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Abstract
In this work we present a new mixed finite element method for a class of natural convection models
describing the behavior of non-isothermal incompressible fluids subject to a heat source. More
precisely, we consider a system based on the coupling of the steady-state equations of momentum
(Navier-Stokes) and thermal energy by means of the Boussinesq approximation. Our approach is
based on the introduction of a modified pseudostress tensor depending on the pressure, and the
diffusive and convective terms of the Navier–Stokes equations for the fluid and a vector unknown
involving the temperature, its gradient and the velocity. The introduction of these further unknowns
lead to a mixed formulation where the aforementioned pseudostress tensor and vector unknown,
together with the velocity and the temperature, are the main unknowns of the system. Then the
associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for
the pseudostress tensor and the vector unknown, and discontinuous piece-wise polynomial elements
of degree k for the velocity and temperature. With this choice of spaces, both, momentum and
thermal energy, are conserved if the external forces belong to the velocity and temperature discrete
spaces, respectively, which constitutes one of the main feature of our approach. We employ the
Banach–Nečas–Babuška and Banach’s fixed point theorems to prove unique solvability for both, the
continuous and discrete problems. We provide the convergence analysis and particularly prove that
the error decay with optimal rate of convergence. Further variables of interest, such as the fluid
pressure, the fluid vorticity, the fluid velocity gradient, and the heat-flux can be easily approximated
as a simple postprocess of the finite element solutions with the same rate of convergence. Finally,
several numerical results illustrating the performance of the method are provided.
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1 Introduction

The motion of a liquid or gas, generated by some parts of the fluid being heavier than other parts, or in
other words, produced by density differences as, for example, when a liquid in a vessel is heated from
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below, is a process known as natural convection. Different from what happens in forced convection,
where the fluid flow is driven by a external source (like a suction device or a fan), the driving force is
gravity and creates a circulating flow (convection). For several phenomena in nature and industry, in
particular when the fluid behavior depend solely on the temperature of the fluid and density differences
can be ignored except where they appear in terms multiplied by the acceleration due to gravity, such
as in oceanic circulation, central heating and dense gas dispersion, the problem can be described
by a system of equations commonly known as Boussinesq model, which consists in a coupling of
the Navier-Stokes and heat equations, coupled by means of the so called Boussinesq approximation.
More precisely, the stationary Boussinesq problem is a system of equations where the incompressible
Navier–Stokes equation:

−ν∆u+ (∇u)u+∇p− θ g = 0 in Ω, div u = 0 in Ω,

u = 0 on Γ,

∫
Ω
p = 0,

(1.1)

is coupled with the convection-diffusion equation:

− κ∆ θ + u · ∇θ = 0 in Ω, θ = θD on ΓD, κ∇θ · n = 0 on ΓN, (1.2)

where Ω is a bounded domain in Rn, n ∈ {2, 3}, with polyhedral boundary Γ. Above, the unknowns
are the velocity u, the pressure p and the temperature θ of the fluid occupying the region Ω, and the
given data are the fluid viscosity ν > 0, the thermal conductivity κ > 0, the external force per unit
mass g ∈ L2(Ω), and the boundary temperature θD ∈ H1/2(ΓD).

Recently, in the literature it can observed an increasing interest in developing new numerical
methods to approximate the solution of (1.1)-(1.2), motivated by the diverse applications of this
coupled model (as those already mentioned above), and also by the increasing need of simpler,
more accurate, and more efficient procedures to solve it. For instance, primal and mixed-type nu-
merical formulations have been already considered in several works over the last decades (see, e.g.
[6, 12, 21, 19, 16, 18, 24, 28, 27, 29, 30, 32, 33], respectively, and the references therein). The above
list includes approaches with constant and temperature-dependent parameters as well as the steady-
state and evolutive cases. In particular, in the context of dual-mixed formulations for (1.1)-(1.2), in
[2] and [18] have been introduced augmented mixed formulations for the Boussinesq problem with
temperature-dependent and constant viscosity, respectively. In both cases, the analysis is based on
the introduction of a pseudostress tensor relating the diffusive and convective terms with the pressure
and it is proved optimal convergence. In turn, in [19] and [15] the authors explore new numerical
schemes for (1.1)-(1.2) considering constant (in [19]) and temperature-dependent viscosity (in [15]).
There the authors introduce an alternative pseudostress tensor which allows them to derive a vari-
ational formulation with a skew-symmetric convective term. In this way, without augmenting the
formulation as in [2] and [18], it is proved well-posedness and optimal convergence at the cost of not
being able to utilize low order elements (Raviart-Thomas spaces of order k ≥ n − 1). Finally, the
gradient of the velocity and the temperature are introduced in [24] to obtain a quasi-optimal mixed
finite element method to approximate the solution of (1.1)-(1.2).

When the equations to be solved are conservation laws, specifically, conservation of mass, conser-
vation of linear momentum, and conservation of energy as it is in this case, it is always desirable to
employ numerical schemes respecting these laws. In this direction, in [1, 27] have been proposed two
mass-conservative schemes to approximate the solution of the Boussinesq problem. In [27] the conser-
vation of mass is numerically attained by utilizing the exactly divergence-free discontinuous Galerkin
(DG) method proposed in [14] (see also [13]) for the discretization of fluid-flow problems. Later on,
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in [1] the authors consider a low order stabilized numerical scheme to discretize the fluid-flow equa-
tion and obtain the desired mass-conservative scheme. We emphasize that both works consider the
temperature-dependent parameter case. We emphasize also that [27] has been replicated in [28] and
[8] for the Boussinesq model with constant parameters and for double-diffusion equations in porous
media, respectively.

Now, for flow problems in general, if the intention is to conserve momentum, probably one of the
classical approaches to do that is the discretization by means of mixed finite element methods. In
fact, since the equilibrium equation is discretized at the same time with the constitutive equation, by
construction, they naturally conserve momentum. This is the case, for instance, of the pseudostress-
based mixed method for the Navier-Stokes equation introduced in [9]. There, considering a non-
standard mixed formulation posed in Banach spaces, it is proposed a new dual-mixed method for
the Navier-Stokes problem where the pseudostress and the velocity are approximated using Raviart-
Thomas elements of order k and discontinuous piecewise polynomials of degree k, respectively.

Going back to the Boussinesq equations, we observe that the mixed-type approaches [2] and [18] do
not conserve momentum nor thermal energy because of the augmentation of the mixed formulation.
The same lack of conservation of momentum and thermal energy can be observed in [19], [15] and [24]
precisely because of the introduction of the aforementioned alternative pseudostress tensor (for [19],
[15]) and the gradient of the velocity and the temperature (in [24]) as further unknowns.

Our main goal in this work is to extend the works [2, 18, 19, 15, 24] by introducing a new fully-
mixed finite element method for the coupled system (1.1)-(1.2), allowing conservation of momentum
and thermal energy. The latter is achieved by employing the pseudostress-based mixed formulation
introduced in [9] for (1.1) and a similar approach for (1.2) based on the introduction of an additional
vector unknown relating the gradient of the temperature with the convective term. In this way, the
aforementioned pseudostress and vector unknowns, together with the velocity and the temperature,
become the resulting unknowns of the coupled problem. As for the numerical scheme, the continuous
problem is discretized by using a conforming scheme defined by Raviart-Thomas elements of order k
for the pseudostress and vector unknowns and discontinuous piece-wise polynomials of degree k for the
velocity and temperature. Since the resulting formulation is a nonlinear problem posed in nonstandard
Banach spaces (due to the convective terms), for both, the continuous and discrete problems, we make
use of the Banach–Nečas–Babuška and Banach’s fixed point theorems to prove unique solvability.
In addition, we show that the error decays with optimal rate of convergence. Further variables of
interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily
approximated as a simple postprocess of the finite element solution with the same rate of convergence.

The rest of this work is organized as follows. In Section 2, the fully-mixed formulation is proposed.
Then, in Section 3 the well-posedness of the continuous problem is proved by means of the Banach–
Nečas–Babuška and Banach’s fixed point theorems. A similar argument is employed in Section 4,
to prove the well-posedness of the Galerkin scheme. The corresponding a priori error estimates are
derived in Section 5 and finally in Section 6 we present some numerical examples to validate the
theoretical results and illustrate the good performance of our mixed finite element method.

We end this section by introducing some notation that will be used throughout the paper. Let
us denote by Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ. Standard
notations will be adopted for Lebesgue spaces Lp(Ω), with p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with
r ≥ 0, endowed with the norms ∥ · ∥Lp(Ω) and ∥ · ∥W r,p(Ω), respectively. Note that W 0,p(Ω) = Lp(Ω)
and if p = 2, we write Hr(Ω) in place of W r,2(Ω), with the corresponding Lebesgue and Sobolev norms
denoted by ∥ · ∥0,Ω and ∥ · ∥r,Ω, respectively. We also write | · |r,Ω for the Hr-seminorm. In addition,
H1/2(Γ) is the spaces of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With ⟨·, ·⟩ we
denote the corresponding product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will
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denote the corresponding vectorial and tensorial counterparts of the generic scalar functional space S.
In addition, we will denote by ∥(u, v)∥ := ∥(u, v)∥U×V := ∥u∥U + ∥v∥V the norm on the product space
U × V .

As usual I stands for the identity tensor in Rn×n, and | · | denotes the Euclidean norm in Rn. Also,
for any vector fields v = (vi)i=1,n and w = (wi)i=1,n we set the gradient, divergence, and tensor
product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr (τ ) I.

We also recall the Hilbert space

H(div ; Ω) :=
{
z ∈ L2(Ω) : div z ∈ L2(Ω)

}
,

with norm ∥z∥2div ;Ω := ∥z∥20,Ω + ∥div z∥20,Ω, and introduce the tensor version of H(div ; Ω) given by

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

whose norm will be denoted by ∥ · ∥div;Ω. Finally, given p > 2n
n+2 , in what follows we will also employ

the non-standard Banach space H(divp ,Ω) defined by

H(divp ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ Lp(Ω)

}
,

endowed with the norm
∥τ∥divp ;Ω :=

(
∥τ∥20,Ω + ∥div τ∥2Lp(Ω)

)1/2
.

Finally, for any scalar function v, we define the sign function sgn, given by

sgn(v) :=

{
1 if v ≥ 0,
−1 if v < 0,

and observe that there holds v sgn(v) = |v|.

2 The continuous weak formulation

In this section we derive the weak formulation for (1.1)-(1.2) which will allow us to propose later on
our conforming scheme preserving linear momentum and thermal energy. To that end, and similarly
to [9] and [18] (see also [11]) we introduce the tensor and vector variables

σ := ν∇u− (u⊗ u)− p I in Ω,

and
ρ := κ∇θ − θ u in Ω ,
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and utilize the incompressibility condition div u = tr (∇u) = 0 to rewrite the systems (1.1) and (1.2),
respectively as the following equivalent first-order set of equations (see [9] and [18] for details):

1

ν
σd +

1

ν
(u⊗ u)d = ∇u in Ω, divσ + θ g = 0 in Ω,

p = − 1

n
tr (σ + u⊗ u) in Ω, u = 0 on Γ,

∫
Ω
tr (σ + u⊗ u) = 0,

(2.1)

and
κ−1ρ+ κ−1θ u = ∇θ in Ω, div ρ = 0 in Ω,

θ = θD on ΓD, ρ · n = 0 on ΓN.
(2.2)

Note that the third equation in (2.1) allows us to eliminate the pressure p from the system (which
anyway can be approximated later on through a post-processing procedure), whereas the last equation
takes care of the requirement that

∫
Ω
p = 0.

Now, to derive our variational formulation, we begin by proceeding analogously to [9] for the first
and second equations of (2.1), that is, we multiply the first equation of (2.1) by τ ∈ H(div4/3 ; Ω),
integrate by parts, employ the identity σd : τ = σd : τ d and the Dirichlet boundary condition u = 0
on Γ, and test the second equation of (2.1) by v ∈ L4(Ω), to obtain

1

ν

∫
Ω
σd : τ d +

∫
Ω
u · divτ +

1

ν

∫
Ω
(u⊗ u)d : τ = 0 ∀ τ ∈ H(div4/3 ; Ω), (2.3)

and ∫
Ω
v · divσ +

∫
Ω
θ g · v = 0 ∀v ∈ L4(Ω). (2.4)

Next, for (2.2) we proceed similarly to (2.3)–(2.4). In fact, we define the Banach space

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
,

and then, multiplying the first equation of (2.2) by η ∈ H and integrating by parts, we get

κ−1

∫
Ω
ρ · η +

∫
Ω
θ div η + κ−1

∫
Ω
θ u · η = ⟨η · n, θD⟩ΓD

∀η ∈ H. (2.5)

Observe that, similarly to [10, eq. (4.3)], it can be seen that for all η ∈ H, η ·n|ΓD
∈ H−1/2(ΓD), thus

the term ⟨η · n, θD⟩ΓD
is well defined.

In turn, the second equation of (2.2) is imposed weakly as∫
Ω
ψ divρ = 0 ∀ψ ∈ L4(Ω). (2.6)

Notice that since u ∈ L4(Ω) and since the term
∫
Ω
ρ · η is well defined if ρ,η ∈ L2(Ω), the third term

in the left-hand side of (2.5) forces θ, and consequently the test function ψ, to live in L4(Ω). This fact
suggested the introduction of the space H for the unknown ρ and test η.

According to the above, at first we are interested in finding σ ∈ H(div4/3 ; Ω), u ∈ L4(Ω), ρ ∈ H

and θ ∈ L4(Ω), satisfying (2.3)–(2.6) and
∫
Ω
tr (σ + u⊗ u) = 0.
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Now, let us define the space

H0(div4/3; Ω) :=

{
τ ∈ H(div4/3; Ω) :

∫
Ω
tr τ = 0

}
,

and recall that there holds (see e.g. [9, Section 3])

H(div4/3; Ω) = H0(div4/3; Ω)⊕ P0(Ω) I, (2.7)

where P0(Ω) is the space of constant polynomials on Ω. More precisely, each τ ∈ H(div4/3; Ω) can be
decomposed uniquely as:

τ = τ 0 + c I, with τ 0 ∈ H0(div4/3; Ω) and c :=
1

n |Ω|

∫
Ω
tr τ ∈ R. (2.8)

Then, if we define the tensor
σ0 := σ +

(
1

n|Ω|

∫
Ω
tr (u⊗ u)

)
I, (2.9)

it follows that σ satisfies
∫
Ω
tr (σ+u⊗u) = 0 if and only if σ0 ∈ H0(div4/3; Ω). Moreover, from (2.7)

it can be readily seen that equations (2.3) and (2.4) can be rewritten in terms of σ0 as follows

1

ν

∫
Ω
σd
0 : τ d +

∫
Ω
u · divτ +

1

ν

∫
Ω
(u⊗ u)d : τ = 0 ∀ τ ∈ H0(div4/3 ; Ω), (2.10)

and ∫
Ω
v · divσ0 +

∫
Ω
θ g · v = 0 ∀v ∈ L4(Ω). (2.11)

Consequently, for the sake of the subsequent analysis we reformulate the system (2.3)–(2.6) considering
σ0 defined in (2.9) as the tensor unknown and the equations (2.10) and (2.11) instead of (2.3) and
(2.4), respectively. More precisely, denoting by

X := H(div4/3; Ω), X0 := X ∩H0(div4/3; Ω), M := L4(Ω) and Q := L4(Ω)

and introducing the forms aF : X × X → R, bF : X × M → R, cF : M × M × X → R, dF : Q × M →
R, aT : H×H → R, bT : H×Q → R, and cT : M×Q×H → R:

aF(σ, τ ) :=
1

ν

∫
Ω
σd : τ d, bF(τ ,v) :=

∫
Ω
v · divτ ,

cF(w;u, τ ) :=
1

ν

∫
Ω
(w ⊗ u)d : τ , dF(θ,v) :=

∫
Ω
θ g · v,

aT(ρ,η) := κ−1

∫
Ω
ρ · η, bT(η, θ) :=

∫
Ω
θ div η,

cT(w; θ,η) := κ−1

∫
Ω
θw · η,

(2.12)

and the functional FT ∈ H′:
FT(η) := ⟨η · n, θD⟩ΓD

, (2.13)
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we arrive at our fully-mixed variational formulation: Find (σ,u,ρ, θ) ∈ X0 ×M×H×Q, such that:

aF(σ, τ ) + bF(τ ,u) + cF(u;u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) + dF(θ,v) = 0 ∀v ∈ M,

aT(ρ,η) + bT(η, θ) + cT(u; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q,

(2.14)

where, for the sake of simplicity, the subscript 0 from the new unknown σ0 has been dropped.

Remark 2.1 We observe here that, according to the third equation of (2.1) and the identity (2.9), the
pressure can be recovered in terms of the pseudostress σ ∈ X0 and the velocity u ∈ M, as follows

p = − 1

n

(
tr (σ) + tr (u⊗ u)− 1

|Ω|

∫
Ω
tr (u⊗ u)

)
. (2.15)

Moreover, one can compute further variables of interest, such as the shear-stress tensor σ̃ := ν (∇u+

(∇u)t)−p I, the vorticity ω :=
1

2
(∇u−(∇u)t), the velocity gradient ∇u and the heat-flux ρ̃ := −κ∇θ,

with the following post-processing formulas

σ̃ = σd + (u⊗ u)d + σt + u⊗ u−
(

1

n|Ω|

∫
Ω
tr (u⊗ u)

)
I,

ω =
1

2 ν

(
σ − σt

)
,

∇u =
1

ν

(
σd + (u⊗ u)d

)
,

ρ̃ = −(ρ+ θ u).

(2.16)

3 Analysis of the coupled problem

In this section we combine the classical Banach–Nečas–Babuška and Banach fixed-point theorems to
prove the well-posedness of (2.14) under a suitable smallness assumption on the data. We begin by
establishing the stability properties of the forms involved.

3.1 Stability properties

We start by recalling the well-known Hölder inequality∫
Ω
|fg| ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω), ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with 1

p
+

1

q
= 1. (3.1)

In turn, we recall that H1(Ω) is continuously embedded into Lp(Ω) for p ≥ 1 if n = 2 or p ∈ [1, 6] if
n = 3. More precisely, we have the following inequality

∥w∥Lp(Ω) ≤ CS ∥w∥1,Ω ∀w ∈ H1(Ω), (3.2)

with CS > 0 depending only on |Ω| and p (see [31, Theorem 1.3.4]). Then, owing to the Hölder
inequality (3.1) and simple computations, we deduce that the forms aF, bF, cF, dF, aT, bT and cT (cf.
(2.12)) are bounded: ∣∣aF(σ, τ )∣∣ ≤ 1

ν
∥σ∥X∥τ∥X,

∣∣bF(τ ,v)∣∣ ≤ ∥τ∥X∥v∥M, (3.3)
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∣∣cF(w;v, τ )
∣∣ ≤ 1

ν
∥w∥M∥v∥M∥τ∥X,

∣∣dF(θ,v)∣∣ ≤ ∥g∥0,Ω∥θ∥Q∥v∥M, (3.4)

∣∣aT(ρ,η)∣∣ ≤ 1

κ
∥ρ∥H∥η∥H,

∣∣bT(η, ψ)∣∣ ≤ ∥η∥H∥ψ∥Q, (3.5)

∣∣cT(w;ψ,η)
∣∣ ≤ 1

κ
∥w∥M∥ψ∥Q∥η∥H. (3.6)

On the other hand, analogously to [9, Lemma 3.5], we observe that the functional FT (cf. (2.13)) is
bounded ∣∣FT(η)∣∣ ≤ CF ∥θD∥1/2,ΓD

∥η∥H ∀η ∈ H, (3.7)
with CF a positive constant depending on CS (cf. (3.2)).

Now, we let V and V be the kernel of bF and bT, respectively, that is

V :=
{
τ ∈ X0 : bF(τ ,v) = 0 ∀v ∈ M

}
=

{
τ ∈ X0 : div τ = 0 in Ω

}
, (3.8)

and
V :=

{
η ∈ H : bT(η, ψ) = 0 ∀ψ ∈ Q

}
=

{
η ∈ H : div η = 0 in Ω

}
, (3.9)

and recall from [9, Lemma 3.2] that there exists Cd > 0, such that

Cd ∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div τ∥2
L4/3(Ω)

∀ τ ∈ X0. (3.10)

From (3.10) we easily realize that aF satisfies

aF(τ , τ ) ≥
Cd

ν
∥τ∥2X ∀ τ ∈ V, (3.11)

whereas for aT we proceed similarly to [10, Lemma 2.2] to obtain

aT(η,η) ≥
1

κ
∥η∥2H ∀η ∈ V. (3.12)

Now, we recall from [9, Lemma 3.4] that bF satisfies the inf-sup condition:

sup
0 ̸=τ∈X0

bF(τ ,v)

∥τ∥X
≥ βF ∥v∥M ∀v ∈ M. (3.13)

Similarly, we can obtain an analogous result for bT. This is established in the next lemma.

Lemma 3.1
sup

0 ̸=η∈H

bT(η, ψ)

∥η∥H
≥ βT ∥ψ∥Q ∀ψ ∈ Q. (3.14)

Proof. Given ψ ∈ L4(Ω), we consider the variational problem

−∆z = sgn(ψ)|ψ|3 in Ω, z = 0 on ΓD, ∇z · n = 0 on ΓN,

and proceed analogously to the proof of [10, Lemma 2.1] to obtain the desired result. We omit further
details. □

Using the aforementioned stability properties, particularly (3.3), (3.11) and (3.13), and applying
[23, Proposition 2.36] it is not difficult to see that the bilinear form AF : (X × M) × (X × M) → R
defined by

AF((σ,u), (τ ,v)) := aF(σ, τ ) + bF(τ ,u) + bF(σ,v), (3.15)
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satisfies:
sup

0 ̸=(τ ,v)∈X0×M

AF((ζ, z), (τ ,v))

∥(τ ,v)∥
≥ γF ∥(ζ, z)∥ ∀ (ζ, z) ∈ X0 ×M, (3.16)

where γF is the positive constant defined by

γF := C
min{1, νβF}
νβF + 1

, (3.17)

with C > 0 independent of ν.
Finally, and analogously to (3.16) we can obtain from [23, Proposition 2.36] that estimates (3.5),

(3.12) and (3.14) imply that the bilinear form AT : (H×Q)× (H×Q) → R, defined by
AT((ρ, θ), (η, ψ)) := aT(ρ,η) + bT(η, θ) + bT(ρ, ψ), ∀ (ρ, θ), (η, ψ) ∈ H×Q, (3.18)

satisfies the inf-sup condition:

sup
0 ̸=(η,ψ)∈H×Q

AT((ς, φ), (η, ψ))

∥(η, ψ)∥
≥ γT ∥(ς, φ)∥ ∀ (ς, φ) ∈ H×Q, (3.19)

where γT is the positive constant defined by

γT :=
κβ2T

κ2 β2T + 4κβT + 2
. (3.20)

3.2 The fixed-point operator

Here, proceed similarly to [3] and [17] and describe the fixed-point strategy to be employed next to
prove the well-posedness of (2.14). We start by introducing the associated fixed-point operator. To
that end we define the auxiliary operators R : W×Q ⊆ M×Q → X0×M and S : W ⊆ M → H×Q
given by

R(w, ϕ) := (R1(w, ϕ),R2(w, ϕ)) = (σ,u) ∀ (w, ϕ) ∈ W ×Q, (3.21)
with (σ,u) ∈ X0 ×M satisfying

aF(σ, τ ) + bF(τ ,u) + cF(w;u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) = −dF(ϕ,v) ∀v ∈ M.
(3.22)

and
S(w) := (S1(w),S2(w)) = (ρ, θ) ∀w ∈ W, (3.23)

where (ρ, θ) ∈ H×Q is such that
aT(ρ,η) + bT(η, θ) + cT(w; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q.
(3.24)

Above, W is a bounded set (to be specified next) ensuring the well-definiteness of R and S.
By virtue of the above, by defining the operator J : W ⊆ M → M as

J (w) := R2(w,S2(w)) ∀w ∈ W, (3.25)
it is clear that (σ,u,ρ, θ) is a solution to (2.14) if and only if u satisfies J (u) = u, and consequently,
the well-posedness of (2.14) is equivalent to the unique solvability of the fixed-point problem: Find
u ∈ M such that

J (u) = u. (3.26)

In this way, in what follows we focus on proving the unique solvability of (3.26). Before doing that,
we have to provide a suitable choice of W ensuring the well-definiteness of J .
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3.3 Well-definiteness of J

Since operator J is defined in terms of R and S, first we must study the well-definiteness of both
operators, which evidently is equivalently to study the well-posedness of (3.22) and (3.24). We begin
by analyzing the well-posedness of (3.22).

Lemma 3.2 Let (w, ϕ) ∈ M×Q and assume that

∥w∥M ≤ νγF
2
, (3.27)

with γF the positive constant in (3.17). Then, there exists a unique (σ,u) ∈ X0×W solution to (3.22).
In addition, there holds

∥(σ,u)∥ ≤ 2

γF
∥g∥0,Ω∥ϕ∥Q. (3.28)

Proof. We proceed similarly as in the proof of [9, Theorem 3.6]. In fact, given (w, ϕ) ∈ M × Q, we
begin by defining the bilinear form:

AF,w((σ,u), (τ ,v)) := AF((σ,u), (τ ,v)) + cF(w;u, τ ), (3.29)

where AF and cF are the forms defined in (3.15) and (2.12), respectively, that is

AF,w((σ,u), (τ ,v)) := aF(σ, τ ) + bF(τ ,u) + bF(σ,v) + cF(w;u, τ ).

Then, problem (3.22) can be rewritten equivalently as: Find (σ,u) ∈ X0 ×M, such that

AF,w((σ,u), (τ ,v)) = −dF(ϕ,v) ∀ (τ ,v) ∈ X0 ×M. (3.30)

Therefore, to prove the well-definiteness of R, in the sequel we equivalently prove that problem (3.30)
is well-posed by means of the Banach–Nečas–Babuška theorem (see, for instance [23, Theorem 2.6]).

First, given (ζ, z), (τ̂ , v̂) ∈ X0 ×M with (τ̂ , v̂) ̸= 0, from (3.4) we observe that

sup
0 ̸=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

∥(τ ,v)∥
≥

∣∣AF((ζ, z), (τ̂ , v̂))
∣∣

∥(τ̂ , v̂)∥
−

∣∣cF(w; z, τ̂ )
∣∣

∥(τ̂ , v̂)∥

≥
∣∣AF((ζ, z), (τ̂ , v̂))

∣∣
∥(τ̂ , v̂)∥

− 1

ν
∥w∥M∥(ζ, z)∥,

which together with (3.16) and the fact that (τ̂ , v̂) is arbitrary, implies

sup
0 ̸=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

∥(τ ,v)∥
≥

(
γF −

1

ν
∥w∥M

)
∥(ζ, z)∥.

Hence, using the fact that w ∈ M satisfies (3.27), we easily obtain

sup
0 ̸=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

∥(τ ,v)∥
≥ γF

2
∥(ζ, z)∥ ∀ (ζ, z) ∈ X0 ×M. (3.31)

On the other hand, for a given (ζ, z) ∈ X0 ×M, we observe that

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥ sup
0 ̸=(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z))

∥(τ ,v)∥

= sup
0 ̸=(τ ,v)∈X0×M

AF((τ ,v), (ζ, z)) + cF(w;v, ζ)

∥(τ ,v)∥
,
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which together with (3.4) implies

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥ sup
0̸=(τ ,v)∈X0×M

AF((τ ,v), (ζ, z))

∥(τ ,v)∥
− 1

ν
∥w∥M∥(ζ, z)∥. (3.32)

Therefore, using the fact that AF(·, ·) is symmetric, from (3.16) and (3.32) we obtain

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥
(
γF − 1

ν
∥w∥M

)
∥(ζ, z)∥,

which combined with (3.27), yields

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥
γF
2

∥(ζ, z)∥ > 0 ∀ (ζ, z) ∈ X0 ×M, (ζ, z) ̸= 0. (3.33)

In this way, from (3.31) and (3.33) we obtain that AF,w(·, ·) satisfies the hypotheses of the Banach–
Nečas–Babuška theorem [23, Theorem 2.6], which allows us to conclude the existence of a unique
(σ,u) ∈ X0 ×M solution to (3.22), or equivalently, the existence of a unique (σ,u) ∈ X0 ×M such
that R(w, ϕ) = (σ,u). Finally, from (3.30), using (3.31) with (ζ, z) = (σ,u), the bound of dF (cf.
(3.4)), we readily obtain (3.28), which concludes the proof. □

Next, we provide the well-definiteness of S, or equivalently, the well-posedness of (3.24).

Lemma 3.3 Let w ∈ M and assume that

∥w∥M ≤ κγT
2
. (3.34)

Then, there exists a unique (ρ, θ) ∈ H×Q solution to (3.24). Moreover, there holds

∥(ρ, θ)∥ ≤ 2CF
γT

∥θD∥1/2,ΓD
, (3.35)

with CF and γT the positive constants in (3.7) and (3.20), respectively.

Proof. The proof follows analogously to the proof of Lemma 3.2 (see also [9, Theorem 3.6]). In fact,
by defining the bilinear form:

AT,w((ρ, θ), (η, ψ)) := AT((ρ, θ), (η, ψ)) + cT(w; θ,η), (3.36)

where AT and cT are the forms defined in (3.18) and (2.12) respectively, we observe that problem
(3.24) can be rewritten equivalently as: Find (ρ, θ) ∈ H×Q, such that

AT,w((ρ, θ), (η, ψ)) = F (η) ∀ (η, ψ) ∈ H×Q. (3.37)

In turn, using (3.6), (3.19) and (3.34), it can be easily deduced that AT,w satisfies

sup
0 ̸=(η,ψ)∈H×Q

AT,w((ς, φ), (η, ψ))

∥(η, ψ)∥
≥ γT

2
∥(ς, φ)∥ ∀ (ς, φ) ∈ H×Q, (3.38)

and
sup

(η,ψ)∈H×Q
AT,w((η, ψ), (ς, φ)) > 0 ∀ (ς, φ) ∈ H×Q, (ς, φ) ̸= 0,

which together with the Banach–Nečas–Babuška theorem imply the well–posedness of (3.24). Finally,
from (3.37), applying (3.38) with (ς, φ) = (ρ, θ) and the bound (3.7), we readily obtain (3.35). □
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From Lemmas 3.2 and 3.3 we automatically deduce that if the set W defining R and S (cf. (3.21)
and (3.23)) is such that

W ⊆ B
(
0,
νγF
2

)
∩B

(
0,
κγT
2

)
= B

(
0,
λ

2

)
,

with λ := min
{
ν γF, κ γT

}
, then R and S, thus J (cf. (3.25)), are well-defined. Moreover, from (3.28)

and (3.35) we readily obtain that there hold, respectively

∥R2(w, ϕ)∥M ≤ 2

γF
∥g∥0,Ω∥ϕ∥Q ∀ (w, ϕ) ∈ W ×Q,

and
∥S2(w)∥Q ≤ 2CF

γT
∥θD∥1/2,ΓD

∀w ∈ W, (3.39)

which combined imply

∥J (w)∥M = ∥R2(w,S2(w))∥M ≤ 2

γF
∥g∥0,Ω∥S2(w)∥Q ≤ 4CF

γF γT
∥g∥0,Ω∥θD∥1/2,ΓD

.

As a consequence of the above, if we define the bounded set W as follows

W :=
{
w ∈ M : ∥w∥M ≤ 4CF

γF γT
∥g∥0,Ω∥θD∥1/2,ΓD

}
, (3.40)

and assume that the data satisfies,

8CF
λ γF γT

∥g∥0,Ω∥θD∥1/2,ΓD
≤ 1, (3.41)

then we clearly deduce that the fixed-point operator J is well-defined and satistfies J (W) ⊆ W. The
above is summarize in the following result.

Theorem 3.1 Let define the bounded set W as in (3.40) and assume that the data satisfies (3.41).
Then, J is well-defined and satisfies J (W) ⊆ W.

3.4 Solvability analysis of the fixed-point equation

Here we provide the main result of this section, namely, existence and uniqueness of solution of
problem (2.14). We begin by establishing two lemmas that will allow us to derive conditions under
which operator J is a contraction mapping.

Lemma 3.4 Assume that the data satisfies (3.41). Then, there holds

∥R(w1, ϕ1)−R(w2, ϕ2)∥ ≤ 4

ν γ2F
∥g∥0,Ω∥ϕ2∥Q∥w1 −w2∥M +

2

γF
∥g∥0,Ω∥ϕ1 − ϕ2∥Q, (3.42)

for all (w1, ϕ1), (w2, ϕ2) ∈ W ×Q, with γF the positive constant defined in (3.17).

Proof. Given (w1, ϕ1), (w2, ϕ2) ∈ W ×Q, we let (σ1,u1), (σ2,u2) ∈ X0 ×M, such that R(w1, ϕ1) =
(σ1,u1) and R(w2, ϕ2) = (σ2,u2). Then, from the definition of R and AF,w (cf. (3.21) and (3.29)),
and after simple computations, we obtain

AF,w1((σ1 − σ2,u1 − u2), (τ ,v)) = −cF(w1 −w2;u2, τ )− dF(ϕ1 − ϕ2,v).

12



Hence, we employ (3.31) with (ζ, z) = (σ1 − σ2,u1 − u2), the upper bounds of cF and dF (cf. (3.4)),
and the fact that ∥u2∥M ≤ 2

γF
∥g∥0,Ω∥ϕ2∥Q (cf. (3.28)), to deduce

γF
2

∥(σ1 − σ2,u1 − u2)∥ ≤ sup
0 ̸=(τ ,v)∈X0×M

−cF(w1 −w2;u2, τ )− dF(ϕ1 − ϕ2,v)

∥(τ ,v)∥

≤ 1

ν
∥u2∥M∥w1 −w2∥M + ∥g∥0,Ω∥ϕ1 − ϕ2∥Q

≤ 2

ν γF
∥g∥0,Ω∥ϕ2∥Q∥w1 −w2∥M + ∥g∥0,Ω∥ϕ1 − ϕ2∥Q,

which implies (3.42). □

Lemma 3.5 Assume that the data satisfies (3.41). Then, there holds

∥S(w1)− S(w2)∥Q ≤ 4CF
κ γ2T

∥θD∥1/2,ΓD
∥w1 −w2∥M, (3.43)

for all w1,w2 ∈ W, with CF and γT the positive constants in (3.7) and (3.20).

Proof. Given w1,w2 ∈ W, we let (ρ1, θ1), (ρ2, θ2) ∈ H × Q be such that S(w1) = (ρ1, θ1) and
S(w2) = (ρ2, θ2). Then, from the definitions of S and AT,w (cf. (3.23) and (3.36)), and after simple
computations, we deduce that

AT,w1((ρ1 − ρ2, θ1 − θ2), (η, ψ)) = −cT(w1 −w2; θ2,η).

Thus, employing (3.38) with (ς, φ) = (ρ1−ρ2, θ1− θ2), the upper bound of cT (cf. (3.6)), and the fact
that ∥θ2∥Q ≤ 2CF

γT
∥θD∥1/2,ΓD

(cf. (3.35)), we get

γT
2

∥(ρ1 − ρ2, θ1 − θ2)∥ ≤ sup
0̸=(η,ψ)∈H×Q

−cT(w1 −w2; θ2,η)

∥(η, ψ)∥

≤ 1

κ
∥θ2∥Q∥w1 −w2∥M

≤ 2CF
κ γT

∥θD∥1/2,ΓD
∥w1 −w2∥M,

which implies (3.43). □
We are ready now to prove the main result of this section, that is, the existence and uniqueness of

solution of problem (2.14).

Theorem 3.2 Let define λ := min
{
ν γF, κ γT

}
and assume that

16CF
λ γF γT

∥g∥0,Ω∥θD∥1/2,ΓD
< 1. (3.44)

Then, the operator J (cf. (3.25)) has a unique fixed-point u in W. Equivalently, the coupled problem
(2.14) has a unique solution (σ,u,ρ, θ) ∈ X0 ×M×H×Q with u ∈ W. Moreover, there hold

∥(σ,u)∥ ≤ 4CF
γF γT

∥g∥0,Ω∥θD∥1/2,ΓD
and ∥(ρ, θ)∥ ≤ 2CF

γT
∥θD∥1/2,ΓD

. (3.45)
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Proof. We begin by recalling from the previous analysis that assumption (3.44) ensures the well-
definedness of J . Now, let w1,w2,u1,u2 ∈ W, be such that u1 = J (w1) and u2 = J (w2). According
to the definition of J (cf. (3.25)), from estimates (3.39), (3.42) and (3.43), we deduce that

∥J (w1)− J (w2)∥M = ∥R2(w1,S2(w1))−R2(w2,S2(w2))∥M

≤ 4

ν γ2F
∥g∥0,Ω∥S2(w2)∥Q ∥w1 −w2∥M +

2

γF
∥g∥0,Ω ∥S2(w1)− S2(w2)∥Q

≤ 16CF
λγFγT

∥g∥0,Ω ∥θD∥1/2,ΓD
∥w1 −w2∥M,

which together with (3.44) and the Banach’s fixed point theorem implies that J has a unique fixed-
point in W, which equivalently implies that there exists a unique (σ,u,ρ, θ) ∈ X0 × M × H × Q
solution to (2.14) with u ∈ W. Finally, since (σ,u) satisfies (3.22) with ϕ = θ and w = u ∈ W, and
(ρ, θ) satisfies (3.24), with w = u ∈ W, the estimates in (3.45) follow from (3.28) and (3.35). □

4 Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of problem (2.14). We mention in
advance that the well-posedness analysis follows straightforwardly by adapting the results derived for
the continuous problem to the discrete case, reason why most of the details are omitted.

4.1 The discrete coupled system and its well-posedness

Let us begin by considering {Th}h>0 a family of regular triangulation of Ω made by triangles T when
n = 2 (or tetrahedra when n = 3) of diameter hT and define the meshsize h := max

{
hT : T ∈ Th

}
.

Given an integer l ≥ 0 and a subset S of Rn, we denote by Pl(S) the space of polynomials of total
degree at most l defined on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as (see, for instance [7]):

RTk(T ) := [Pk(T )]
n ⊕ P̃k(T )x,

where x := (x1, . . . , xn)
t is a generic vector of Rn and P̃k(T ) is the space of polynomials of total degree

equal to k defined on T . In this way, we define the finite element subspaces:

Xh :=
{
τ h ∈ X : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rn ∀T ∈ Th

}
,

Mh := {vh ∈ M : vh|T ∈ [Pk(T )]
n ∀T ∈ Th} ,

Hh :=
{
ηh ∈ H : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Qh := {ϕh ∈ Q : ϕh|T ∈ Pk(T ) ∀T ∈ Th} .

Then defining the subspace Xh,0 := Xh ∩X0, the Galerkin scheme associated to problem (2.14) reads:
Find (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh such that:

aF(σh, τ h) + bF(τ h,uh) + cF(uh;uh, τ h) = 0 ∀ τ h ∈ Xh,0

bF(σh,vh) + dF(θh,vh) = 0 ∀vh ∈ Mh

aT(ρh,ηh) + bT(ηh, θh) + cT(uh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh

bT(ρh,ψh) = 0 ∀ψh ∈ Qh,

(4.1)
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where the forms aF, bF, cF, dF, aT, bT, cT and the functional FT are defined in (2.12) and (2.13), respec-
tively.

4.2 Analysis of the discrete problem

First we provide the stability properties of the associated forms on the discrete spaces defined above.
We begin by observing that the boundedness of all the forms are inherited from the continuous case.
In addition, since divXh ⊆ Mh and divHh ⊆ Qh, there hold that the discrete versions of V and V
(cf. (3.8), (3.9)) become, respectively

Vh :=
{
τ h ∈ Xh,0 : bF(τ h,vh) = 0 ∀vh ∈ Mh

}
=

{
τ h ∈ Xh,0 : div τ h = 0 in Ω

}
,

and

Vh :=
{
ηh ∈ Hh : bT(ηh, ψh) = 0 ∀ψh ∈ Qh

}
=

{
ηh ∈ Hh : div ηh = 0 in Ω

}
,

thus, Vh ⊆ V and Vh ⊆ V. As consequence, from (3.11) and (3.12), we obtain

aF(τ h, τ h) ≥
Cd

ν
∥τ h∥2X ∀ τ h ∈ Vh, (4.2)

and
aT(ηh,ηh) ≥

1

κ
∥ηh∥2H ∀ηh ∈ Vh. (4.3)

We continue by recalling from [9, Lemma 4.4] that the bilinear form bF satisfy the following discrete
inf-sup condition:

sup
0 ̸=τh∈Xh,0

bF(τ h,vh)

∥τ h∥X
≥ β̂F ∥vh∥M ∀vh ∈ Mh, (4.4)

with β̂F > 0 independent of h.
The following result establishes the discrete version of Lemma 3.1

Lemma 4.1 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Then there
exists β̂T > 0 independent of h, such that

sup
0 ̸=ηh∈Hh

bT(ηh, ψh)

∥ηh∥H
≥ β̂T ∥ψh∥Q ∀ψh ∈ Qh. (4.5)

Proof. We proceed similarly to the proof of [10, Lemma 3.3]. In fact, given ψh ∈ Qh, and similarly to
[4, Lemma 3.9] we let z ∈ W1,4/3(B) be the unique weak solution of the boundary value problem:

∆z = ψ̃h :=


sgn(ψh)|ψh|3 in Ω

−1

|B \ Ω|

∫
Ω
sgn(ψh)|ψh|3 in B \ Ω

, ∇z · n = 0 on ∂B,

∫
Ω
z = 0.

Since, B is a convex domain, it is well known that z ∈ W2,4/3(B) (see [26, Theorem 1.1]) and

∥z∥W2,4/3(B) ≤ c∥ψ̃h∥L4/3(B) ≤ C∥|ψh|3∥L4/3(Ω) = C∥ψh∥3L4(Ω),
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Then we let η̂ = ∇z|Ω ∈ W1,4/3(Ω), and observe that div η̂ = sgn(ψh)|ψh|3 in Ω, η̂ · n = 0 on ΓN

(since ΓN ⊆ ∂B) and
∥η̂∥W1,4/3(Ω) ≤ C∥ψh∥3L4(Ω). (4.6)

Moreover, from the latter, and the fact that W 1,4/3(Ω) is continuously embedded into L2(Ω), we obtain

∥η̂∥0,Ω ≤ C∥ψh∥3L4(Ω). (4.7)

Now, we let η̂h ∈ Hh be the Raviart-Thomas interpolation of η (see [25, Section 3.4] and [9, Section
4.2.1]). From [15, Lemma 5.4] we have that there exists C > 0, independent of h, such that

∥η̂ − η̂h∥0,Ω ≤ Ch1−n/4∥η̂∥W1,4/3(Ω),

which together with (4.6) and (4.7), implies

∥η̂h∥0,Ω ≤ ∥η̂ − η̂h∥0,Ω + ∥η̂∥0,Ω ≤ Ch1−n/4∥η̂∥W1,4/3(Ω) + C∥ψh∥3L4(Ω) ≤ Ĉ∥ψh∥3L4(Ω). (4.8)

In turn, it is well known that the following identity holds

div η̂h = Ph(div η̂) = Ph(sgn(ψh)|ψh|3), (4.9)

with Ph : L4(Ω) → Qh being the usual orthogonal projection with respect to the L2(Ω)-inner product.
Hence, using the fact that Ph is a continuous operator, from (4.8) and (4.9), we easily obtain

∥η̂h∥H ≤ Ĉ∥ψh∥3L4(Ω), (4.10)

with Ĉ > 0 independent of h. In this way, from (4.9) and (4.10), we find that

sup
0 ̸=ηh∈Hh

bT(ηh, ψh)

∥ηh∥H
≥ bT(η̂h, ψh)

∥η̂h∥H
≥

∫
Ω
ψh sgn(ψh)|ψh|3

Ĉ∥ψh∥3L4(Ω)

= Ĉ−1
∥ψh∥4L4(Ω)

∥ψh∥3L4(Ω)

= Ĉ−1 ∥ψh∥L4(Ω),

which concludes the proof. □
Analogously to the continuous case, owing to (3.3), (3.5), (4.2), (4.3), (4.4), (4.5) and [23, Propo-

sition 2.36], it can be deduced that the bilinear forms AF and AT defined in (3.15) and (3.18), satisfy:

sup
0 ̸=(τh,vh)∈Xh,0×Mh

AF((ζh, zh), (τ h,vh))

∥(τ h,vh)∥
≥ γ̂F ∥(ζh, zh)∥ ∀ (ζh, zh) ∈ Xh,0 ×Mh, (4.11)

and
sup

0 ̸=(ηh,ψh)∈Hh×Qh

AT((ςh, φh), (ηh, ψh))

∥(ηh, ψh)∥
≥ γ̂T ∥(ςh, φh)∥ ∀ (ςh, φh) ∈ Hh ×Qh, (4.12)

with
γ̂F := C

min{1, νβ̂F}
νβ̂F + 1

,

and
γ̂T :=

κ β̂2T

κ2 β̂2T + 4κ β̂T + 2
.

Employing (4.11) and (4.12) it can be proved the following result.
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Lemma 4.2 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
λ̂ := min

{
ν γ̂F, κ γ̂T

}
and given wh ∈ Mh, let AF,wh

and AT,wh
be the bilinear forms defined in (3.29)

and (3.36), respectively. Then, for all wh ∈ Mh such that ∥wh∥M ≤ λ̂, there hold

sup
0 ̸=(τh,vh)∈Xh,0×Mh

AF,wh
((ζh, zh), (τ h,vh))

∥(τ h,vh)∥
≥ γ̂F

2
∥(ζh, zh)∥ ∀ (ζh, zh) ∈ Xh,0 ×Mh, (4.13)

and

sup
0̸=(ηh,ψh)∈Hh×Qh

AT,wh
((ςh, φh), (ηh, ψh))

∥(ηh, ψh)∥
≥ γ̂T

2
∥(ςh, φh)∥ ∀ (ςh, φh) ∈ Hh ×Qh. (4.14)

Proof. The proofs of (4.13) and (4.14) follow using the same steps employed to obtain (3.31) in Lemma
3.2. We omit further details. □

Now, let us define the bounded set

Wh :=
{
wh ∈ Mh : ∥wh∥M ≤ 4CF

γ̂F γ̂T
∥g∥0,Ω∥θD∥1/2,ΓD

}
,

and the discrete operators Rh : Wh×Qh → Xh,0×Mh and Sh : Wh → Hh×Qh, defined respectively
by

Rh(wh, ϕh) := (R1,h(wh, ϕh),R2,h(wh, ϕh)) = (σh,uh) ∀ (wh, ϕh) ∈ Wh ×Qh,

where (σh,uh) is the unique solution of problem: Find (σh,uh) ∈ Xh,0 ×Mh such that

aF(σh, τ h) + bF(τ h,uh) + cF(wh;uh, τ h) = 0 ∀ τ h ∈ Xh,0,

bF(σh,vh) = −dF(ϕh,vh) ∀vh ∈ Mh,

and
Sh(wh) := (S1,h(wh),S2,h(wh)) = (ρh, θh) ∀wh ∈ Wh,

where (ρh, θh) is the unique solution of problem: Find (ρh, θh) ∈ Hh ×Qh such that

aT(ρh,ηh) + bT(ηh, θh) + cT(wh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh,

bT(ρh, ψh) = 0 ∀ψh ∈ Qh.

Utilizing Lemma 4.2 and proceeding exactly as for the continuous case, it can be easily deduced
that both operators are well-defined if there holds

8CF

λ̂ γ̂F γ̂T
∥g∥0,Ω∥θD∥1/2,ΓD

≤ 1. (4.15)

Then, analogously to the continuous case we define the operator Jh : Wh ⊆ Mh → Mh as

Jh(wh) = R2,h(wh,S2,h(wh)) ∀wh ∈ Wh, (4.16)

which is clearly well-defined and satisfies Jh(Wh) ⊆ Wh provided (4.15), and realize that (4.1) is
equivalent to the fixed-point problem: Find uh ∈ Wh such that

Jh(uh) = uh. (4.17)

The following theorem provides the main result of this section, namely, existence and uniqueness of
solution of the fixed-point problem (4.17), or equivalently, the well-posedness of problem (4.1).
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Theorem 4.1 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
define λ̂ := min

{
ν γ̂F, κ γ̂T

}
and assume that

16CF

λ̂ γ̂F γ̂T
∥g∥0,Ω∥θD∥1/2,ΓD

< 1. (4.18)

Then, the operator Jh (cf. (4.16)) has a unique fixed-point uh in Wh. Equivalently, the coupled
problem (4.1) has a unique solution (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh with uh ∈ Wh. Moreover,
there hold

∥(σh,uh)∥ ≤ 4CF
γ̂F γ̂T

∥g∥0,Ω∥θD∥1/2,ΓD
and ∥(ρh, θh)∥ ≤ 2CF

γ̂T
∥θD∥1/2,ΓD

. (4.19)

Proof. First we observe that, as for the continuous case (see the proof of Theorem 3.2), assumption
(4.18) ensures the well-definiteness of operators Sh and Rh, and consequently the well-definiteness of
Jh. Now, adapting the arguments utilized in Section 3.4 (see Lemmas 3.4 and 3.5) one can obtain the
following estimates

∥Rh(w1, ϕ1)−Rh(w2, ϕ2)∥ ≤ 4

ν γ̂2F
∥g∥0,Ω∥ϕ2∥Q∥w1 −w2∥M +

2

γ̂F
∥g∥0,Ω∥ϕ1 − ϕ2∥Q,

and
∥Sh(w1)− Sh(w2)∥Q ≤ 4CF

κ γ̂2T
∥θD∥1/2,ΓD

∥w1 −w2∥M,

for all w1,w2 ∈ Wh and ϕ1, ϕ2 ∈ Qh, which together with the definition of Jh (cf. (4.16)), yield

∥Jh(w1)− Jh(w2)∥M ≤ 16CF

λ̂γ̂Fγ̂T
∥g∥0,Ω ∥θD∥1/2,ΓD

∥w1 −w2∥M,

for all w1,w2 ∈ Wh. In this way, using estimate (4.18) we obtain that Jh is a contraction mapping
on Wh, thus problem (4.17), or equivalently (4.1) is well-posed. Finally, analogously to the proof of
Theorem 3.2 we can obtain (4.19), which concludes the proof. □

5 A priori error analysis

In this section we aim to provide the convergence of the Galerkin scheme (4.1) and derive the corre-
sponding rate of convergence. We begin by deriving the corresponding Cea’s estimate.

5.1 Cea’s estimate

From now on we assume that the hypotheses of Theorems 3.2 and 4.1 hold and let (σ,u,ρ, θ) ∈
X0 ×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh be the unique solutions of (2.14) and
(4.1), respectively.

In order to simplify the subsequent analysis, we write eσ = σ − σh, eu = u − uh, eρ = ρ − ρh,
and eθ = θ − θh. As usual, for a given (τ̂ h, v̂h) ∈ Xh,0 ×Mh and (η̂h, ψ̂h) ∈ Hh × Qh, we shall then
decompose these errors into

eσ = ξσ + χσ, eu = ξu + χu, eρ = ξρ + χρ, eθ = ξθ + χθ, (5.1)
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with
ξσ = σ − τ̂ h, χσ = τ̂ h − σh, ξu = u− v̂h, χu = v̂h − uh,

ξρ = ρ− η̂h, χρ = η̂h − ρh, ξθ = θ − ψ̂h, χθ = ψ̂h − θh.

Consequently, subtracting (2.14) and (4.1), and utilizing the definition of AF and AT (cf. (3.15) and
(3.18), respectively), we obtain the following identities:

AF((eσ, eu), (τ h,vh)) + cF(u;u, τ h)− cF(uh;uh, τ h) = −dF(eθ,vh) (5.2)

for all (τ h,vh) ∈ Xh,0 ×Mh, and

AT((eρ, eθ), (ηh, ψh)) + cT(u; θ,ηh)− cT(uh; θh,ηh) = 0 (5.3)

for all (ηh, ψh) ∈ Hh ×Qh.
We start providing the following auxiliary results.

Lemma 5.1 Assume that
8CF

νγFγ̂F γT
∥g∥0,Ω∥θD∥1/2,ΓD

≤ 1

2
(5.4)

Then there exist C1, C2 > 0, independent of h, such that

∥(χσ,χu)∥ ≤ C1 ∥(ξσ, ξu)∥+ C2 ∥ξθ∥Q +
4

γ̂F
∥g∥0,Ω ∥χθ∥Q (5.5)

Proof. First, from (5.1), (5.2), the definition of the bilinear form AF,w (cf. (3.29)), and simple
computations it can be obtained the identity

AF,uh
((χσ,χu), (τ h,vh)) = −aF(ξσ, τ h)− bF(τ h, ξu)− bF(ξσ,vh)

− cF(uh; ξu, τ h)− cF(ξu;u, τ h)− cF(χu;u, τ h)− dF(eθ,vh).

Then, utilizing the discrete inf-sup condition (4.13) with (ζh, zh) = (χσ,χu) ∈ Xh,0 × Mh, and the
continuity properties of aF, bF, cF and dF (cf. (3.3) and (3.4)), we obtain

γ̂F
2

∥(χσ,χu)∥ ≤
(
1 +

1

ν

)
∥ξσ∥X +

(
1 +

1

ν
∥uh∥M +

1

ν
∥u∥M

)
∥ξu∥M

+
1

ν
∥u∥M ∥χu∥M + ∥g∥0,Ω ∥eθ∥Q.

(5.6)

In this way, using the fact that u ∈ W and uh ∈ Wh, from (5.6) we deduce that there exists C > 0,
independent of h, such that

γ̂F
2

∥(χσ,χu)∥ ≤ C ∥(ξσ, ξu)∥+
4CF
νγF γT

∥g∥0,Ω∥θD∥1/2,ΓD
∥χu∥M + ∥g∥0,Ω ∥eθ∥Q,

which together with (5.4) implies (5.5) and concludes the proof. □

Lemma 5.2 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Then there
exist C3, C4 > 0, independent of h, such that

∥(χρ, χθ)∥ ≤ C3∥(ξρ, ξθ)∥+ C4∥ξu∥M +
4CF
κγ̂TγT

∥θD∥1/2,ΓD
∥χu∥M. (5.7)
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Proof. We proceed similarly to the proof of Lemma 5.1. In fact, from (5.3), the definition of the
bilinear form AT,w (cf. (3.36)), the decomposition (5.1), and simple algebraic manipulations, it can
be obtained the identity

AT,uh
((χρ, χθ), (ηh, ψh)) = −aT(ξρ,ηh)− bT(ηh, ξθ)− bT(ξρ, ψh)

− cT(uh; ξθ,ηh)− cT(ξu; θ,ηh)− cT(χu; θ,ηh).

Then, applying the discrete inf-sup condition (4.14) with (ςh, φh) = (χρ, χθ) ∈ Hh × Qh, and the
continuity properties of aT, bT and cT (cf. (3.5) and (3.6)), we obtain

γ̂T
2

∥(χρ, χθ)∥ ≤
(
1 +

1

κ

)
∥ξρ∥H +

(
1 +

1

κ
∥uh∥M

)
∥ξθ∥Q +

1

κ
∥θ∥Q∥ξu∥M +

1

κ
∥θ∥Q∥χu∥M,

which together with the fact that uh ∈ Wh and that θ satisfies ∥θ∥Q ≤ ∥(ρ, θ)∥ ≤ 2CF
γT

∥θD∥1/2,ΓD
(see

(3.45)), imply that there exists a positive constant C, independent of h, such that

γ̂T
2

∥(χρ, χθ)∥ ≤ C∥(ξρ, ξθ)∥+
2CF
κγT

∥θD∥1/2,ΓD
∥ξu∥M +

2CF
κγT

∥θD∥1/2,ΓD
∥χu∥M,

from which we deduce (5.7). □
Now we are in position of establishing the aforementioned Cea’s estimate.

Theorem 5.1 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
define λ̃ := min

{
ν γF, κ γ̂T

}
and assume further that

16CF

λ̃ γ̂F γT
∥g∥0,Ω ∥θD∥1/2,ΓD

≤ 1

2
. (5.8)

Then, there exists C > 0, independent of h, such that

∥eσ∥X + ∥eu∥M + ∥eρ∥H + ∥eθ∥Q ≤ C
{
dist ((σ,u),Xh,0 ×Mh) + dist ((ρ, θ),Hh ×Qh)

}
. (5.9)

Proof. We begin by observing that estimate (5.8) implies (5.4), thus estimate (5.5) holds. Now, since
∥χu∥M ≤ ∥(χσ,χu)∥, combining (5.5) and (5.7), it is not difficult to see that there exist positive
constants c1, c2, independent of h, such that

∥(χρ, χθ)∥ ≤ c1∥(ξρ, ξθ)∥+ c2∥(ξσ, ξu)∥+
16CF
κγ̂Tγ̂FγT

∥g∥0,Ω∥θD∥1/2,ΓD
∥χθ∥Q

≤ c1∥(ξρ, ξθ)∥+ c2∥(ξσ, ξu)∥+
16CF

λ̃γ̂FγT
∥g∥0,Ω∥θD∥1/2,ΓD

∥χθ∥Q

which combined with (5.8) implies

∥(χρ, χθ)∥ ≤ ĉ1∥(ξρ, ξθ)∥+ ĉ2∥(ξσ, ξu)∥, (5.10)

with ĉ1, ĉ2 > 0, independent of h. In turn, from (5.5), (5.10) and estimate ∥χθ∥Q ≤ ∥(χρ, χθ)∥ we
easily deduce that

∥(χσ,χu)∥ ≤ c3∥(ξρ, ξθ)∥+ c4∥(ξσ, ξu)∥, (5.11)

with c3, c4 > 0, independent of h. In this way, estimate (5.9) follows from (5.1), (5.10), (5.11), the
triangle inequality and the fact that (τ̂ h, v̂h) ∈ Xh,0 ×Mh and (η̂h, ψ̂h) ∈ Hh ×Qh are arbitrary. □
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5.2 Rate of convergence

In order to establish the rate of convergence of our Galerkin scheme (4.1), we first recall the approxi-
mation properties of the discrete spaces involved:

(APσ
h ) For each 0 ≤ l ≤ k and for each τ ∈ Hl+1(Ω) ∩H0(div4/3; Ω) with divτ ∈ Wl+1,4/3(Ω), there

holds

dist
(
τ ,Xh,0

)
:= inf

τh∈Xh,0

∥τ − τ h∥div4/3;Ω ≤ C hl+1
{
∥τ∥l+1,Ω + ∥divτ∥Wl+1,4/3(Ω)

}
, (5.12)

(APu
h) For each 0 ≤ l ≤ k and for each v ∈ Wl+1,4(Ω), there holds

dist
(
v,Mh

)
:= inf

vh∈Mh

∥v − vh∥L4(Ω) ≤ C hl+1 ∥v∥Wl+1,4(Ω), (5.13)

(APρ
h) For each 0 ≤ l ≤ k and for each η ∈ Hl+1(Ω) with div η ∈ Wl+1,4/3(Ω), there holds

dist
(
η,Hh

)
:= inf

ηh∈Hh

∥η − ηh∥div 4/3;Ω ≤ C hl+1
{
∥η∥l+1,Ω + ∥div η∥Wl+1,4/3(Ω)

}
, (5.14)

(APθ
h) For each 0 ≤ l ≤ k and for each ψ ∈ Wl+1,4(Ω), there holds

dist
(
ψ,Qh

)
:= inf

ψh∈Qh

∥ψ − ψh∥L4(Ω) ≤ C hl+1 ∥ψ∥Wl+1,4(Ω). (5.15)

For (5.12) and (5.14) we refer to [9, eq. (4.8)] and [10, eq. (3.8)], which are consequences of [23,
Lemma B.67, Lemma 1.101] and [25, Section 3.4.4], whereas for (5.13) and (5.15) we refer to [23,
Proposition 1.134, Section 1.6.3].

Now we are in position of establishing the rates of convergence associated to the Galerkin scheme
(4.1).

Theorem 5.2 Assume that the hypotheses of Theorem 5.1 hold and let (σ,u,ρ, θ) ∈ X0×M×H×Q
and (σh,uh,ρh, θh) ∈ Xh,0 × Mh × Hh × Qh be the unique solutions of the continuous and discrete
problems (2.14) and (4.1), respectively. Assume further that σ ∈ Hl+1(Ω), divσ ∈ Wl+1,4/3(Ω),
u ∈ Wl+1,4(Ω), ρ ∈ Hl+1(Ω), divρ ∈ Wl+1,4/3(Ω) and θ ∈ Wl+1,4(Ω) , for 0 ≤ l ≤ k. Then there
exists Crate > 0, independent of h, such that

∥eσ∥X + ∥eu∥M + ∥eρ∥H + ∥eθ∥Q ≤ Crate h
l+1

{
∥σ∥l+1,Ω + ∥divσ∥Wl+1,4/3(Ω) + ∥u∥Wl+1,4(Ω)

+∥ρ∥l+1,Ω + ∥divρ∥Wl+1,4/3(Ω) + ∥θ∥Wl+1,4(Ω)

}
.

Proof. The result is a straightforward application of Theorem 5.1 and the approximation properties
(APσ

h ), (APu
h), (APρ

h), and (APθ
h). □

5.3 Computing further variables of interest

In this section we introduce suitable approximations for further variables of interest, such as the
pressure p, the stress tensor σ̃, the vorticity ω, the velocity gradient ∇u and the heat-flux vector
ρ̃, all of them written in terms of the solution of the discrete problem (4.1). To that end we let
(σh,uh,ρh, θh) ∈ Xh ×Mh ×Hh × Qh be the discrete solution of problem (4.1). Then, inspired by
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the formulas in (2.15) and (2.16), we propose the following approximations for the aforementioned
variables:

ph = − 1

n

(
tr (σh) + tr (uh ⊗ uh)−

1

|Ω|

∫
Ω
tr (uh ⊗ uh)

)
,

σ̃h = σdh + (uh ⊗ uh)
d + σth + uh ⊗ uh −

(
1

n|Ω|

∫
Ω
tr (uh ⊗ uh)

)
I

ωh =
1

2 ν

(
σh − σt

h

)
, Gh =

1

ν

(
σd
h + (uh ⊗ uh)

d
)
, ρ̃h = −(ρh + θh uh).

(5.16)

The following corollary establishes the convergence result for this post-processing procedure.

Corollary 5.3 Assume that the hypotheses of Theorem 5.1 hold and let (σ,u,ρ, θ) ∈ X0×M×H×Q
and (σh,uh,ρh, θh) ∈ Xh,0 × Mh × Hh × Qh be the unique solutions of the continuous and discrete
problems (2.14) and (4.1), respectively. Let ph, σ̃h, ωh, Gh and ρ̃h given by (5.16). Assume further
that σ ∈ Hl+1(Ω), divσ ∈ Wl+1,4/3(Ω), u ∈ Wl+1,4(Ω), ρ ∈ Hl+1(Ω), divρ ∈ Wl+1,4/3(Ω) and
θ ∈ Wl+1,4(Ω) , for 0 ≤ l ≤ k. Then there exists Ĉrate > 0, independent of h, such that

∥p− ph∥0,Ω + ∥σ̃ − σ̃h∥0,Ω + ∥ω − ωh∥0,Ω + ∥∇u−Gh∥0,Ω + ∥ρ̃− ρ̃h∥0,Ω

≤ Ĉrate h
l+1

{
∥σ∥l+1,Ω + ∥divσ∥Wl+1,4/3(Ω) + ∥u∥Wl+1,4(Ω)

+∥ρ∥l+1,Ω + ∥divρ∥Wl+1,4/3(Ω) + ∥θ∥Wl+1,4(Ω)

}
.

Proof. Recalling the formulas given in (2.16) and (5.16), and employing suitable algebraic manipula-
tions it is not difficult to show that there exist Ĉ1, Ĉ2 > 0, independents of h, such that the following
estimates hold:

∥p− ph∥0,Ω + ∥σ̃ − σ̃h∥0,Ω + ∥ω − ωh∥0,Ω + ∥∇u−Gh∥0,Ω ≤ Ĉ1

{
∥σ − σh∥X + ∥u− uh∥M

}
,

and
∥ρ̃− ρ̃h∥0,Ω ≤ Ĉ2

{
∥ρ− ρh∥H + ∥u− uh∥M + ∥θ − θh∥Q

}
.

Then, the result follows straightforwardly from Theorem 5.2. We omit further details. □

6 Numerical results

In this section we present three numerical examples to illustrate the performance of our mixed finite
element scheme (4.1) on a set of quasi-uniform triangulations of the corresponding domains. Our
implementation is based on a FreeFem++ code, in conjunction with the direct linear solver UMFPACK.
Regarding the resolution of the non-linear problem, we utilize the algorithm utilized to define the fixed-
point operator Jh. More precisely, starting with (u0

h, θ
0
h) ∈ Mh×Qh, we propose the following iterative

process: for each i = 1, 2, . . . , solve

aT(ρ
i
h,ηh) + bT(ηh, θ

i
h) + cT(u

(i−1)
h ; θih,ηh) = FT(ηh) ∀ηh ∈ Hh,

bT(ρ
i
h, ψh) = 0 ∀ψh ∈ Qh,

and
aF(σ

i
h, τ h) + bF(τ h,u

i
h) + cF(u

(i−1)
h ;uih, τ h) = 0 ∀ τ h ∈ Xh,0,

bF(σ
i
h,vh) = −dF(θih,vh) ∀vh ∈ Mh.
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The iterations are terminated once the relative error of the entire coefficient vectors between two
consecutive iterates is sufficiently small, that is,

∥coeffm+1 − coeffm∥
∥coeffm+1∥

≤ tol,

where ∥·∥ stands for the usual Euclidean norm in Rdof , with dof denoting the total number of degrees
of freedom defining the finite element subspaces Xh, Mh, Hh and Qh, and tol is a specified tolerance.

Now, we introduce some additional notations. The individual errors are denoted by e(σ), e(ρ),
e(u), e(θ), e(p), e(σ̃), e(ω), e(∇u) and e(ρ̃h). Also, we let r(σ), r(ρ), r(u), r(θ), r(p), r(σ̃), r(ω),
r(∇u) and r(ρ̃h) be the experimental rates of convergence given by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(ρ) :=

log(e(ρ)/e′(ρ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(θ) :=
log(e(θ)/e′(θ))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
, r(σ̃) :=

log(e(σ̃)/e′(σ̃))

log(h/h′)
,

r(ω) :=
log(e(ω)/e′(ω))

log(h/h′)
, r(∇u) :=

log(e(∇u)/e′(∇u))

log(h/h′)
, r(ρ̃) :=

log(e(ρ̃)/e′(ρ̃))

log(h/h′)
,

where h and h′ denote two consecutive mesh sizes with their respective errors e and e′.
Example 1. In our first example we illustrate the accuracy of our method considering a man-

ufactured exact solution defined on Ω = (0, 1) × (0, 1) considering the partition of the boundary
ΓN = [0, 1]× {1} and ΓD = ∂Ω\ΓN. We consider the thermal conductivity κ = 1, the viscosity of the
fluid ν = 1, the external force g = (0,−1)t, and the terms on the right-hand side are adjusted so that
the exact solution is given by the functions:

u(x, y) :=

(
2x2y(x− 1)2(y − 1)(2y − 1)
−2y2x(x− 1)(y − 1)2(2x− 1)

)
,

p(x, y) := 3x2 + y2 − 4

3
,

θ(x, y) :=
1

2
sin(πx) cos2(

π

2
(y + 1)).

We show in Tables 6.1 and 6.2 the convergence history for a sequence of quasi-uniform mesh re-
finements when the finite element spaces described in Section 4.1 are used with k = 0 and k = 1,
respectively. It can be observed there that the rates of convergence are the ones expected from
Theorem 5.2 and Corollary 5.3, that is O(h) and O(h2), respectively.

Example 2. In our second example we assess the capability of a 3D implementation of the Galerkin
scheme (4.1), considering a manufactured exact solution defined on Ω = (0, 1)3 with ΓD = [0, 1] ×
[0, 1] × {0} and ΓN = ∂Ω\ΓD. We consider the thermal conductivity κ = 1, the viscosity of the fluid
ν = 1, the external force g = (0, 0,−1)t, and the terms on the right-hand side are adjusted so that the
exact solution is given by the functions:

u(x, y, z) :=

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)
cos(πx) cos(πy) sin(πz)

 ,

p(x, y, z) := (x− 1/2)3 sin(y + z),

θ(x, y, z) := sin2(πx) sin2(πy)(z − 1)2.
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Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation

h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(θ) r(θ) Iter
0.373 294 4.79e-01 – 2.00e-02 – 6.57e-01 – 6.68e-02 – 4
0.196 1188 2.29e-01 1.149 5.51e-03 2.016 2.86e-01 1.302 3.23e-02 1.135 3
0.097 4626 1.13e-01 0.999 1.53e-03 1.819 1.43e-01 0.983 1.66e-02 0.946 3
0.048 18312 5.75e-02 0.960 5.87e-04 1.350 6.96e-02 1.015 7.87e-03 1.053 3
0.025 72939 2.88e-02 1.033 2.63e-04 1.200 3.49e-02 1.034 3.97e-03 1.025 3
0.013 294363 1.42e-02 1.084 1.26e-04 1.135 1.73e-02 1.075 1.96e-03 1.085 3

Postprocessed variables
e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω) e(∇u) r(∇u) e(ρ̃) r(ρ̃)

1.72e-01 – 4.82e-01 – 7.41e-02 – 2.33e-01 – 1.78e-01 –
7.87e-02 1.221 2.45e-01 1.058 3.20e-02 1.310 1.18e-01 1.062 8.33e-02 1.185
3.75e-02 1.052 1.21e-01 1.001 1.51e-02 1.066 5.84e-02 0.999 4.13e-02 0.995
1.88e-02 0.972 6.22e-02 0.939 7.40e-03 1.007 3.00e-02 0.941 2.05e-02 0.989
9.34e-03 1.049 3.12e-02 1.033 3.68e-03 1.044 1.50e-02 1.031 1.04e-02 1.020
4.56e-03 1.099 1.53e-02 1.090 1.84e-03 1.062 7.42e-03 1.085 5.13e-03 1.079

Table 6.1: Example 1: Meshsizes, degrees of freedom, errors, rates of convergence, and number of
iterations for the mixed RT0 − P0 −RT0 − P0 approximations of the Boussinesq equations.

Errors and rates of convergence for the RT1 − P dc
1 −RT1 − P dc

1 approximation

h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(θ) r(θ) Iter
0.373 912 3.22e-02 – 1.04e-03 – 7.09e-02 – 7.44e-03 – 3
0.196 3744 7.43e-03 2.291 2.62e-04 2.154 1.78e-02 2.161 1.58e-03 2.417 3
0.097 14688 1.92e-03 1.917 6.17e-05 2.050 4.37e-03 1.987 3.75e-04 2.042 3
0.048 58368 4.81e-04 1.956 1.53e-05 1.968 1.15e-03 1.893 1.08e-04 1.761 3
0.025 232944 1.22e-04 2.048 3.97e-06 2.023 2.86e-04 2.076 2.64e-05 2.108 3
0.013 941040 3.02e-05 2.147 9.79e-07 2.145 6.94e-05 2.172 6.41e-06 2.167 3

Postprocessed variables
e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω) e(∇u) r(∇u) e(ρ̃) r(ρ̃)

8.86e-03 – 2.62e-02 – 3.12e-03 – 1.23e-02 – 1.75e-02 –
1.95e-03 2.364 6.18e-03 2.259 6.63e-04 2.417 2.92e-03 2.251 3.76e-03 2.399
4.67e-04 2.027 1.51e-03 1.999 1.54e-04 2.066 7.12e-04 2.000 9.45e-04 1.958
1.17e-04 1.955 3.82e-04 1.939 3.86e-05 1.959 1.81e-04 1.937 2.29e-04 2.000
2.98e-05 2.045 9.81e-05 2.036 9.90e-06 2.036 4.64e-05 2.035 5.96e-05 2.018
7.25e-06 2.169 2.39e-05 2.165 2.43e-06 2.153 1.13e-05 2.163 1.46e-05 2.159

Table 6.2: Example 1: Meshsizes, degrees of freedom, errors, rates of convergence, and number of
iterations for the mixed RT1 − P dc

1 −RT1 − P dc
1 approximations of the Boussinesq equations.

24



Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation.

h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(θ) r(θ) Iter
0.141 74400 2.62e+01 – 1.24e-01 – 7.03e-01 – 3.82e-02 – 4
0.118 127872 2.18e+01 0,995 1.04e-01 0.990 5.87e-01 0.988 3.19e-02 0.986 4
0.101 202272 1.87e+01 0.997 8.90e-02 0.993 5.04e-01 0.992 2.74e-02 0.990 4
0.088 301056 1.64e+01 0.998 7.79e-02 0.995 4.41e-01 0.993 2.40e-02 0.993 4
0.079 427680 1.46e+01 0.998 6.93e-02 0.996 3.92e-01 0.995 2.13e-02 0.994 4

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω) e(∇u) r(∇u) e(ρ̃) r(ρ̃)

1.33e-01 – 7.46e-01 – 6.32e-01 – 4.75e-01 – 1.70e-01 –
1.10e-01 1.047 6.23e-01 0.994 5.27e-01 0.997 3.97e-01 0.992 1.42e-01 0.981
9.34e-02 1.063 5.34e-01 0.998 4.52e-01 0.997 3.40e-01 0.994 1.22e-01 0.986
8.10e-01 1.069 4.67e-01 1.000 3.96e-01 0.998 2.98e-01 0.995 1.07e-01 0.990
7.14e-02 1.070 4.15e-01 1.001 3.52e-01 0.998 2.65e-01 0.996 9.51e-02 0.992

Table 6.3: Example 2: Meshsizes, degrees of freedom, errors, rates of convergence, and number of
iterations for the mixed RT0 − P0 −RT0 − P0 approximations of the three–dimensional Boussinesq
equations.

In Table 6.3, we summarize the convergence history for Example 2 considering a sequence of quasi-
uniform triangulations. We observe there that the rates of convergence O(h) predicted by Theorem
5.2 and Corollary 5.3 are attained all for the unknowns and for all the post–processed variables.
Moreover, in Figures 6.1, 6.2 and 6.3 we compare the exact heat flux vector field, heat velocity vector
field and temperature with their approximate counterparts, respectively. There we can observe that
the approximate solution captures satisfactorily the behavior of the exact solution.

Example 3. In our third example we study the behavior of a fluid in a square cavity Ω = (0, 1)2 with
differentially heated walls. Here the boundary ∂Ω has been partitioned considering ΓN = [0, 1]× {1}
and ΓD = ∂Ω\ΓN. This phenomenon has been widely studied with different types of boundary
conditions (see, e.g. [5, 20, 22]). In particular, we are interested in the problem with dimensionless
numbers: Find (u, p, θ) such that

−Ra∆u + (u · ∇)u + ∇ p − Pr Rag θ = 0 in Ω,

divu = 0 in Ω,

u = 0 on Γ,

−κ∆θ + u · ∇θ = 0 in Ω,

θ = θD on ΓD,

κ∇θ · n = 0 on ΓN,

where Pr and Ra are the Prandtl and Rayleigh numbers. Here we fix the Prandtl and Rayleigh
numbers as Pr = 0.5 and Ra = 2000, the thermal conductivity κ = 1, and similarly to [20] we
choose the boundary condition θD(x, y) = 0.5(1− cos(2πx))(1− y) on ΓD. Here, since the analytical
solution is unknown, we construct the convergence history by considering a solution calculated with
1,161,246 DOF as the exact solution, and employing tolerance tol = 1e−6 and a RT0−P0−RT0−P0

approximation on a sequence of uniform triangulations.
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Figure 6.1: Example 2: Approximate (left) and exact (right) heat flux vector fields, with h = 0.079.

Figure 6.2: Example 2: Approximate (left) and exact (right) velocity vector fields, with h = 0.079.

Figure 6.3: Example 2: Transversal cuts of the approximate (left) and exact (right) temperatures,
with h = 0.079.
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Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation

h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(θ) r(θ) Iter
0.373 294 5.38e+01 – 7.65e-04 – 4.56e-01 – 1.05e-01 – 3
0.196 1188 2.25e+01 1.165 2.58e-04 1.696 2.55e-01 0.909 5.47e-02 1.016 3
0.097 4626 1.30e+01 0.959 8.39e-05 1.594 1.32e-01 0.935 2.86e-02 0.919 3
0.048 18312 6.21e+00 1.042 3.08e-05 1.417 6.67e-02 0.963 1.34e-02 1.074 3
0.025 72939 3.19e+00 0.996 1.40e-05 1.179 3.37e-02 1.023 6.89e-03 0.993 3
0.013 294363 1.64e+00 1.020 6.73e-06 1.122 1.72e-02 1.027 3.51e-03 1.033 3

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω) e(∇u) r(∇u) e(ρ̃) r(ρ̃)

1.35e+01 – 3.40e+01 – 9.65e+03 – 1.56e+01 – 4.56e-01 –
5.96e+00 1.281 1.81e+01 0.980 4.71e+03 1.120 8.69e+00 0.914 2.55e-01 0.909
2.94e+00 0.999 9.54e+00 0.911 2.31e+03 1.011 4.59e+00 0.905 1.32e-01 0.935
1.35e+00 1.101 4.54e+00 1.051 1.17e+03 0.965 2.22e+00 1.030 6.67e-02 0.963
6.93e-01 0.998 2.34e+00 0.990 5.91e+02 1.016 1.14e+00 0.992 3.37e-02 1.023
3.55e-01 1.024 1.20e+00 1.020 3.03e+02 1.027 5.87e-01 1.020 1.72e-02 1.027

Table 6.4: Example 3: Meshsizes, degrees of freedom, errors, rates of convergence, and number of
iterations for the mixed RT0 − P0 −RT0 − P0 approximations of the Boussinesq equations.

In Figure 6.4 we show the approximated pressure and temperature (top left and bottom left, respec-
tively), along with the approximated velocity and heat-flux vector fields (top right and bottom right,
respectively). There, it is possible to see the expected physical behaviour from [20], that is, convection
currents form inside the cavity in a symmetric configuration and, due to the relatively low Rayleigh
number, the heat transfer throughout the fluid is mainly due to conduction. On the other hand, since
the solution is smooth, it makes sense to expect convergence of O(h) when our method is applied
with k = 0; a fact that can be verified from the results in Table 6.4. Finally, in order to illustrate
the conservativity property of our method, in Table 6.5 we display the l∞-norm of divσh + gθh and
divρh for the mixed RT0 − P0 −RT0 − P0 approximation of the Boussinesq equations. Since divσh
and gθh belong to Mh, it should be expected to obtain values close to zero for ∥divσh + gθh∥l∞ and
similarly for ∥divρh∥l∞ . The latter is confirmed in Table 6.5.

h ∥divσh + gθh∥l∞ ∥divρh∥l∞
0.373 7.105e-14 3.553e-15
0.196 2.274e-13 7.105e-15
0.097 9.095e-13 1.421e-14
0.048 2.274e-12 5.684e-14
0.025 7.276e-12 1.137e-13
0.013 1.455e-11 3.411e-13

Table 6.5: Example 3: Meshsizes and l∞-norms of divσh+ gθh and divρh for the mixed RT0 −P0 −
RT0 − P0 approximation of the Boussinesq equations.
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Figure 6.4: Example 3: Pressure, velocity vector field (from the left to the right, at the top),
temperature and heat flux vector field (from the left to the right, at the bottom).
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