ‖i4‖2

αA
‖u‖1,Ω ‖u− uh‖1,Ω +

2CF
αA
‖g‖0,4;Ω ‖φ− φh‖0,4;Ω,

which, together with the definition of r1 and CS (cf. (3.24) and (3.40)), implies (5.9) and concludes
the proof. �

Next, we have the following result concerning ‖(ρj , φj)− (ρj,h, φj,h)‖.
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Lemma 5.3 There exists a positive constant ĈS,1, independent of h, such that

2∑
j=1

‖(ρj , φj)−(ρj,h, φj,h)‖ ≤ ĈS,1
2∑
j=1

(
dist (ρj ,H

ρ
h)+dist (φj ,H

φ
h)
)

+
c
S̃

r̃2
‖φ

D
‖1/2,Γ‖u−uh‖1,Ω, (5.14)

where c
S̃

is defined at the end of the proof of Lemma 3.3, and r̃2 is given by (4.16).

Proof. We first recall from Sections 3.3 and 4.2 that the forms Aj,u and Aj,uh , j ∈ {1, 2}, satisfy the

hypotheses of Lemma 5.1 on H := H(div4/3; Ω)× L4(Ω) and Hh := Hρ
h × Hφ

h, respectively, the latter

with constant α̃ =
γ̃j
2 (cf. (4.14)). Therefore, applying Lemma 5.1 to the context (5.8), we arrive at

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ ĈjS,1

(
dist (ρj ,H

ρ
h) + dist (φj ,H

φ
h)
)

+ ĈjS,2 ‖Aj,u((ρj , φj), ·)−Aj,uh((ρj , φj), ·)‖H′h ,
(5.15)

where, according to (5.4), the definition of the form Aj,w (cf. (3.30)), the estimates (3.5), (3.6), and
(3.7), and the fact that u ∈Wr,uh ∈Wr̃ (cf. (3.37), (4.19)), there holds

ĈjS,1 := 1 +
2

γ̃j

(
6 + ‖Q−1

j ‖∞
(

3 + Rj ‖i4‖
(
2 r + r̃

)))
and ĈjS,2 :=

2

γ̃j
, j ∈ {1, 2}. (5.16)

Next, in order to bound the last term on the right-hand side of (5.15), we notice that the definition
of the form Aj,w (cf. (3.30)) and the continuity bound of cj (cf. (3.7)), give∣∣Aj,u((ρj , φj), (ηj,h, ψj,h))−Aj,uh((ρj , φj), (ηj,h, ψj,h))

∣∣ =
∣∣cj(u− uh;φj ,ηj,h)

∣∣
≤ Rj ‖Q−1

j ‖∞ ‖i4‖ ‖φj‖0,4;Ω ‖u− uh‖1,Ω ‖(ηj,h, ψj,h)‖ ∀ (ηj,h, ψj,h) ∈ Hh,

which, together with (5.15), the explicit expression of ĈjS,2 (cf. (5.16)) and the bound of ‖φj‖0,4;Ω (cf.
(3.35)), yields

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ ĈjS,1

(
dist (ρj ,H

ρ
h) + dist (φj ,H

φ
h)
)

+
2 Rj ‖Q−1

j ‖∞ ‖i4‖
γ̃j

c
S̃j
‖φj,D‖1/2,Γ ‖u− uh‖1,Ω.

(5.17)

Then, recalling the definitions of c
S̃

and r̃2, it is easy to see that (5.17) implies (5.14) with ĈS,1 :=

max
{
Ĉ1
S,1, Ĉ

2
S,1

}
, thus concluding the proof. �

The required Céa estimate will now follow from (5.9) and (5.14). In fact, we first bound ‖φ−φ
h
‖0,4;Ω

in (5.9) by the right hand side of (5.14). Next, in order to obtain an explicit expression in terms of
data, we bound ‖u‖1,Ω as in (3.44) instead of directly by r, that is

‖u‖1,Ω ≤ cT

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
,

which, together with the fact that CScS̃ and 1/r1, 1/r̃2 are bounded by cT and 1/r̃0, respectively,
allows us to deduce from (5.9) that

‖(σ,u)− (σh,uh)‖ ≤ C̃S,1

{
dist (σ,Hσh ) + dist (u,Hu

h)
}

+ ĈS,1CS ‖g‖0,4;Ω

2∑
j=1

(
dist (ρj ,H

ρ
h) + dist (φj ,H

φ
h)
)

+
cT
r̃0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
‖u− uh‖1,Ω.

(5.18)
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Thus, imposing the term that multiplies ‖u − uh‖1,Ω in (5.18) to be sufficiently small, say ≤ 1/2,
we derive the a priori error estimate for ‖(σ,u)− (σh,uh)‖, which, employed then to bound the last
term on the right-hand side of (5.14), provides the corresponding upper bound for

∑2
j=1 ‖(ρj , φj) −

(ρj,h, φj,h)‖. More precisely, we have proved the following result.

Theorem 5.4 Assume that the data uD, φ
D

, and φ
r

satisfy

cT
r̃0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φ

D
‖1/2,Γ + ‖φ

r
‖0,4;Ω

)}
≤ 1

2
.

Then, there exists a positive constant C, independent of h, but depending on ν, F, Rj , ‖i4‖, ‖K‖∞,
‖Q−1

j ‖∞, ‖g‖0,4;Ω, αA, γj , γ̃j, j ∈ {1, 2}, and the datum φ
D

, such that

‖(σ,u)− (σh,uh)‖+
2∑
j=1

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ C

{
dist (σ,Hσh ) + dist (u,Hu

h) +

2∑
j=1

(
dist (ρj ,H

ρ
h) + dist (φj ,H

φ
h)
)}

.

(5.19)

Now, in order to approximate the pressure, the velocity gradient, and the heat and diffusive vectors,
we propose, motivated by (2.7) and (2.9), the expressions

ph = − 1

n
tr (σh),

(
∇u
)
h

=
1

ν
σd
h, and ρ̃j,h = ρj,h + Rj φj,h uh, j ∈ {1, 2} , (5.20)

respectively, with (σh,uh) ∈ Hσh ×Hu
h and (ρj,h, φj,h) ∈ Hρ

h×Hφ
h, j ∈ {1, 2}, being the unique solution

of the discrete problem (4.2). The corresponding error estimates are established in the following lemma.

Lemma 5.5 Assume that the hypotheses of Theorem 5.4 hold. Let p, ∇u, and ρ̃j, j ∈ {1, 2}, be given
by (2.7)–(2.9). In addition, let ph,

(
∇u
)
h
, and ρ̃j,h, j ∈ {1, 2}, be the discrete counterparts introduced

in (5.20). Then, there exists a positive constant C, independent of h, but depending on ν, F, Rj , ‖i4‖,
‖K‖∞, ‖Q−1

j ‖∞, ‖g‖0,4;Ω, αA, γj , γ̃j, j ∈ {1, 2}, and the datum φ
D

, such that

‖p− ph‖0,Ω +
∥∥∇u−

(
∇u
)
h

∥∥
0,Ω

+
2∑
j=1

‖ρ̃j − ρ̃j,h‖0,Ω

≤ C

{
dist (σ,Hσh ) + dist (u,Hu

h) +
2∑
j=1

(
dist (ρj ,H

ρ
h) + dist (φj ,H

φ
h)
)}

.

Proof. It follows from (2.9) and (5.20), adding and subtracting Rj φj uh, that

ρ̃j − ρ̃j,h = (ρj − ρj,h) + Rj φj (u− uh) + Rj (φj − φj,h) uh, j ∈ {1, 2}.

Next, employing the triangle and Hölder inequalities, and the continuous injection i4 of H1(Ω) into
L4(Ω), we find that

‖ρ̃j − ρ̃j,h‖0,Ω ≤ ‖ρj − ρj,h‖0,Ω + Rj ‖i4‖
(
‖φj‖0,4;Ω ‖u− uh‖1,Ω + ‖uh‖1,Ω ‖φj − φj,h‖0,4;Ω

)
,
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which, together with the estimate (3.35) bounding ‖φj‖0,4;Ω and the fact that uh ∈Wr̃ (cf. (4.19)), im-
plies that there exists a positive constant C, depending only on ν, F, Rj , ‖i4‖, ‖K‖∞, ‖Q−1

j ‖∞, αA, γ̃j ,
j ∈ {1, 2}, and the datum φ

D
, all of them independent of h, such that

‖p− ph‖0,Ω +
∥∥∇u−

(
∇u
)
h

∥∥
0,Ω

+

2∑
j=1

‖ρ̃j − ρ̃j,h‖0,Ω

≤ C

{
‖(σ,u)− (σh,uh)‖+

2∑
j=1

‖(ρj , φj)− (ρj,h, φj,h)‖

}
.

Then, the result is a straightforward consequence of the foregoing inequality and Theorem 5.4. �

Finaly, we complete our a priori error analysis with the corresponding rates of convergence of our
Galerkin scheme (4.2), for which we supose in the sequel that the finite element subspaces specified
in Section 4.3 are employed.

Theorem 5.6 In addition to the hypotheses of Theorems 3.9, 4.7 and 5.4, assume that there exists
l ∈ (0, k+ 1] such that σ ∈ Hl(Ω)∩H0(div; Ω), div(σ) ∈ Hl(Ω), u ∈ Hl+1(Ω), and such that for each
j ∈ {1, 2}, ρj ∈ Hl(Ω), div(ρj) ∈Wl,4/3(Ω), and φj ∈Wl,4(Ω). Then, there exists C > 0, independent
of h, such that

‖(σ,u)− (σh,uh)‖+
2∑
j=1

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ C hl

{
‖σ‖l,Ω + ‖div(σ)‖l,Ω + ‖u‖l+1,Ω +

2∑
j=1

(
‖ρj‖l,Ω + ‖div(ρj)‖l,4/3;Ω + ‖φj‖l,4;Ω

)}
.

Proof. It follows from the Céa estimate (5.19) and the approximation properties (APσh ), (APu
h), (APρh)

and (APφ
h) specified in Section 4.3. �

Consequently, from Lemma 5.5 and Theorem 5.6 we obtain the optimal convergence of the post-
processed unknowns introduced in (5.20).

Lemma 5.7 Let (σ,u) ∈ H0(div; Ω) × H1(Ω) and (ρj , φj) ∈ H(div4/3; Ω) × L4(Ω), j ∈ {1, 2}, be
the unique solution of the continuous problem (2.22), and let p,∇u, and ρ̃j given by (2.7)–(2.9). In
addition, let ph,

(
∇u
)
h
, and ρ̃j,h be the discrete counterparts introduced in (5.20). Assume that the

hypotheses of Theorem 5.6 hold. Then, there exists C > 0, independent of h, such that

‖p− ph‖0,Ω +
∥∥∇u−

(
∇u
)
h

∥∥
0,Ω

+

2∑
j=1

‖ρ̃j − ρ̃j,h‖0,Ω

≤ C hl

{
‖σ‖l,Ω + ‖div(σ)‖l,Ω + ‖u‖l+1,Ω +

2∑
j=1

(
‖ρj‖l,Ω + ‖div(ρj)‖l,4/3;Ω + ‖φj‖l,4;Ω

)}
.

6 Numerical results

In this section we present some examples illustrating the performance of our augmented fully-mixed
finite element scheme (4.2), and confirming the rates of convergence provided by Theorem 5.6 and
Lemma 5.7. Our implementation is based on a FreeFem++ code [25], in conjunction with the direct
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linear solver UMFPACK [17]. A Newton–Raphson algorithm with a fixed tolerance tol = 1E− 6 is used
for the resolution of the nonlinear problem (4.2). As usual, the iterative method is finished when the
relative error between two consecutive iterations of the complete coefficient vector, namely coeffm+1

and coeffm, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol

where ‖ ·‖`2 is the standard `2-norm in RDOF with DOF denoting the total number of degrees of freedom
generated by the finite element subspaces. The condition of zero-average pressure (translated in terms
of the trace of σ) is imposed through a real Lagrange multiplier.

Errors between exact and approximate solutions are denoted as

e(σ) = ‖σ − σh‖div;Ω, e(u) = ‖u− uh‖1,Ω, e(p) = ‖p− ph‖0,Ω, e(∇u) =
∥∥∇u−

(
∇u
)
h

∥∥
0,Ω
,

e(ρj) = ‖ρj − ρj,h‖div4/3;Ω, e(φj) = ‖φj − φj,h‖0,4;Ω, e(ρ̃j) = ‖ρ̃j − ρ̃j,h‖0,Ω, j ∈ {1, 2}.

In turn, we let r(·) be their corresponding rates of convergence, that is

r(�) :=
log(e(�)/e′(�))

log(h/h′)
, for each � ∈

{
σ,u, p,∇u,ρj , φj , ρ̃j

}
,

where h and h′ denote two consecutive meshsizes with errors e(�) and e′(�), respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we choose the parameters ν = 1, % = 1, R1 = 1, R2 = 1, and φ

r
= (0, 0). In turn, and

according to (3.36), the stabilization parameters are taken as κ1 = ν and κ2 = ν/2. In addition, in the
first two examples the tensors K,Q1, and Q2 are taken as the identity matrix I, which satisfy (2.3).

Example 1: 2D domain with different values of the parameter F

In this first example, we corroborate the rates of convergence in a two dimensional domain and also
study the performance of the numerical method with respect to the number of Newton iterations
required to achieve certain tolerance when different values of the parameter F are given. The domain
is the square Ω = (−1, 1)2. We consider the potential type gravitational acceleration g = (0,−1)t, and
the data f(φ) given in (2.2) is adjusted so that the exact solution is given by the smooth functions

u(x1, x2) =

(
sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2),

φ1(x1, x2) = 0.5 + 0.5 cos(x1x2), φ2(x1, x2) = 0.1 + 0.3 exp(x1x2).

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
6.1 and 6.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations when F = 10. Notice that we are able not only to approximate the
original unknowns but also the pressure field, the velocity gradient, and the heat and diffusive vectors
through the formulae (5.20). The results confirm that the optimal rates of convergence O(hk+1),
provided by Theorem 5.6 and Lemma 5.7 are attained for k = 0, 1. The Newton method exhibits
a behavior independent of the meshsize, converging in five iterations in all cases. In Figure 6.1 we
display the solution obtained with the fully-mixed RT1−P2−RT1−Pdc

1 −RT1−Pdc
1 approximation

with 1, 176, 134 DOF, where Pdc
1 denotes the piecewise linear discontinuous finite element.
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On the other hand, in Table 6.3 we show the behaviour of the iterative method with polynomial
degree k = 0, as a function of the parameter F ∈ {100, 101, 102, 103, 104, 105}, considering different
meshsizes h, and a tolerance tol = 1E − 06. Here we observe that the higher the parameter F the
higher the number of Newton iterations required.

Example 2: Convergence against smooth exact solutions in a 3D domain

In our second example, we consider the cube domain Ω = (0, 1)3. The solution is given by

u(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x1, x2, x3) = cos(πx1) exp(x2 + x3),

φ1(x1, x2, x3) = 0.5 + 0.5 cos(x1x2x3), φ2(x1, x2, x3) = 0.1 + 0.3 exp(x1x2x3).

Similarly to the first example, we consider F = 10 and the potential type gravitational acceleration
g = (0, 0,−1)t, whereas the data f(φ) is computed from (2.2) using the above solution. The numerical
solutios are shown in Figure 6.2, which were built using the fully-mixed RT0−P1−RT0−P0−RT0−
P0 approximation with 2, 497, 827 DOF. The convergence history for a set of quasi-uniform mesh
refinements using k = 0 is shown in Table 6.4. Again, the mixed finite element method converges
optimally with order O(h), as it was proved by Theorem 5.6 and Lemma 5.7.

Example 3: Flow through porous media with channel network

In our last example, inspired by [2, Section 5.2.4], we focus on flow through porous media with channel
network. We consider the square domain Ω = (−1, 1)2 with an internal channel network denoted as
Ωc, which is described in the first plot of Figure 6.3. We consider the coupling of the Brinkman–
Forchheimer and double-diffusion equations (2.8) in the whole domain Ω with Q1 = 0.5 I,Q2 = 0.125 I,
but with different values of the parameters F and K = α I for the interior and the exterior of the
channel, that is,

F =

{
10 in Ωc

1 in Ω \ Ωc
and α =

{
1 in Ωc

0.001 in Ω \ Ωc
.

The parameter choice corresponds to increased inertial effect (F = 10) in the channel and a high
permeability (α = 1), compared to reduced inertial effect (F = 1) in the porous media and low
permeability (α = 0.001). In addition, the boundaries conditions are

u · n = 0.2, u · t = 0 on Γleft, σ n = 0 on ∂Ω \ Γleft,

φ1 = 0.3 on Γleft, φ1 = 0 on Γright, ρ1 · n = 0 on Γtop ∪ Γbottom,

φ2 = 0.2 on Γleft, φ2 = 0 on Γright, ρ2 · n = 0 on Γtop ∪ Γbottom.

In particular, the first row of boundary equations corresponds to inflow on the left boundary and
zero stress outflow on the rest of the boundary. Notice that our analysis can be extended to this new
boundary conditions after slight modifications. In Figure 6.3 we display the computed magnitude of the
pseudostress tensor component, velocity, velocity gradient component, pseudoheat and pseudodiffusive
vectors, and the temperature and concentration fields, which were built using the fully-mixed RT0 −
P1−RT0−P0−RT0−P0 approximation on a mesh with 27, 287 triangle elements (actually representing
257, 284 DOF). As expected, we observe faster flow through the channel network, with a significant
velocity gradient across the interface between the channel and the porous media. The pseudostress is
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more diffused, since it includes the pressure field. The temperature is higher on the left of the boundary
and goes decaying to the right of the domain. Notice that both the pseudoheat and pseudodiffusive
vectors are higher in the channel. This example illustrates the ability of the coupling of the Brinkman–
Forchheimer and double-diffusion equations to handle heterogeneous media using spatially varying
parameters. The example is particularly challenging, due to the strong jump discontinuity of the
parameters across the two regions, which are handled very well by our numerical method.

DOF h iter e(σ) r(σ) e(u) r(u) e(p) r(p) e(∇u) r(∇u)

374 0.7454 5 15.8084 – 3.8883 – 1.9479 – 2.8877 –
1556 0.3667 5 7.0304 1.142 1.8380 1.056 0.6651 1.515 1.3648 1.056
5666 0.1971 5 3.5383 1.106 0.9590 1.048 0.3186 1.186 0.6954 1.086

22022 0.1036 5 1.7561 1.090 0.4756 1.091 0.1528 1.143 0.3522 1.058
87692 0.0554 5 0.8814 1.099 0.2385 1.101 0.0759 1.115 0.1754 1.112

353456 0.0284 5 0.4373 1.051 0.1182 1.052 0.0367 1.089 0.0865 1.059

e(ρ1) r(ρ1) e(φ1) r(φ1) e(ρ2) r(ρ2) e(φ2) r(φ2) e(ρ̃1) r(ρ̃1) e(ρ̃2) r(ρ̃2)

0.9428 – 0.0453 – 0.5352 – 0.0652 – 0.5526 – 0.3243 –
0.4170 1.150 0.0200 1.152 0.2376 1.145 0.0324 0.986 0.3640 0.589 0.1859 0.784
0.2173 1.050 0.0109 0.976 0.1200 1.100 0.0177 0.975 0.2056 0.920 0.1010 0.983
0.1076 1.094 0.0057 1.007 0.0603 1.071 0.0094 0.991 0.1038 1.064 0.0512 1.059
0.0544 1.086 0.0029 1.090 0.0302 1.103 0.0049 1.036 0.0528 1.076 0.0259 1.084
0.0270 1.051 0.0014 1.046 0.0149 1.057 0.0024 1.087 0.0263 1.049 0.0129 1.048

Table 6.1: Example 1, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully mixed RT0 − P1 − RT0 − P0 − RT0 − P0 approximation for the
coupling of the Brinkman–Forchheimer and double-diffusion equations with F = 10.
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