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Abstract. In this paper we introduce a new formulation for a stationary elasticity-poroelasticity problem
written using rotations and total fluid-solid pressure as additional unknowns. The transmission conditions are
imposed naturally in the weak formulation, and the analysis of the effective governing equations is conducted by
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1. Introduction. The disparity of material properties across geometric interfaces is en-
countered in a wide variety of transmission problems arising in diverse scientific and engineering
applications. This phenomenon is more clearly observed when the materials sharing the inter-
face have intrinsically different features, such as an elastic medium in contact with a fluid or a
poroleastic material in contact with an elastic one. For the latter, one specific example is the
study of mechanical properties of the interaction between an oil reservoir and the surrounding
non-pay rock. As mentioned in [13], the pore pressure variations and fluid content trapped in
the cap rock are commonly not affected by outer injection or extraction of fluids in the reser-
voir. This fact motivates the use of partitioned models where in the reservoir one considers the
classical Biot equations for poroelasticity, whereas the equations of linear elasticity suffice to
describe the overall behaviour of the cap rock (see also [26]). In this case, a careful set up of
interface conditions is required. We refer to [25, 21] for a detailed discussion on the physical and
mathematical implications of these transmission terms.

Some other applications of coupling elastic-poroelastic systems include the reservoir mod-
elling mentioned above, the classical problem of soil-structure interaction (soil-retaining walls
and shallow foundations [20] or the earth’s crustal deformation [23]), the simulation of periodon-
tal ligament - tooth contact as done in [9], the development of noise reduction for aircraft design
using acoustic-elastic wave propagation [17, 24], or the study of low-friction cartilage tissue in
vertebrates [8].

The mathematical properties of this type of models have been addressed in [13]. There, the
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authors develop a solvability theory for the semidiscrete elastic and poroelastic sub-problems,
making use of a Galerkin method combined with compactness arguments permitting the passage
to the limit.

In contrast, the specific version of the model we analyse here uses a modification of the recent
displacement - rotation - pressure formulation of elasticity equations proposed in [2], together
with a new formulation for the equations of poromechanics written in terms of displacement, fluid
pressure, rotation, and total pressure. Our model assumes that the elastic domain is completely
clamped on its exterior boundary, whereas on the interface between the poroelastic and elastic
media we impose continuity of displacement, zero fluid flux, and a transmission condition related
to the continuity of total traction forces written in terms of tangential rotations and pressure. It
turns out from the mathematical structure of the set of equations and interface conditions that the
system is written as a monolithic coupling, where the interface continuity conditions stated above
are incorporated naturally through the weak formulation, without the need of additional Lagrange
multipliers. In particular, the regularity of the displacement and the scaling of the momentum
equations in both domains allows us to consider a global displacement. The well-posedness of
the continuous problem is studied by grouping the unknowns with compatible regularity and
realising that the resulting problem is a mixed variational formulation that resembles the system
introduced in [22] that describes the Biot equations in their displacement-pressure-total pressure
formulation and which is analysed using Fredholm’s alternative. Our analysis also discusses the
limit case when the specific storage coefficient in the poroelastic domain goes to zero, and we
observe that the continuous dependence on data is robust with respect to the Lamé constants of
the solids in both regions of the domain.

A similar framework is established for the discrete problem, here defined for Galerkin schemes
with arbitrary order. For example we can employ piecewise quadratic and continuous approxi-
mations for displacements in the whole domain and for fluid pressure in the poroelastic medium;
whereas piecewise linear and discontinuous approximations for all remaining unknowns (rota-
tions in both domains, total pressure in the poroelastic domain, and solid pressure in the elastic
domain). For this particular scheme our error estimates predict an overall second order accuracy,
and the involved bounds are also robust with respect to the Lamé constants of the solids. Let
us emphasise that the literature related to numerical methods for the coupling of elasticity and
poroelasticity is still quite restricted. We are only aware of the conforming Galerkin scheme
presented in [13], where a domain decomposition on the interface between the two subdomains is
done by means of discontinuous Galerkin jumps and mortar terms; the stability of a mixed vari-
ant for that formulation, recently analysed in [15]; the primal method combined with stochastic
parameter estimation advanced in [26]; and the loosely coupled segregated approaches developed
for a fluid-poromechanics interaction problem studied in [5].

The contents of this paper will be presented in the following manner. Section 2 defines the
model problem in strong form, specifying the boundary and interface conditions. It also includes
the derivation of an appropriate weak formulation, and the statement of preliminary properties
of the involved bilinear forms. The existence and uniqueness of weak solutions is then studied
in section 3. This analysis is mainly based on Fredholm’s alternative and saddle point theorems,
where we also establish continuous dependence on data, with bounds that result robust with
respect to the elasticity parameters intrinsic to each subdomain. A suitable Galerkin method
together with finite element spaces will be defined in section 4. This section also incorporates the
analysis of well-posedness of the discrete problem, the proof of a quasi-optimality result, and the
derivation of a priori error bounds. We close in section 5 with a few computational examples that
serve to confirm the accuracy of the mixed finite element method, and to illustrate the suitability
of the model and of the family of schemes in some applicative problems.

2. Set of governing equations.
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Fig. 1. Sketch of the multidomain configuration.

2.1. Model problem and boundary-transmission conditions. Let us consider a bounded
Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, together with a partition into non-overlapping and con-
nected subdomains ΩE, ΩP representing zones of non-pay rock (where we will set the equations
of linear elasticity) and a reservoir (where we aim at solving the poroelasticity equations), respec-
tively. We also assume that the reservoir is completely immersed in the overall domain: ΩP ⊂ Ω,
such that the interface between the two subdomains, denoted as Σ = ∂ΩP ∩ ∂ΩE, coincides with
the boundary of the pay zone, as portrayed in Figure 1. Note that on the interface we consider
that the normal unit vector n is pointing from ΩP to ΩE.

In the reservoir we consider the following balance laws for the poroelasticity equations (see,
for instance, [3]): find the displacement uP and the pore pressure of the fluid pP such that

−µP∆uP − (λP + µP)∇ div(uP) + α∇pP = f̃
P

in ΩP,(2.1)

c0p
P + α div(uP)− 1

ξ
div
[
κ(∇pP − ρg)

]
= sP in ΩP,(2.2)

where κ is the permeability of the porous matrix constituting the reservoir (here assumed isotropic
and satisfying 0 < κ1 ≤ κ(x) ≤ κ2 < ∞, for all x ∈ ΩP), λP, µP are the Lamé constants of
the solid ΩP (dilation and shear moduli of elasticity, respectively), c0 > 0 is the constrained
specific storage coefficient, α > 0 is the Biot-Willis parameter, g is the gravity acceleration,
and ξ > 0, ρ > 0 are the viscosity and density of the pore fluid, respectively. Next, for the
poroelasticity problem, we propose a new four-field variational formulation. In fact, we begin by
introducing the following additional unknowns

φP := α(λP + µP)−1pP − (1 + ηP) div(uP) and ωP :=
√
ηP curluP,(2.3)

where the first one can be regarded as a rescaled total pressure or volumetric stress and the second
one corresponds to the rescaled rotations, with the auxiliary scaling parameter ηP := µP

λP+µP . In
this way, the identities in (2.3) in combination with (2.1)-(2.2) in turn gives rise to the following
four-field formulation for the poroelasticity problem: find the displacement uP, the poroelastic
rotation vector ωP, the pore fluid pressure pP, and the rescaled total poroelastic pressure φP

such that √
ηP curlωP +∇φP = fP in ΩP,(2.4)

ωP −
√
ηP curluP = 0 in ΩP,(2.5)

(1 + ηP)−1φP + div(uP)− α(1 + ηP)−1(λP + µP)−1pP = 0 in ΩP,(2.6)

[
c0 + α2(µP + λP)−1(1 + ηP)−1

]
pP − α(1 + ηP)−1φP − 1

ξ
div
[
κ(∇pP − ρg)

]
= sP in ΩP,

(2.7)
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where the right-hand side has been rescaled as fP := 1
λP+µP f̃

P
.

In ΩE the governing equations correspond to the system of linear elasticity written in terms of
displacement uE, elastic pressure pE, and elastic rotation vector ωE :=

√
ηE curluE associated

with the non-pay zone:√
ηE curlωE +∇pE = fE in ΩE,(2.8)

ωE −
√
ηE curluE = 0 in ΩE,(2.9)

divuE + pE = 0 in ΩE,(2.10)

where ηE := µE

2µE+λE > 0 is a scaling parameter depending on the Lamé constants of the elastic

non-pay rock ΩE, and fE corresponds to the rescaled function fE := 1
2µE+λE f̃

E
. Note that the

scaling is different than the one used in the formulation proposed in [2].

We assume here that on the external boundary of the non-pay rock the displacements are zero

(2.11) uE = 0 on Γ,

and the system is closed by setting suitable transmission conditions on the interface between the
reservoir and the non-pay zone

(2.12) uP = uE,
√
ηP ωP×n+φPn =

√
ηE ωE×n+ pE n,

κ

ξ
(∇pP− ρg) ·n = 0, on Σ,

which represent continuity of the medium, a generalised relation for the matching of total normal
stresses, and no-flux of fluid at the interface, respectively. The second condition in equation
(2.12) can be linked to the generalised Navier condition used in fluids

[ε(uP)n]τ + ΛuP = 0,

where the subscript τ denotes the vectorial tangential trace of any vector, defined by vτ :=
v − (v · n)n, and Λ is a type (1,1) tensor defined on Σ [12]. In the simple case when Λ =
δI (with δ a positive or negative friction coefficient), then one retrieves a Navier-type friction
transmission condition. If Λ is instead the Weingarten shape operator on the interface, this
results in a continuity condition for the tangential rotations and the normal total pressure.
Similar ideas can be found in e.g. [12, 1, 7, 18, 6, 25] for Navier-Stokes/Darcy, Brinkman-
Darcy couplings, vascular Stokes-Darcy models, Lagrangian-Eulerian fluid-elastic transmission,
time-harmonic elastic waves, and interface poromechanics, respectively. The last transmission
condition imposes no leakage between the bodies as they are compressed, which implies mass
conservation [8].

2.2. Weak formulation. In order to derive a weak formulation for the system (2.4)-(2.12),
we start by multiplying each equation of the poroelasticity problem by suitable test functions,
integrating by parts whenever adequate (see (2.15)-(2.16) below) and applying the second and
third transmission condition given in (2.12) to obtain:

−
√
ηP

∫
ΩP

curlvP · ωP +

∫
ΩP

φPdiv(vP)− 〈
√
ηE ωE × n+ pEn,vP〉Σ = −

∫
ΩP

fP · vP,∫
ΩP

ωP · θP −
√
ηP

∫
ΩP

θP · curluP = 0,

(1 + ηP)−1

∫
ΩP

φPψP +

∫
ΩP

ψP div(uP)− α(1 + ηP)−1(λP + µP)−1

∫
ΩP

pPψP = 0,

(2.13)
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−
[
c0 + α2(µP + λP)−1(1 + ηP)−1

] ∫
ΩP

pPqP + α(1 + ηP)−1

∫
ΩP

φPqP − ξ−1

∫
ΩP

κ∇pP · ∇qP

= −ρξ−1

∫
ΩP

κg · ∇qP −
∫

ΩP

sPqP,

for each (vP,θP, ψP, qP) ∈ H1(ΩP)×L2(ΩP)×L2(ΩP)×H1(ΩP). In turn, for (2.8)-(2.10) we pro-
ceed as in the mixed displacement-rotation-pressure formulation for linear elasticity introduced
in [2], and we obtain:

−
√
ηE

∫
ΩE

ωE · curlvE +

∫
ΩE

pE div(vE) + 〈
√
ηE ωE × n+ pEn,vE〉Σ = −

∫
ΩE

fE · vE,∫
ΩE

ωE · θE −
√
ηE

∫
ΩE

θE · curluE = 0,(2.14) ∫
ΩE

qEdiv(uE) +

∫
ΩE

pEqE = 0,

for each (vE,θE, qE) ∈ H1
Γ(ΩE)× L2(ΩE)× L2(ΩE), where

H1
Γ(ΩE) := {vE ∈ H1(ΩE) : vE = 0 on Γ}.

Recall that, according to [14, Theorem 2.11], for a generic domain Ω, the relevant integration by
parts formula corresponds to

(2.15)
∫

Ω

curlω · v =

∫
Ω

ω · curlv + 〈ω × n,v〉∂Ω,

if Ω ⊆ R3, or to

(2.16)
∫

Ω

curlω · v =

∫
Ω

ω rotv − 〈v · t, ω〉∂Ω,

in 2D, where t is the tangent vector.

The first transmission condition in (2.12) together with the regularity of the solid displace-
ments on each subdomain (to be specified below), imply that we can consider a single displace-
ment field u and test function v. That is the reason why the duality pairings between H−1/2(Σ)
and H1/2(Σ) (represented by 〈·, ·〉Σ) disappear when we add the first row in (2.14) to the first row
in (2.13). Furthermore, from now on we regard the poroelastic and elastic rotation vectors ωP

and ωE, respectively, the rescaled total poroelastic pressure φP, and the pressure pE in the elastic
domain as a single auxiliary unknown, namely ~ω := (ωP, φP,ωE, pE) (defined in an appropriate
product functional space), such that we can establish the well-posedness of the mixed variational
formulation of interest using the Fredholm’s alternative theory for compact operators. Under
this assumption, we arrive at: find (~ω,u, pP) ∈ H×V ×QP such that

a(~ω, ~θ) + b1(~θ,u)− b2(~θ, pP) = 0 ∀~θ ∈ H,(2.17)
b1(~ω,v) = F (v) ∀v ∈ V,(2.18)

b3(~ω, qP)− c(pP, qP) = G(qP) ∀ qP ∈ QP,(2.19)

where the vector ~θ := (θP, ψP,θE, qE), and the boundary and interface conditions suggest to
define the involved functional spaces as

H := L2(ΩP)× L2(ΩP)× L2(ΩE)× L2(ΩE), V :=H1
0(Ω), QP := H1(ΩP),

and the bilinear forms a : H ×H → R, b1 : H ×V → R, b2 : H × QP → R, b3 : H × QP → R,
c : QP × QP → R, and linear functionals F : V → R, G : QP → R are specified in the following
way

a(~ω, ~θ) :=

∫
ΩP

ωP · θP +
1

1 + ηP

∫
ΩP

φPψP +

∫
ΩE

ωE · θE +

∫
ΩE

pEqE,
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b1(~θ,v) := −
√
ηP

∫
ΩP

θP · curlv +

∫
ΩP

ψP div v −
√
ηE

∫
ΩE

θE · curlv +

∫
ΩE

qE div v,

b2(~θ, pP) :=
α

(1 + ηP)(λP + µP)

∫
ΩP

pPψP, b3(~ω, qP) :=
α

(1 + ηP)

∫
ΩP

qPφP,

c(pP, qP) :=

[
c0 +

α2

(µP + λP)(1 + ηP)

] ∫
ΩP

pPqP +
1

ξ

∫
ΩP

κ∇pP · ∇qP,

F (v) := −
∫

ΩP

fP · v −
∫

ΩE

fE · v, G(qP) := −ρ
ξ

∫
ΩP

κg · ∇qP −
∫

ΩP

sPqP.

For the forthcoming analysis, we will consider the following ηP and ηE−dependent norms (see
for instance, [14, Remark 2.7]) for the displacements on the solid and elastic domains ΩP and
ΩE, respectively:

‖v‖2VP := ηP‖ curlv‖20,ΩP + ‖ div v‖20,ΩP and ‖v‖2VE := ηE‖ curlv‖20,ΩE + ‖ div v‖20,ΩE ,

which in turn give rise to the following ηP and ηE−dependent norm on the space V:

‖v‖2V := ‖v‖2VP + ‖v‖2VE .

Moreover, H will be endowed with the norm

‖~θ‖2H := ‖θP‖20,ΩP + ‖ψP‖20,ΩP + ‖θE‖20,ΩE + ‖qE‖20,ΩE .

3. Well-posedness analysis. Before addressing the well-posedness of the continuous for-
mulation, we indicate that the bilinear forms and the linear functionals appearing in the vari-
ational problem of interest are all bounded by constants independent of ηP and ηE (see, for
instance, [2]). We also recall the positivity of the bilinear forms a(·, ·), and c(·, ·)

a(~θ, ~θ) ≥ 1

(1 + ηP)
‖~θ‖2H ∀~θ ∈ H,

c(qP, qP) ≥
[
c0 +

α2

(µP + λP)(1 + ηP)

]
‖qP‖0,ΩP +

κ1

ξ
|qP|1,ΩP ∀ qP ∈ QP;

as well as the continuous inf-sup condition satisfied by b1(·, ·), stated in the following result.

Lemma 3.1. There exists β > 0, independent of ηP and ηE, such that

sup
~θ∈H\0

b1(~θ,v)

‖~θ‖H
≥ β‖v‖V ∀v ∈ V.(3.1)

Proof. Proceeding similarly as in [2, Lemma 2.2], let us consider an arbitrary v ∈ V and
define

~θβ := (−
√
ηP curlv|ΩP ,div(v)|ΩP ,−

√
ηE curlv|ΩE ,div(v)|ΩE) ∈ H.

In this way, noting that
‖~θβ‖H ≤ ‖v‖V,

and using the definition of b1(·, ·), we readily obtain

sup
~θ∈H\0

b1(~θ,v)

‖~θ‖H
≥ b1(~θβ ,v)

‖~θβ‖H
≥ β‖v‖V ∀v ∈ H,

where we highlight that the constant β is strictly positive and independent of the auxiliary scaling
parameters ηP and ηE.
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3.1. Stability. In this section we establish the stability of the problem by combining the
boundedness, positivity, and inf-sup conditions from Section 2. We begin with the following
result.

Lemma 3.2. Let (~ω,u, pP) ∈ H×V×QP be a solution of the system (2.17)-(2.19), then there
exists a constant C > 0, independent of ηP and ηE, such that

‖~ω‖H + ‖u‖V + ‖pP‖1,ΩP ≤ C
{

(µP + λP)(‖fE‖0,ΩE + ‖fP‖0,ΩP) + ‖g‖0,ΩP + ‖sP‖0,ΩP

}
.(3.2)

Proof. We start by considering ~θ = ~ω in equation (2.17) and v = u in equation (2.18). Thus,
combining both equations, and applying the ellipticity of the bilinear form a(·, ·) we obtain

1

1 + ηP
‖~ω‖2H ≤ a(~ω, ~ω) ≤ α

(1 + ηP)(µP + λP)
‖~ω‖H‖pP‖0,ΩP + (‖fP‖0,ΩP + ‖fE‖0,ΩE)‖u‖1,ΩP

which, by using classical Young’s inequality, can be rewritten as

1

2(1 + ηP)
‖~ω‖2H ≤

α2

2(1 + ηP)(µP + λP)2
‖pP‖20,ΩP + (‖fP‖0,ΩP + ‖fE‖0,ΩE)‖u‖0,ΩP ,(3.3)

or what is the same

(µP + λP)

2(1 + ηP)
‖~ω‖2H ≤

α2

2(1 + ηP)(µP + λP)
‖pP‖20,ΩP + (µP + λP)(‖fP‖0,ΩP + ‖fE‖0,ΩE)‖u‖0,ΩP .

(3.4)

Furthermore, choosing qP = pP in (2.19), and applying the positivity of c(·, ·), we get[
c0 +

α2

(µP + λP)(1 + ηP)

]
‖pP‖20,ΩP +

κ1

ξ
|pP|21,ΩP

≤ α

1 + ηP
‖~ω‖H‖pP‖0,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP‖1,ΩP ,

(3.5)

such that applying Young’s inequality with constant δ := µP+λP

α to the first term on the right-
hand side of (3.5) and then using (3.4) gives[

c0 +
α2

(µP + λP)(1 + ηP)

]
‖pP‖20,ΩP +

κ1

ξ
|pP|21,ΩP ≤

α2

(µP + λP)(1 + ηP)
‖pP‖20,ΩP

+ (µP + λP)(‖fP‖0,ΩP + ‖fE‖0,ΩE)‖u‖1,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP‖1,ΩP ,

or what is the same

c1‖pP‖21,ΩP ≤ (µP + λP)(‖fP‖0,ΩP + ‖fE‖0,ΩE)‖u‖1,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP‖1,ΩP ,

(3.6)

where c1 := min{c0, κ1ξ
−1}. On the other hand, by combining (3.3) and (3.5), we obtain

1

1 + ηP
‖~ω‖2H ≤

α

1 + ηP
‖~ω‖H‖pP‖0,ΩP

+ 2(‖fP‖0,ΩP + ‖fP‖0,ΩE)‖u‖1,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP‖1,ΩP ,

which, applying Young’s inequality leads to

1

2(1 + ηP)
‖~ω‖2H ≤

α2

2(1 + ηP)
‖pP‖20,ΩP

+ 2(‖fP‖0,ΩP + ‖fP‖0,ΩE)‖u‖1,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP‖1,ΩP .

(3.7)
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Now, from the inf-sup condition (3.1) with v = u and using (2.17), we get

(3.8) β‖u‖V ≤
α

(µP + λP)(1 + ηP)
‖pP‖0,ΩP + ‖~ω‖H.

Finally, substituting (3.8) back into (3.6) and (3.7), and then applying Young’s inequality when-
ever adequate, we obtain the desired result.

Remark 3.1. The expression (µP + λP)(‖fE‖0,ΩE + ‖fP‖0,ΩP) in (3.2) must be understood
as a term independent of λP since, from the definitions introduced in section 2 for fP and fE,
and asuming that (µP + λP) ∼ (µE + λE), we deduce that (µP + λP)(‖fP‖0,ΩP + ‖fE‖0,ΩE) ∼
(‖f̃

P
‖0,ΩP + ‖f̃

E
‖0,ΩE).

Remark 3.2. In the case that c0 → 0 in (2.2), the problem for the fluid pressure pP defined
in (2.1)-(2.2) is not well-posed in H1(ΩP). However, uniqueness is restored by asking the solution
to live in H1(ΩP) ∩ L2

0(ΩP), where L2
0(ΩP) := {q ∈ L2(ΩP) :

∫
ΩP q = 0}. As this new space is

a closed subspace of H1(ΩP) where the norm and seminorm are equivalent, the stability analysis
of (2.17)-(2.19) follows exactly as in Lemma 3.2, with the constant c1 in (3.6) now defined as
c1 := cpκ1ξ

−1, with cp representing the Poincaré constant.

3.2. Solvability of the continuous problem. We now address the unique solvability of
(2.17)-(2.19) applying Fredholm’s alternative theory for compact operators. Let us recast the
system (2.17)-(2.19) as the following equivalent operator problem: find ~u := (~ω,u, pP) ∈ X :=
H×V ×QP such that

(S + T )~u = F ,(3.9)

where the linear operators S : X→ X?, T : X→ X?, and F ∈ X? are defined as

〈S(~u), ~v〉 : = a(~ω, ~θ) + b1(~θ,u)− b1(~ω,v) + c(pP, qP),

〈T (~u), ~v〉 : = −b2(~θ, pP)− b3(~ω, qP),

〈F , ~v〉 : = −F (v)−G(qP),

for all ~u := (~ω,u, pP), ~v := (~θ,v, qP) ∈ X, where we recall that 〈·, ·〉 stands for the duality
pairing between the space X and its dual X?.

The three upcoming lemmas establish the invertibility of S, the compactness of T , and the
injectivity of S + T , such that Fredholm’s theory implies the well-posedness of the operator
problem (3.9), and equivalently of (2.17)-(2.19).

Lemma 3.3. The operator S : X→ X? is invertible.

Proof. First, for a given functional F := (FH,FV,FQP), observe that establishing the invert-
ibility of S is equivalent to proving the unique solvability of the operator problem

S(~u) = F .(3.10)

Furthermore, proving unique solvability of (3.10) is in turn equivalent to proving the unique
solvability of the two following uncoupled problems: find (~ω,u) ∈ H×V such that

a(~ω, ~θ) + b1(~θ,u) = FH(~θ) ∀~θ ∈ H,

b1(~ω,v) = FV(v) ∀v ∈ V,
(3.11)

and: find pP ∈ QP, such that

c(pP, qP) = FQP(qP) ∀qP ∈ QP,(3.12)
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where FH, FV, and FQP are the functionals induced by FH, FV, and FQP , respectively.

Observe that the unique solvability of the latter problem (3.12) follows by virtue of the
well-known Lax-Milgram lemma. In turn, according to the continuity of a(·, ·) and b1(·, ·), the
ellipticity of a(·, ·) and the inf-sup condition of b1(·, ·), the well-posedness of (3.11) follows from a
straightforward application of the Babuška-Brezzi theory (see, e.g. [10, Theorem 2.3]), completing
the proof.

Lemma 3.4. The operator T : X→ X? is compact.

Proof. We begin by defining the operator B : L2(ΩP)→ QP as

〈B(ψP), qP〉0,ΩP := α(1 + ηP)−1

∫
ΩP

qPψP ∀ qP ∈ QP,∀ψP ∈ L2(ΩP),

where 〈·, ·〉0,ΩP denotes the L2(ΩP)-inner product. This operator is compact since it is constituted
by the composition of a compact injection and a continuous map (see, [22, Lemma 2.2] for further
details). Thus, denoting by B? the adjoint of B, we infer that the operator

T (~u) = ((0,−(µP + λP)−1B(φP),0, 0),0,−B?(pP)),

is also compact.

Lemma 3.5. The operator (S + T ) : X→ X? is injective.

Proof. By definition of the linear operator (S + T ) : X→ X?, observe that it is sufficient to
show that the only solution to the homogeneous problem

a(~ω, ~θ) + b1(~θ,u)− b2(~θ, pP) = 0 ∀~θ ∈ H,

b1(~ω,v) = 0 ∀v ∈ V,

b3(~ω, qP)− c(pP, qP) = 0 ∀ qP ∈ QP,

is the null-vector in the product space X. Thus, from (3.6), (3.7), and the fact that F = G = 0,
we deduce that ~ω = 0 and p = 0. Then, with this in mind, we apply (3.8) and obtain u = 0,
which finishes the proof.

By virtue of Lemmas 3.2, 3.3, 3.4, and 3.5, and the abstract Fredholm alternative theorem,
one straightforwardly derives the main result of this section, stated in the upcoming theorem.

Theorem 3.1. There exists a unique solution (~ω,u, pP) ∈ H×V×QP to the coupled problem
(2.17)-(2.19). Furthermore, there exists a positive constant C > 0, independent of ηP and ηE,
such that

‖~ω‖H + ‖u‖V + ‖pP‖1,ΩP ≤ C
{

(µP + λP)(‖fE‖0,ΩE + ‖fP‖0,ΩP) + ‖g‖0,ΩP + ‖sP‖0,ΩP

}
.

4. Finite element discretisation.

4.1. Discrete spaces and Galerkin formulation. Let {Th}h>0 be a shape-regular family
of partitions of the closed domain Ω̄, conformed by tetrahedra (or triangles in 2D) T of diameter
hT , with mesh size h := max{hT : T ∈ Th}. Given an integer k ≥ 0 and a subset S of Rd,
d = 2, 3, by Pk(S) we will denote the space of polynomial functions defined locally in S and being
of total degree up to k.

We specify the finite-dimensional subspaces of the functional spaces for global displacement,
fluid poroelastic pressure, poroelastic rotations, total poroelastic pressure, elastic rotations, and
solid pressure; as follows

Vh := {vh ∈ C(Ω) ∩V : vh|T ∈ Pk+1(T )d, ∀T ∈ Th},
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QP
h := {qP

h ∈ C(ΩP) ∩QP : qP
h |T ∈ Pk+1(T ), ∀T ∈ Th},

WP
h := {θP

h ∈ L2(ΩP) : θP
h |T ∈ Pk(T )d, ∀T ∈ Th},(4.1)

ZP
h := {ψP

h ∈ L2(ΩP) : ψP
h |T ∈ Pk(T ), ∀T ∈ Th},

WE
h := {θE

h ∈ L2(ΩE) : θE
h |T ∈ Pk(T )d, ∀T ∈ Th},

QE
h := {qE

h ∈ L2(ΩE) : qE
h |T ∈ Pk(T ), ∀T ∈ Th}.

In this way, denoting by ~ωh := (ωP
h , φ

P
h ,ω

E
h , p

E
h ) ∈WP

h × ZP
h ×WE

h × QE
h := Hh, the proposed

Galerkin finite element scheme approximating (2.17)-(2.19) reads as follows: find (~ωh,uh, p
P
h ) ∈

Hh ×Vh ×QP
h such that

a(~ωh, ~θh) + b1(~θh,uh)− b2(~θh, p
P
h ) = 0 ∀~θh ∈ Hh,(4.2)

b1(~ωh,vh) = F (vh) ∀vh ∈ Vh,(4.3)

b3(~ωh, q
P
h )− c(pP

h , q
P
h ) = G(qP

h ) ∀ qP
h ∈ QP

h ,(4.4)

where ~θh := (θP
h , ψ

P
h ,θ

E
h , q

E
h ).

4.2. Solvability and stability of the discrete problem. It is evident that all bilinear
forms and functionals introduced in Section 2 preserve the relevant stability properties on the
corresponding discrete spaces. Furthermore, it is clear that the bilinear forms a(·, ·), and c(·, ·)
also maintain the coercivity on the discrete spaces Hh and QP

h , respectively. Moreover, we notice
in advance that the continuous inf-sup condition (3.1) is also inherited at the discrete level for
the particular choice of elements outlined in (4.1), and therefore, there exists a positive constant
β̂ independent of h such that the following holds:

sup
~θh∈Hh\0

b1(~θh,vh)

‖~θh‖H
≥ β̂‖vh‖V ∀vh ∈ Vh,(4.5)

where we once again mention that β̂ is independent of the auxiliary scaling parameters ηP and
ηE.

Next, utilising the stability properties outlined above, we are ready to establish the well-
posedness of the proposed Galerkin scheme (4.2)-(4.4).

Theorem 4.1. There exists a unique solution (~ωh,uh, p
P
h ) ∈ Hh ×Vh × QP

h to the discrete
coupled problem (4.2)-(4.4). Furthermore, there exists a positive constant CStab > 0, independent
of h, ηP and ηE, such that

‖~ωh‖H + ‖uh‖V + ‖pP
h‖1,ΩP ≤ CStab

{
(µP + λP)(‖fE‖0,ΩE + ‖fP‖0,ΩP) + ‖g‖0,ΩP + ‖sP‖0,ΩP

}
.

Proof. First, for the stability analysis we proceed exactly as in the proof of Lemma 3.2. Thus,
it is a laborious but straightforward exercise to verify that

c1‖pP
h‖21,ΩP ≤ (µP + λP)(‖fP‖0,ΩP + ‖fE‖0,ΩE)‖uh‖1,ΩP + (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP

h‖1,ΩP ,

1

2(1 + ηP)
‖~ωh‖2H ≤

α2

2(1 + ηP)
‖pP
h‖20,ΩP + 2(‖fP‖0,ΩP + ‖fP‖0,ΩE)‖uh‖1,ΩP

+ (ρξ−1κ2‖g‖0,ΩP + ‖sP‖0,ΩP)‖pP
h‖1,ΩP ,

β‖uh‖V ≤
α

(µP + λP)(1 + ηP)
‖pP
h‖+ ‖~ωh‖H,

which imply that there exists CStab > 0, independent of h, ηP and ηE, such that

‖~ωh‖H + ‖uh‖V + ‖pP
h‖1,ΩP ≤ CStab

{
(µP + λP)(‖fE‖0,ΩE + ‖fP‖0,ΩP) + ‖g‖0,ΩP + ‖sP‖0,ΩP

}
.

(4.6)
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For the solvability analysis of the discrete scheme it is suffices to prove that the solution of the
homogeneous problem is the trivial solution (since we are restricting to the finite dimensional
case). For this purpose, we let (~ωh,uh, p

P
h ) ∈ Hh×Vh×QP

h the solution to the discrete coupled
problem (4.2)-(4.4), where it is assumed that fE = 0, fP = 0, g = 0 and sP = 0. Thus,
proceeding as in the proof of Lemma 3.5, the result follows straightforwardly by (4.6).

4.3. A priori error bounds. We are now in a position to derive the optimal a priori
estimates for the Galerkin scheme (4.2)-(4.4). For this purpose, we first establish a Céa estimate
formulated in the following theorem.

Theorem 4.2. Let (~ω,u, pP) and (~ωh,uh, p
P
h ) be the unique solutions of the continuous and

discrete coupled problems (2.17)-(2.19) and (4.2)-(4.4), respectively. Then, there exists a strictly
positive constant CCéa > 0, independent of h, ηP and ηE, such that

‖~ω − ~ωh‖H + ‖u− uh‖V + ‖pP − pP
h‖1,ΩP ≤ CCéa

(
dist(~ω,Hh) + dist(u,Vh) + dist(pP,QP

h )
)
.

(4.7)

Proof. First, we start by introducing the following discrete space:

Kh := {~θh ∈ Hh : b1(~θh,vh) = F (vh) ∀vh ∈ Vh},

and observing, according to (4.3), that ~ωh ∈ Kh and that (~ωh− ~χ~ω,h) ∈ Kerh(b1) := {~θh ∈ Hh :

b1(~θh,vh) = 0 ∀vh ∈ Vh} ∀ ~χ~ω,h ∈ Kh. Moreover, following the arguments employed in [22,
Theorem 3.2], we establish the corresponding Galerkin orthogonality property:

a(~ω − ~ωh, ~θh) + b1(~θh,u− uh)− b2(~θh, p
P − pP

h ) = 0 ∀~θh ∈ Hh,(4.8)
b1(~ω − ~ωh,vh) = 0 ∀vh ∈ Vh,(4.9)

b3(~ω − ~ωh, qP
h )− c(pP − pP

h , q
P
h ) = 0 ∀ qP

h ∈ QP
h .(4.10)

Thus, considering arbitrary χu,h ∈ Vh and χpP,h ∈ QP
h , we can deduce from (4.8) with ~θh =

(~χ~ω,h − ~ωh) ∈ Kerh(b1) that

a((~χ~ω,h − ~ωh), (~χ~ω,h − ~ωh)) = −a((~ω − ~χ~ω,h), (~χ~ω,h − ~ωh))− b1((~χ~ω,h − ~ωh), (u− χu,h))

− b1((~χ~ω,h − ~ωh), (χu,h − uh)) + b2((~χ~ω,h − ~ωh), (pP − χpP,h))

+ b2((~χ~ω,h − ~ωh), (χpP,h − pP
h )),

which together with the ellipticity of a(·, ·) and the continuity of a(·, ·), b1(·, ·) and b2(·, ·), implies

‖~χ~ω,h − ~ωh‖H
(1 + ηP)

≤ C1{‖~ω − ~χ~ω,h‖H + ‖u− χu,h‖V +‖pP − χpP,h‖1,ΩP}+
α‖χpP,h − pP

h‖0,ΩP

(µP + λP)(1 + ηP)
,

(4.11)

with C1 > 0, independent of h, ηP and ηE.

In turn, from (4.10) with qP
h = χpP,h − pP

h , we have

c((χpP,h − pP
h ), (χpP,h − pP

h )) = −c((pP − χpP,h), (χpP,h − pP
h ))− b3((~χ~ω,h − ~ωh), (χpP,h − pP

h ))

− b3((~ω − ~χ~ω,h), (χpP,h − pP
h )).

In this way, applying the ellipticity of c(·, ·) and the continuity of c(·, ·) and b3(·, ·), we obtain[
c0 +

α2

(µP + λP)(1 + ηP)

]
‖χpP,h − pP

h‖20,ΩP +
κ1

ξ
|χpP,h − pP

h |21,ΩP
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≤ C2

{
‖~ω − ~χ~ω,h‖H + ‖(pP − χpP,h)‖1,ΩP

}
‖χpP,h − pP

h‖1,ΩP

+
α

(1 + ηP)
‖~χ~ω,h − ~ωh‖H‖χpP,h − pP

h‖0,ΩP ,

which together with (4.11) implies

‖χpP,h − pP
h‖1,ΩP ≤ C3

c1

{
‖~ω − ~χ~ω,h‖H + ‖u− χu,h‖V + ‖pP − χpP,h‖1,ΩP

}
,(4.12)

with C3 > 0, independent of h, ηP and ηE.

It is also important to notice that inequalities (4.11) and (4.12) imply that

‖pP − pP
h‖1,ΩP ≤

(
1 +

C3

c1

)
‖pP − χpP,h‖1,ΩP +

C3

c1

{
‖~ω − ~χ~ω,h‖H + ‖u− χu,h‖V

}
,

‖~ω − ~ωh‖H ≤
(

1 + C1 +
αC3

c1(µP + λP)

){
‖~ω − ~χ~ω,h‖H + ‖u− χu,h‖V + ‖pP − χpP,h‖1,ΩP

}
.

And next, by combining the discrete inf-sup condition (4.5), (4.8) and the continuity of a(·, ·),
b1(·, ·) and b2(·, ·), one readily infers that there exists C4 > 0, independent of h, ηP and ηE, such
that

‖χu,h − uh‖V ≤ β̂−1 sup
~θh∈Hh\0

|b1(~θh, (χu,h − uh))|
‖~θh‖H

= β̂−1 sup
~θh∈Hh\0

|a((~ω − ~ωh), ~θh) + b1(~θh, (u− χu,h)) + b2(~θh, (p
P − pP

h ))|
‖~θh‖H

≤ C4

(
‖~ω − ~ωh‖H + ‖u− χu,h‖V + ‖pP − pP

h‖1,ΩP

)
.

(4.13)

Finally, recalling from [10, Theorem 2.6] that

dist(~ω,Kh) ≤ C̃dist(~ω,Hh),

and the fact that ~χ~ω,h,χu,h and χpP,h are arbitrary, the desired result follows simply by using
the triangle inequality, and the estimates (4.11)-(4.13).

Finally, approximation properties of the spaces in (4.1) can be found in e.g [4, 10], which
combined with the Céa’s estimate (4.7) produce the theoretical rate of convergence of (4.2)-
(4.4), summarised in what follows.

Theorem 4.3. In addition to the hypotheses of Theorems 3.1, 4.1 and 4.2, assume that there
exists s > 0 such that ωP ∈ Hs(ΩP), u ∈ H1+s(Ω), φP ∈ Hs(ΩP), pP ∈ H1+s(ΩP), ωE ∈ Hs(ΩE)
and pE ∈ Hs(ΩE). Then, there exist positive constant CConv > 0, independent of h, ηP and ηE

such that with the finite element subspaces defined by (4.1), there holds

‖~ω − ~ωh‖H + ‖u− uh‖V + ‖pP − pP
h‖1,ΩP

≤ CConv h
min{s,k+1}(‖ωP‖s,ΩP + ‖u‖s+1,Ω + ‖φP‖s,ΩP + ‖pP‖s+1,ΩP + ‖ωE‖s,ΩE + ‖pE‖s,ΩE

)
.

4.4. Suggested block structure. To close this section we proceed to rewrite the system
(4.2)-(4.4) in a double saddle-point structure. For this purpose, we introduce the operators and
functionals AP : WP

h × ZP
h → (WP

h × ZP
h )′, BP

1 : WP
h × ZP

h → (Vh)′, BP
2 : QP

h → (WP
h × ZP

h )′,
BP

3 : WP
h×ZP

h → (QP
h )′, AE : WE

h×QE
h → (WE

h×QE
h )′, BE

1 : WE
h×QE

h → (Vh)′, C : QP
h → (QP

h )′,
FP, FE ∈ (Vh)′, G ∈ (QP

h )′, which are specified as

[AP(ωP
h , φ

P
h ), (θP

h , ψ
P
h )] :=

∫
ΩP

ωP
h · θ

P
h +

1

1 + ηP

∫
ΩP

φP
hψ

P
h ,
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[AE(ωE
h , p

E
h ), (θE

h , q
E
h )] :=

∫
ΩE

ωE
h · θ

E
h +

∫
ΩE

pE
hq

E
h ,

[BP
1 (θP

h , ψ
P
h ),vh] := −

√
ηP

∫
ΩP

θP
h · curlvh +

∫
ΩP

ψP
h div vh,

[BE
1 (θE

h , q
E
h ),vh] := −

√
ηE

∫
ΩE

θE
h · curlvh +

∫
ΩE

qE
h div vh,

[BP
2 (θP

h , ψ
P
h ), pP

h ] :=
α

(1 + ηP)(λP + µP)

∫
ΩP

pP
hψ

P
h , [BP

3 (ωP
h , φ

P
h ), qP

h ] :=
α

(1 + ηP)

∫
ΩP

qP
hφ

P
h ,

[C(pP
h ), qP

h ] :=

[
c0 +

α2

(µP + λP)(1 + ηP)

] ∫
ΩP

pP
hq

P
h +

1

ξ

∫
ΩP

κ∇pP
h · ∇qP

h ,

[FP, (vh)] := −
∫

ΩP

fP · vh, [FE, (vh)] := −
∫

ΩE

fE · vh,

[G, (qP
h )] := −ρ

ξ

∫
ΩP

κg · ∇qP
h −

∫
ΩP

sqP
h ,

and arrive at the following double saddle point Galerkin scheme

(4.14)


AP 0 (BP

1 )′ −BP
2

0 AE (BE
1 )′ 0

BP
1 BE

1 0 0

BP
3 0 0 −C




(ωP
h , φ

P
h )

(ωE
h , p

E
h )

uh
pP
h

 =


0
0

FP + FE

G

 ,
which is precisely the way that the implementation is carried out. From this system it is clear
that the coupling occurs only through the global displacement blocks. Notice also that (4.14)
could be analysed using Fredholm’s alternative theory in combination with an extension of the
Babuška-Brezzi theory for multiple saddle-point problems [11, 19].

5. Computational examples. In this section we address the numerical verification of the
convergence properties of the proposed schemes as well as the usability of these methods in
a problem of more applicative interest. The solution of all linear systems in the form (4.14)
and reported in this section, has been conducted with the Krylov method Flexible GMRES
preconditioned with additive Schwarz using incomplete LU decomposition as local preconditioner.

Test 1: convergence verification. First we construct a sequence of successively refined
uniform partitions of the elastic domain Ω = (0, 1)2. The poroelastic region is ΩP = (0.25, 0.75)2

and the geometric setup is exemplified (for a coarse mesh) in the top-left panel of Figure 2. A
closed-form solution for the global displacement satisfying (2.11) is as follows

u(x, y) = umax

(
x(1− x) cos(πx) sin(2πy)
sin(πx) cos(πy)y2(1− y)

)
,

where we use umax = 0.1. A material interface is considered between the two regions and so we
impose a jump in the Young modulus and Poisson ratios of the solids EP = 100, EE = 10000,
νP = 0.3, νE = 0.45. Consequently the exact rotations will have a different scaling in each
domain. The remaining closed-form solutions and model constants are taken as follows

pE = −divu, pP(x, y) = sin(πx) sin(πy), φP = α(λP + µP)−1pP − (1 + ηP) divu,

g = 0, κ = 10−6, α = 0.1, ξ = 10−2, c0 = 10−3.

The source terms (and for this example, also the remainders of the exact fluxes and traction forces
on the interface) are imposed using these exact solutions. In Table 1 we collect the computed
errors on each refinement level, separating each individual contribution to the errors in H, that
is, we show

e(ωP) := ‖ωP − ωP
h‖0,ΩP , e(φP) := ‖φP − φP

h‖0,ΩP , e(ωE) := ‖ωE − ωE
h‖0,ΩE ,
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h e(ωP) rate e(φP) rate e(ωE) rate e(pE) rate e(u) rate e(pP) rate

k = 0

0.195 4.44e-3 – 8.73e-3 – 4.53e-3 – 1.27e-2 – 1.55e-2 – 2.34e-1 –

0.175 3.03e-3 2.531 4.85e-3 2.430 4.33e-3 0.428 1.16e-3 0.831 1.32e-2 1.470 1.16e-1 1.520

0.089 1.84e-3 0.838 2.90e-3 0.754 2.17e-3 1.020 6.02e-3 0.971 6.97e-3 0.945 6.48e-2 0.853

0.047 9.75e-4 0.889 1.63e-3 0.905 1.11e-3 1.051 3.02e-3 1.091 3.56e-3 1.061 3.49e-2 0.973

0.024 5.29e-4 0.998 8.28e-4 0.988 5.62e-4 0.992 1.54e-3 0.973 1.83e-3 0.972 1.84e-2 0.985

0.012 2.31e-4 1.170 5.41e-4 0.602 2.82e-4 0.997 7.54e-4 1.016 9.22e-4 0.963 9.59e-3 0.915

0.006 1.30e-5 0.835 2.47e-4 1.130 1.39e-4 1.034 3.73e-4 1.023 4.54e-4 1.030 4.92e-3 0.968

k = 1

0.195 8.51e-4 – 1.39e-3 – 8.36e-4 – 1.56e-3 – 2.24e-2 – 1.98e-1 –

0.175 2.40e-4 2.721 3.61e-4 2.402 6.06e-4 2.972 1.10e-3 3.225 1.31e-3 2.835 3.76e-2 2.504

0.089 7.58e-5 1.750 1.22e-4 1.692 1.55e-4 2.013 2.80e-4 2.014 3.40e-4 1.987 1.06e-2 1.686

0.047 2.57e-5 1.812 4.16e-5 1.769 4.13e-5 2.086 7.63e-5 2.040 9.53e-5 2.005 3.41e-3 1.759

0.024 7.52e-6 1.880 1.15e-5 1.987 1.01e-5 2.053 1.96e-5 1.981 2.47e-5 1.963 1.03e-4 1.798

0.012 1.88e-6 1.951 3.40e-6 1.972 2.50e-6 1.971 4.85e-6 1.973 6.26e-6 1.948 2.68e-5 1.896

0.006 4.81e-7 1.964 8.57e-7 1.983 6.07e-7 2.016 1.22e-6 1.998 1.52e-6 1.975 7.76e-6 1.952

Table 1
Test 1. Error history demonstrating the convergence predicted by Theorem 4.3, here illustrated for first- and

second-order schemes.

e(pE) := ‖pE − pE
h‖0,ΩE , e(u) := ‖u− uh‖V, e(pP) := ‖pP − pP

h‖1,ΩP ,

as well as the corresponding decay trend, rate = log
(
e(·)/ê(·)

)
[log(h/ĥ)]−1, where e, ê stand for

errors generated on meshes with mesh sizes h and ĥ, respectively. The tabulated results produced
using the finite element spaces specified in (4.1) for k = 0 and k = 1 demonstrate numerically
the optimal convergence order anticipated by Theorem 4.3.

Test 2: validation using augmented Mandel’s problem. Secondly we conduct a benchmark
test for poromechanics. We solve the classical Mandel problem, here extended to the case of
coupled elastic-poroelastic structures following the configuration and parameter values from [16,
26]. The values of the constants are taken to be

c0 = 2.5e-12Pa−1, α = 1, ξ = 10−3m2/s, µE = µP = 108 Pa, νE = νP = 0.2,

κ = 10−13 m2, ρ = 1Kg/m3
, t̃ = (0,−107)t Pa ·m.

For this problem the goal is to observe the so-called Mandel-Creyer effect, where the fluid pressure
increases with time and then decreases over the poroelastic region. The elastic domain ΩE =
(0, 100) × (20, 40)m2 is located on top of the poroelastic region ΩP = (0, 100) × (0, 20)m2, as
shown in the schematic description of Figure 3 (left). The boundary conditions adopted for this
test differ from (2.11). On the top of the elastic domain Γtop we prescribe a constant traction
t̃, on the right end of the elastic domain we set zero traction, and on the left of the elastic
and poroelastic domains and on the bottom of the poroelastic domain we enforce a zero normal
displacement; and on the right of the poroelastic domain we put pP = 0, whereas we impose
κ∇pP · n = 0 on the left and bottom of the poroelastic domain. We do not include gravitational
effects for this test. Note that traction boundary conditions can be incorporated in the context
of rotation-based formulations, by means of the additional term

(5.1) [Au(uh),vh] = 〈2ηE∇uhn,vh〉Γtop ∪ΓE
right

+ 〈2 divuhn,vh〉Γtop ∪ΓE
right

,
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Fig. 2. Test 1. Sketched mesh and domains before deformation (top left) and approximate solutions gen-
erated with a second-order scheme and plotted on the deformed configuration: rotations on each domain, total
poroelastic pressure, elastic pressure, global displacement, and poroelastic fluid pressure.

for the 2D case, or

(5.2) [Au(uh),vh] = −〈2ηE∇uhn,vh〉Γtop ∪ΓE
right

+ 〈2ηE divuhn,vh〉Γtop ∪ΓE
right

,

in 3D, as part of the corresponding displacement block in (4.14) (see further details in [2, Sect.
3.2]), and adding the term

〈t,vh〉Γtop ∪ΓE
right

or − 〈t,vh〉Γtop ∪ΓE
right

,

in 2D or 3D, respectively, into FE, appearing on the right-hand side of (4.14), with t := t̃/(µE +
λE). Similar terms can be derived to impose traction conditions for the rotation-based formulation
of the poroelasticity equation (2.13). Moreover, for simplicity when imposing traction conditions,
in the present example we have used in both the elastic and poroelastic domains the same
scaling ηE = ηP, and consequently on the right-hand sides we have the rescaling 1/(µE + λE) =
1/(µP + λP). We use a structured triangular mesh and a first-order numerical scheme (setting
k = 0 in the finite element spaces (4.1)). We also incorporate time-dependence in the mass
conservation equation (2.7), in the first two terms of the left-hand side, with initial conditions
given by pP(0) = 0 and φP(0) = 0. We discretise in time with a backward Euler scheme, using
a fixed time step ∆t = 1000 s and run the simulation for 5000 steps. We record fluid pressure
profiles as well as horizontal displacements at different time instants and collect the results in
the plots of Figure 3 (bottom panels). Even if the value of the maximal horizontal displacement
is lower than that reported in [16, 26] (which can be explained by the differences in transmission
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Fig. 3. Test 2. Sample coarse mesh and domain/boundary configuration (top), and profiles of fluid pressure
and x-displacement on Γbottom (bottom) at different times (t1 = 103 s, t2 =5e3 s, t3 = 104 s, t4 = 105 s, t5 =5e5 s,
t6 =5e6 s) for the augmented Mandel problem.

conditions, in the problem formulation, in the polynomial degree of the numerical schemes, and
in mesh resolution), qualitatively, we observe the expected behaviour in fluid pressure profiles
and motion patterns.

Test 3: poroelastic aquifer in 3D. Next we solve a 3D problem similar to that described in
[15], where one is interested in determining deformation and fluid pressure distribution of the pay
zone (a poroelastic aquifer region occupying ΩP = (−225, 225)× (−225, 225)× (−30, 30)m3) sur-
rounded by rock conforming the non-pay zone (an elastic, non-porous structure ΩE = (−450, 450)×
(−450, 450)× (−150, 150)m3). The scenario corresponds to coupled flow and poromechanics en-
countered in CO2 sequestration in deep subsurface reservoirs. A localised source sP(x, y, z) =
s0 exp(−(x− 225)2 − (y − 225)2) represents an injection zone of relatively small radius reaching
the top corner of the pay zone. On the top surface of the pay rock, Γtop, we assume zero traction,
using the technique described in (5.2). On the remainder of Γ we impose the sliding condition

u · n = 0 on Γ \ Γtop.

Interface conditions are precisely as in (2.12), and we impose a smooth body load on the non-
pay rock fE = f0(sin(f1x) sin(f1y), cos(f1y) cos(f1z),

1
2 sin(f1z) cos(f1x))t. We now consider

gravitational effects and take a relatively large permeability. The remaining parameters assume
the values

s0 = 1.8e-3, f0 = 10−3, f1 = 7.5e-3, α = 0.8, ρ = 1, EE = EP = 3.4474e+9Pa,

νE = 0.45, νP = 0.2, ξ = 10−3 Pa s, κ = 9.869e-9m2, c0 = 6.060e-5, g = (0, 0,−9.81)t.

The domain is discretised with a rather coarse tetrahedral mesh, and we employ a first-order
scheme. From Figure 4 we observe an important deformation of the rock and the pay zone, as
well as a fluid pressure propagating from the location of the injection well towards the opposite
corner of the reservoir.



ROTATION-BASED ELASTICITY-POROELASTICITY COUPLING 17

Fig. 4. Test 3. Meshes associated with the confined reservoir ΩP and the surrounding non-pay rock ΩE

(top left, sketching also the location of the injection well), and samples of approximate solutions generated with
a first-order method.

Test 4: coupling of tooth and periodontal ligament. We conclude with the simulation of
distributed forces in a dentistry-oriented application. The problem set up is adapted from that in
[9], where one considers the coupling between the tooth as elastic structure and the surrounding
periodontal ligament regarded as a poroelastic material. In this case however we assume that the
volume fractions in both regions coincide and that the fluid viscosity and density of each phase
remain constant. The motivating example from [9] concentrates on determining displacement
and stress behaviour of the composite material when a piezoelectric actuator applies an external
load on the centre of the labial side of the crown of a two-rooted premolar in a porcine jawbone
segment (the location is illustrated with a sphere in the first panel of Figure 5). A relatively
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Fig. 5. Test 4. Meshes associated with the periodontal ligament ΩP and a porcine premolar specimen ΩE

(top left, sketching also the location of the applied load, 19mm away from the root), and samples of approximate
solutions generated with a second-order method.

coarse tetrahedral mesh is used for both domains, and the boundary conditions are set in the
following way. We assume that the external surface of the periodontal ligament, ΓP, is in contact
with the jawbone and therefore we set zero solid displacements and zero-flux conditions for the
fluid pressure. On the visible part of the tooth, ΓE, we impose the traction t = tmax

λE+2µEχ|load,
where χ|load is the indicator function on a ball of radius 10mm centred at (200, 15, 60). And
again the interface conditions on Σ are set as in (2.12). The body loads in both domains are
fE = ρE

λE+2µE g and fP = ρP,s+ρP,f

λP+µP g, and the rest of the model parameters are set as

s0 = 0, c0 = 10−3, tmax = 0.016, α = 0.4, ρE = 6000, ρP,s = 1060, ρP,f = 1000,

EE = 2e5, EP = 2e10, νE = 0.3, νP = 0.31, ξ = 1, κ = 10−6mm2, g = (0, 0,−9.81)t.

Figure 5 reveals zones of concentrated solid pressure near the upper part of Σ, and also high
gradients of fluid pressure are noticed in neighbouring areas, all consistently with the results
reported in [9].

Acknowledgements. The authors express their sincere thanks to Marco Favino (Lausanne) for
kindly providing the surface and volumetric meshes employed in Test 4, generated from micro-CT
scanner images.
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