
Convergence of H(div)-conforming schemes for a new model
of sedimentation in circular clarifiers with a rotating rake

Raimund Bürgera, Paul E. Méndeza, Ricardo Ruiz-Baierb,∗
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Abstract

A macroscopic model is introduced for simulating the sedimentation-consolidation of solid particles
in an incompressible fluid under the effect of gravity and in the presence of a slowly rotating arm
assisting the removal of sediment on the bottom of clarifier-thickener units. The governing model is
an initial-boundary value problem for the Navier-Stokes equations describing the flow of the mixture
coupled with a nonlinear parabolic equation describing the volume fraction of solids. The rotating
structure is accounted for by suitable drag laws on the momentum balance of the mixture and on the
mass balance of the solid phase. An H(div)-conforming method for the coupled problem is proposed,
a rigorous proof of convergence is provided, and the validity of the new model and the performance of
the scheme are demonstrated numerically by several computational tests.
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H(div)-conforming schemes, Numerical simulation, Error estimates.
2000 MSC: 65M60, 74F10, 65M12.

1. Introduction

1.1. Scope

We advance a phenomenological model of solid-fluid interaction in a continuously operated clarifier-
thickener, which is an equipment widely used in the mining industry, wastewater treatment plants, and
other applications. The new approach accounts for the effect of the rotating rake structure, the influence
of the settling solid particles, and the three-dimensional incompressible flow of the mixture. A large
variety of these devices are used in industry, but most clarifier-thickeners are circular tanks of 1, 50 m

to 150 m in diameter equipped with a feed inlet and overflow and discharge outlets for continuous op-
eration. In many devices, a pair of rotating rake arms that move over the gently sloped bottom help to
move the concentrated slurry toward the centre of the tank, where it is removed. Clear liquid overflows
the top of the tank and is collected through a circumferential launder (see Figure 1.1). Although there
are many main types of thickeners or clarifiers such as bridge support, column support, and traction
devices, for the purpose of the present modelling framework these are all considered equivalent.

The mathematical modelling and numerical simulation of this kind of processes is challenging due
to the intrinsic multiscale and highly nonlinear nature of the sedimentation-consolidation mechanisms,
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Figure 1.1: Schematic view of the clarifier unit, indicating height H , maximal radius R, and the location of the rotating rake; as
well as the separation of the boundary into the walls, the outlet, the feedwell inlet, and the overflow weir.

complicated geometries and boundary conditions, as well as the feedback interaction between the mix-
ture flow and the motion of the rake (the fluid applies a load on the solid structure, implying a de-
formation, generating stresses, and eventually modifying the flow). For instance, simplified models
that would be based on geometrical symmetry are in this case of very restricted applicability, since
the settling of the particles occurs in the vertical direction while the rotation of the rake acts in two
horizontal directions, and the velocity distribution under typical operating conditions is quite far from
unidirectional.

We consider process of sedimentation and transport of a suspension consisting of a phase of finely
divided solid particles dispersed in a viscous fluid. This mixture is contained in a clarifier tank with
a moving rake. For the sedimentation-consolidation of the suspension we assume that the particles
are relatively small with respect to the tank size and possess the same density. It is assumed that the
mixture is composed of incompressible solid and liquid phases, that the mixture velocity is relatively
small, and that the suspension is already flocculated before the process starts (see [14, 35]). The motion
of the mixture is governed by the incompressible Navier-Stokes equations coupled with the transport
equation for the solids as follows,

ρf

(
∂u

∂t
+ div(u⊗ u)

)
− div

(
ν(c)ε(u)

)
+∇p = fg(c) + fr(u,x, t), (1.1a)

divu = 0, (1.1b)
∂c

∂t
− div

(
D(c)∇c− cu− fbk(c)k

)
= −gr(c,x, t) in Ω × (0, T ). (1.1c)

Here the sought quantities are the mixture velocity u, the pressure p and the local solids fraction c as
functions of time t ∈ [0, T ] and spatial position x ∈ Ω ⊂ R3, where the spatial domain Ω represents
the interior of the clarifier-thickener. Moreover, ρf is the fluid density, ε(u) = 1

2 (∇u + ∇uT) is the
strain rate tensor, and k is the upwards-pointing unit vector. The material behaviour is described by
the concentration-dependent viscosity ν, the Kynch batch flux density function fbk, and the diffusion
function D. These three quantities are nonlinear given functions of c that are specified in Section 2.1.
The term fg(c) represents the body force and is given by fg(c) = g (ρs − ρf) c as in [16], where g = −gk
and g is the acceleration of gravity. The terms fr(u,x, t) and gr(c,x, t) describe the action of the rotating
rake, and are specified in Section 2.2. The system (1.1) is supplied with initial and boundary conditions
that are made precise in Section 2.3.

It is the purpose of this paper to advance a novel discretisation for the resulting initial-boundary
value problem that is of second-order in space and time. The discretisation employs divergence-
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conforming Brezzi-Douglas-Marini (BDM) elements of order k for the approximation of the velocity,
discontinuous elements of order k − 1 for the pressure, and continuous Lagrange elements of order k
for the volume fraction. We use an interior penalty discontinuous Galerkin technique in order to en-
force H1-continuity of the velocity (similarly as done in [13]); and employ the second-order backward
differentiation formula (BDF2) for the discretisation in time. Our analysis includes the stability of so-
lutions of the associated Galerkin scheme and the derivation of optimal error estimates in time and
space for problems with small and sufficiently smooth solutions. These properties constitute a proof of
convergence of the fully discrete scheme as the meshwidth and the time step tend to zero. The novelty
of the treatment consists in the inclusion of terms that account for the influence of the rake motion on
the momentum balance and the removal of solids. We also adapt techniques of the immerse boundary
finite element method (see e.g. [6]) for the analysis and numerical approximation of those terms.

1.2. Related work

Early models for the clarifying process with and without swirl effects are reviewed in [37], where
mainly axisymmetric configurations were employed. More recently, a fairly complete model can be
found in [16], where the authors couple the momentum equations for fluid flow with a transport equa-
tion for solids. The realisable k− ε model, in conjunction with scalable wall functions, is used to model
turbulence. The removal of sludge from the clarifier floor by means of a spinning rake is modelled
through a rotating sink term added to the right-hand side of the transport equation. References that are
related to the rake mechanism in applications of mineral processing include [15, 23, 24, 25, 31, 34, 36, 38];
see Section 5 for further discussion.

Here we also include appropriate drag terms, much as in [39], that account for the indirect effects of
the rake on the flow patterns. This consists basically in penalising the moving structure and computing
(or as we do here, simply imposing) its velocity and its reconfiguration in an adequate manner. Volume
penalisation techniques can be frequently found in the relevant literature. See for instance [28], where
the authors propose high-order methods for the modelling of solid obstacles as porous structures whose
permeability tends to zero and the flow is regarded in a unified domain, and the momentum on the
obstacle is simply obtained from integration of the penalised velocity over the obstacle domain. Other
modelling and numerical approaches one could use to incorporate the interaction between the rake and
the flow include immerse boundary and fictitious domain finite elements [7], level set methods and
their variants [18, 32], other unfitted finite element schemes [5]; or formulations based on remodelling,
such as the arbitrary Lagrangian-Eulerian (ALE) setting [40].

1.3. Outline of the paper

We have organised the contents of this paper in the following manner. Section 2 describes the
general governing equations, the constitutive relations, and the interaction terms. It also specifies the
boundary and initial conditions, and it outlines the weak formulation of the problem for a fixed time. In
Section 3 we introduce the Galerkin discretisation and define the fully discrete method, briefly address-
ing stability and convergence properties. Section 4 is devoted to the computational results, including
parameter calibration, accuracy verification, as well as the simulation of clarifier performance under
different operation scenarios. We close the paper with some remarks and discussions given in Sec-
tion 5.
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Figure 2.1: Schematic representation of the mapping Xr from the rake reference domain B to the moving domain Ωr(t) in a
longitudinal section of the clarifier unit.

2. Preliminaries

2.1. Constitutive functions

The viscosity ν is supposed to be given by the following nonlinear function of c:

ν(c) = ν0 + ν0(1− c/cmax)b, (2.2)

where ν0 is the viscosity of the pure fluid, b > 0 is a parameter, and cmax is a (nominal) maximum
solids volume fraction. We do not consider here the high-order terms that account for microstructural
arrangement of the granular material as e.g. in [35].

Moreover, the one-dimensional Kynch batch flux density function describing hindered settling [30],
fbk; and the sediment compressibility, D(c); are non linear functions of the concentration c, which can
be taken as follows [12]:

D(c) = D0 +
fbk(c)σ′e(c)

(ρs − ρf)gc
, fbk(c) = u∞

[
c

(
1− c

cmax

)ηF ]
, (2.3)

where u∞ is the Stokes velocity, ηF a material-dependent exponent, D0 > 0 is the constant of hydro-
dynamic self-diffusion, ρs and ρf are the solid and fluid mass densities, respectively, and σe(c) is the
so-called effective solid stress function, which characterises sediment compressibility in the case of floc-
culated particles. The function σe is assumed to satisfy σ′e(c) = dσe(c)/dc ≥ 0 for all c, which ensures
that D(c) ≥ D0 > 0.

2.2. Rotating rake

To include the rotating rake into the computational model, we follow Das et al. [16] using a simpli-
fied approach that only takes into account the area of influence of the rake, and characterises the details
of its geometry through parameters. The rake area of influence (hereinafter we will refer to it only as
rake) Ωr(t) can be represented as the image of a mapping Xr(·; t) from a reference domain B ⊂ Rd (see
figure 2.1). We denote by s the coordinates in B, then Xr(s; t) represents the position of a point in the
current domainΩr(t). That is, x ∈ Ωr(t) if and only if there exists s ∈ B such that x = Xr(s; t). For sim-
plicity we will consider a constant angular velocity ω for the rake, then the rake velocity ur(s), depends
only on the distance to the rake centre. Further, we suppose fr depends on the difference between the
fluid velocity and the rake velocity ur; and gr depends on the difference between the concentration in
front of the rake and a concentration after removal cr, which is linked to the rake geometry. To express
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fr(u,x, t) in compact form, it is useful to define the function ζ : R→ R given by ζ(x) = x2 sgnx = x|x|.
Then we define

f r(u,x, t) :=

{
βρrζ

(
(ur(X

−1
r (x; t))− u(x, t)) · nr

)
nr if x ∈ Ωr(t),

0 otherwise,

gr(c,x, t) :=

{
α
(
c(x, t)− cr

)
if x ∈ Ωr(t),

0 otherwise,

where α is a removal coefficient, β is the drag coefficient that includes the contact surface to volume
ratio, ρr the rake density and nr the vector pointing towards the tangential direction with respect to the
circular motion of the rake in the (x1, x2)-plane. Following the approach of the immersed boundary
method [6, 7] as well as a recently proposed model arising in the context of flow-canopy interaction
[39], we rewrite these expressions as

fr(u,x, t) = βρr

∫
B
ζ
(
ur(s)− u(Xr(s, t); t)) · nr

)
nrδ
(
x−Xr(s; t)

)
ds,

gr(c,x, t) = α

∫
B

(
c(Xr(s, t); t)− cr

)
δ
(
x−Xr(s; t)

)
ds for all x ∈ Ω and t ∈ (0, T ).

(2.4)

Here, δ is the Dirac delta function. Even if the presence of the rotating arm through (2.4) does not
resolve stress localisation on the structure, it already represents an extension over the model in [16].

2.3. Initial and boundary conditions

The set of governing equations is furnished with the following initial and boundary conditions:

u(0) = 0, c(0) = c0 in Ω, (2.5a)

u(x, t) = uin on Γin, t ∈ [0, T ], (2.5b)

c(x, t) = cin on Γin, t ∈ [0, T ], (2.5c)

u(x, t) = 0 on Γwall, t ∈ [0, T ], (2.5d)

[ν(c)ε(u)− pI]n = 0 on Γout ∪ Γofl, t ∈ [0, T ], (2.5e)

(D(c)∇c− fbk(c)k) · n = 0 on Γwall ∪ Γin, t ∈ [0, T ], (2.5f)

D(c)∇c · n = 0 on Γout ∪ Γofl, t ∈ [0, T ], (2.5g)

which represent that at the inlet we impose velocity and volume fraction of solids, on the walls we set
no-slip velocity and zero-flux for c, and on the outlet and effluent overflow regions we set zero normal
total stress, and zero total flux. The disposition of domain boundaries is exemplified in Figure 1.1.

2.4. Weak formulation

We shall use standard notation for function spaces. So, for instance,Lp(Ω),Wm,p(Ω), will denote the
usual Lebesgue and Sobolev spaces on the domain Ω, with norms ‖·‖p,Ω and ‖·‖m,p,Ω , respectively. We
denote by Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls-integrable functions from [0, T ] into Wm,p(Ω),
with norm

‖v‖Ls(0,T ;Wm,p(Ω)) =

(∫ T

0

‖v‖sWm,p(Ω) dt

)1/s

.

By L and L we denote the corresponding vectorial and tensorial counterparts of the scalar functional
space L.
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The weak formulation of problem (1.1) is obtained by testing against suitable functions and inte-
grating by parts, and can be stated as follows:

Find (u(t), p(t), c(t)) ∈H1(Ω)× L2(Ω)×H1(Ω) satisfying

the boundary conditions (2.5b) and (2.5c) and for all v ∈H1
0 (Ω), q ∈ L2(Ω) and l ∈ H1(Ω):(

∂tu(t),v
)
Ω

+ a1
(
c(t);u(t),v

)
+ c1

(
u(t);u(t),v

)
− b
(
v, p(t)

)
= Fg(c(t),v) + Fr(u(t),v),

b
(
u(t), q

)
= 0,(

∂tc(t), l
)
Ω

+ a2
(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr

(
c(t), l

)
.

(2.6)

Using [6, Lemma 1], we can consider Fr ∈ H−1(Ω), Gr ∈ H−1(Ω), and the variational forms that are
defined as follows for all u,v,w ∈H1(Ω), q ∈ L2(Ω), and c, l ∈ H1(Ω):

a1(c;u,v) :=
(
ν(c)ε(u), ε(v)

)
Ω
, b(v, q) := (q,div v)Ω , c1(w;u,v) :=

(
(w · ∇)u,v

)
Ω
,

Fg(c, v) =
(
g (ρf − ρs) c,v

)
Ω
,

Fr(u,v) = βρr

∫
B
ζ
(
(ur(s)− u(Xr(s; t), t)) · nr

)
nrv

(
Xr(s; t)

)
ds,

a2(c; c, l) :=
(
D(c)∇c,∇l

)
Ω
, c2(v; c, l) := (v · ∇c, l)Ω ,

d2(c, l) =
(
fbk(c)k,∇l

)
Ω
− 〈fbk(c)k · n, l〉Γout∪Γofl , Gr(c, l) := α

∫
B

(
c(Xr(s; t), t)− cr

)
l
(
Xr(s; t)

)
ds.

Although some related results are available from the literature, for instance the existence of strong and
weak solutions for the periodic motion of a rigid body in an incompressible fluid [20], the solvabil-
ity analysis of (2.6) is still an open problem. We will proceed to the semidiscrete analysis under the
assumption that the continuous problem is well-posed and that the weak solutions are regular enough.

3. Numerical method

3.1. Definition of the discrete problem

For the space discretisation, we will consider a family of regular partitions, denoted Th, of Ω ⊂ Rd
into simplices K (triangles in 2D or tetrahedra in 3D) of diameter hK . The mesh size (the maximum
of these diameters) will be denoted by h, and for any interior facet e in Eh (the set of faces in Th), we
will label K− and K+ the elements adjacent to it, while he will stand for the length of edge in 2D
(or maximum diameter of the facet in 3D). Supposing that v, w are, respectively, smooth vector and
scalar fields defined over Th. Then, by (v±, w±) we will denote the traces of (v, w) on e being the
extensions from the interiors of the elementsK+ andK−, respectively. Let n±e denote the outward unit
normal vector to e on K± (hence, n+ = −n−). We define the average {{·}} and jump J·K operators as
{{v}} := (v− + v+)/2, {{w}} := (w− + w+)/2, JvK := (v− − v+) and JwK := (w− − w+), whereas for
boundary jumps and averages we adopt the convention that {{v}} = JvK = v and {{w}} = JwK = w. In
addition, we denote by ∇h the broken gradient operator.

For k ≥ 1 and a mesh Th on Ω, let us consider the discrete spaces (see e.g. [8, 13])

Vh :=
{
vh ∈H(div;Ω) : vh|K ∈ [Pk(K)]d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th

}
,

Mh :=
{
sh ∈ C(Ω̄) : lh|K ∈ Pk(K) ∀K ∈ Th

}
,

which in particular satisfy divVh ⊂ Qh (cf. [29]). Here Pk(K) denotes the local space spanned by
polynomials of degree up to k and Vh is the space of divergence-conforming BDM elements. Associated
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with these finite-dimensional spaces, we state the following semi-discrete Galerkin formulation for
problem (1.1):

Find (uh, ph, ch) ∈ Vh ×Qh ×Mh such that for all (vh, qh, lh) ∈ Vh ×Qh ×Mh:

(∂tuh,vh)Ω + ah1 (ch;uh,vh) + ch1 (uh;uh,vh)− b(vh, ph) = Fg(ch, vh) + Fr(uh,vh),

b(uh, qh) = 0,

(∂tch, lh)Ω + a2(ch; ch, lh) + c2(uh; ch, lh)− d2(ch, lh) = −Gr(ch, lh).

(3.7)

Here the discrete versions of the trilinear forms ah1 (·; ·, ·) and ch1 (·; ·, ·) are defined using a symmetric
interior penalty and an upwind approach, respectively (see e.g. [4, 29]):

ah1 (ch;uh,vh) :=

∫
Ω

(
ν(ch)εh(uh) : εh(vh)

)
+
∑
e∈Eh

∫
e

(
−{{ν(ch)εh(uh)}} : JvhK− {{ν(ch)εh(vh)}} : JuhK +

a0
he
ν(ch)JuhK : JvhK

)
,

ch1 (wh;uh,vh) :=

∫
Ω

(wh · ∇)uh · vh +
∑
K∈Th

∫
∂K\Γ

ŵup
h (uh) · vh,

where the upwind flux is defined as ŵup
h (uh) := 1

2 (wh · nk − |wh · nK |)(ueh − uh), and ueh is the trace
of uh taken from within the exterior of K.

Let us introduce a partition of the interval [0, T ] into N subintervals [tn−1, tn] of length τ . We will
use an implicit, second-order backward differentiation formula (BDF2). That is, all first-order time
derivatives are approximated using the centred operator

∂tuh(tn+1) ≈ 1

τ

(
3

2
un+1
h − 2unh +

1

2
un−1h

)
,

(similarly for ∂tc) whereas for the first time step a first-order backward Euler method is used from t0

to t1, starting from the interpolates u0
h, c

0
h of the initial data. The resulting set of nonlinear equations is

solved with an iterative Newton-Raphson method with exact Jacobian.

3.2. Spatio-temporal accuracy of the discretisation

For sake of the subsequent analysis, we assume Lipschitz continuity of the concentration-dependent
viscosity

ν ∈ Lip(R+); ∃νmin, νmax : ∀c ∈ R+ : νmin ≤ ν(c) ≤ νmax.

Moreover, the flux fbk(c) is assumed to be Lipschitz continuous, and the diffusion coefficient D = D(c)

is supposed to be a nonlinear function satisfying

D ∈ Lip(R+); ∃D1, D2 > 0 : ∀c ∈ R+ : D1 ≤ D(c) ≤ D2. (3.8)

For simplicity, we impose the following modified boundary conditions:

u(x, t) = 0, c(x, t) = 0, (D(c)∇c− fbk(c)k) · n = 0 on Γ , t ∈ [0, T ],

and we emphasise that the analysis can be extended to the non-homogeneous case following, for in-
stance, lifting arguments.
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We utilise the following mesh dependent broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖∇v‖20,K +
∑
e∈Eh

1

he
‖JvK‖20,e, ‖v‖21,Th := ‖v‖20,Ω + ‖v‖2∗,Th for all v ∈H1(Th),

‖v‖22,Th := ‖v‖21,Th +
∑
K∈Th

h2K |v|22,K for all v ∈H2(Th).

We also recall the broken version of the well-known Sobolev embedding result (see e.g. [22, Lemma
6.2], [26, Prop. 4.5] or [19, Th. 5.3]): for any r > 1 if d = 2 or 1 ≤ r ≤ 6, if d = 3 there exists a constant
Cemb > 0 such that

‖v‖Lr(Ω) ≤ Cemb‖v‖1,Th for all v ∈H1(Th). (3.9)

Furthermore, we will use the broken space

C1(Th) :=
{
u ∈H1(Th) : u|K ∈ C1(K̄),K ∈ Th

}
,

equipped with an appropriate norm ‖u‖W 1,∞(Th) := maxK∈Th‖u‖W 1,∞(K). Using the discrete norms,
embedding (3.9) and local trace inequalities, we can establish continuity of the trilinear and bilinear
forms involved, stated in the following lemma that can be proved following [4, Section 4]:

Lemma 3.1. The following properties hold:∣∣ah1 (·,u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th for all u,v ∈ Vh, (3.10a)∣∣b(v, q)∣∣ ≤ ‖v‖1,Th‖q‖0,Ω for all v ∈H1(Th), q ∈ L2

0(Ω), (3.10b)∣∣c2(w; c, l)
∣∣ ≤ C̃1‖w‖1,Th‖l‖1,Ω‖c‖1,Ω for all w ∈H1(Th) and l, c ∈ H1(Ω). (3.10c)

Moreover, for c1, c2 ∈ H1(Ω), c ∈W 1,∞(Ω), u ∈ C1(Th) ∩H1
0 (Ω) and v ∈ Vh, there holds∣∣ah1 (c1;u,v)− ah1 (c2;u,v)

∣∣ ≤ C̃Lip‖c1 − c2‖1,Ω‖u‖W 1,∞(Th)‖v‖1,Th ,∣∣a2(c1, c, l)− a2(c2, c, l)
∣∣ ≤ ĈLip‖c1 − c2‖1,Ω‖c‖W 1,∞(Ω)‖l‖1,Ω , (3.11)

where the constant C̃Lip > 0 is independent of h (cf. [13]). A related result follows for ch1 (·; ·, ·) as in
[33, Lemma 3.4]. On the other hand, let w1,w2,u ∈ H2(Th) and v ∈ Vh. Then there exists C̃u > 0

independently of h such that∣∣ch1 (w1;u,v)− ch1 (w2;u,v)
∣∣ ≤ C̃u‖w1 −w2‖1,Th‖u‖1,Th‖v‖1,Th . (3.12)

Moreover, while the coercivity of the form a2(·, ·, ·) is readily implied by (3.8),

a2(·, c, c) ≥ α̂a‖c‖21,Ω for all c ∈ H1(Ω), (3.13)

there also holds (cf. [29, Lemma 3.2])

ah1 (·,v,v) ≥ α̃a‖v‖21,Th for all v ∈ Vh, (3.14)

provided that a0 > 0 is sufficiently large and independent of the meshsize.

Furthermore, based on the assumptions on D, we have∣∣a2(·; c, l)
∣∣ ≤ Ĉa‖c‖1,Ω‖l‖1,Ω for all c, l ∈ H1(Ω). (3.15)
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In addition, if we let w ∈H0(div0;Ω) := {w ∈H(div, Ω) : w · n = 0 on ∂Ω,divw = 0 in Ω}, then
according to [33] we can write

ch1 (w;u,u) =
1

2

∑
e∈Eih

∫
e

|w · ne|JuK2 ≥ 0 for all u ∈ Vh, (3.16)

as well as the relation
c2(w; lh, lh) = 0 for all lh ∈Mh, (3.17)

which arises from integration by parts and holds at the discrete level since the produced discrete veloc-
ities are exactly divergence free. Based on the assumptions on fbk, it is also clear that∣∣d2(c1, l)− d2(c2, l)

∣∣ ≤ Cd‖c1 − c2‖0,Ω‖l‖1,Ω . (3.18)

Finally, we recall from [29] the following discrete inf-sup condition for b(·, ·), where β̃ is independent
of h:

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω for all qh ∈ Qh. (3.19)

Remark 3.1. Using the definition and characterisation of the kernel Z of b(·, ·), namely

Z :=
{
v ∈H1

0 (Ω) : b(v, q) = 0 ∀q ∈ L2
0(Ω)

}
=
{
v ∈H1

0 (Ω) : div v = 0 in Ω
}
,

and using integration by parts, we can readily observe that

c1(w;v,v) = 0 and c2(w; s, s) = 0 for all w ∈X , v ∈H1(Ω), and s ∈ H1(Ω).

It is also well known (see for instance [9]) that if (u, p, c) ∈ H1
0 (Ω) × L2

0 × H1 solves (2.6), then u ∈ Z is a
solution of the following reduced problem:

For all t ∈ (0, T ], find (u, c) ∈ Z ×H1 such that(
∂tu(t),v

)
Ω

+ a1
(
c(t);u(t),v

)
+ c1

(
u(t);u(t),v

)
= Fg(c,v) + Fr(u,v) for all v ∈H1

0 (Ω),(
∂tc(t), l

)
Ω

+ a2
(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr(c(t), l) for all l ∈ H1(Ω).

(3.20)

Conversely, if (u, c) ∈ Z ×H1 is a solution of (3.20), then there exists a pressure p ∈ L2
0 such that (u, p, c) is a

solution of (2.6). As in the continuous case, we define the discrete kernel of the bilinear form b(·, ·) as

Zh :=
{
vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh

}
=
{
vh ∈ Vh : div vh = 0 in Ω

}
,

and relying on the inf-sup condition (3.19), we can introduce an equivalent discrete reduce problem.

Let us denote by Ih : C(Ω̄) →Mh the classical nodal interpolation operator with respect to a uni-
solvent set of Lagrangian interpolation nodes associated with the conforming spaceMh. By Πh u we
denote the BDM projection of u, and Lh p is the L2-projection of p onto Qh. Under adequate regularity
assumptions, the following approximation properties hold (see [29]):

‖u−Πh u‖1,Th ≤ C∗hk+1‖u‖k+1,Ω ,

‖c− Ih c‖1,Ω ≤ C∗hk‖c‖k+1,Ω , ‖p− Lh p‖0,Ω ≤ C∗hk‖p‖k,Ω .
(3.21)

The following development follows the structure adopted in [1].

9
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Lemma 3.2. Assume that u ∈H2(Ω), p ∈ L2(Ω) and c ∈ H1(Ω). Then we have

For all v ∈ Vh, q ∈ Qh and l ∈Mh:(
∂tu(t),v

)
Ω

+ ah1
(
c(t);u(t),v

)
+ ch1

(
u(t);u(t),v

)
− b(v, p(t))− Fg

(
c(t),v

)
− Fr

(
u(t),v

)
= 0,

b(u(t), q) = 0,(
∂tc(t), l

)
Ω

+ a2
(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr

(
c(t), l

)
.

Proof. Since we assume u ∈ H2(Ω), integration by parts yields the required result. See also [4]. The
third equation is a straightforward result from the continuous form.

Now we decompose the errors as follows:

uh − u = Eu + ξu = (Πh u− u) + (uh −Πh u),

ph − p = Ep + ξp = (Lh p− p) + (ph − Lh p),
ch − c = Ec + ξc = (Ih c− c) + (ch − Ih c).

Assuming that u0
h = Πh u(0) and c0h = Ih c(0), we will use also the notation Enu = (u(tn) −Πh u(tn))

and ξnu = (Πh u(tn)−unh), and similar notation for other variables. Note that for the first time iteration
of the fully discrete form of system (3.7) we adopt a backward Euler scheme, and so we require error
estimates for this step.

In what follows we assume a simpler form for the drag term fr such that for all u1,u2,v ∈ H1(Ω)

we have the following Lipschitz continuity:∣∣Fr(u1,v)− Fr(u2,v)
∣∣ ≤ γ̃1‖u1 − u2‖0,B‖v‖0,B. (3.22)

Since Xr(s, t) is a rigid motion, (3.22) can be achieved, for instance, if we consider

fr(x, t) = β∗ρr

∫
B

(
(ur(s)− u(Xr(s, t), t)) · nr

)
nrδ(x−Xr(s, t)) ds. (3.23)

Furthermore, since B ⊂ Ω, we have that ‖·‖0,B ≤ ‖·‖0,Ω and∣∣Fr(u1,v)− Fr(u2,v)
∣∣ ≤ γ1‖u1 − u2‖0,Ω‖v‖0,Ω . (3.24)

By Hölder’s inequality for all c, c1, c2, l ∈ H1(Ω) and v ∈H1(Ω) there also hold

Fg(c,v) ≤ γ2‖c‖0,Ω‖v‖0,Ω , (3.25)

Gr(c1, l)−Gr(c2, l) ≤ γ3‖c1 − c2‖0,Ω‖l‖0,Ω . (3.26)

The following algebraic relation will be useful in the sequel: for any real numbers an+1, an, an−1

and defining Λan := an+1 − 2an + an−1, we have

2(3an+1 − 4an + an−1, an) = |an+1|2 + |2an+1 − an|2 + |Λan|2 − |an|2 − |2an − an−1|2. (3.27)

Theorem 3.1. Let (unh, c
n
h) in Xh ×Mh be a solution of problem (3.7), using the second-order backward differ-

entiation formula (BDF2) with initial data (u1
h, c

1
h) and (u0

h, c
0
h). Then there exist constants C̄u > 0 and C̄c > 0

that are independent of h and τ such that

sup
2≤n≤N

‖unh‖20,Ω + sup
2≤n≤N

‖2unh − un−1h ‖20,Ω +

N∑
n=2

‖Λun−1h ‖0,Ω +

N∑
n=2

τα̃a‖unh‖21,Th

10
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≤ C̄u(‖c1h‖20,Ω + ‖2c1h − c0h‖20,Ω + ‖u1
h‖20,Ω + ‖2u1

h − u0
h‖20,Ω + ‖ur‖20,B + |cr|2),

sup
2≤n≤N

‖cnh‖20,Ω + sup
2≤n≤N

‖2cnh − cn−1h ‖20,Ω +

N∑
n=2

‖Λcn−1h ‖0,Ω + 4

N∑
n=2

τα̂a‖cnh‖21,Ω

≤ C̄c(‖c1h‖20,Ω + ‖2c1h − c0h‖20,Ω + |cr|2).

Proof. It suffices to take vh = 4τun+1
h and lh = 4τcn+1

h in system (3.7), using BDF2 differentiation
formula, Sobolev inequalities, summing over n from 1 to n ≤ N − 1, and applying Gronwall’s lemma,
with τ sufficiently small. Note that by Remark 3.1, all terms containing the bilinear form b are simply
removed from the system.

Theorem 3.2. Let us assume that u ∈ L∞(0, T ;Hk+1
0 (Ω)), u′ ∈ L∞(0, T ;H1(Ω)), u′′ ∈ L∞(0, T ;L2(Ω)),

p ∈ L∞(0, T ;Hk(Ω)), c ∈ L∞(0, T ;Hk+1
0 (Ω)), c′ ∈ L∞(0, T ;Hk(Ω)), c′′ ∈ L∞(0, T ;L2(Ω)), with γ22 ≤

1
32 α̂aα̃

2
a, k ≥ 1 and also that

max
{
‖u‖L∞(0,T ;W 1,∞(Ω)), ‖c‖L∞(0,T ;W 1,∞(Ω))

}
< M,

for a sufficiently small constant M > 0 (a precise condition for M, can be found on Theorem 3.5). Then there
exist positive constants C1

u, C1
c , independent of h and τ , such that

1

4
‖ξ1u‖20,Ω +

1

4
τα̃a‖ξu‖21,Th ≤ C

1
u(h2k + τ4),

1

8
‖ξ1c‖20,Ω +

1

4
τα̂a‖ξc‖2H1(Ω) ≤ C

1
c (h2k + τ4).

Proof. First, taking into account the regularity assumptions for u, we have for all x a γ ∈ (0, 1) that
depends on x such that

u(0) = u(τ)− τu′(τ) +
1

2
τ2u′′(τγ),

then using the reduced problem as stated on Remark 3.1, u satisfies the following error equation

‖ξ1u‖20,Ω + τα̃a‖ξ1u‖21,Th ≤ −
(
Πh u(τ)− u(τ) + u0

h − u(0), ξ1u
)
Ω

+ τ
(
ah1 (c1h;Πh u(τ), ξ1u)− ah1 (c1;u(τ), ξ1u)

)
− τ
(
ch1 (u1

h;u1
h, ξ

1
u)− ch1 (u(τ),u(τ), ξ1u)

)
− τ
(
Fr(u

1
h, ξ

1
u)− Fr(u(τ), ξ1u)

)
− τ
(
Fg(c1h, ξ

1
u)− Fg(c(τ), ξ1u)

)
− τ2

2

(
u′′(τγ), ξ1u

)
,

which results after choosing ξ1u as test function in the first equation of Lemma 3.2 and system (3.7),
performing an Euler scheme step, subtracting both equations, and adding ±ah1 (c1h;Πh u(τ), ξ1u). Now,
by applying the error approximation results from (3.21), Young’s inequality, and the stability properties,
we get

1

4
‖ξ1u‖20,Ω +

1

4
τα̃a‖ξ1u‖21,Th ≤ Ch

2kτ
(
‖u(τ)‖2Hk+1(Ω) + ‖u(0)‖2Hk+1(Ω) + ‖c(τ)‖2Hk+1(Ω) + ‖p(τ)‖2Hk(Ω)

)
+ Cτ4(‖u′′‖2L∞(0,T ;L2(Ω))) +

4C̃2
LipM

2

α̃a
τ‖ξ1c‖21,Ω + τ

γ22
α̃a
‖ξ1c‖1,Ω . (3.28)

Next we follow the same steps for c, with τ sufficiently small (τ ≤ 1
2(12C2

d+2γ̃2
3)

) to obtain

1

4
‖ξ1c‖20,Ω +

1

2
τα̂a‖ξ1c‖21,Ω ≤ Cτh2k

(
‖u(τ)‖2Hk+1(Ω) + ‖c(τ)‖2Hk+1(Ω) + ‖c(0)‖2Hk+1(Ω)

+ ‖c(τ)‖2Hk+1(Ω)‖u(τ)‖2H1(Ω) + ‖u(τ)‖2Hk+1(Ω)‖c(τ)‖2H1(Ω)

)
+ Cτ4(‖c′′‖2L∞(0,τ ;L2(Ω))) +

6C̃2
1 (1 + C∗)2M2

α̂a
τ‖ξu‖21,Th .

(3.29)

11



Simulation of clarifiers with a rotating rake R. Bürger, P.E. Méndez, R. Ruiz-Baier

In this way, from (3.28) we deduce that

τ‖ξu‖21,Th ≤ C(h2k + τ4) +
16C̃2

LipM
2

α̃2
a

τ‖ξ1c‖21,Ω + 4
γ22
α̃2
a

τ‖ξ1c‖21,Ω .

We insert the previous identity into (3.29) and consider M sufficiently small such that the terms multi-
plying ‖ξc‖21,Ω , can be absorbed into the left-hand side of the inequality, to get

1

8
‖ξ1c‖20,Ω +

1

4
τα̂a‖ξc‖21,Ω ≤ C1

c (h2k + τ4). (3.30)

The first estimate follows by directly substituting (3.30) into (3.28).

Theorem 3.3. Let (u, p, c) be the solution of (2.6) and (uh, ph, ch) be the solution of (3.7) with BDF2 iter-
ation. Suppose that u ∈ L∞(0, T ;Hk+1

0 (Ω)), c ∈ L∞(0, T ;Hk+1
0 (Ω)), u′ ∈ L∞(0, T ;Hk(Ω)), u(3) ∈

L2(0, T ;L2(Ω)) and ‖u‖L∞(0,T ;W 1,∞(Ω)) < M for a sufficiently small constant M > 0. Then there exist
positive constants C, η1 ≥ 0 independent of h and τ such that for all m+ 1 ≤ N ,

‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω +

m∑
n=1

τα̃a‖ξn+1
u ‖21,Th ≤ C(τ4 + h2k) +

m∑
n=1

η1τ‖ξn+1
c ‖20,Ω .

Proof. We choose as tests functions vh = ξn+1
u in the first equation of (3.7), using BDF2 differentiation

formula and inserting the terms

± 1

2τ

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω
, ± 1

2τ

(
3Πh u(tn+1)− 4Πh u(tn) +Πh u(tn−1), ξn+1

u

)
Ω
,

and ±ah1 (cn+1
h ;Πh u(tn+1), ξn+1

u ), we get

1

2τ

(
3ξn+1

u − 4ξnu + ξn−1u , ξn+1
u

)
Ω

+
1

2τ

(
3En+1

u − 4Enu + En−1u , ξn+1
u

)
Ω

+
1

2τ

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω

+ ah1 (cn+1
h ; ξn+1

u , ξn+1
u ) + ah1 (cn+1

h ;Πh u(tn+1), ξn+1
u )

+ ch1 (un+1
h ,un+1

h , ξn+1
u ) = Fg(cn+1

h , ξn+1
u ) + Fr(u

n+1
h , ξn+1

u ). (3.31)

Considering Lemma 3.2 at t = tn+1 with v = ξn+1
u , and after inserting the term

± 1

2τ

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω
,

we readily deduce the expression

1

2τ

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω

+ ah1 (c(tn+1);u(tn+1), ξn+1
u ) + ch1 (u(tn+1),u(tn+1), ξn+1

u )

= Fg(cn+1, ξn+1
u ) + Fr(u

n+1, ξn+1
u )−

(
u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2τ
, ξn+1

u

)
Ω

. (3.32)

We can then subtract (3.31) from (3.32) and multiply both sides by 4τ to obtain an equality

I1 + I2 = I3 + I4 + I5 + I6 + I7 + I8,

where we define

I1 := 2
(
3ξn+1

u − 4ξnu + ξn−1u , ξn+1
u

)
, I2 := 4τah1 (cn+1

h ; ξn+1
u , ξn+1

u ),

12
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I3 := 4τ

(
u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2τ
, ξn+1

u

)
Ω

, I4 := −2
(
3En+1

u − 4Enu + En−1u , ξn+1
u

)
,

I5 := 4τ
(
Fg(cn+1

h , ξn+1
u )− Fg(c(tn+1), ξn+1

u

)
, I6 := 4τ

(
Fr(u

n+1
h , ξn+1

u )− Fr(u(tn+1), ξn+1
u

)
,

I7 := −4τ
(
ah1 (cn+1

h ;Πh u
n+1, ξn+1

u )− ah1 (c(tn+1);u(tn+1), ξn+1
u )

)
,

I8 := −4τ
(
ch1 (un+1

h ,un+1
h , ξn+1

u )− ch1 (u(tn+1),u(tn+1), ξn+1
u )

)
.

Let us estimate each term Ii, i ∈ {1, . . . , 8}. For I1, using (3.27) we can assert that

I1 = ‖ξn+1
u ‖20,Ω + ‖2ξn+1

u − ξnu‖20,Ω + ‖Λξn+1
u ‖20,Ω − ‖ξnu‖20,Ω − ‖2ξnu − ξn−1u ‖20,Ω .

Using the ellipticity stated in (3.14), we readily get

I2 ≥ 4τα̃a‖ξn+1
u ‖21,Th .

By using Taylor’s formula with integral remainder we have∣∣∣∣u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2τ

∣∣∣∣ =
τ3/2

2
√

3
‖u(3)‖L2(tn−1,tn+1;L2(Ω)),

then by combining Cauchy-Schwarz and Young’s inequality, we obtain the bound

|I3| ≤
τ4

24ε1
‖u(3)‖2L2(tn−1,tn+1;L2(Ω)) +

τε1
2
‖ξn+1

u ‖21,Th .

Now we insert ±4τE′u(tn+1) onto the fourth term, which leads to

I4 = −4τ(E′u(tn+1), ξn+1
u )Ω +

(
E′u(tn+1)− 3En+1

u − 4Enu + En−1u

2τ
, ξn+1

u

)
Ω

.

Proceeding as before and using (3.21) on the first term of I4, we get

|I4| ≤
C

2ε2
h2k‖u′‖2L∞(0,T ;Hk(Ω)) +

τε2
2
‖ξn+1

u ‖21,Th +
τ4C

2ε3
‖u(3)‖2L2(0,T ;L2(Ω)) +

τε3
2
‖ξn+1

u ‖21,Th .

Now by (3.25), appealing to (3.21), and inserting ±4τFg(Ih cn+1, ξn+1
u ), we are left with

|I5| ≤
2γ22τ

ε4

(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξn+1

c ‖20,Ω
)

+ 2τε4‖ξn+1
u ‖21,Th .

In the same manner using (3.24), and inserting ±4τFr(Πh u
n+1, ξn+1

u ), we get

|I6| ≤
2γ21τ

ε5

(
C∗h2k‖u‖2L∞(0,T ;Hk(Ω)) + ‖ξu‖20,Ω

)
+ 2τε5‖ξn+1

u ‖21,Th

Again inserting ±ah1 (cn+1
h ;u(tn+1), ξn+1

u ) and ±ah1 (Ih cn+1;u(tn+1), ξn+1
u ) and using (3.21) we get

|I7| ≤
C̃2
aτh

2k

2ε6
‖u‖2L∞(0,T ;Hk+1(Ω)) +

τε6
2
‖ξn+1

u ‖21,Th +
C̃2

lipM
2

2ε7
‖ξc‖21,Ω

+
τ

2
ε7‖ξn+1

u ‖21,Th +
C̃2

lipM
2τh2k

2ε8
‖c‖2L∞(0,T ;Hk(Ω)) +

ε8τ

2
‖ξn+1

u ‖21,Th .

Now we insert into I8 the three terms

± ch1 (u(tn+1), Πh u(tn+1), ξn+1
u ), ±ch1 (Πh u(tn+1), Πh u(tn+1), ξn+1

u ),

13
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± ch1 (Πh u(tn+1),u(tn+1), ξn+1
u ),

which yields

I8 = −4τ
(
ch1 (u(tn+1), Πh u(tn+1), ξn+1

u )− ch1 (Πh u(tn+1), Πh u(tn+1), ξn+1
u )

+ ch1 (Πh u(tn+1), Πh u(tn+1), ξn+1
u )− ch1 (Πh u(tn+1),u(tn+1), ξn+1

u )

+ ch1 (Πh u(tn+1),u(tn+1), ξn+1
u )− ch1 (u(tn+1)u(tn+1), ξn+1

u ) + ch1 (un+1
h , ξn+1

u , ξn+1
u )

)
.

The last term is moved to the left-hand side, where we use (3.16); whereas for the remaining terms
(which we further rename as Ĩ8), the bound (3.12) together with (3.21) imply that

|Ĩ8| ≤ 4τ

(
C∗C̃uC∞M‖ξn+1

u ‖21,Th +
h2kC

2ε9
‖u‖2L∞(0,T ;H1(Ω))‖u‖

2
L∞(0,T ;Hk+1(Ω)) +

ε9
2
‖ξn+1

u ‖21,Th

+
Ch2k

2ε10
‖u‖2L∞(0,T ;Hk+1(Ω))‖u‖

2
L∞(0,T ;H1(Ω)) +

ε10
2
‖ξn+1

u ‖21,Th

)
,

where C∗ is a positive constant coming from (3.21). Hence, by choosing εi = 2α̃a/11 for i = 1, . . . , 11,
collecting the above estimates, and summing over 1 ≤ n ≤ m for all m+ 1 ≤ N we get

‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω − 3‖ξ1u‖20,Ω +

m∑
n=1

τα̃a‖ξn+1
u ‖21,Th

≤ C(τ4 + h2k) + η1

m∑
n=1

‖ξn+1
c ‖20,Ω +

m∑
n=1

11γ21τ

α̃a
‖ξn+1

u ‖20,Ω ,

where C̃uC∗C∞M ≤ α̃a/4 and η1 = C(α̃a, C̃Lip, γ1, γ2). Finally, using Theorem 3.2, considering τ suffi-
ciently small and applying Gronwall’s lemma, we get the desired result.

Theorem 3.4. Let (u, c) be the solution of (2.6) and (uh, ch) be the solution of (3.7) using the BDF2 dif-
ferential operator. If u ∈ L∞(0, T ;Hk+1

0 (Ω)), c ∈ L∞(0, T ;Hk+1
0 (Ω)), c′ ∈ L∞(0, T ;Hk(Ω)), c(3) ∈

L2(0, T ;L2(Ω)), and ‖c‖L∞(0,T ;W 1,∞(Ω)) < M ; then there exist positive constants C, η2 > 0, independent of
h and τ , such that for all m+ 1 ≤ N

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξn+1
c ‖20,Ω +

m∑
n=1

τα̂a‖ξn+1
c ‖21,Ω

≤ C(τ4 + h2k) +

m∑
n=1

η2τ‖ξn+1
u ‖21,Th .

Proof. Proceeding similarly as in the proof of Theorem 3.3, from the second equation of (2.6) we get

1

2τ

(
3ξn+1
c − 4ξnc + ξn−1c , ξn+1

c

)
Ω

+
1

2τ

(
3En+1

c − 4Enc + En−1c , ξn+1
c

)
Ω

+
1

2τ

(
3c(tn+1)− 4c(tn) + c(tn−1), ξn+1

c

)
Ω

+ ah2 (ξn+1
c , ξn+1

c ) + ah2 (Ih c(tn+1), ξn+1
c )

+ ch2 (un+1
h , cn+1

h , ξn+1
c )− d2(cn+1

h , ξn+1
c ) = −Gr(c

n+1
h , ξn+1

c ),

(3.33)

and considering the third equation in Lemma 3.2, focusing on t = tn+1, we immediately obtain

1

2τ

(
3c(tn+1)− 4c(tn) + c(tn−1), ξn+1

c

)
Ω

+ a2
(
c(tn+1), ξn+1

c

)
+ c2

(
u(tn+1), c(tn+1), ξn+1

c

)
− d2(cn+1, ξn+1

c ) = −Gr(c
n+1, ξn+1

c )−
(
c′(tn+1)− 3c(tn+1)− 4c(tn) + c(tn−1)

2τ
, ξn+1
c

)
Ω

.
(3.34)
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Subtracting (3.33) from (3.34) and multiplying both sides of the result by 4τ leads to

2
(
3ξn+1
c − 4ξnc + ξn−1c , ξn+1

c

)
Ω

+ 4τa2(cn+1
h ; ξn+1

c , ξn+1
c )

= 4τ

(
c′(tn+1)− 3c(tn+1)− 4c(tn) + c(tn−1)

2τ
, ξn+1
c

)
Ω

− 2
(
3En+1

c − 4Enc + En−1c , ξn+1
c

)
Ω

− 4τ
(
a2(cn+1

h ; Ih cn+1, ξn+1
c )− a2(cn+1; cn+1, ξn+1

c )
)

− 4τ
(
c2(un+1

h , cn+1
h , ξn+1

u )− ch1 (u(tn+1), c(tn+1), ξn+1
u )

)
+ 4τ

(
d2(cn+1

h , ξn+1
c )− d2(cn1 , ξn+1

c )
)
− 4τ

(
Gr(c

n+1
h , ξn+1

c )−Gr(c
n+1, ξn+1

c )
)
.

(3.35)

As done above, we rewrite (3.35) using auxiliary terms now denoted Î1, . . . , Î8, and derive individual
bounds for each term. For the first, second, and third terms, we use (3.27), (3.13), and Taylor expansion
together with Young’s inequality, respectively, to obtain

Î1 = ‖ξn+1
c ‖20,Ω + ‖2ξn+1

c − ξnc ‖20,Ω + ‖Λξn+1
c ‖20,Ω − ‖ξnc ‖20,Ω − ‖2ξnc − ξn−1c ‖20,Ω ,

Î2 ≥ 4τα̂a‖ξn+1
c ‖21,Ω , |Î3| ≤

τ4

24ε1
‖c(3)‖2L2(tn−1,tn+1;L2(Ω)) +

τε1
2
‖ξn+1
c ‖21,Ω .

Now we insert ±4τE′c(tn+1) into Î4 and exploit (3.21). This leads to the bound

|Î4| ≤
C

2ε2
h2k‖c′‖2L∞(0,T ;Hk(Ω)) +

τε2
2
‖ξn+1
c ‖21,Ω +

τ4C

2ε3
‖c(3)‖2L2(0,T ;L2(Ω)) +

τε3
2
‖ξn+1
c ‖21,Ω .

Employing again (3.21) in combination with (3.15) and (3.11), inserting ±a2(cn+1
h ; c(tn+1), ξn+1

c ) and
±a2(Ih cn+1; c(tn+1), ξn+1

c ); we have

|Î5| ≤
Ĉ2
aτh

2k

2ε4
‖c‖2L∞(0,T ;Hk+1(Ω)) +

τε4
2
‖ξn+1
c ‖21,Ω + ĈlipM‖ξc‖21,Ω

+
C̃2

lipM
2τh2k

2ε5
‖c‖2L∞(0,T ;Hk(Ω)) +

ε5τ

2
‖ξn+1
c ‖21,Ω .

In order to derive a bound for Î6 we add and subtract the terms

±c2(u(tn+1), Ih c(tn+1), ξn+1
c ), ±c2(Πh u(tn+1), Ih c(tn+1), ξn+1

c ), ±c2(Πh u(tn+1), c(tn+1), ξn+1
c ),

which yields

Î6 = 4τ
(
ch2 (un+1

h , Ih c(tn+1), ξn+1
c )− c2(Πh u(tn+1), Ih c(tn+1), ξn+1

c )

+ c2(Πh u(tn+1), Ih c(tn+1), ξn+1
c )− c2(Πh u(tn+1), c(tn+1), ξn+1

c )

+ ch2 (Πh u(tn+1), c(tn+1), ξn+1
c )− c2(u(tn+1)c(tn+1), ξn+1

c ) + c2(un+1
h , ξn+1

c , ξn+1
c )

)
.

Using (3.17), (3.10c) and (3.21), we get

|Ĩ6| ≤ 4τ

(
C̃2C∗

2ε6
‖ξn+1

u ‖21,Th‖c‖
2
L∞(0,T ;H1(Ω)) +

ε6
2
‖ξc‖21,Ω +

h2kCC̃2

2ε7
‖u‖2L∞(0,T ;H1(Ω))‖c‖

2
L∞(0,T ;Hk+1(Ω))

+
ε7
2
‖ξn+1
c ‖21,Ω +

Ch2kC̃2

2ε8
‖u‖2L∞(0,T ;Hk+1(Ω))‖c‖

2
L∞(0,T ;H1(Ω)) +

ε8
2
‖ξn+1
c ‖21,Ω

)
.

Now, using (3.18) and (3.26), we have:

|Î7| ≤
C2
d

ε9
2τ
(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξc‖20,Ω

)
+ 2τε9‖ξn+1

c ‖21,Ω ,
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|Î8| ≤
γ23
ε10

2τ
(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξc‖20,Ω

)
+ 2τε10‖ξn+1

c ‖21,Ω .

In this manner, and after choosing εi = 4α̂a/25 for i = 1, . . . , 8 and M ≤ α̂a/ĈLip, we can collect the
above estimates and sum over 1 ≤ n ≤ m, for all m+ 1 ≤ N , to get

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξnc ‖20,Ω +

m∑
n=1

τα̂a‖ξn+1
c ‖21,Ω − 3‖ξ1c‖20,Ω

≤ C(τ4 + h2k) +

m∑
n=1

η2‖ξn+1
u ‖21,Th +

m∑
n=1

τ
25

α̂a
(C2

d + γ23)‖ξc‖20,Ω .

And the proof is completed by considering τ sufficiently small and applying Gronwall’s lemma.

Theorem 3.5. Under the assumptions of Theorems 3.3 and 3.4 with

M := min

{
α̃a

ĈLip
,

α̃a

4C̃uC∗C∞

}
there exist positive constants γ̂u and γ̂c independent of τ and h, such that for a sufficiently small τ and all
m+ 1 ≤ N , the following inequalities hold(

‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω +

m∑
n=1

τα̃a‖ξn+1
u ‖21,Th

)1/2

≤ γ̂u(τ2 + hk),

(
‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξnc ‖20,Ω +

m∑
n=1

τα̂a‖ξn+1
c ‖21,Ω

)1/2

≤ γ̂c(τ2 + hk).

Proof. From Theorem 3.3 we have the estimate

m∑
n=1

τ‖ξn+1
u ‖21,Th ≤ C(τ4 + h2k) +

η1
α̃a

m∑
n=1

τ‖ξn+1
c ‖20,Ω ,

which, substituting back into Theorem 3.4, yields

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξnc ‖20,Ω +

m∑
n=1

τα̂a‖ξn+1
c ‖21,Ω

≤ C(τ4 + h2k) +
η1η2
α̃a

m∑
n=1

τ‖ξn+1
c ‖20,Ω .

For the last term on the right-hand side of this last bound we have

‖ξm+1
c ‖20,Ω ≤ 2

(
‖Λξmc ‖20,Ω + ‖2ξmc − ξm−1c ‖20,Ω

)
,

and considering τ sufficiently small and applying Gronwall’s lemma, we readily deduce that

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξn+1
c ‖20,Ω +

m∑
n=1

τα̂a‖ξn+1
c ‖21,Ω ≤ C(τ4 + h2k). (3.36)

The first bound follow by combining (3.36) and Theorem 3.3.
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Lemma 3.3. Under the same assumptions of Theorem 3.5, we have(
m∑
n=1

τ‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

≤ γ̂p(τ2 + hk).

Proof. Owing to the inf-sup condition (3.19), there exists a function wh ∈X⊥h such that

b
(
wh, p(tn+1)− pn+1

h

)
= ‖p(tn+1)− pn+1

h ‖20,Ω , (3.37)

‖wh‖1,Th ≤
1

β̃
‖p(tn+1)− pn+1

h ‖0,Ω . (3.38)

From (3.7) and Lemma 3.2, proceeding as in the proof of Theorem 3.3, we obtain

τb(wh, p(tn+1)− pn+1
h ) = −τ

(
u′(tn+1)−

3un+1
h − 4unh + un−1h

2τ
,wh

)
Ω

+ τ
(
ah1 (cn+1

h ;un+1
h ,wh)− ah1 (c(tn+1);u(tn+1),wh)

)
+ τ
(
ch1 (un+1

h ;un+1
h ,wh)− ch1 (u(tn+1);u(tn+1),wh)

)
+ τ
(
Fg(c(tn+1),wh)− Fg(cn+1

h ,wh)
)

+ τ
(
Fr(u(tn+1),wh)− Fr(u

n+1
h ,wh)

)
≤ τ2

2
√

3
‖u(3)‖L2(tn−1,tn+1,L2(Ω))

√
τ‖wh‖1,Th

+ C̃aC
∗hkτ‖u‖L∞(0,T ;Hk+1(Ω))‖wh‖1,Th + C̃lipMτ‖ξn+1

c ‖1,Ω‖wh‖1,Th
+ C̃lipτM‖ξc‖1,Ω‖wh‖1,Th + τCC̃uC

∗C∞M‖ξc‖1,Ω‖wh‖1,Th
+ τCC̃uh

k‖u‖L∞(0,T ;H1(Ω))‖u‖L∞(0,T ;Hk+1(Ω))‖wh‖1,Th
+ τCC̃uh

k‖u‖L∞(0,T ;H1(Ω))‖u‖L∞(0,T,Hk+1(Ω))‖wh‖1,Th
+ γ2τh

kC∗‖c‖L∞(0,T ;Hk(Ω))‖wh‖1,Th + γ2τ‖ξu‖0,Ω‖wh‖1,Th
+ γ1τh

kC∗‖u‖L∞(0,T ;Hk(Ω))‖wh‖1,Th + γ1τ‖ξu‖0,Ω‖wh‖1,Th .

Summing over 1 ≤ n ≤ m for all m+ 1 ≤ N and substituting back into equations (3.37) and (3.38), we
obtain(

m∑
n=1

τ‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

≤ C

β̃

(τ2 + hk) +

(
m∑
n=1

τ‖ξn+1
c ‖20,Ω

)1/2

+

(
m∑
n=1

τ‖ξn+1
u ‖21,Th

)1/2
 .

The result follows by applying Theorem 3.5.

4. Numerical results

In this section we test the performance of the numerical method and produce some typical solutions
in operating conditions. Tetrahedral meshes have been constructed using the freely available mesh
manipulator GMSH [21], and the implementation of the H(div)-conforming finite element scheme is
carried out using the open source finite element library FEniCS [2]. The linear systems encountered at
each Newton-Raphson step are solved with the GMRES method preconditioned with AMG. The New-
ton iterations stop whenever either the absolute or the relative residuals (measured in the `2−norm)
drop below the fixed tolerance set to 1× 10−6. Apart from the main python modules, a dedicated C++
expression is needed to efficiently compile the position of the rake at each time. It depends on the
structure dimensions and on the angular velocity.
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k DoF eu rate ep rate es rate

1 53 0.004507 – 0.291804 – 0.253207 –

299 0.002783 0.679 0.192100 0.589 0.153518 0.708

1265 0.001273 1.150 0.096891 1.006 0.073370 1.085

4634 0.000631 1.017 0.051713 0.911 0.038362 0.941

17780 0.000308 1.033 0.026853 0.945 0.018841 1.026

2 132 0.001817 – 0.115142 – 0.089672 –

797 0.000342 2.349 0.032084 1.799 0.018151 2.249

3427 8.031e-5 2.133 0.007198 2.197 0.003702 2.337

12702 1.948e-5 2.056 0.002023 1.844 0.000996 1.905

49157 4.358e-6 2.159 0.000525 1.941 0.000251 1.987

Table 4.1: Spatial accuracy test: experimental errors and convergence rates for the approximate solutions uh, ph and ch. Values
are displayed for schemes with first and second order in space.

τ êu rate êp rate ês rate

2 5.6194 – 0.5069 – 0.4558 –

1 1.5943 1.817 0.1809 1.487 0.0868 2.391

0.5 0.4433 1.847 0.0523 1.789 0.0193 2.167

0.25 0.1153 1.943 0.0135 1.951 0.0046 2.070

0.125 0.0296 1.959 0.0033 2.000 0.0012 1.994

Table 4.2: Time accuracy test: experimental errors and convergence rates for the approximate solutions uh, ph and ch, computed
for each refinement level.

4.1. Numerical verification of convergence

We start with a simple experimental convergence analysis to confirm the error bounds anticipated
in Section 3.2. Doing this in a 2D domain suffices, so we consider Ω as a circle of radius one and con-
struct a sequence of successively refined meshes on which we compute errors between the approximate
solutions obtained with the H(div)-conforming scheme and the closed-form solutions

u = sin(t)

(
cos(π/2x) sin(π/2y)

− sin(π/2x) cos(π/2y)

)
, p = (x4 − y4) exp(−t), c =

1

2
cos
(π

4
|x|2

)
exp(−t),

that are used to construct suitable Dirichlet boundary data for velocity and an exact flux for concen-
tration, and manufactured forcing and source terms Fex and gex appearing on the right-hand side
of the momentum equation and of the concentration mass balance, respectively. As u is prescribed
everywhere on ∂Ω, for sake of uniqueness we impose p ∈ L2

0(Ω) through a Lagrange multiplier ap-
proach. We use a constant viscosity ν = 0.01 and diffusivity D = 1.0 with fr as given in (3.23),
fbk(c) = 1× 10−2(1− c) and k pointing in the radial outwards direction.

We show orders of convergence in the discrete norm ‖·‖1,Th for the velocity u, in the L2-norm of the
error of p, and in the H1-norm of the error in c in Table 4.1. For polynomial degrees k = 1 and k = 2

we observe that the order of convergence predicted by our theory (see Theorem 3.5 and Lemma 3.3) is
achieved.

18



Simulation of clarifiers with a rotating rake R. Bürger, P.E. Méndez, R. Ruiz-Baier

Figure 4.1: Spatio-temporal variation of the average concentration after complete rake cycles at different radius (measured from
the centre of the annular domain) and values of α.

Regarding the convergence of the time advancing scheme, now we set T = 4 and consider a se-
quence of uniform refined time partitions τl, l ∈ {1, 2, 3, 4, 5} where the time step is 22−l. Absolute
errors are computed as

êu =

(
m∑
n=1

τ‖u(tn+1)− un+1
h ‖21,Th

)1/2

, êp =

(
m∑
n=1

τ‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

,

êc =

(
m∑
n=1

τ‖c(tn+1)− cn+1
h ‖21,Ω

)1/2

,

and we readily observe from Table 4.2 that the method converges to the exact solution with the expected
second-order rate.

4.2. Preliminary two-dimensional computation

The typical operation conditions on the clarifier unit are characterised by about 1.2 revolutions per
hour, a solid concentration behind the rake of 0.01 g/l, a feed flow rate of 10,000 gpm, a return sludge
flow rate of 3000 gpm, an effluent flow rate in the overflow weir of approximately 7000 gpm, and a solid
concentration at the inlet of 5 g/l (see [16] and the references therein). The specification of the remaining
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Figure 4.2: Spatio-temporal variation of the average concentration after complete rake cycles at different radius (measured from
the centre of the annular domain) and values of β.

model parameters, at least in this specific scenario, are much less clear and we need to characterise
them in terms of the expected flow conditions. Known issues in the operation process include a strong
backflow into the feedwell, a large recirculation zone near the feedwell, the high velocity of the flow
exiting the feedwell, and the lack of flow symmetry.

In order to gain insight into the impact of the rake parameters on the simulation we regard the op-
eration from an azimuthal view and consider only the coupled Navier-Stokes/concentration problem
in an annular domain of external radius 30m and internal radius 3m, where one can still see the ro-
tating arm, but the vertical sedimentation is not represented. Here the body force term exerted on the
fluid (Fg) is considered with a radial direction towards the centre of the inner disk. Furthermore the
parameters of the simulation are taken as follows:

ρs = 2500 [kg/m2], c0 = 0.05, ρf = 1000 [kg/m2], ω = 1.2 [rad/min], cr = 1× 10−3,

g = 1× 10−3 [m/min2], D0 = 1.0 [m2/min], ν0 = 0.05 [kg/(m min)],

fbk(c) = 1.0× 10−3c(1− c)2[m/s], σe(c) =

{
0 for c ≤ cc = 0.07

(50.0/cc)[(c/0.07)5 − 1][Pa] for c > cc.

We start the simulation with a homogeneous initial concentration c0 and then, we observe how this
concentration changes over time for different values of the parameters α and β. From results shown in
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Figure 4.3: Domain cuts showing snapshots of solids concentration and line integral contours of velocity on a slice, focusing on
time instants t = 1, 30, 60 and 180 [min].

Figures 4.1 and 4.2, it can be highlighted that the solids removal coefficient α is the most relevant for
the concentration profile, while the combined contributions from drag and density do not seem to have
a large effect.

4.3. Performance of clarifier units

Having now a better understanding on the dimension and isolated effects of each mechanism in
the coupled problem, we turn to the simulation of the sedimentation of flocculated suspensions in a
more realistic geometry. We consider the domain sketched in Figure 1.1, and take R = 15 [m] and
H = 7 [m]. We suppose that the tank is initially filled with a homogeneous mixture of concentration
c0 = 0.02. Apart from the specifications in (2.2), (2.3), the remaining concentration-dependent and
constant parameters needed in the model assume the following form (where the suspension is assumed
of type Kaolin flat D)

ρs = 2500 [kg/m3], cin = 0.05, ρf = 1000 [kg/m3], ω = 0.12 [rad/min], α = 0.01 [min−1],

βρr = 50 [kg/m3 m−1], cr = 1× 10−3, g = 9.8 [m/s2], D0 = 0.05 [m2/min],

uin = −4.2k [m/min], ν0 = 0.05 [kg/(m min)],

fbk(c) = 1.0× 10−4c(1− c)2[m/s], σe(c) =

{
0 for c ≤ cc = 0.07

(50.0/cc)[(c/0.07)5 − 1][Pa] for c > cc.

We conduct a series of runs on the 3D geometry where the resulting tetrahedral mesh has 139001
elements and 27510 vertices (representing 1.1M DoFs for the lowest-order H(div)-conforming finite el-
ement method). The time stepping scheme uses a fixed timestep of τ = 0.5 [min] and we simulate the
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Figure 4.4: Velocity streamlines at 180 [min], shown from the side (top panel), from the bottom (bottom left figure), and from the
top (bottom right figure).

process until 180 [min]. As mentioned above, one manifestation of performance in the clarifier units
is the development of recirculation patterns, and we plot in Figure 4.3 the concentration profiles on a
cut of the domain, as well as a slice of a section where we plot line integral contours of velocity, for
three different times. The plots indicate a large diffusion of the concentration as it spreads out from
the feedwell, and we also see a substantial modification on the flow patterns due to the combined con-
tribution of the rake mechanism and the gravitational settling. The velocity can be seen more clearly
from Figure 4.4, showing streamlines at t = 180 [min] from different angles, emphasising that the recir-
culation in the xy plane occurs mainly near the bottom of the vessel, whereas on the top the velocity is
dominated by gravitational forces and a radially spreading concentration-driven flow.

On the other hand, the variation of the flow conditions depending on different factors can be ob-
served from Figures 4.5, 4.6, and 4.7. There we portray the dynamics of the concentration and flow rate
on the overflow, that is, respectively

1

60π

∫
Γofl

cds,
1

60π

∫
Γofl

u · nds,

according to modifications in the solids removal intensity, on the drag and density of the rotating rake,
and on the rake height. Based on the results of this set of simulations, we can identify the solids removal
coefficient α as the most sensitive factor on the outputs of overflow concentration and overflow flow
rate. On the other hand, the combined contributions from drag and density do not seem to have a large
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Figure 4.5: Time evolution of the concentration and normal velocity on the overflow for different values of the solids removal
coefficient α.

Figure 4.6: Time evolution of the concentration and normal velocity on the overflow for different values of the drag-density
coefficient βρr.

Figure 4.7: Time evolution of the concentration and normal velocity on the overflow for different values of rake height hr.
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Figure 4.8: Spatio-temporal variation of the average concentration after complete rake cycles at different heights (measured from
the bottom) with α = 0.3, β = 50 (top left), α = 0.0, β = 50 (top right), α = 0.0, β = 0.0 (bottom).

effect on these markers, which is consistent with what we saw in the preliminary 2D test. However, a
further inspection reveals that the effects are not necessarily localised but they differ over the height of
the device. From Figure 4.8 we can see how the average concentration varies over time (and measured
after a given number of cycles of the rotating rake) depending on the solids removal coefficient and on
the drag.

5. Discussion and concluding remarks

We have advanced a model for the process of clarification and thickener in circular units in the
presence of a spinning rake structure. The model is intrinsically 3D, it incorporates a detailed flow-
sedimentation coupling in the settling mixture and it considers a simplified, one-way coupling that
only imposes the velocity of the rotating arm which affects both the transport of solid particles and
the revolving flow near the bottom of the tank. This addition constitutes an important generalisation
over existing models for sedimentation-consolidation processes reviewed in e.g. [10]. The numerical
method we have used is based on H(div)-conforming finite element methods for the flow and classical
Lagrange elements for the solids concentration. A monolithic Newton scheme with exact Jacobian has
been employed in all cases, and we have generated several tests to confirm the accuracy of the method
and have analysed several cases relevant to the process of clarification. We hope that this study helps
in gaining a fuller understanding of the operating conditions in clarifier units.
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Several interesting extensions are left to be explored. Regarding modelling aspects, we mention
that the present approach is likely to be more suitable for the application to clarifiers in wastewater
treatment, since for that application the rake can be moved more easily through compacted sludge.
In contrast, the sediments formed by the settling of mineral suspension exhibit major resistance to the
motion of the rake, and the torque that needs to be applied (that is, the cost of energy) [34] and the
precise conditions under which the rake could brake are of utmost importance (a rake being stuck or
broken represents a major shutdown of the industrial process) [38]. Our model currently does not
resolve the stresses generated in the structure, which is a natural next step. While the approach (2.4) is
a rough approximation of the experimental and numerical observation that “rake blades typically suck
material behind them as they move as well as pushing material in front of them” [36, p. 102] one could
also easily extend the present development to the case of more adequate rheological models for the
suspension [14], partly including the effect of shear [23, 24] and changes in floc structure [15, 25, 31]. In
addition, for the flow regimes we have studied here, turbulent effects have little relevance but in some
industrial settings this is crucial to resolve the separation of clear fluid and solid particles [16, 27]. Model
reduction and the consistent connection with solid-flux theory should also be considered eventually
[17]. On the other hand, there are a number of improvements we can add in terms of our numerical
method. For instance, to concentrate in the design of partitioned solvers and efficient preconditioners
needed for costly 3D computations with long time horizons [5]. We could also incorporate mixed
formulations and space adaptivity through residual-based a posteriori error indicators [3], and employ
more advanced flux reconstruction techniques useful in the regimes of convection-dominated flows
and of degenerate diffusion of solids due to compression effects [11].
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