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Abstract. A spatially one-dimensional model of the hydrodynamics of a flotation column
is based on one continuous phase, the fluid, and two disperse phases: the aggregates, that
is, bubbles with attached hydrophobic valuable particles, and the solid particles that form
the gangue. A common feed inlet for slurry mixture and gas is considered and the bubbles
are assumed to be fully aggregated with hydrophobic particles as they enter the column.
The conservation law of the three phases yields a model expressed as a system of partial
differential equations where the nonlinear constitutive flux functions come from the drift-
flux and solids-flux theories. In addition, the total flux functions are discontinuous in the
spatial (height) coordinate because of two inlets (slurry and wash water) and outlets at the
top and bottom. The desired stationary solutions of this model can be characterized by
operating charts. A novel numerical method is used for simulations of the hydrodynamics
under variable operating conditions such as control actions that drive the process to desired
states of operation.

1. Introduction

1.1. Scope. Froth flotation is widely used for the recovery of valuable minerals, such as
copper- and lead-bearing minerals, from low-grade ores. This process selectively separates
hydrophobic materials (that are repelled by water) from hydrophilic (that would be attracted
to water), where both are suspended in a viscous fluid. It is well known that this physico-
chemical separation process functions roughly as follows: gas is introduced close to the
bottom of a column (see Figure 1), and the bubbles generated rise upward throughout the
pulp that contains the solid particles, which can be divided into two main groups. The
hydrophobic particles (minerals or ores that should be recovered) attach to the bubbles that
float to the top of the column, forming foam or froth carrying the valuable material (the
concentrate in mining) that is removed usually through a launder. On the other hand, the
hydrophilic particles (slimes or gangue) do not attach to bubbles, but settle to the bottom
of the vessel, unless they are trapped in the bulk upflow. Close to the top, additional wash
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Figure 1. Conceptual variants of a flotation column: (a) simplified model
of two-phase gas-liquid flow (Bürger et al. 2018a), (b) complete flotation col-
umn including a collection region (Finch and Dobby 1990), (c) upper part
of the Reflux Flotation Cell by Dickinson and Galvin (2014) and Galvin and
Dickinson (2014).

water can be injected to assist with the rejection of entrained impurities (Vandenberghe et
al. 2005) and to increase the froth stability and improve recovery (Finch and Dobby 1990;
Pal and Masliyah 1989). Mathematical models are required for the design, simulation, and
eventually control of flotation columns.

Motivated by Stevenson et al. (2008), Dickinson and Galvin (2014) and Galvin and Dick-
inson (2014), Bürger et al. (2018a) presented a one-dimensional two-phase model describing
only the movement of gas bubbles and fluid. The flotation column modelled in that work
has a separate gas inlet near the bottom, which is commonly used in mineral processing so
that a collection zone is created in which the hydrophobic particles attach to the gas bubbles
inside the column. Other devices have a common feed inlet for both slurry and gas bubbles,
so that the aggregation process (the attachment of hydrophobic particles to bubbles) mostly
occurs in the inlet pipe. Here, we model such a column (see Figure 1 (c)) and assume that
the bubbles are fully loaded with hydrophobic particles as the mixture enters the column,
so that the aggregation process is concluded when particles and bubbles enter the column.

The governing equation of the two-phase model studied by Bürger et al. (2018a) is a
scalar, quasilinear first-order partial differential equation (known as conservation law; see,
e.g., LeVeque (1992) or Holden and Risebro (2015) for the background). A non-standard
ingredient of this model is a flux function that is discontinuous at several spatial positions
due to the feed sources of gas, slurry, and wash water, and the lower and upper outlets
of tailings and concentrate. This formulation was recently extended (Bürger et al. 2019)
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Figure 2. Left: Schematic of a flotation column with non-constant cross-
sectional area A(z) (AU below and AE above the feed level) utilized for nu-
merical simulations in this paper. Right: corresponding one-dimensional con-
ceptual model. The unit is fed with wash water at level z = zW and a mixture
of aggregates and feed slurry at z = zF, where zU < zF < zW < zE divide the
real line into the zones inside the column and the underflow and effluent zones.
The corresponding volumetric feed flows of wash water, QW ≥ 0, and of feed
slurry, QF > 0, are given functions of time, as is the volumetric underflow rate
QU ≥ 0. The resulting effluent volumetric overflow QE = QW + QF − QU is
assumed to be nonnegative, QE ≥ 0, so that the mixture is conserved and the
vessel is always completely filled with mixture.

to a three-phase model that also includes the settling of solid particles within the flotation
column. The three-phase flow of solids, gas (bubbles or aggregates) and fluid is modelled in
one space dimension. We herein utilize that same model of (Bürger et al. 2019) and present
new numerical results relevant to applications. The governing partial differential equations
(PDEs) can be written as the system

A(z)
∂φ

∂t
+

∂

∂z

(
A(z)J(φ, z, t)

)
= QF(t)φF(t)δ(z − zF), (1.1a)

A(z)
∂

∂t

(
(1− φ)ϕ

)
− ∂

∂z

(
A(z)F (ϕ, φ, z, t)

)
= QF(t)φs,F(t)δ(z − zF), (1.1b)
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where the independent variables are time t > 0 and height z. The unknowns are the volume
fraction of aggregates φ and the volume fraction of solids in the solid-liquid suspension

ϕ =
φs

1− φ,

where φs is the volume fraction of (hydrophilic) solids and 1 − φ is the volume fraction of
the suspension outside the aggregates. This means that if a small volume V is given, then
ϕ is the ratio of the volume occupied by the solids φsV and the volume occupied by the
suspension (1− φ)V .

Both unknowns φ and ϕ are functions of z and t. The given flux functions J(φ, z, t)
and F (ϕ, φ, z, t), whose precise definition will be made explicit later, involve nonlinear con-
stitutive functions of φ and ϕ that describe the rise of bubbles and settling of solids. The
fluxes J and F are discontinuous in z at several positions (namely at z = zU, zF, zW and zE;
see Figure 2) associated with singular feed sources, the underflow and the effluent, and in gen-
eral depend on t through the control of in- and outflows. The possibly varying cross-sectional
area is denoted by A(z). The right-hand sides of the equations contain the Dirac function
and given positive feed volume fractions of the aggregates φF and solids φs,F. The model is
complete with initial conditions and no boundary conditions are required: the bounds of the
vessel at z = zU and z = zE are captured by discontinuities of J(φ, z, t) and F (ϕ, φ, z, t).

In this contribution, we summarize from Bürger et al. (2019) the derivation of (1.1), the
new numerical method, and give example on control actions for obtaining desired steady
states. These are time-independent (stationary) solutions of (1.1). Among the variety of
theoretically possible steady states we select those for discussion that are most relevant for
practical applications, namely those that have a high concentration of aggregates at the
top, the foam, and no bubbles at the lower part of the column, and conversely for the
solids gangue. These steady states represent the stationary modes of operation of a flotation
column without changing control parameters. It turns out that such desired steady states
need some wash water to be injected, i.e., QW > 0. We provide conditions (for steady-state
operation) on how much wash water can be used to be efficient, i.e., how much can flow
down through the foam. Applying more wash water will only mean that it is wasted through
the effluent.

Both transient and stationary solutions have layers of different concentrations of bubbles
(foam) and particles separated by discontinuities in concentration. Equation (1.1a) depends
only on the unknown φ. Our approach is to solve each equation locally as a scalar con-
servation law with discontinuous flux. The feasible steady states relevant for operation in
real applications can be visualized by so-called operating charts that illustrate the necessary
constraints for the control of the volumetric flows. Moreover, Bürger et al. (2019) advanced
a numerical scheme for (1.1) that produces approximate solutions that take physically rele-
vant values only (volume fractions between zero and one). It is the purpose of this paper to
demonstrate that the model and numerical scheme provide a useful tool for the simulation of
the operation of a flotation column in the case of a common feed inlet of the three phases and
when no aggregation occurs in the column. In particular, responses of the unit to changes
in operating conditions (such as the rates and composition of feed flows) are illustrated.
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1.2. Related work. The two-phase flow of rising bubbles in a liquid has often been modelled
by the drift-flux theory by Wallis (1969), see, e.g., (Rietema 1982; Yianatos et al. 1986;
Dobby et al. 1988; Langberg and Jameson 1992; Cruz 1997; Brennen 2005; Vandenberghe
et al. 2005; Ireland and Jameson 2007; Stevenson et al. 2008; Dickinson and Galvin 2014;
Galvin and Dickinson 2014; Galvin et al. 2014). The theory considers the relationships
between the nonlinear flux of bubbles relative to the fluid (denoted here the batch drift
flux) and the applied bulk flows that arise due to the inlets and outlets of the column. The
drift-flux theory means a rigorous way of investigating the hydrodynamics in one dimension;
however, it is applicable under steady-state conditions only. In this way Stevenson et al.
(2007) analysed steady-state conditions for settling gangue in foam.

As pointed out by Stevenson et al. (2008), the flotation column shown in Figure 2 with
one inlet of gas and fluid (or suspension) works in principle as an inverted clarifier-thickener
used for continuous sedimentation of a solid-liquid suspension. The corresponding theory
for sedimentation for particles in a liquid started with Kynch (1952) and is often denoted
the solids-flux theory (Diehl 2001, 2008). This theory is well developed and has given rise to
models of continuous sedimentation described by scalar conservation laws with discontinuous
flux along with several extensions to account, for example, for sediment compressibility. The
authors’ contributions to original mathematical research on this class of models include
Bürger et al. (2004, 2005, 2010, 2013, 2018b) and Diehl (1996, 2001, 2005). The model of
flotation proposed herein is based on this experience.

The one-dimensional formulation chosen here has the advantage that only equations for the
gas and solids concentrations need to be solved, while two- or three-dimensional formulations
invariably require solving additional equations for the flow of the mixture. However, the
one-dimensional setting requires to describe the feed mechanism and diverging bulk flows
by discontinuities with respect to z in the definitions of F and J . These abrupt changes, in
combination with the nonlinearities of these functions that arise from constitutive functions
arising from the drift- and solid-flux theories, cause the principal mathematical difficulty for
the construction of connections of φ-, ϕ- and φs-values across jumps in the definitions of F
and J . An in-depth discussion of these mathematical issues along with a comprehensive
analysis and detailed descriptions on how to obtain and categorize the steady states are
given in our previous work; see Bürger et al. (2019).

To the authors’ knowledge, the flotation columns have not yet been described by partial
differential equations that would be based on these theories developed since the 1990s. Bascur
(1991) noticed that his two-phase framework could be used for both solid-liquid and gas-
liquid separation processes. Several aspects of modelling a flotation column are provided
by Cruz (1997), who also reviewed earlier works. Tian et al. (2018) advance a hyperbolic
system that includes the attachment process; however, they assume that the flux functions
are linear. In particular, their approach does not constitute an extension of the drift or
solids flux theories, in contrast to ours. While the vast majority of references to flotation
processes are related to mineral processing, we mention that flotation processes are also used
for removing other small particles, oil droplets, printing ink and organic matter in diverse
processes such as wastewater treatment (Rubio et al. 2002).
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1.3. Outline of the paper. The remainder of the paper is organized as follows. The math-
ematical model is outlined in Section 2, starting with some general assumptions (in Sec-
tion 2.1) and a description of the batch-drift and batch-settling flux functions (Section 2.2),
which introduce nonlinearity into the fluxes J and F . Then, in Section 2.3, we outline the
derivation of the governing equations (1.1) from the conservation of mass equations of the
gas (aggregates), the solid and the fluid. The existence of stationary and transient solutions
depends on geometric properties of the nonlinear flux functions, such as the locations of ex-
trema and inflection points, which are outlined in Section 2.4. In Section 3, the most desired
steady states and their characterization are presented. We extract in Section 3.1 the most
interesting and usable results. The most desired steady states and their operating charts for
given values on φF and φs,F are presented in Section 3.2. In Section 4 we present numeri-
cal solutions of (1.1) that illustrate the transient behaviour of the model. (The numerical
method is detailed in Bürger et al. (2019) and is summarized in the Appendix of this pa-
per.) After stating some preliminaries (in Section 4), we present in Sections 4.2 to 4.4 three
examples of simulations that illustrate the model predictions, in particular the formation of
and transitions between steady states and the response of the system to changes of operating
conditions.

2. Mathematical model

2.1. Assumptions. Figure 2 shows the flotation column studied in this paper and intro-
duces the distinguished heights zU, zF, zW and zE along with the associated volume flows QU,
QF, QW and QE.

To model a feed inlet pipe located in the upper part and centre of a cylindrical column, the
cross-sectional area A = A(z) is assumed to have a discontinuity at the feed inlet (Figure 2):

A(z) :=

{
AE for z ≥ zF,

AU for z < zF,
where AE ≤ AU. (2.1)

We mention that our numerical method can handle any other variation in the cross-sectional
area, for example, a conical bottom as shown in 1.

We distinguish three phases: the fluid phase (index f), the solid phase (index s), which
models solid particles that are suspended in the fluid, and the aggregate phase (index a),
which models gas bubbles fully loaded with hydrophobic particles. We let φi = φi(z, t) denote
the volume fraction of phase i ∈ {a, f, s}, where φa + φf + φs ≡ 1. The maximum volume
fraction for any phase is one. In what follows, we will use the simpler notation φ := φa;
cf. (1.1). Furthermore, we assume constant phase densities ρa < ρf < ρs, consistently with
the assumption that bubbles rise (float) and particles settle (sink). Finally, the aggregate
bubbles and the solid particles are assumed to be monosized. We also suppose that gas
bubbles do not coalesce or break.

2.2. Batch-drift- and batch-settling-flux functions. The drift-flux and the solids-flux
theories stipulate a batch-drift-flux function jb(φ) and a batch-settling-flux function fb(ϕ),
respectively:

jb(φ) = φvterm,aVa(φ), (2.2)
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fb(ϕ) = ϕvterm,sVs(ϕ), (2.3)

where vterm,a and vterm,s are the terminal velocities of a single aggregate and a single solid
particle, respectively, in an unbounded fluid. The discussion of these quantities is beyond
our focus (but see Stevenson et al. 2008); here it suffices to assume that vterm,a > 0 and
vterm,s > 0 are set constants for a given material. Furthermore, the dimensionless hindered
bubbling and settling functions, Va and Vs respectively, satisfy Va(0) = Vs(0) = 1 and are
often given by the Richardson-Zaki (1954) expression

Va(φ) = (1− φ)na for 0 ≤ φ ≤ 1, na ≥ 0,

Vs(ϕ) = (1− ϕ)ns for 0 ≤ φ ≤ 1, ns ≥ 1.
(2.4)

Realistic values of the parameter na range from 2 to 3.2 (Dickinson and Galvin 2014; Galvin
and Dickinson 2014; Pal and Masliyah 1989; Vandenberghe et al. 2005). We use na = 3.2
and vterm,a = 2.7 cm/s for all plots and simulations in the present article along with ns = 2.5
(Dickinson and Galvin 2014) and vterm,s = 0.5 cm/s.

Outside the flotation column, we assume that all three phases have the same velocity.
Mathematically, this means that our problem can be defined on the real line z with jb =
fb = 0 for z < zU and z > zE.

2.3. Derivation of governing equations. Conservation of mass for each phase implies
the following system of balance equations,

∂

∂t

(
A(z)φ

)
+

∂

∂z

(
A(z)φva

)
= QFφFδ(z − zF), (2.5)

∂

∂t

(
A(z)φs

)
+

∂

∂z

(
A(z)φsvs

)
= QFφs,Fδ(z − zF), (2.6)

∂

∂t

(
A(z)φf

)
+

∂

∂z

(
A(z)φfvf

)
= QFφf,Fδ(z − zF) +QWφf,Wδ(z − zW), (2.7)

where the right-hand sides contain Dirac functions, volumetric flows and the incoming volume
fractions of aggregates φF, solids φs,F and fluid φf,W ≡ 1. We assume that φF +φs,F +φf,F ≡ 1
with 0 < φF, φs,F, φf,F < 1. In terms of the volume-average velocity, or bulk velocity, of the
mixture q := φva + φsvs + φfvf , the sum of (2.5)–(2.7) can be written as

∂

∂z

(
A(z)q

)
= QFδ(z − zF) +QWδ(z − zW). (2.8)

Consequently, in the flotation column q varies with height z because of the two inlet flows
and (2.1). Since A(z)q(z, t) = −QU(t) for z < zF, we can integrate (2.8) to obtain

q(z, t) =


q1 := −QU/AU in the underflow zone and zone 1,

q2 := (−QU +QF)/AE in zone 2,

q3 := (−QU +QF +QW)/AE in zone 3 and the effluent zone.

(2.9)

Hence, this identity replaces (2.7), and we will next rewrite the fluxes φva and φsvs in (2.5)
and (2.6) in terms of q and two constitutive functions jb and fb. Both can be expressed by
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relative velocities. We denote the volume-average velocity, or bulk velocity, of the solid-fluid
suspension by

qsus :=
φsvs + φfvf

φs + φf

= ϕvs + (1− ϕ)vf .

Then we define the aggregate-suspension relative velocity uasus := va − qsus = va − ϕvs −
(1−ϕ)vf and the solid-fluid relative velocity usf := vs− vf . From the definitions of qsus, uasus

and usf , we derive that

va = q + (1− φ)uasus, (2.10)

vs = q + (1− ϕ)usf − φuasus. (2.11)

We assume that uasus is a function of φ and usf is a function of ϕ. Considering a closed
column (q = 0), we obtain by comparing (2.10) with (2.2) that

φ(1− φ)uasus = jb(φ),

while considering a closed column (q = 0) with no bubbles (φ = 0), we obtain by comparing
(2.11) with (2.3) that

ϕ(1− ϕ)usf = −fb(ϕ),

where fb ≥ 0 in the downwards direction of sedimentation, while by definition usf > 0 in the
upwards z-direction. It is possible to obtain the following expressions:

φva = φq + jb(φ) =: J(φ, z, t),

φsvs = (1− φ)ϕq − (1− φ)fb(ϕ)− ϕjb(φ) =: −F (ϕ, φ, z, t),

where the minus sign is to have F positive in the direction of sedimentation. Inserting these
expressions into (2.5) and (2.6) we get a system of PDEs within a zone. To get the governing
PDE system (1.1), we assume that in the under- and overflow zones, all phases are assumed
to have the same velocity, i.e., uasus and usf are zero, so we set jb := 0 and fb := 0 in these
zones. The total flux functions in (1.1) are thus given by

J(φ, z, t) =



jE(φ, t) := q3(t)φ in the effluent zone,

j3(φ, t) := q3(t)φ+ jb(φ) in zone 3,

j2(φ, t) := q2(t)φ+ jb(φ) in zone 2,

j1(φ, t) := q1(t)φ+ jb(φ) in zone 1,

jU(φ, t) := q1(t)φ in the underflow zone,

F (ϕ, φ, z, t) =



fE(ϕ, φ, t) := −(1− φ)q3(t)ϕ in the effluent zone,

f3(ϕ, φ, t) in zone 3,

f2(ϕ, φ, t) in zone 2,

f1(ϕ, φ, t) in zone 1,

fU(ϕ, φ, t) := −(1− φ)q1(t)ϕ in the underflow zone,

where

fk(ϕ, φ, t) :=(1− φ)fb(ϕ) +
(
jb(φ)− (1− φ)qk(t)

)
ϕ
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Figure 3. Flux functions of the aggregate phase and specific volume frac-
tions. Left: Drift-flux function jb and flux curves for zones 1 and 3. Right:
In dark gray colour, the local minimum φ2M and appurtenant φ2m for the flux
j2 in zone 2 where q2 > 0. In black colour, the local maximum φM

1 and zero
φ1Z for flux j1 with q1 < 0. In light gray, we have represented a zone flux j3

with a relatively high value of q3 > 0, so that φ3M = φM
3 = φinfl. In these and

other plots, we have used the expression (2.4) with na = 3.2 in the drift-flux
function jb. The unit on the vertical axis is cm/s.

= (1− φ)fb(ϕ) +
(
jk(φ, t)− qk(t)

)
ϕ, k = 1, 2, 3.

2.4. Properties of the flux functions. The drift-flux and settling-flux functions jb and fb

are assumed to have similar qualitative properties, namely the following; see Figure 3. We
assume that jb(0) = jb(1) = 0 and there exists precisely one inflection point φinfl such
that j′′b(φ) < 0 for 0 ≤ φ < φinfl and j′′b(φ) > 0 for φinfl ≤ φ < 1. We also assume that
j′b(1) = 0. In particular, these assumptions are satisfied for the fluxes (2.2) and (2.3) and
the Richardson-Zaki expression (2.4).

The zone flux functions, j for the aggregates and f(·, φ) for the solids, have an additional
linear term due to the bulk velocity of the zone. We temporarily skip the time dependence
and let j(φ) = jb(φ) + qφ denote a general zone flux function. (The case for the settling
zone flux function f(·, φ) is similar; however, with an additional dependence on φ.) The flux
function j has the following distinguished values (exact definitions are given in Bürger et
al. (2019)):

• The flux j(φ) has the same inflection point φinfl as jb(φ) for any value of q.
• If j(φ) has a zero in the interval (0, 1), which happens only for q < 0, we denote it

by φZ = φZ(q). If j(φ) < 0 for all φ ∈ (0, 1], we set φZ := 0.
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• There is a local minimum point φM = φM(q) in the interval (φinfl, 1), which decreases
with increasing q > 0 until φM reaches the inflection point. For higher values of q,
j(φ) is an increasing function and we define φM := φinfl. For q < 0, we set φM := 1.
• Given φM and q ≥ 0, we define φm = φm(q) as the unique value satisfying

j(φm) = j(φM), where 0 ≤ φm ≤ φinfl. (2.12)

• For realistic values of q, there is a local maximum φM = φM(q) in the interval [0, φinfl).

Sometimes we write out the dependence on q of the flux function, i.e. j(φ; q) and f(ϕ, φ; q).

3. Steady states

3.1. Desired steady states. Generally, a steady-state solution consists of piecewise con-
stant values of φ and ϕ (or, equivalently φs), generally with discontinuities at the locations
of the inlet and outlets, and in each zone there is at most one discontinuity. We are only
interested in the desired steady states that have a high concentration of aggregates at the
top, so that a layer of foam exists, and zero at the bottom. The hydrophilic solids should
settle directly and be present only below the feed level. The different steady states depend
on the values of the feed input volume fractions of the aggregates φF and the solids φs,F, and
on the volumetric flow rates QF, QU and QW. There are several equalities and inequalities
involving these variables and the nonlinear flux functions jb and fb. We will state the con-
ditions that are needed here and refer to Bürger et al (2019) for all details. Theoretically,
there exist many steady states; however, a main conclusion is that all desired steady states
that should be able to exist also for small volumetric feed flows QF require wash water, i.e.,
QW > 0. It turns out that the following desired aggregate steady states are possible for a
range of volumetric flows down to zero. They differ only in zone 2, where the solution can be
constant low (SSl), constant high (SSh), or have a discontinuity separating these two values
(SSd):

φSSl(z) :=


φE = AEj3(φ3)/QE ≥ φ3M in the effluent zone,

φ3 = φ3M ≥ φ2 in zone 3,

φ2 ∈ [φ2m, φ
M
2 ] in zone 2,

0 in zone 1 and the underflow zone,

(3.1)

φSSh(z) :=


φE = AEj3(φ3)/QE ≥ φ3M in the effluent zone,

φ3 = φ3M ≥ φ2 in zone 3,

φ2 ∈ [φM
2 , φ2M] in zone 2,

0 in zone 1 and the underflow zone,

(3.2)

φSSd(z) :=



φE = AEj3(φ3)/QE ≥ φ3M in the effluent zone,

φ3 = φ3M in zone 3,

φ↑2 ∈ [φM
2 , φ2M] for z ≥ zd in zone 2,

φ↓2 ∈ [φ2m, φ
M
2 ] for z < zd in zone 2,

0 in zone 1 and the underflow zone.

(3.3)
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Here, φ3 denotes a constant value in zone 3, φ3M is the minimum point of the flux func-
tion j3(φ) in zone 3, and φ↑2 and φ↓2 denote the values above and below, respectively, a
discontinuity located at z = zd within zone 2. For the solids, the following steady state is
the most interesting one:

ϕSS(z) :=


0 in the effluent zone and zones 2 and 3,

ϕ1 ∈ [0, ϕ1m] in zone 1

ϕU = ϕ1 + AUfb(ϕ1)/QU in the underflow zone.

(3.4)

The necessary conditions for these steady states to exist involve the following conditions,
where we now write out the dependencies on the volumetric flow rates; see (2.9). The con-
servation of mass across the feed and wash water levels yields the following jump conditions:

QFφF = AEj2(φ2; q2), (FJC)

QFφs,F = AUf1(ϕ1, 0; q1), (FJCs)

AEj2(φ2; q2) = AEj3(φ3; q3). (WJC)

(Since ϕSS = 0 above and below z = zW, the jump condition there for the solid phase is

always satisfied.) For φSSd, φ2 should be replaced by φ↓2 in (FJC) and by φ↑2 in (WJC). We
note that for given feed volume fractions φF and φs,F, and volumetric flows QU and QF, the

values φ2 (or φ↓2 or φ↑2) and ϕ1 are uniquely given by (FJC) and (FJCs), respectively, for the
restrictions given in the solutions (3.1)–(3.4). Then QW is given as the unique solution of
the following equation (cf. (FJC) and (WJC)):

AEj3

(
φM

(−QU +QF +QW

AE

)
;
−QU +QF +QW

AE

)
= QFφF. (3.5)

Then φ3 = φ3M(q3) is uniquely determined. The choices of QU and QF are given by (some
of, depending on the steady state) the following inequalities:

AEj2(φM
2 (q2); q2) ≥ QFφF, (FIa)

φ2 ≤ φ1Z(q1), where φ2 ≤ φM
2 (q2) is defined by (FJC), (FIb)

AEj2(φ2M(q2); q2) ≤ QFφF, (FIIa)

φ2 ≤ φ1Z(q1), where φ2 ∈ [φM
2 (q2), φ2M(q2)] is defined by (FJC), (FIIb)

QU > QF(1− φF), ({FIIIa)

AUf1(ϕ1M(q1), 0; q1) ≥ QFφs,F. (FIas)

Condition ({FIIIa) implies that the wash water injected at the rate QW given by (3.5) is
effective in the meaning that it flows downwards through the foam. Furthermore, QE > 0.

3.2. Operating charts.

Case SSl: φSSl and ϕSS. The necessary conditions are (FIa), (FIb), (FIas) and ({FIIIa)
along with the jump conditions. The first four conditions involve only QU and QF, and these
conditions are visualized in Figure 4 for φF = 0.3 and φs,F = 0.1. The white region in the
fifth subplot of Figure 4 shows the possible values for (QU, QF). In each such point, there is
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Figure 4. Operating charts in the case SSl with φF = 0.3 and φs,F = 0.1. The
four first plots show where each condition is satisfied (white regions). The last
plot shows all four conditions superimposed and curves (dashed) along which
QW is constant with QW = 0, 10, 20, . . . cm3/s. The value of QW can be read
off on the QU-axis.

unique value of QW. In the fifth subplot of Figure 4, we have drawn red dashed curves; each
for a fixed value of QW = 0, 10, 20, . . . cm3/s, defined by (3.5). The value of QW for a specific
curve can be read off at the intersection of the curve with the QU-axis. This is because
QF = 0 in (3.5) gives φM((−QU +QW)/AU) = φmax, which is equivalent to QW = QU.

Case SSh: φSSh and ϕSS. The conditions are (FIa), (FIIa), (FIIb), (FIas) and ({FIIIa)
and the jump conditions. For φF = 0.3 and φs,F = 0.1 we get the regions shown in Figure 5,
where we show the new conditions that are not shown in Figure 4.

Case SSd: φSSd and ϕSS. The necessary conditions for this solution are the same as in
case SS11b, hence the operating charts coincide with those in Figure 5.

4. Numerical simulations

4.1. Preliminaries. In our examples we will use the measures of the flotation column that
is part of the Reflux Flotation Cell used by Dickinson and Galvin (2014) and Galvin and
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Figure 5. Operating charts in the cases SSh and SSd with φF = 0.3 and
φs,F = 0.1. The conditions (FIIa) and (FIIb) are shown (see Figure 4 for the
others), and in the third plot all conditions together with the dashed lines
showing the values of QW = 0, 10, 20, . . . cm3/s.

Figure 6. Examples 1 and 3. Operating charts for a steady state of type
SSl with φF = 0.3, φs,F = 0.1 (left) and φF = 0.4, φs,F = 0.1 (middle)
and for a steady state of type SSh with φF = 0.4, φs,F = 0.1 (right). The
point (QU, QF) = (55, 64.6) cm3/s is marked using a star while (QU, QF) =
(40, 60) cm3/s is marked with a dot. The dashed curves correspond to constant
values of QW = 0, 10, 20, . . . cm3/s where the washing process is effective.

Dickinson (2014). The flotation column is H = 1 m high with AU = 83.65 cm2. Feed
slurry and gas bubbles are pumped through a downcomer of external diameter 3.81 cm,
which forms an annulus around a 2.54 cm-diameter tube incorporating a porous sparger for
bubble creation. Hence, the effective horizontal cross-sectional area above the feed inlet is
AE = 72.25 cm2. The outlet of the downcomer is positioned 66.7 cm below the top of the
vessel, hence a vertical distance of 33.3 cm separates the downcomer outlet from the bottom
of the column.
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Figure 7. Example 1. Time evolution during the first 5000 s of the volume
fraction profiles of aggregates φ (left) and solids φs (right).

4.2. Example 1. We start from a tank filled only with fluid at time t = 0 s, where we start
pumping aggregates, solids, fluid and wash water, with φF = 0.3 and φs,F = 0.1. From the
corresponding operating chart, see Figure 6 (left), we choose the operating point of volumetric
flows (QU, QF) = (55, 64.6) cm3/s lying in the white region and choose QW = 14 cm3/s
by (3.5) to guarantee effective washing, i.e., this is the maximum flow of wash water injected
that will flow downwards; applying a higher value will mean an overflow through the effluent.
Then a steady-state of type SSl is feasible with the effluent volumetric flow QE = 25.6 cm3/s.

Figure 7 shows the first 5000 s of the simulation, while enlarged views are shown in Figure 8.
As can be seen in Figure 8 (a) and (b), a first steady state arises after about t = 100 s with
a low concentration of aggregates in zones 2 and 3; hence, there is no foam and this is an
undesired solution. To obtain the desired steady state φSSl, we ‘close’ the top of the tank at
t = 150 s by setting QU = QF + QW = 78.6 cm3/s so that QE = 0 cm3/s. Then aggregates
accumulate at the top forming a layer of foam which grows downwards. The aggregates
interact with the solid phase in zone 1 and, eventually, leave through the underflow outlet.
At t = 350 s, the top of the column is opened again and a desired steady state of type SSl is
reached slowly after t = 4500 s; see Figure 7.

Once the system is in steady state, we change, at t = 4500 s, the feed volume fraction of
aggregates from φF = 0.3 to 0.4, and simulate the reaction of the system. In the correspond-
ing operating chart for this new set of variables, the point (QU, QF) = (55, 64.6) cm3/s is no
longer in the white region; see Figure 6 (middle), and no steady state of type SSl is feasible.

As it can be seen in Figure 8 (c) and (d), the aggregates fill the column downwards through
zones 2 and 1 until they leave the tank through the underflow outlet, reaching a non-desired
steady state after t = 5000 s.

Once this new steady state is reached, we change, at t = 5000 s, the volumetric flows so
that the new point (QU, QF) = (40, 60) cm3/s lies inside the white region of the corresponding
operating chart in Figure 6 (middle), with QW = 10.2 cm3/s given by (3.5). Figure 9 shows
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(a)
(b)

(c)
(d)

Figure 8. Example 1. Enlarged views of the time evolution of the volume
fraction profiles of aggregates φ in (a) and (c), and solids φs in (b) and (d),
from time t = 0 s to 500 s in the upper row and from time t = 4350 s to 5000 s
in the bottom row.

that a second steady state of type SSl is slowly reached after t = 16000 s. The entire
simulation is shown in Figure 10.

4.3. Example 2. Given the same inputs as in Example 1, we let the simulation run until
t = 4500 s when the feed volume fraction φF made a step increase from 0.3 to 0.4. Instead of
waiting with a control action to t = 5000 s (as in Example 1), we now make the control action
directly at t = 4500 s by setting the volumetric flows to the same values as in Example 1:
(QU, QF, QW) = (40, 60, 10.2) cm3/s. The same steady state of type SSl is quickly reached
at about t = 6500 s; see Figure 11. The dynamics of the entire simulation can be found in
Figure 12.
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0

100

0.5

50

1

15000
100000

5000

0

500

0.05

15000

0.1

10000
100

0.15

5000

0.2

Figure 9. Example 1. Time evolution of the volume fraction profiles of
aggregates φ (left) and solids φs (right), from time t = 5000 s to t = 17000 s,
when a second steady state is reached.

4.4. Example 3. We will demonstrate the cases SSd and SSh. In Figure 6 (middle) and
(right), we see that the point (QU, QF) lies in the white regions of both feasible steady states
SSl and SSh (and SSd). We consider the simulation in Example 1 up to t = 4500 s when
a first desired steady state of type SSl is reached. At that time point, we close the top of
the tank for a short period until t = 4515 s, when we simultaneously change the feed volume
fraction of aggregates from φF = 0.3 to 0.4 and adjust the volumetric flows as in Example 1.
It can be seen in Figure 13 that a steady state of type SSd is reached after just t = 5000 s,
with a stationary discontinuity in zone 2 at zd ≈ 46 cm, above and below which the volume
fractions are {

φ↑2 = 0.3621 ∈ [φM
2 , φ2M] = [0.2899, 0.7490] for z > zd,

φ↓2 = 0.2283 ∈ [φ2m, φ
M
2 ] = [0.1078, 0.2899] for z < zd,

satisfying j2(φ↑2) = j2(φ↓2).
Analogously, if we perform the same actions except that the top is closed for 21 s instead

of 15 s, then a steady state of type SSh is reached after t = 5000 s; see Figure 14.

5. Conclusions and discussions

The present study outlines a model of a flotation column that is consistent with the old
drift- and solids-flux theories, which have been proposed separately for the bubble-liquid
subsystem of a flotation column and for the settling of particles. The mathematical and nu-
merical analysis provides a framework that complements the flux constructions done in some
recent papers (Vandenberghe et al. 2005; Stevenson et al. 2008; Dickinson and Galvin 2014;
Galvin and Dickinson 2014) and leads to a simple but formally complete model of steady
states and transient operation of the flotation column. The novelty of the approach (for the
application to flotation) consists in the implementation of recently developed knowledge on
the determination and well-posedness of solutions to conservation laws with discontinuous
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Figure 10. Example 1. Dynamics of the entire simulation during 16000 s.
Here and in Figure 12, the panels show (from top to bottom) the aggregate
volume fraction φ; the solids volume fraction φs; the volumetric flows QU, QF

and QW; the volume fractions of aggregates and solids of the feed (φF and φs,F);
and the volume fractions of aggregates and solids of the underflow (φU and
φs,U) and the effluent (φE and φs,E).

flux. While some of the mathematical details and a complete classification of steady states
are beyond the scope of the paper (but see Bürger et al. 2019), the benefits of the approach
should become clear through the consistency between the operating charts and the response
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Figure 11. Example 2. Time evolution of the volume fraction profiles of
aggregates φ (left) and solids φs (right) from time t = 4350 s to t = 6500 s.

of the system to changes in the feed inputs and control actions. That said, we emphasize
that the steady states and the nonlinear conditions behind the operating charts in Section 3
are valid to any pair of functions jb and fb that satisfy the assumptions in Section 2.4. Of
course, the operating charts, and in particular the existence, size, and shape of the region
of feasibility of the different steady states (the “white regions” of the fifth plot of Figure 4,
the third plot of Figure 5, and the plots of Figure 6) depend on the particular choices of jb

and fb. In the same spirit we mention that the flotation column has been subdivided into
three zones of equal height (zones 1, 2 and 3) for illustrative purposes only; the model allows
any sizes of the zones.

In most applications, the adhesion of hydrophobic particles to bubbles takes place in the
collection region shown in Figure 1 (b). This is a region of countercurrent flow: bubbles move
upward and solid particles settle (Bergh and Yianatos 2003; Yianatos et al. 2005) while the
attachment of hydrophobic particles to bubbles occurs. In future work, we will extend the
model described by (1.1) into one that accounts for the aggregation process. This requires
including reaction terms. In addition, a separate PDE needs to be introduced for a third
field variable, for instance the number of solid particles attached to a single bubble at each
spatial position and time. The resulting 3 × 3 convection-reaction system is likely to form
a model that could be used for design and control simulations (so-called model-predictive
control; see Bergh and Yianatos 1995, 2011; Maldonado et al. 2009).

Finally, we recall that the present model is a quasilinear first-order system of conservation
laws, whose solutions, that is the profiles of φ, ϕ and φs are in general discontinuous, both
stationary ones at the boundary between zones and possibly moving ones within zones. The
latter property is easily visible in the sharp discontinuities that travel at non-constant speed;
see Figures 7 to 14. However, the simulation model could still be augmented by diffusion
terms (i.e., terms involving second derivatives of the unknowns with respect to z) to account
for constant, local or nonlinear axial dispersion (as suggested, for instance, by Mills and
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Figure 12. Example 2. Dynamics of various variables from the initial time
t = 0 s to t = 6500 s.

O’Connor 1990; Newcombe 2014; Gharai and Venugopal 2016), convective-dispersive gangue
transport (Stevenson et al. 2007), or strongly degenerate diffusion describing compressibility
of the foam layer (Narsimhan 2010). The effect of axial dispersion will be a blurring of
otherwise sharp interfaces.
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Figure 13. Example 3. Transient solution between the steady states SSl and
SSd, where the latter has a discontinuity in the aggregate volume fraction in
zone 2.
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Figure 14. Example 3. Transient solution between the steady states SSl and SSh.
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Figure 15. Two staggered grids for the discretization of the flotation column
with the spatial discontinuities away from cell boundaries.

Appendix: Numerical scheme

The discretization of the model exploits that the system of balance laws (1.1) is triangular.
Bürger et al. (2019) describe the numerical scheme and we have a proof (still unpublished)
that the numerical volume fractions stay between zero and one. The scheme uses a staggered
grid for the two unknown functions φ and ϕ of (1.1). The Godunov method (Godunov, 1959)
is used first to obtain a piecewise constant, in space and time, approximation of the solution
φ of (1.1a). Then the updated φ-values are used as a given piecewise constant function
in (1.1b). By using a staggered grid for the numerical approximation of ϕ, we achieve that
the Godunov flux is well defined. For the same reason, the two grids should preferably be
placed so that the known spatial discontinuities at zU, zF, zW and zE lie inside cells of both
grids.

Spatial discretization. We let N cells for each grid cover the column, so that cell 1
contains zU and cell N contains zE; see Figure 15. We add extra cells at the bottom and
top to calculate the outlet volume fractions. We define ∆z := H/(N − 1), where H is the
height of the column from the underflow level zU to the effluent level zE , zi := (i − 2)∆z,
i = 0, 1/2, 1, 3/2, . . . , N + 3, so that zU = z2 + ∆z/4 and zE = zN+1 + ∆z/4. Each of the
injection points zF and zW will belong to one interval of each grid. The numerical method
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implicitly assumes that these two locations are placed a distance ∆z/4 from the nearest
boundary of both grids.

The cross-sectional area A = A(z), which is allowed to have a finite number of disconti-
nuities, is discretized by cell-wise averages, namely we calculate

Ai+1/2 :=
1

∆z

∫ zi+1

zi

A(z) dz, Ai :=
1

∆z

∫ zi+1/2

zi−1/2

A(z) dz. (A.1)

Furthermore, we determine from these values the constants

M := max

{
Ai−1/2

Ai
,
Ai+1/2

Ai
: i = 1,

3

2
, . . . , N +

3

2
, N + 2

}
, (A.2)

Amin := min
{
A1/2, A1, . . . , AN+1, AN+3/2

}
. (A.3)

Time discretization. We use the uniform step length ∆t and simulate NT time steps up
to the final time T := NT∆t, and we set tn := n∆t for n = 0, 1, . . . , NT . The time step ∆t
should satisfy the Courant-Friedrichs-Lewy (CFL) condition

∆tM

(
‖j′b‖∞ + ‖f ′b‖∞ +

‖Q‖∞
Amin

)
≤ ∆z

2
, (A.4)

where the constants are given by (A.2), (A.3) and

‖j′b‖∞ := max
0≤φ≤1

∣∣j′b(φ)
∣∣,

‖f ′b‖∞ := max
0≤ϕ≤1

∣∣f ′b(ϕ)
∣∣,

‖Q‖∞ := max
0≤t≤T

(
QF(t) +QW(t)

)
.

The CFL condition (A.4) is a well-known stability condition that usually arises in the context
of explicit discretizations of time-dependent partial differential equations (see, e.g., LeVeque,
1992) and limits ∆t for given ∆z.

The time-dependent feed functions are discretized as

Qn
F :=

1

∆t

∫ tn+1

tn

QF(t) dt, φnF :=
1

∆t

∫ tn+1

tn

φF(t) dt,

and the same is made for the other volumetric flows and φs,F.

Marching formula. Assume that ∆z is the spatial mesh width (“layer thickness”) specified
above and ∆t is the time step chosen such that (A.4) is in effect. To state the marching
(update) formula that constitutes the numerical scheme, we define the dimensionless symbol

δF,i+1/2 :=

∫ zi+1

zi

δzF(z) dz :=

{
1 if zF ∈ [zi, zi+1),

0 otherwise.

The numerical approximations of the PDE solutions are denoted by φni+1/2 ≈ φ(zi+1/2, tn)

and ϕni ≈ ϕ(zi, tn). More precisely, the initial data are discretized by

φ0
i+1/2 :=

1

Ai+1/2∆z

∫ zi+1

zi

φ(z, 0)A(z) dz, ϕ0
i :=

1

Ai∆z

∫ zi+1/2

zi−1/2

ϕ(z, 0)A(z) dz,
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and the scheme (marching formula) is

φn+1
i+1/2 = φni+1/2 +

∆t

Ai+1/2∆z

(
AiJ n

i − Ai+1J n
i+1 +Qn

Fφ
n
FδF,i+1/2

)
,

ϕn+1
i =


ϕni if φni−1/2 + φni+1/2 = 2,

ϕni +
∆t(Ai−1/2Fni−1/2 − Ai+1/2Fni+1/2 +Qn

Fφ
n
s,FδF,i)

(1− (φni−1/2 + φni+1/2)/2)∆z Ai
otherwise,

where J n
i and Fni+1/2 are numerical flux values arising by suitable applications of the numer-

ical flux by Godunov (1959), namely

J n
i =


min

φn
i−1/2

≤φ≤φn
i+1/2

J(φ, zi, tn) if φni−1/2 ≤ φni+1/2,

max
φn
i−1/2

≥φ≥φn
i+1/2

J(φ, zi, tn) if φni−1/2 > φni+1/2,
(A.5)

Fni+1/2 =


− min

ϕn
i+1≤ϕ≤ϕn

i

F
(
ϕ, φni+1/2, zi+1/2, tn

)
if ϕni+1 ≤ ϕni ,

− max
ϕn
i+1≥ϕ≥ϕn

i

F
(
ϕ, φni+1/2, zi+1/2, tn

)
if ϕni+1 > ϕni .

(A.6)

In the numerical flux J n
i , we replace A(zi) by Ai, and analogously for Fni+1/2.

Once φn+1
i+1/2 and ϕn+1

i have been calculated, we define an approximate solution for the
solids volume fraction φs by

φn+1
s,i :=

(
1−

φni−1/2 + φni+1/2

2

)
ϕn+1
i for all i, n.

Nomenclature

Latin symbols

A(z) cross-sectional area of the column at height z [cm2]
Ai, Ai+1/2 cell averages of A(z), defined in (A.1) [cm2]
Amin constant defined in (A.3) [cm2]
AU, AE cross-sectional area below/above feed level (cf. Figure 2) [cm2]
f generic solids zone flux function (Section 2.4) [cm/s]
fE effluent solids zone flux function [cm/s]
fU underflow solids zone flux function [cm/s]
f1, f2, f3 solids zone flux function in zone 1, 2, 3 [cm/s]
fb batch solids-flux function [cm/s]
F (ϕ, φ, z, t) flux of the solids balance equation (1.1b) [cm/s]
Fni+1/2 value of numerical flux defined by (A.6) [cm/s]

H column height [cm]
j generic aggregates zone flux function (Section 2.4) [cm/s]
j1, j2, j3 aggregates zone flux function in zone 1, 2, 3 [cm/s]
jb batch drift-flux function [cm/s]
jE effluent aggregates zone flux function [cm/s]
jU underflow aggregates zone flux function [cm/s]
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J(φ, z, t) flux of the aggregates balance equation (1.1a) [cm/s]
J n
i value of numerical flux defined by (A.5) [cm/s]

M constant defined in (A.2) [-]
na, ns Richardson-Zaki exponents in (2.4) [-]
N number of cells covering column in the numerical method [-]
NT number of time steps in numerical method [-]
q bulk velocity of the mixture [cm/s]
q1, q2, q3 bulk velocity of the mixture in zone 1, 2, 3 [cm/s]
qsus bulk velocity of the solid-fluid suspension [cm/s]
QE volumetric effluent flow [cm3/s]
QF volumetric feed flow [cm3/s]
Qn

F discrete value of QF [cm3/s]
QU volumetric underflow [cm3/s]
QW volumetric wash water feed rate [cm3/s]
t time [s]
tn time after n time steps [s]
T final simulation time [s]
uasus aggregates-suspension relative velocity [cm/s]
usf solid-fluid relative velocity [cm/s]
va aggregates phase velocity [cm/s]
vf fluid phase velocity [cm/s]
vs solids phase velocity [cm/s]
Va(φ) dimensionless hindered bubbling function [-]
Vs(ϕ) dimensionless hindered settling function [-]
z height [cm]
zd discontinuity in zone 2, see (3.3) [cm]
zE effluent level [cm]
zF feed level [cm]
zU underflow level [cm]
zW wash water feed level [cm]

Greek symbols

δ(·) Dirac delta function [cm−1]
δF,i+1/2 dimensionless symbol associated with feed level [-]
∆t time step [s]
∆z spatial meshwidth [cm]
φ volume fraction of bubbles [-]
φ1, φ2, φ3 steady-state values of φ in zones 1, 2, 3 [-]

φ↑2, φ↓2 steady-state values of φ adjacent to zd (see (3.3)) [-]
φni+1/2 approximate value of φ(zi+1/2, tn) [-]

φF(t) feed volume fraction of aggregates at time t [-]
φnF discrete value of φF at time tn [-]
φinfl inflection point of j and jb [-]
φm φ-value satisfying φm ≤ φinfl and j(φm) = j(φM), see (2.12) [-]
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φ1m, φ2m, φ3m values of φm in zones 1, 2, 3 [-]
φM local minimum of j in interval (φinfl, 1) [-]
φ1M, φ2M, φ3M values of φM in zones 1, 2, 3 [-]
φM local maximum of j in [0, φinfl) [-]
φM

1 , φM
2 , φM

3 values of φM in zones 1, 2, 3 [-]
φs,F(t) feed volume fraction of solids at time t [-]
φns,F discrete value of φs,F at time tn [-]
φs volume fraction of solids [-]
φSSl, φSSh, φSSd steady state profile of φ with low, high,

or discontinuous value in zone 2 [-]
φZ zero of j(φ) [-]
ϕ volume fraction of solids in solid-liquid suspension [-]
ϕ1 steady-state value of ϕ in zone 1 [-]
ϕU steady-state value of ϕ in underflow zone [-]
ϕni approximate value of ϕ(zi, tn) [-]
ϕSS(z) steady-state profile for ϕ [-]
ρa, ρf , ρs density of aggregates, fluid, and solids [g/cm3]
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Bürger, R., Diehl, S., and Mart́ı, M.C., 2018a, “A conservation law with multiply discon-
tinuous flux modelling a flotation column.” Networks and Heterogeneous Media, 13,
pp. 339–371.

Bürger, R., Diehl, S., and Mej́ıas, C., 2018b, “A difference scheme for a degenerating convec-
tion-diffusion-reaction system modelling continuous sedimentation.” ESAIM: Math-
ematical Modelling and Numerical Analysis, 52, pp. 365–392.

Bürger, R., Diehl, S., and Mart́ı, M.C., 2019, “A system of conservation laws with discon-
tinuous flux modelling flotation with sedimentation.” Preprint 2019-09, Centro de
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