NUMERICAL ANALYSIS OF A THREE-SPECIES CHEMOTAXIS MODEL
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ABSTRACT. A reaction-diffusion system is formulated to describe three interacting species within the
Hastings-Powell (HP) food chain structure with chemotaxis produced by three chemicals. The existence
of a weak solution is proven and a finite volume (FV) scheme for this system is constructed. In combination
with the non-negativity and the a priori estimate, the existence of a discrete solution of the FV scheme is
proven, and it is shown that the scheme converges to the corresponding weak solution of the model. The
convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev
embedding inequalities with general boundary conditions and a space-time L' compactness argument.
Finally, numerical tests illustrate the model and the behavior of the F'V scheme.

1. INTRODUCTION

1.1. Scope. We consider a reaction-diffusion system describing three interacting species with respective
density u;, ¢ = 1,2, 3 in the Hastings-Powell (HP) food chain structure [16, 20], where each species secretes a
chemical substance of concentration y; i = 1, 2, 3, respectively. Each biological species is able to orient their
movement towards a higher concentration of the chemical (chemotaxis) or away from it (chemorepulsion).
The resulting model is presented as a strongly coupled nonlinear system of six PDEs with chemotactic
terms, namely three parabolic equations describing the evolution of the densities u; coupled with three
elliptic equations for the concentrations y;, ¢ = 1,2, 3:

Our — D1Aug + x1 div(ui Vye) = Fi(u),

Opuz — DaAusg + xo2 div(ueV(y1 — y3)) = Fa(u),

Opuz — D3Aug + x3 div(uzVyz) = F3(u),
—D;Ay; + 0y, = djuy, 1=1,2,3, (x,t) € Qx (0,77,

(1.1)

where u;(x,t), i = 1,2,3 are the population densities of the species at the lowest level of the food chain
(prey; i = 1), of the species that prey upon species 1 (predator, ¢ = 2), and of species 3 that preys
upon species 2 (super-predator, i = 3), and w(x,t) = (ui(x,t),us(x,t),usz(x,t))*. Moreover, y;(x,t)
denotes the concentration of the chemical substance secreted by species ¢ at position x at time ¢, and
y(z,t) = (y1(x, 1), y2(x, 1), y3(x,t))T. The chemotactic movement of the species is due to chemical substances
secreted by the other species, which is determined by the sign of the chemotactic coefficients y; for i = 1,2,3
[11]. In this work, we consider that the prey (species 1) moves toward low concentrations of the chemical
secreted by species 2 trying to avoid it, which means that x; < 0, while the super-predator (species 3) moves
toward higher concentrations of the chemical secreted by species 2, which means that y3 > 0. On the other
hand, the predator (species 2) moves towards the higher concentrations of the chemical secreted by species 1
and towards the low concentrations of the chemical secreted by species 2, such that xo > 0.
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The interaction due to the competition between the species is specified by the functional responses

u LoMsuiu
Fi(u) = (1 - f) up — ﬁ
LoMouqus L3 Mszugus
F: = —— =L - 1.2
2(u) Ro + 11 2U2 Co + s ) ( )
L3 Msusu
F3(u) = éo j_ 52 > — Laus

(see [16, 20]). Herein, the constant k is the carrying capacity of species 1, and Ry and Cy are the half-
saturation densities of u; and us, respectively. Moreover, Ly and L3 are the mass-specific metabolic rates
of species 2 and 3, respectively, M is a measure of ingestion rate per unit metabolic rate of species 2, and
M3 denotes the ingestion rate for species 3 on prey. We impose, in addition, the boundary conditions

(xju;Vy2 — D;Vu;) - nlog = (x2u2V(y1 — y3) — DsVug) -mlog =0, j=1,2,

) (1.3)
Vyi-nloga =0, i=1,2,3,
where n stands for the outward unit normal vector to 92, and the initial condition
ui(x,0) =u;o(x), i=1,2,3. (1.4)

It is the purpose of this work to prove the existence of weak solutions of the initial-boundary
value problem (1.1)—(1.4), and to propose a convergent finite volume (FV) method for their numerical
approximation. In addition, we will show numerically the chemotactic movement and the importance of the
chemotactic coefficients in the movement of each species, either towards higher concentrations or towards
low concentrations. Finally, with the specified numerical parameters, we show that this model exhibits
spatial-temporal oscillatory behavior.

1.2. Related work. The classical Lotka—Volterra predator-prey model only (e.g [21, vol I]) reflects
population changes due to predation in a situation where predator and prey densities are not spatially
dependent. Variants of the model have been applied to medicine [25], biology [22], ecology [5, 15, 19, 24, 31],
mathematics [21, 30], and other fields. This model does not take into account that population is usually
not homogeneously distributed, or that predators and prey naturally develop strategies for survival. Both
considerations involve spatial biological movement that is usually described by diffusion. The resulting
models can become complicated as different concentration levels of prey and predators cause different
population movements. Such movements can be determined by the concentration of the same species
(diffusion) or that of other species (cross—diffusion). However, systems of two interacting species can account
for only a small number of the phenomena that are commonly exhibited in nature. This limitation is
particularly significant in community studies where the essence of the behavior of a complex system may
only be understood when the interactions among a large number of species are incorporated; of course, the
increasing number of differential equations and the increasing dimensionality raise additional problems.

The dynamics of interacting population with chemotaxis has been investigated by numerous researchers.
Lin et al. [17] construct energy functionals, to investigate the asymptotic behavior of solutions under simple
choices of parameter. Stability and asymptotic behavior of chemotactic systems with two biological species
have been already studied in [28, 29], where the stability of homogeneous steady states is obtained for one
chemical substance secreted, while in [11, 23] the authors established the asymptotic behavior and the global
existence of solutions for two chemical substance secreted. In [2] a reaction-diffusion model for predator-prey
interaction is analyzed, featuring both prey and predator taxis mediated by nonlocal sensing. The analysis
is supported by some numerical experiments. On the other hand, Biirger et al. [8] propose and simulate a
three-species spatio-temporal predator-prey system with infected prey where the biological movement is not
directed by the gradient of a chemical, but rather by a non-local convolution of the density of infected prey
that determines a convection term.

Mathematical developments also suggest that models which involve only two species may miss important
ecological behavior. Results that are much more complicated than those seen in two-species models appeared
in early theoretical studies of three species (e.g [26]) based on local stability analyses. Hastings and Powell
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[16] studied the three-species food chain, and among other results they found that there is a “tea-cup”
attractor in the system. In [9] the effects of size of forest remnants on trophically linked communities of
plants, leaf-mining insects, and their parasitoids were evaluated. The time evolution and spatiotemporal
pattern in the Lotka-Volterra model of three interacting species with noise and time delay were investigated
by stochastic simulation in [33]. Anaya et al. [3] proposed a convergent semi-implicit FV scheme to describe
three interacting species in the food chain structure with nonlocal and cross diffusion. The global existence
and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and small
prey-taxis sensitivity coefficients are proved in [32]. The model considered in that work is a reaction-diffusion
system with prey taxis that models a two-predator-one-prey ecosystem in which the predators collaboratively
take advantage of the prey’s strategy.

1.3. Outline. The remainder of the paper is organized as follows. Section 2 is concerned with the proof
of existence of a weak solution to the continuous problem. Before starting our results concerning the weak
solutions, we collect in Section 2.1 some preliminary material, including relevant notation and assumptions
on the data of the problem. Next, in Section 2.2 we define a weak solution to the continuous problem, while
Section 2.3 is devoted to proving that any weak solution of (1.1)—(1.4) is non-negative. Then, in Section 2.4
we prove existence of a weak solution based on the Schauder fixed-point theorem. Next, in Section 3, we
specify the FV method, starting with recalling in Section 3.1 the standard notation of an admissible mesh
from [12]. Then, in Section 3.2 we specify the FV scheme to discretize (1.1)—(1.4). Since the scheme is
implicit and requires the solution of nonlinear algebraic equations in each time step, we need to demonstrate
that the scheme is well defined, that is, that it admits a unique solution in each time step. This is done in
Section 4.3, where we first prove (in Section 4.1) that any (discrete) solution produced by the FV scheme
is non-negative, and then establish (in Section 4.2) certain a priori L? estimates on the discrete solutions.
These results allow us to prove in Section 4.3 the existence and uniqueness of a solution for the FV scheme.
Section 5 is concerned with the proof of convergence of the FV scheme as the mesh is refined. To this end,
we prove in Section 5.1 compactness for discrete solutions (in an appropiate sense) and prove in Section 5.2
that the limit of discrete solutions constitutes a weak solution of (1.1)—(1.4). In Section 6, we provide three
numerical examples. Example 1 shows that species interact with each other via chemical substance, while,
the Example 2 the prey do not interact by via chemical substance. Finally, the Example 3 compare the
dynamics of the spatio-temporal model (1.1)—(1.4), with that of the non-spatial model.

2. EXISTENCE OF WEAK SOLUTIONS

2.1. Preliminaries. Let Q € R? d = 2 or d = 3 be a bounded open domain with piecewise smooth
boundary 0. Namely we use standard Lebesgue and Sobolev spaces W™ P(Q2), H™(2) = W™P(Q) and
LP(Q) (with their usual norms [1]) for all m € N and p € [1, 00]. We define for p € [1, 00) the spaces

WP i={uc W?P(Q):Vu-n=0}) (LF(Q))" = {u : @ — R, measurable and / |u(x)|P de < oo} .
Q

Furthermore, for later use, we recall the Sobolev inequalities (see e.g. [7]) WP(Q) — LY with 6 € (2, +00)
if d =2, and W'P(Q) — L? with 0 = (2d)/(d — 2) = 6 if d = 3.

If X is a Banach space, a < band p € [1, o0], then LP(a, b; X) denotes the space of all measurable functions
u: (a,b) — X such that ||u(-)||x € LP(a,b). Next T is a positive number and Qp := Q x (0,T). We define

bT
21 Y2 1 01 O
z= |2 | =|y1i—ys| =By, where B= bg =1 0 -1
Z3 Y2 bg‘ 0 1 0

The system (1.1) can then be written as
Oru; — D Au; + x; div(uiV(biTy)) = Fi(u), (2.1)
—Dszz + elyl = (51"11,7;, i=1,2,3, (ll:,t) € QT'
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In matrix form, (2.1), (2.2) can be written as
dyu — div(D1Vu — A(uw)V(Byx")) = F(u), —div(D,Vy)+1ILy = ILu,

where Dy = diag(D1, Do, D3), A(u) = diag(ui,ug,u3), x = (x1,X2,x3)%, D2 = diag(D;,Da, D3),
I, := diag(y, 0o, 03), Iy == diag(é1, 2, 03), and F := (Fy, Fy, F3)T. Furthermore, we assume that D; > 0,
D;>0,0;, >0, and §; > 0 for i = 1,2,3.

For later use we note that the particular choice of the functions F; allows us to write them as

Fi(u) = Fy(w)u;, (2.3)
with bounded functions Fj, i = 1,2, 3.

2.2. Weak formulation. In order to prove the existence and uniqueness of weak solutions, we introduce a
weak formulation of (2.1). For each i = 1,2,3 and a given function u; € L?(2), the elliptic equation

—D;Ay; + 0;y; = d;u; in, Vy,-n=0 ond (24)

admits a unique solution y; € W?. By elliptic regularity [14], y; € W? and ||y;||m2(0) < Clluilr2(q)- Thus,
for each ¢ = 1,2,3 we may define an operator G; : L? — W? by G,u; = y;, where y; denotes the unique
solution of (2.4), and the vector G(u) := (G1u1, Goug, Gausz)T.

Definition 2.1. A weak solution of (1.1) is set of non-negative functions u;, i = 1,2,3, such that
ui € L*(0,T,H' (), dyu; € L*(0,T,(H'(Q))*), i=1,2,3,
and for all test functions & € L?(0,T, H*(2)), i = 1,2, 3, the identities

T
/ (Oyus, &) dt+/ DV, - V& — xiui(VbEG(u ))-vgi) de dt

Qp
// F,-&dedt, ¢1=1,2,3
Qr

are satisfied. Here, (-,-) denotes the duality pairing between H'(Q)) and (H*(Q))*.

(2.5)

2.3. Non-negativity of weak solutions.

Lemma 2.1. Assume that u;g € L*(Q) with u; o > 0 for i =1,2,3. Then any solution u1, uz, ug of (1.1)
1§ non-negative.

Proof. For any a € R we define a™ = max{a,0} and a~ := —min{a,0}, such that « = a* — a~, and
ut = (uf, u;', u;f) The proof of Lemma 2.1 is then based on the penalized system
Ou; — DiAu; + x; div(w; V(b G(u))) = Fy(u™) in Qp, i=1,2,3. (2.6)
Let us fix i € {1, 2, 3} Multiplying (2.6) by —u; and integrating the result over Qp we obtain
0 ey + DIV [y < bl [ V07 G de. (2.7

Now we fix v > N, and use the Hoélder, Gagliardo-Nirenberg, Young, and Sobolev inequalities to get
/Qui_v(b;fG( w))Vu; dz < |V [|20)|| V(b G @)] Lo g 147 =270 ()
< OV (|20 ||V (B G(u))]

~ —(v+N) /v
= O|Vu; | fa ) |V (6 G (u

—nN/v (v—N)/v
LY/(Q)||VU7, ||L2(Q ||U ||L?(Q (28)

)| o el 50y

< CVOI G| 1 ) ElIVE [F2(0) + Ce)llui 1720
for all € > 0. Choosing € := Di/(é|x7'|||v(bEG(u))HH1(Q)) and inserting (2.8) into (2.7) yields

1d -
55l I3 < CE) 7 By



By Gronwall’s inequality, this inquality implies that
[u; 1720 < CA'l(f?)”U;o”%%Qy (2.9)
0.

The non-negativity of u; follows from (2.9) and u; ¢ > 0. This concludes the proof of Lemma 2.1. ]

2.4. The fixed-point method. We introduce the following closed and convex subset of L?(Qr):
W = {u = (uy,ug,uz)" € [L2(Qr))? : |Juillx < Cj, i = 1,2,3}, (2.10)

where X = L2(0,7, H'(Q)) N L>(0,T; L?(2)) and C; > 0, i = 1,2, 3 are three constants that will be defined
below. Now, we introduce the operator S : W — [WE]?’ defined by S(¢) := y for all ¢ € W, where y is the
unique solution of (2.2). On the other hand, we let S : W x [W?]> — W be the map defined by

S(¢,y) =¢ forall (¢,y) € W x W3,

where ¢ solves (2.1). Finally, we define a map T : W — W by T(¢) = 5(¢, S(¢)) for all ¢ € W. Finding a
solution of (2.5) is equivalent to seeking a fixed point of T, that is to finding ¢ € W such that T(¢) = ¢.
We prove that T has a fixed point by appealing to the Schauder fixed-point theorem. For the proof we need
the following lemma.

Lemma 2.2. We define the sequence {u;}jen CW by ug = T(ug) and w; = T(u;—1) forl =1,2,.... Then
for each i = 1,2,3 the solutions u;; to system (2.1) satisfy
(a) The sequences {u;;}ien are bounded in L*(0,T; H'(Q)) N L>(0,T; L*(R)).
(b) The sequences {u;;}ien are relatively compact in L?(§);).
Proof. We fix i € 1,2, 3. Testing in (2.1) by u;; and integrating the resulting equations over § yields
1d
2dt

Reasoning in the same way as in (2.8), for all €; > 0 we have

sl + Dill Vria |2y < il / s V(6T G () Vs dae + / Fluu;, dz.
Q Q
/Q u V(T G(w)) Vs dz < Coa [V (BTG (W) 1 (&5 Vati a2y + ClenuatlZoy)  (211)

for some constants C; 1 > 0. Using the assumption (2.3) on F' and the non-negativity of w;; (see Lemma 2.1)
we deduce the estimate

/QFl(u)u” de < Ci72||ui7l||%2(ﬂ). (2.12)

From (2.11) and (2.12) and taking ¢; sufficiently small we obtain
5 < llusalaoy + 91 Vuedlaay < Cosllusilao (213)
with C; 3 > 0 and ¢g; = D; — Cm|xi|||V(b;FG(u))||H1(Q)5i > 0. By Gronwall’s inequality, (2.13) implies that
Sup [ui il 220y < exp(CisT)[[uioll 720, (2.14)

which proves the first part of (a).
From (2.13) and (2.14) one may also conclude that

T
/ IVus,
0

which yields the second part of (a).
(b) Finally, testing in (2.5) by & € L?(0,T, H'(Q)) and using the boundedness of F; and (2.15) we find
that there exists a constant C; 4 > 0 such that

T
|72y dt < 7 exp(Ci3T)|ui ol 720 (2.15)

T
/ (Ouii, &) dt| < Ciall&illLz(o,7,11 (0))- (2.16)
0
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FIGURE 1. Admissible meshes.

Then, (b) is a consequence of (a), the uniform boundedness (2.16). O

Remark 2.1. We may deduce from (2.15) that the constants C; in (2.10) can be choosen as follows:

T .
C. — (1 + g) exp(CisT)[usollaiy 1= 1,2,3.

7

Lemma 2.2 implies that there exist functions u; € L2(0, T, H(Q)) for i = 1,2, 3 such that up to extracting
subsequences if necessary, u;; — u; € L*(Q) strongly as [ — oo, which in turn implies the continuity of T
on W. Furthermore, by Lemma 2.2, T'(WW) is bounded on the set

0 = {u c L*(0,T,H*(Q)) : Opu € L*(0, T, (H(Q))*)} (2.17)

In view of [18, Theorem 5.2] we conclude that © < [L?(€;)]? is compact, thus T is compact. Then, by the
Schauder fixed-point theorem, the operator T has a fixed point w € W. Then there exists a solution u of
(2.5). Thus, we have proved the following theorem.

Theorem 2.1. Assume that u; o € (L?(Q))T for i = 1,2,3. Then the problem (1.1) possesses a weak
solution.

3. FINITE VOLUME SCHEME

3.1. Admissible mesh. Let Q C R% d = 2 or d = 3 denote an open bounded polygonal with boundary 9.
An admissible FV mesh of Q is given by a family .7 of control volumes (open and convex polygonal subsets
of Q), a family & C Q of hyperplanes of R? (edges in two-dimensional case or sides in three-dimensional)
and a family of points P = (k) ke that satisfy

Q= JE ¢&={Jé& o0Kk= |J

Keo Keo LeN(K)

Ql

Let K,L € F with K # L. If KNL =& for some o € &, then 0 = K|L (common edge). We introduce the set
of interior (respectively boundary) edges denoted by Eint (resp. Eext), that is &y = {0 € E :+ o & IN} (resp.
Eext = {0 €E : 0 CON}). The set of neighbours of K is given by N(K)={L € .7 : 3o € E,6=KNL}.
The family P is such that for all K € 7, zx € K, and, if 0 = K|L, it is assumed that xx # xr, and
that the segment Tr @z, is orthogonal to o = K|L (see Figure 1). Let d,, denote the Euclidean distance
between xj;, and x, and by dg , the distance from xx to . The transmissibility through o € &y is defined
by 7r1 = m(K|L)/d,,, = m(o)/d, and for 0 € Eexi by Ti,» = m(0)/dKk . We require local regularity
restrictions on the family of meshes 7, ; namely

Iy >0VhVK € 7, VL e N(K): diam(K) + diam(L) < vdg, 1, (3.1)
Iy >0VhVK € 7, VL e N(K): m(K|L)dk, <ym(K).
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A discrete function on the mesh .7}, is a set (uk ) kez, . Whenever convenient, we identify it with the piecewise
constant function uy, € 2 such that up|x = uk. Finally, the discrete gradlent Vwuyp of a constant per control
volume function uy, is defined on K N L by

ur —u
thh . ’I’LKlL = % (33)

K|L
3.2. Finite volume (FV) scheme. Let 7' > 0. To discretize (1.1) we choose an admissible discretization of
Qp = Q x(0,T) consisting of an admissible mesh .7, of © and of a time step At;, > 0; both At;, and the size
maxg ¢ 7 diam(K) tend to zero as h — 0.We define Nj, > 0 as the smallest integer such that (N, +1)At, > T,
and set t,, = nAt, for n € {0,..., N, }. Whenever Aty, is fixed, we will drop the subscript h in the notation.
To formulate the resulting scheme, we introduce the terms

Aler = Aigmin{ (uli )" @)} B = BT ()T ) 7), =123 (34)

The computation starts from the 1n1t1a1 cell averages

; 1
3,0 .
Y= —— i dz, =1,2,3. 3.5
g m(K)/Ku’O(:E) x, i (3.5)
We state the F'V scheme for (1.1) as follows: find (u'j MNkea,, i =1,2,3, such that
D Z T (U =0l + 0Kl = Som(K)ulye, i =1,2,3, (3.6)
LeN(K
n+1
uz K = uz K u” n
m(K)T —D; Z K|L +1 _uz-}_(l)
LeN(K)
X Y T AT (W =y = mK)EFME i=1,2,3 (3.6b)
LeN(K)
forall K € 9, and n € {0,1,..., N}. As usual, homogeneous Neumann boundary conditions are taken into

account implicitly. Indeed, the parts of 9K that lie in 9 do not contribute to the sums over L € N(K)

terms, which means that the flux is zero is imposed on the external edge of the mesh.

The sets of values (u?}l, u;"}}l, ug*;(l);(e Z mef0,1,...,N,} satisfying (3.6) will be called a discrete solution.

We associate a discrete solution of the scheme at ¢t = tn11 with the triple u} ™! = (u?tl, ugJ{Ll, ug#) of the
piecewise constant on €2 functions given by

_ . n+l1 n+1 _ . n+1 +1 n+1
u1h| =uli, Uy |k =uy g, u3h |k =uzy foral K € % andalln € {0,1,..., N, —1}.
Furthermore, we define the piecewise constant function

T
uh(wat) = (ul,h(wat)au2,h(w7t)7u?)}h(wvt)) = Z ]l(t tn+1]><KunK+1~
Key,
ne{0,1,...,Np}

Finally, it is assumed that At satisfies the mild restriction

11 1
At .
< max { 2" 2L, M, 2L M; } (3:7)

which will be used to prove the existence of solution to the scheme.

4. EXISTENCE OF A SOLUTION FOR THE FINITE VOLUME SCHEME

4.1. Non-negativity. The non-negativity of any (discrete) solution produced by the FV scheme is given in
the following lemma.

Lemma 4.1. Any solution u"! = (u?}l,ug}l,ug}r{l) K e 9, n e {0,1,...,N,} of (3.6) is non-
negative.
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Proof. We fix i € {1,2,3} and prove by induction that min {u"+1 KeZ,} >0forallne{0,1,...,N,}.
To this end, we recall that ul, > 0 for all K € . For n > 0, we fix K € Z, such that

ultt = mm{u"+1 L € Z,}. Multiplying (3.6b) by At(u';')~, we deduce
m(K) (uffe — uf i) (uif') ™ = S1+ 52 + s, (4.1)
where we define
Si= AD; Y, ()@ S = At YD ATELBT (R ) ()
LEN(K) LEN(K)
S3 = Atm(K )Fﬁ;l(u?'}?) .

By the choice of K, we have S; > 0, and the choice (3.4) of A"+1L implies that Sy = 0. Similarly, by the

definition of Flnltl, we obtain

Ss = Atm(K)Fy((wid™) ) (w )T (u i)~ = 0.

Since m(K) > 0, (4.1) now means that

(u?}l —u; K)(uﬁ}}l)_ > 0. (4.2)

By definition, (u?}l) > 0. Since ujy >0, (4.2) cannot be satisfied for (u ?}1)_ > 0 (and therefore
?}}1 < 0). We conclude that (u ”H) =0, hence u"+1 > 0. By induction in n, we infer that u"+1 >0
for all n € {0,1,...,N,} and L € 7. O

4.2. A priori estimates.

Lemma 4.2. Let (u7}l{+1)Ke(%,,ne{o,l,...,Nh} be a solution of (3.6b). Then there are constants C; > 0, i =
2,3 depending on Q, T, |lusolr2(0) fori=1,2,3, Lj, M; for j = 2,3, Ro, and Cy such that

3
;(ne{oryr]%?')i]\]h} Z m |un+1 ) < Cla (43)

Ke9,
fZAt >y K‘LZDW“ u P < O, (4.4)
n=0 KeJ, LeEN (K) i=1
fZAt > X mZm bl — u i < Cs. (4.5)
n=0 KeJ, LEN(K) =1

Proof. We multiply (3.6b) by Atu”+1 and sum the result over i = 1,2,3, K € .9, and n. This yields an
identity T1 + To + T3 + T4, = 0, Where

Np, 3
n+1 n n+1
2 2 ) ) (K —uis)ul

n=0 Keﬂh

SO0 D MR S

n=0 K€, LEN(K)

RN 5D DD DA S RS A

n=0KeT, LEN(K) i=1
3

T4:—AtZ > mE) YR

n=0 K€, i=1

T

T



Using the inequality a(a — b) > %(a2 — b%) for a,b € R, we obtain

Np,
1o LSS S w00 S ) = 3 S w0 S )

n=0Ke.7, =1 KeJ,, =1

w
w

Reordering over the set edges, we can write

ZZ S YD)

n=0KeT LEN (K) i=1

Next, using summation by parts and the definition of .A" k.t =1,2,3, we get

Z > > K‘LZIMA%L (i =i )b (v — i)

n=0 Ke€J, LEN(K) i=1
Np

Aty > > K‘LZ|Xz|bTy”“ Aljen (uiid =it

n=0K€E T, LEN(K)

Z Z Z K‘L Z IXz bTyn+1 n+1 2}1)2.

n= OKE%L Le/\f

Finally, the non-negativity of «’ K 1mphes that

Nn n+1 nt+l, n+l
. U1K\ nt1 Ly Mauy e ug g yt
T4——Atzzm(K){(<1—k) lK_W Uy

n=0 KeZ;,
+1, n+1 +1, n+1 +1, n+1
B L2M2“71LK gK ~ Loul n+1 LSM?»“SK gK Wt L3M3“72LK QK —Lgu”+1 ut
R0+un+1 C«O+un+1 2,K Co+un+l 3,K 3,K
h
—AtY ST m(E) () + LM (g + Lodds (u32)).
n=0 K€,
Collecting the previous inequalities we obtain
3
1 Np+1|2 2 +1 +1
5 o m(E) 3 (i~ Z )SEDIIEND SATE IR OY
KeIy, =1 n=0 K€ LEN(K) =1
T 2
Z S Y X bl g i) (4.6)
n=0 K€J), LeN (K) i=1

Np
<Aty Y mE) (i) + LaMa(ugih)? + LaMs (u5)?).
n=0 KEZ,

In view of the discrete Gronwall inequality, (4.3) follows from (4.6). Consequently, (4.6) entails the estimates
(4.4) and (4.5). This concludes the proof. O

Lemma 4.3. Let (y"KH)Keﬂh,ne{o,l,...,Nh} be a solution of (3.6a). Then, there are constants Cy,C5 > 0
depending on Q, T, ||u;ol|r2(q) fori=1,2,3, Lj, M; for j = 2,3, Ry, and Cy such that

3
Z <n€{0r,rll,a,.)i]\]h} Z m(K)(y;l;r(l) > < Oy, (47)

=1 Keﬂh
Nh

Z > > K‘LZD (Wit —ui)* < 6. (4.8)

n=0 K€ J, LEN (K)
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Proof. We fix i € {1,2,3}, multiply (3.6a) by y"Jrl and sum the result over K € .7, to obtain
D SN e Wi w0 mE) (D =6 Y mE )l ey (4.9)
KeZ, LEN(K) KeT, KeT,

Using the Cauchy—Schwarz inequality, we obtain

= Z S o nl D ) e S mE) (uE)’

Ke% LeN(K) Key,
1/2 1/2 (4.10)
(% m<K><u2K>2) (52 moo) ) -
KeI, KeTy,

From (4.10) we deduce

1/2 1/2
5 S mlE) (8 <ai(zm<f<>(uzf<>2> (zmm(yr;l)) |

Keg, Ke, Ke,

Considering the estimates for all i = 1,2,3, we may deduce (4.7) from (4.3). To get the discrete L?(£2)
estimate for Vjy; , we use generalized Young’s inequality and gathering by edges in (4.9) to obtain

= Z S men D ) 0 > mE) (uE)’

K€7h LEN(K) KeIhn
<6 (c(e) S omE) () e > m(K) () )
Ke, KeI,

for all € > 0. Taking e = 0;/0; we have
n 22
32 Y Dt ) <506 Ym0 (i)’
Keﬂh LEN(K) Keo,

Again, considering the estimates for all ¢ = 1,2,3 we may deduce (4.8) from (4.3). O

4.3. Existence and uniqueness of a solution for the finite volume scheme. The following theorem
shows that the scheme (3.6a) is well defined, and we prove the non-negativity of yz"}l fori=1,2,3.

Theorem 4.1. Let T be an admissible discretization of Qp and the initial data (3.5). Then there exists a
unique non-negative solution y%' = (yf}l,yg}}l,yg}l) for all K € 9}, andn € {0,1,...,N,} to (3.6a).

Proof. Utilizing an argument similar to that of [6, Section 3], we rewrite (3.6a) as the linear system
A"‘H ”H = Rju}, where y;' = (y;'x)kez and uj == (uj'x)ker, 1 = 1,2,3,
with the matrices
n n O:m(K) + D;t for K =1,
Ai +1 — (a”-é-lL)K Leg = ( ) ZLeN(K) K|L ,
—DiTy for K # L,
om(K) for K =1L,

i=1,23.
0 for K # L,

R, = (rik,L)K,LeT = {

Since for all L € . and i = 1,2, 3,
ZLJLrlL — Z |a?}}1L| =0;m(L) + Z DiTyyy, — Z D;ty,, = 0im(L) > 0,
K+#L LEN(K) LeN (K)

the matrix A7 is strictly dominant with respect to the columns and hence (A?*1)~1 is positive. Finally,
under the assumption u? > 0 for i = 1,2,3 we obtain y?, >0 for i = 1,2,3 and all n € N. O
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Theorem 4.1 showed the existence and uniqueness of discrete solution of the FV scheme (3.6a). The
following Theorem shows the existence for (3.6b).

Theorem 4.2. Let T be admissible discretization of Q). Then the discrete problem admits at least one

. n+1 .
solution (u;' i ) ke 7 mefo1,...N,} fori=1,2,3.

Proof. First we introduce the Hilbert space Hy, := X, x X} x X}, of triples u ”+1 (u’f‘zl,ug‘gl,uﬁ;l) of
discrete functions on 2. Here, we denote by X; C L?(Q) the space of functions Wthh are piecewise constant
on each control volume K. We define the norm

3

g 1, = S (B, + Nt 132y ) »

i=1

where the discrete seminorm | - %, is given by

|wh|§(h = Z Z K‘L K,L

KE In LEN (K)

We introduce the discrete operator Gy, : Hy, — Hj, defined by G, (uyp,) =y, and let ¥, = (¢1 p, Y2 p, w37h)T.
Multiplying (3.6b) by ;5 and summing the result over K € .7, we obtain

1 n n n
E(Bh(u;;rl Oyt — By (up, 7))

+ap (L B 4 ag (G (ul ), @0 — By (Fy(ulth), Bpt) = 0,

where the discrete bilinear forms are given by

2
wL—wK‘

d

K,L

3
Bh(u2+1,‘I’Z+1) — Z Zun—i-l n+1
Key, 1=1
3
1
1y .
av(wp ™) =0 3T ST T, Y Dl W = )
KeJh, LEN (K) i=1
a2h(Gh( n+1) \Ianrl —__Z Z Z K‘L ZX;A?-}?LI)T n+1l _ n+1)(¢)n+1 wn-&-l)
Keﬂh LeN(K

Now, we define, by duality, the mapping P from H n into itself: for all ®;, € Hj,
1
[]P’(uZH) q)z+1] _ E(Bh(un+1’¢)n+l) o Bh(uz,q)ZJrl)) + al,h(uZ-H, @ZJrl)

+th(th( n+1) ‘I,ZJrl) 7Bh(Fz+17@2+1)’

where Fj ! = (F;‘hﬂ7 FQ”;{I, F”“) . The continuity of P follows from that of the nonlinearities F} ', Ap+!
and of a1 ,(+,-), a2 1(+,-) and Bh( 4.
Now, using the definition of F ”H , for i = 1,2,3 and the Young’s inequality we deduce

[P ey ), ]

3
P IE) SIEUIERCD WETI) SRR o DI DAy

Keo, i=1 Ke% KeJ, LeN(K)
1 T
R S IR e St

KeJ, LEN (K) i=1

3
— D m(E) Y ((uR)? + LaMa(ug i) + LsMa(ug 3l)?)
KeI, i=1
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1 3 1 3
> oxg D MU0 Y (W) = o Do mE) D (u] +* > 2 K\LZD nn i)
KeI, i=1 KeI, i=1 Keﬁh LEN(K) i=1
= D m(E) Y (iR + LeMa(usi)? + LaMa(uz i)

Key, i=1
1 n+1 1 n+1 +1
~\oar ~ ||u ||L2 Q) +D1\u1 h |Xh 9AL Ly M; Hu ||L2(Q +D2|u2h |x,
1
+ (5 L3M3> U225 ) + Dalu i, — Cr(At,uf)
> Co (Jup ™IE,) — Cr(At,up).

The constant Cy depends on D;, Lj, M;, and At, for ¢ = 1,2,3 and j = 2,3, Moreover, due to (3.7), Cy > 0.
This implies that [P(u} ™), '] > 0 whenever ||u*!| s, = r, where r > Cy/Cy. By induction on n, we
deduce (see for e.g [10, 18]) the existence of at least one solution to the discrete problem. O

5. CONVERGENCE

In this section we prove that the solution approximated by the finite volume scheme constitute a weak
solution of (1.1). We start by proving that the family of the discrete solutions u;, are relatively compact in
LY(Q) fori=1,2,3.

5.1. Compactness argument. Using the following lemma proven in [4, Appendix A], we prove that the
family of discrete solutions u;j are relatively compact in L.

Lemma 5.1. Let 2 be an open bounded polygonal subset of R, T > 0, and Qr = Q x (0,T). Let (T"), be
an admissible family of meshes on Q satisfying (3.1); let (Aty)n be the associated time steps. For all h > 0,

assume that the discrete functions (up™), (f2*1) and and discrete fields (Fpt) for n € {0,1,..., Ny}
satisfy the discrete evolution equations
un+1 n
hTh [FP 4+ fot forno€ {0,1,..., Ny} (5.1)
with a family (u)) of initial data. Assume that for all Q' C Q, there exists a constant M (') such that
Ny, Ny, Np,
Z A75||UZ+1||L1(Q') + Z AtHf;:LH”Ll(Q') + Z At||-7'-Z+1HL1(Q') < M), (5.2)
n=0 n=0 n=0
and, moreover,
Np,
> ALVRup T ey < M(Q). (5.3)
n=0

Assume that the family (ul)y, is bounded in LL _(Q). Then there exists a measurable function u on Qr such
that, along a subsequence,
Np

Z Z uZ“]l(tmth]xK —wu in Ll (Q x [0,T]) as h — 0.
n=0 Ke.7,

We have the following convergence results along a subsequence.
Lemma 5.2. There exists w € [L"(Q7)]> N [L?(0,T; HY(Q))]* with r € (0,4) if d=2, and r € (0,10/3) if
d = 3, and subsequences of up = (u1,p, Uz, p, us,h)T not labeled, such that for i =1,2,3 and as h — 0,
(i) wip — u; in LY(Q7), a.e in Qp,
(if) Vpuin — Vu,; weakly in [LQ(QT)]
(i) A; th(bT ) = A,V (bl y) weakly in [L'(Q7)]*
(iv) Fi(up) — Fi(u) weakly in L*(Q7),
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Proof. We fix i € {1,2,3}. The evolution of the first component (u";tl) of the solution is governed by the
system of discrete equations

n+1

uz K uz K 1 Fn+l (5 4)
At - m(K) LK '
LeN(K)
+1._ +1 +1 +1
where F'x" == Fi(u} o, uj j¢, uz ) and
n+1 n+1 T/ n+l n+1
u; —u, b
+1 ,_ i,L i, K +1 ( ~ Yk )
Filrxr mrL=D; 7 ngL — XiAi kL 7 "MK L
K,L K,L

= Vk, Lun+1 - XZAZ K ' Vk, L(bT?Jn+1)~
Equations (5.4) have the form (5.1) required in Lemma 5.1.

It remains to check that the local L! bounds (5.2), (5.3) are satisfied. We actually have the global L!(Qr)
uniform estimates on the families

. n+1
Ui,h = E : Ui K ]l(tnytn+1]><K’ E : E : § : ’rzKL (tnstnt1] X K>

KeTy, n=0 K€, LeN (K)
ne{0,1,..., Np}
1
I n—+1 . n+1
Fin = > Fike Ltntnsalxics Vallin =3 > D> > Vipuf e ) xk

KeTy n=0Ke€T, LEN (K)
ne{0,1,..., Np}

Indeed, the non-negativity of the discrete solutions, the assumption (2.3) and the Cauchy-Schwarz inequality
ensure, for ¢ = 1,2, 3, the existence of M;(Q27), M2(Q27) > 0 such that || F; 4|11 (o) < Mi(Qr) and

1/

1/2
i nll L1 (ar) < (Zm > mf )|un+1|2> (Z At ST m( )) < My(Qr).

=0 KeIy, =0 Ke9y,

The estimate (4.4) and the restriction (3.2) guarantee the existence of M3(dr) > 0 satisfying

HVWMHL%QT)

fZAtZ > m(K[D)uft - ul k!

n=0 KeTJ, LEN(K)
uipt — iy (5.5)
fZAtZ > mE|L)d,,, /m(K|L)—=——
= KeT, LeEN(K) K|L

1/2 1/2
( ZAt Z Z TriL n+1_u?;_<1)> ( ZAt Z Z ’ym ) < Ms(Qr).

n=0 KeJ, LeN (K) n=0 KeT, LeN (K

Using the critical discrete Sobolev embedding (see [4, Appendix B, Prop. B.1]) and the interpolation between
LPt(0,T; LP=(£2)) spaces, from the L°(0,T; L?(Q2)) estimate (4.3) and the discrete L?(0,T; H*(£2)) estimate
(4.4) we get a uniform L"(Qr) bound on u;, and uniform L!'(Qr) bound on A;; (moreover, they are
uniformly integrable). The quantity

Np

zh— Z Z Z ZA7KL (tn tnt1] X K

n=0KecZ;, LeN (K) i=1
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satisfies the estimate

1455 Vi (b y) 21 0p) = ZAt S mKIDA b (yit -y

n=0 KeJ, LeN (K)

ZNZ > m(KILu bl (v~ i)

n=0 KeJ, LeEN(K)

(Zmz o T (B y"K“))2>1/2

=0 KeZ, LeN (K)

1/2
631 S SEHE: >) < M)

=0 KeZ), LEN (K

Since we can write

Fin=Vruin— XzA"HVh (bl yy),

we deduce an L'(Q7) bound on F), from (5.5) and (5.6). Thus (5.2) and (5.3) are satisfied; the uniform
L'(Q2) bound on the initial data ugj, is also clear from (3.5), and Lemma 5.1 can be applied to derive the
LY(Qr) compactness of (uy),. Thus we can define the limits u = (u1,u2,u3) of uy, and from this obtain the
claim (i). Furthermore, to deduce the claim (ii), we use (4.4) to bound Vju; p in L*(Qr). Upon extraction
of a further subsequence, we have e.g. u; , — u; € L?(Qr) and Viu;, — ¢ in [L2(Q7)]%. Let us show (like
as in [13]) that u; € L%(0,T; H'(Q2)) and ¢; = Vu; for i = 1,2,3. Let ¥; € C2°([0,7) x Q)) be given and

Np

T:/ /vhumm (1) da df — ——ZAtZ S -y g

= Ke9y, LEN(K)
Np

Tin ZZ*ZN o D mEIL) it —ul i n, UL
= KeJ, LeN K)

where n . denotes the unit normal vector to K|L outward to K and we define

K|L

1 1
n+1 . n+l .
\Pi,}r( = 7m(K) /K v, (1’7 tn+1) dx dt, and \Ijz }L(|L (K‘L) / \IJZ(SC, tn+1) dfy(w)

KL

Applying summation by parts and Cauchy-Schwarz inequality, we get

|Tz‘1—Tz‘2|

ZAtZ S (I W — ) (- (9 W7;1L>>|

n=0 KeJ, LEN(K)

Ny 1/2 Ny, 1/2
< ZAt Z Z K\L n+1u?-}_(1|2> ( ZAt Z Z K‘L K|L(Ri,K|L)2> ’

n=0 KeJ, LEN(K) n=0 KeJ, LEN (K)

where we define R, ., = \II”'H \I/:L};l‘L Regularity properties of the function ¥, give the existence of

Ci,w, > 0 only depending on \IIZ, such that |R, . | < Cj v, h. Therefore,

fZAt > > m(K|L)d,,, <dm(Qr)

n=0 KeJ, LEN(K)
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and the estimate (4.4) imply that T; 1 — T; 2 — 0 as h — 0. Applying summation by parts yields

T
ffszt Yo X mEILu i, W = - /O /Qui,h(a:,t)div(\lfi(m,t)) da dt,

n=0 KeZ, LEN(K)
such that .
Tip — —/ / ui(x,t) div(¥;(x,t)) dedt as h — 0.
0o Ja

This proves that u; € L2(0,T; H*(Qr)) and the function ¢; € [L?(27)]¢ is almost everywhere equal to Vu;
for i = 1,2, 3 in Qp, and the uniqueness of the limit implies that the whole family Vju; j, weakly convergence
in [L?(Q7)]¢ to Vu; as h — 0. Now, from the a.e convergence of u; to u; and the Vitali theorem one has
A; p, weakly converge to A, ;. Then, we pass to the limit to obtain (iii).

To prove (iv), we use the uniform L?(Qr) estimation of u; ;, and the assumption (2.3) of F} to prove that
the family (F;(wp))p is uniformly integrable. Finally, using the a.e. convergence of uj, to u and by the Vitali
theorem we get the a.e. convergence of Fj(uy) to F;(u) in L' () and from this we get (iv). O

5.2. Convergence Analysis. Our final goal is to show that the limit functions w constructed in Lemma 5.2
constitute a weak solution of system (1.1). We start by passing the limit (keep in mind that ¢ = 1,2,3) in
(3.6b) to get the equality in (2.5).

Let ¢; € C°([0,T) x Q). Set ¥} = ;(xk,t,) for all K € , and n € [0, N, + 1]. Then multiply the
discrete equation (3.6b) by AWZ}I and summing the result over K € 7, and n € {0,1,..., Np}.

Til,h + TiQ,h + T{?h = Ti%m

where

Tiw=_ D mE)(u! —ul)vik,

T2, = DZAt DD YD I (T g iy e K

n=0 KeZ, LeEN(K)

Zh—szAt DD D L A T Lo

= KeZ, LEN(K)

=3 ar S R

= Ke9,,

Item (iv) of Lemma 5.2 implies that

h—>/ / u)y; dee dt as h — 0.

By a summation by parts in time and keeping in mind that )™ *1 = 0 we get

Np,
1 _ +10,n+1 0 .0
Ti,h__z Z m(K)UZK (¢ZK - ZK)_ Z m(K)ui,K%,K
n=0Ke.J, KeZy,
Nn n41
1 Lt 1,2

:*ZZ/ / ul i O (e ) dmdth/ ud ) g da = =T} — T}

n=0 Ke9, Ke,

We compare T}, with

n+1 ~ ~
Z Z / / w;p(x, )0 (i (2, t) de dt — / ui0(x)i(z,0) de = —T;;} — Til’;z2

n=0 K€,
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to obtain
1,2 71,2
|Tz h Tz h

/Qui’o(ac)wi(x,O)dw— Z m(K)u?,K"/)?,K_

Keoy,

- |/Qui70(33)< Z

Th

1/2
< (/Q |Ui,0|2d33> (K;/ [Vi(x,0) — Yz, )|2d5'3> < Ciqh

due to the Lipschitz continuity of ¥;. Using the regularity properties of 9;1); and the estimates (4.3) we get
Nh
1,1 A1
|Ti,h - Tz‘,h

n+1
/ /ulh x,t)0p); (a2, 1) dwdt—z Z / / "Hatz/)l (xx,t)dedt
n= OKeﬂ tn t

(Yi(x,0) — ’(/h'(il![gO))) dx

n=0KeT, " "'n
S ar Y i ”*1/ [ @ttt = o 1) dw
Ke,
1/2
(Zm > mf )|un+1|2> < Csh.
= KeIy,

Thus Til}ll — Tllhl and Tilf — Til;L2 as h — 0, which proves that

T
7!, —>—/ /u(m,t)@tw(w,t) dwdt—/uo(x)ﬁtw(as,o)dxdt as h— 0
0 Q Q

Next, we deal with T5 j, and T3 ;. Gathering by edges and using the definition (3.3) of Vjup, we get

Z At Z Z n+1 n+1)(wn+1

n+1
K\L — U K i L _¢i,K )
KeZ, LeN (K)

Np

DS S S ki, M A

i, K
K|L
KeT, LEN(K) dK\L d

zszt Yo Y mKIL)dy, (Vipuiy?

n=0 KeJ, LEN (K)

K|L

g, L) (VL@ L, a1 - Mk,L)
and

T3, =

—X’ZM 2 Z

n+1 bT( n+1 n+1

1 1
TkiL zKL ~— Yk )W:ZF _¢:;—()
KeJ, LeN (K
T/ n+l n+1 n+1 n+1
X b (i YR WL Yk
A S S ma,an T i -
= KeJn LEN (K KIL KL

ZAtZ Z m(K|L)d,, , A7L

i, K L(VK\L(b;ryZJrl) : nK,L)(VK|L1/Ji(-’EK,L7 tnt1 - TLK,L)
KeZ, LeN (K)

where T 1, is some point on the segment with the endpoints @, xy.Since the values Vg j are directed by
ng,r, we have
(Vripuy™ ng ) (Ve @ o tes1) i) = (Vi) - (Vend (@ s, tas))

(Vi (07 yp ™) - nw ) (Vi n @Rz tas1) - nin) = (Vi (0i i) - (Ve (@Fr L tas)),
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Then

T T
Ti2,h = Dz/ / thh(Vw)h dx dt, Tz?:h = _Xi/ / Aiyth‘L(b’iryZJrl)(VdJ)h da dt
0 Q 0 Q

where (Vi)ul(t, tni)xkx = VUi(EK®L,tny1). Here the construction of the diamond Tk p from the
neighboring centers xx and x and the interface o = K|L (see e.g [3, 4]) has been used.

From the continuity of Vi we get (V) — Vb; in L>°(Qr). Hence using the weak L? convergence of
Vhuipn to Vu,, and the weak L' convergence of Ai,hvh(b?yh) to A,L'JV(b;Fth we obtain

T T
T, — Di/ / VuViydedt, T}, — —xi/ / Ai(ui)V(b]y)Vipdzdt as h — 0.
0o Ja 0o Ja

Gathering the results obtained, we can justify the equality in (2.5). This concludes the proof of the following
theorem.

Theorem 5.1. Assume that u;o € (L%(Q))T for i = 1,2,3. Let up = (u1p,u2n,usn)’ be the discrete
solution generated by the finite volume scheme (3.6) on a family of meshes satisfying (3.1) and (3.2). Then,
as h — 0, uy, converges (along a subsequence) a.e on Qr to a limit uw = (uy,us,u3)™ that is a weak solution
of the system (1.1), (1.2).

6. NUMERICAL EXAMPLES

We present in this section some numerical results obtained with the finite volume scheme (3.6a)—(3.6b)
. To obtain the numerical test, we will reduce the number of the parameters in the model (1.1)-(1.2). For
this reason we non-dimensionalize the system following [16]. We choose U; = u;/k for i = 1,2,3. Making
the substitution and simplifying, we obtain

a1 U
F(U) = (1-U)U; — T +1b11Ul Us,
a1U1 a2U2
Fy(U) = Uy — Us — e U
2U) =1 T, 00l
a2U2
F. =272 .
3(U) 1+b2U2U3 eaUs

On the domain Q = (=2,2) x (—2,2) we define a uniform Cartesian grid
T ={Ki; €Q : Kij = ((i = 1)Nog,iNg) X ((j = 1)Ng, iNz) }
with N, x N, control volumes. For the simulations, we choose N, = N, = 256 and we take the parameters
a1 =50, ax=01, b =20, b=20, e =04,  ey=001
used in [16]. The corresponding diffusion coefficients are given by D; = D; = 6; = 1, for i = 1,2,3. The
sensitivity chemotactic parameters are chosen by
5, =100, 65 =20, &3 =10.

The initial distribution for u;, us and us species correspond to a constant u; 0 = u20 = 0.8 and uso = 1.

In order to illustrate the convergence of the numerical scheme and due to the lack of exact solutions for each
example, we compute approximate errors in different norms using a numerical solution on an extremely fine
mesh as reference. To measure errors between such a reference solution u,s and an approximate solution uy,
at time ", we will use the L2-error

1/2
n n n ]' n n
eg (u) = [|upes — upll2 = < Z ercﬂK - Uh,K|2> .

Ke9y,

Here, uyys i stands for the projection of the reference solution onto control volume K. For solving the
corresponding nonlinear system arising from the implicit finite F'V, we use the Newton method, where at
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FiGure 2. Example 1: initial condition for the u, v and s species.

No X Ny h ey(u)  eh(uz)  ef(us)
32 x 32 1.25e-1 1.33e-03 3.09e-03 4.97e-04
64 x 64 6.25e-2 2.82e-04 6.61e-04 2.09e-04

128 x 128 3.12e-2 4.41e-05 1.16e-04 3.39e-05

256 x 266  1.56e-2 1.07e-05 3.20e-05 8.00e-06

TABLE 1. Example 1: approximate L?-errors for each species at simulated time ¢ = 0.02.

each time step, only a few iterations are required to achieve convergence. In addition, the linear systems
involved in Newton method are solved by the GMRES method.

6.1. Example 1 (species the interacting via chemical substance). For this numerical test, the
chemotactic coefficients are x; = —0.8, x2 = 0.8 and y3 = 2, where y; < 0 means that movement of the
prey is against the presence of the predator. For the initial condition, the super-predators are concentrated
in small pockets at a one spatial point while de predators and preys are concentrated in small pockets at
four spatial points (see Figure 2).

In Figure 3, we display the numerical solution for each species at three different simulated times. Initially,
at simulated time ¢ = 0.02 (Figure 3, top), we can observe the effect of the chemotaxis for the super-predators
(us) predators (us) feeling their respective preys, and the preys feeling the presence of the predator. At
simulation time ¢t = 0.04 (Figure 3, middle). We notice the rapid movement of the super-predators towards
the regions occupied by the predators and at the same time predators spread out to the areas where the
preys (u1) are located, but it does not move towards the area occupied by the predator. The prey moves
to the regions where the predator is not located. At ¢ = 0.06 (Figure 3, bottom), we can see that the
super-predators continue moving towards the area occupied by the predators, the predators occupy almost
the entire area, except the region where the super-predators is located while the prey move toward (running
away) the area where the predators are not located. In Table 1 we show the L2-error for each species at
simulated time ¢ = 0.02, we observe convergence of the numerical scheme.

6.2. Example 2 (prey do not interact via chemical substances). In Example 2, we choose x; = 0,
x2 = 0.8 and x3 = 2. In this case we do not consider chemotactic movement of the prey. The initial
distribution is as in Example 1, but the super-predators, predators, and prey are concentrated in small
pockets at a one spatial point (see Figure 4). We display in Figure 5 the numerical solution for each species
at three different simulations time. We notice the rapid movement of the super-predators towards the regions
occupied by the predators and at the same time predators spread out to the areas where the preys are located,
while the prey present isotropic and homogeneous diffusion (due to the choice of the chemotactic coefficients



,t=0.02 ,t=0.02
,t=0.04 ,t=0.04
, t=0.06 , t=0.06

I@

F1cURE 3. Example 1: interaction of the three species at different times ¢ = 0.02, 0.04, 0.06.

N, x Ny h eP(ur)  ef(ua) ef(us)
32 x 32 1.25e-1 1.13e-3 1.60e-3 1.56e-3
64 x 64 6.25e-2 5.47e-4 8.09e-4 7.56e-4
128 x 128 3.12e-2 2.74e-4 4.09e-4 3.7le-4
256 x 256 1.56e-2 1.36e-4 2.08e-4 1.84e-4

TABLE 2. Example 2: approximate L2-errors for each species at simulated time ¢ = 0.04.
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X1 = 0). In Table 2 we show the L2-error for each species at simulated time ¢ = 0.04, we observe the

convergence of the numerical scheme.
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FiGURE 4. Example 2: initial condition for the u, v and s species.

6.3. Example 3: Spatio-temporal model versus non-spatial ODE model. In this numerical example,
we wish to compare the dynamics of the spatio-temporal model (1.1)—(1.4), with that of the non-spatial model
dui
dt

where the diffusion and chemotaxis movement are not present. To this end we determine for each species i
at simulated time ¢,, the quantities

:Fi(ul(t)au2(t)ﬂu3(t))7 i=1,2,3, (61)

T(ug, t") == Z m(K)u’}(z/ﬂu(:c,t”) da,

Ke,

which represents the approximate total number in Q of individuals of compartment u at time ¢,, and

n

— n n o— M n
Uy max = MAX Up, U = MiD U

Keo,

We consider the diffusion coefficients D; = 0.02, Dy = 0.5 and D3 = 5, the sensitivity chemotactic
parameters are chosen by 6; = 6, do = 4 and d3 = 2 and the chemotactic coefficients x; = —2, x2 = 4 and
x3 = 6. The other parameters are the same as in Examples 1 and 2. The initial condition for i =1,2,3 is a
spatially distributed random perturbation of the respective values u; = 0.9, us = 0.1 and ug = 12.75, which
is displayed in Figure 6. The “random” initial datum has been chosen to test whether small perturbations
would give rise to large-scale regular structures akin to the well-known mechanism of pattern formation, or
rather, the small fluctuations in the initial datum would simply be smoothed out. In Figure 7 we display
the numerical solution at four different times. It turns out that each species aggregates in a kind of groups
structure which forming zones of different densities. This structure varies with time (not show here), moreover
in Figure 8 we can observe that the quantities Z(u;,t) and the solution u; of ODE problem (6.1) have the
same behavior even when the total variation of each species %; max — %;min have a oscillatory behavior and
remains bounded along the time, which lends further support to the conjecture that this model (at least
with the parameters chosen) exhibits spatial-temporal oscillatory behavior.
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F1GURE 5. Example 2: interaction of the three species at different times ¢ = 0.04, 0.06, 0.09.
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