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Abstract

In this work, we study a Hybrid High-Oder (HHO) method for an elliptic diffusion prob-
lem with Neumann boundary condition. The proposed method has several features, such as:
i) the support of arbitrary approximation order polynomial at mesh elements and faces on
general polyhedral meshes, ii) the design of a local (element-wise) discrete gradient recon-
struction operator and a local stabilization term, that weakly enforces the matching between
local element- and face- based on degrees of Freedom (DOF), and iii) cheap computational
cost, thanks to static condensation and compact stencil. We prove the well-posedness of our
HHO formulation, and obtain the optimal error estimates, according to [9]. Implementation
aspects are throughly discussed. Finally, some numerical examples are provided, which are
in agreement with our theoretical results.

Keywords: Neumann problem, Diffusion, General Meshes, High-Order, Gradient Recon-
struction.

1 Introduction
The approximation of diffusive problems on general polyhedral meshes have received an in-
creasing attention over the last few years, motivated in particular by applications in the geo-
sciences, where the mesh is often adapted to geological layers, cracks and faults leading to cells
with polyhedral shape and to non-matching interfaces. These considerations are included in
the context of Hybrid High-Order methods (HHO). The HHO method is derived in terms of a
primal formulation, and is designed from two key ingredients:

i) a potential reconstruction in each mesh cell, and

ii) a face-based stabilization consistent, with the high-order provided by the reconstruction.
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This design relies on intermediate cell-based discrete unknowns, in addition to the face-based
ones (hence, the term hybrid). We remark that the cell-based unknowns can be eliminated by
static condensation, as it has already been pointed out in [8], [11].
As low-order methods on polyhedral meshes have been studied for quite some time, we mention
that HHO can be seen as a Finite Volume method (FVM) (cf. [13], [15]) for polynomial of order
k = 0 (see Section 2.5 in [8]). We can also express the HHO method into an equivalent mixed
formulation (cf. [12], [10]). This equivalent formulation allows us to identify a conservative
numerical trace for the flux, and thus HHO methods can be seen as a generalization of HDG
methods (cf. [4]). Moreover, in Section 2.4 in [4], we find a link between a non-conforming
Virtual Element Method considered in [1], and HHO methods, by defining an isomorphism
between the HHO degrees of freedom and a local virtual finite-dimensional space (contain-
ing those polynomial functions leading to optimal approximation properties), we identify the
projection operator related to the elliptic operator of HHO.

In what follows, we describe the model problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open,
bounded, polytopic domain with Lipschitz-continuous boundary Γ := ∂Ω and unit outward
normal n. Let K ∈ [L∞(Ω)]d×d be a bounded, measurable, and symmetric tensor describing
the material properties, f ∈ L2(Ω) is the forcing term and g ∈ L2(Γ) is the flux through
the boundary. We focus on the following variable-diffusion problem with Neumann boundary
condition:

−∇ · (K∇u) = f in Ω , (1a)
K∇u · n = g on Γ . (1b)

It is well known that the data f and g must satisfy the compatibility condition∫
Ω

f +

∫
Γ

g = 0 . (2)

From here on, we assume thatK is strongly elliptic, that is there exist two positive constants
c1 and c2 such that

c1|ξ|2 ≤ ξT K(x) ξ ≤ c2|ξ|2 ∀ξ ∈ Rd, ∀x ∈ Ω,

where | · | represents the usual Euclidean norm. The strong ellipticity implies that matrix K(x)
is uniformly positive definite and thus non-singular for every x ∈ Ω.

For any connected subset X ⊂ Ω̄ with nonzero Lebesgue measure, the inner product and
norm of the Lebesgue space L2(X) are denoted by (·, ·)X and || · ||X , respectively. Similar nota-
tions will be used forL2(X)d andL2(Γ). It is not difficult to deduce that the weak formulation of
(1) reads as: Given f ∈ L2(Ω) and g ∈ L2(Γ), we seek u ∈ U := {v ∈ H1(Ω) : (v, 1)Ω = 0}
such that

(K∇u,∇v)Ω = (f, v)Ω + (g, v)Γ ∀v ∈ U. (3)

In addition, thanks to the Poincaré-Wintinger inequality and the Lax-Milgram lemma, we can
ensure that the problem (3) is well-posed.

We can mention that HHO for Dirichlet conditions have been treated in [9], and for mixed
conditions in [12]. Then, the focus of the present work is to describe the Hybrid High-Order
method for variable-diffusion problems with Neumann boundary conditions. It is important to
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emphasize that the involved analysis is not contained in the context of [12].
In Section 2, we introduce the model problem, our main analysis tools, the Degrees of Freedom
(DOFs) in the context of HHO method, and the potential reconstruction operator, with its key
properties. In Section 3, we introduce the discrete problem and study its stability. In Section
4, we perform the error analysis, first in the energy-norm and then in the L2-norm under addi-
tional elliptic regularity assumption. In Section 5, we discuss the computational implementation
and, finally in Section 6, we present some numerical results, which are in agreement with our
theoretical results.

2 Discrete settings
Let H ⊂ R+ denote a countable set of meshsizes having 0 as its unique accumulation point
and (Th)h∈H a h-refined admissible mesh sequence of Ω (see Section 1.4 in [7]). Each mesh
Th of this sequence is a finite collection T of nonempty, disjoint, open, polytopic elements
such that Ω =

⋃
T∈Th T and h = maxT∈Th hT (with hT the diameter of T ), and there is a

matching simplicial submesh of Th with locally equivalent mesh size and which is shape-regular
in the usual sense (γ is the mesh regularity parameter). We call a face any hyperplanar closed
connected subset F of Ω with positive (d − 1)-dimensional measure and such that (i) either
there exist T1, T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (F is called an interior face) or (ii) there exists
T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (F is called a boundary face). Interior faces are collected in
the set F ih, boundary faces in F∂h , and we set Fh := F ih ∪ F∂h . The diameter of a face F ∈ Fh
is denoted by hF . For each T ∈ Th, FT := {F ∈ Fh |F ⊂ ∂T} defines the set of faces lying
on the boundary of T and, for each F ∈ FT , nTF is the unit normal to F pointing out of T . In
an admissible mesh sequence, for any T ∈ Th, and any F ∈ FT , hF is uniformly comparable to
hT in the sense that

γ2hT ≤ hF ≤ hT , (4)

and the card(FT ) is uniformly bounded. The usual discrete and multiplicative trace inequalities
hold on element faces. The following assumptions and notations will be taken into account in
this work:

1. There is a partition PΩ of Ω so that K is piecewise Lipschitz, and the mesh Th fits the
(polytopal) partition PΩ associated with the diffusion tensor K in the sense that, there
is a unique Ωi in PΩ containing T . For simplicity of exposition, we assume that K is a
piecewise polynomial.

2. We denote by KT and KT the lowest and largest eigenvalues of K in T . We introduce the
local heterogeneity/anisotropy ratio ρT := KT/KT ≥ 1.

3. Furthermore, A . B denotes the inequality A ≤ CB with positive constant C indepen-
dent of the polynomial degree k, the meshsize h and the diffusion tensor K.

4. To avoid the proliferation of symbols, we assume that for all T ∈ Th, the Lipschitz
constant of K in T , say LkT , satisfies LkT . KT .

In the following lemma, we show that the L2-orthogonal projector onto polynomial spaces have
optimal approximation properties on each mesh element.
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Lemma 2.1 (Approximation property of Orthogonal projector) . Given an integer l ≥ 0,
and T ∈ Th, we denote by πlT the L2-orthogonal projector onto Pld(T ). Then, for any s, t ∈ R
with 0 ≤ s ≤ t ≤ l + 1 there exists Capp = Capp(γ, l) > 0, such that

|v − πlTv|Hs(T ) ≤ Capph
t−s
T |v|Ht(T ), ∀ v ∈ H t(T ). (5)

Besides, there exists C ′app > 0 such that, for all t, 1/2 < t ≤ l + 1, there holds

‖v − πlTv‖∂T ≤ C ′apph
t−1/2
T |v|Ht(T ), ∀ v ∈ H t(T ), (6)

where | · |Ht(T ) and | · |Hs(T ) denotes the corresponding seminorms on Sobolev spaces H t(T )
and Hs(T ), respectively.

Proof. We refer to Theorems 3.2 and 3.3 in [17]. �

2.1 Degrees of freedom (DOFs)
Let a polynomial degree k ≥ 0 be fixed. For all T ∈ Th, we define the local space of DOFs as
U k
T := Pkd(T ) ×

{�
F∈FT

Pkd−1(F )
}

, where Pkd(T ) (resp., Pkd−1(F )) is spanned by the restric-
tions to T (resp., F ) of d-variate (resp., (d − 1)-variate) polynomials of total degree ≤ k. And
the global space of DOFs on the domain Ω.

U k
h :=

{�
T∈Th

Pkd(T )

}
×

{�
F∈Fh

Pkd−1(F )

}
.

For all T ∈ Th, we define the local reduction operator IkT : H1(T ) → U k
T such that, for all

v ∈ H1(T ),
IkTv := (πkTv, (π

k
Fv)F∈FT

), (7)

where πkT and πkF are the L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ), respectively. The
corresponding global interpolation operator Ikh : H1(Ω)→ U k

h is such that, for all v ∈ H1(Ω),

Ikhv := ((πkTv)T∈Th , (π
k
Fv)F∈Fh

). (8)

2.2 Local Gradient reconstruction
For all T ∈ Th, and l ≥ 1, Pk+1,0

d (T ) denotes the space of d-variate polynomial functions of total
degree ≤ l, that have zero mean value on T . Then, we define the local gradient reconstruction
operator Gk

T : U k
T → ∇P

k+1,0
d (T ) such that, for each vT := (vT , (vF )F∈FT

) ∈ U k
T and each

w ∈ Pk+1,0
d (T ),

(KGk
TvT ,∇w)T = (K∇vT ,∇w)T +

∑
F∈FT

(vF − vT , K∇w · nTF )F , (9)

where we recall nTF is the unit normal to F pointing out of T . Next, we define the potential
reconstruction operator pkT : U k

T → Pk+1
d (T ) such that, for all vT ∈ U k

T ,

∇pkTvT := Gk
TvT ,

∫
T

pkTvT :=

∫
T

vT . (10)

The following result shows that pkT IkT is the K-weighted elliptic projector onto Pk+1
d (T ).
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Lemma 2.2 (Characterization of pkT IkT and polynomial consistency) . For every v ∈ H1(T )
and w ∈ Pk+1

d (T ), there holds

(K∇(v−pkT IkTv),∇w)T = ((K−KT ),∇w)T−
∑
F∈FT

(πkFv−πkTv, (K−KT )∇w ·nTF )F , (11)

whereKT denotes the mean-value ofK on T . In addition, ifK is piecewise constant, we obtain
the following orthogonality property:

(K∇(v − pkT IkTv),∇w)T = 0, (12)

and the polynomial consistency:

pkT IkTv = v ∀ v ∈ Pk+1
d (T ). (13)

Proof. We refer to Lemma 2.1 in [9] for (11) and Lemma 3.1 in [12] for (12) and (13). �

Lemma 2.3 (Approximation properties for pkT IkT ) . There exists a real number C > 0, de-
pending of γ and d, but independent of the polynomial degree, the meshsize, and the diffusion
tensor. So that for any v ∈ Hs(T ) there holds:∥∥v − pkT IkTv

∥∥
T

+h
1/2
T

∥∥v − pkT IkTv
∥∥
∂T

+hT
∥∥∇(v − pkT IkTv)

∥∥
T

+ h
3/2
T

∥∥∇(v − pkT IkTv)
∥∥
∂T
≤ CραTh

s
T ‖v‖Hs(T ) , (14)

for all s ∈ {2, · · · , k + 2}. Here, α = 1/2 if K is piecewise constant, and α = 1 otherwise.

Proof. We refer to Lemma 2.1 in [9]. �

3 Formulation
Now, we define the discrete global space for our HHO formulation, as

U k,0
h :=

{
vh ∈ U k

h : (vh, 1)Ω = 0
}
,

with vh := {vT}T∈Th , and the following discrete semi norm on U k
h,

‖vh‖2
K,h :=

∑
T∈Th

ρ−1
T ‖vT‖

2
K,T , ∀vh ∈ U k

h, (15)

where ‖vT‖2
K,T := ‖K1/2∇vT‖2

T + |vT |2K,∂T and |vT |2K,∂T :=
∑
F∈FT

kF
hF
‖vF − vT‖2

F , with

kF := ‖nTTFKnTF‖L∞(F ), for all vT ∈ U k
T .

Proposition 3.1 (Norm ‖ · ‖K,h) . The map ‖ · ‖K,h defines a norm on U k,0
h .
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Proof. It is enough to prove that ∀vh ∈ U
k,0
h : ‖vh‖K,h = 0⇒ vh = 0h. Let vh ∈ U

k,0
h be such

that ‖vh‖K,h = 0. By definition of ‖ · ‖K,h, we obtain (cf. (15))

∇vT ≡ 0 and vT |F = vF ∀F ∈ FT ∀T ∈ Th. (16)

Then, from (16) we infer that vh is piecewise constant on Th, and for each interior face F ∈ Fh,
there exist T1, T2 ∈ Th with F ⊂ ∂T1 ∩ ∂T2, such that vT1|F = vF = vT2|F . This means that vh
is continuous on Ω̄, and thus an element in P0(Ω̄). Finally, due to the condition (vh, 1)Ω = 0,
we deduce that vh = 0, and we conclude the proof. �

Hereafter, the local potential reconstruction P k
T : U k

T → Pk+1
d (T ) is defined such that, for

all vT ∈ U k
T ,

P k
TvT := vT + (pkTvT − πkTpkTvT ). (17)

Now, to discretize the left-hand of (3), we introduce the following bilinear forms on U k
h ×U k

h:

ah(uh,vh) =
∑
T∈Th

aT (uT ,vT ), sh(uh,vh) =
∑
T∈Th

sT (uT ,vT ), (18)

where, for each T ∈ Th, the local bilinear forms aT and sT defined on U k
T ×U k

T , are given by

aT (uT ,vT ) := (KGk
TuT , G

k
TvT )T + sT (uT ,vT ), (19a)

sT (uT ,vT ) :=
∑
F∈FT

kF
hF

(πkF (uF − P k
TuT ), πkF (vF − P k

TvT ))F . (19b)

The linear functional on the right hand side in (3) is discretized by means of the linear
functional on U k

h such that

bh(vh) :=
∑
T∈Th

(f, vT )T +
∑
F∈F∂

h

(g, vF )F . (20)

Then, the discrete problem reads: Find uh ∈ U
k,0
h such that,

ah(uh,vh) = bh(vh) ∀vh ∈ Uk,0
h . (21)

Introducing the global discrete gradient operator Gk
h : U k

h →
�

T∈Th∇P
k+1
d (T ) such that, for

each vh ∈ U k
h,

(Gk
hvh)|T := Gk

TvT ∀T ∈ Th, (22)

we can reformulate the bilinear form ah defined in (18) as

ah(uh,vh) = (KGk
huh, G

k
hvh) + sh(uh,vh). (23)

To analyse the stability of the discrete problem, we introduce the local and global energy semi-
norms as follows:

‖vh‖2
a,h :=

∑
T∈Th

‖vT‖2
a,T where, ‖vT‖2

a,T := aT (vT .vT ), (24)

Next result establishes an important relation between ‖ · ‖a,T and ‖ · ‖K,T .
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Lemma 3.1 For any vT ∈ U k
T , there holds:

ρ−1
T ‖vT‖

2
K,T . ‖vT‖2

a,T . ρT‖vT‖2
K,T . (25)

Consequently, for all vh ∈ U k
h, ‖vh‖K,h . ‖vh‖a,h , and then, problem (21) is well-posed.

Proof. We refer to the proof of Lemma 3.1 in [9]. �

4 Error analysis
In this section we prove error estimates in the energy-norm and L2-norm, under additional
regularity assumption on exact solution.

Theorem 4.1 (Energy-error estimate) Let u ∈ U be the exact solution of (3) and let uh ∈
U k,0
h be the solution of (21). We define the consistency error as Eh(vh) := ah(I

k
hu,vh)−bh(vh).

Then, recalling the definition of α (given in Lemma 2.3), and assuming that u ∈ Hk+2(Th), there
holds:

‖Ikhu− uh‖a,h ≤ sup
vh∈U

k,0
h , ‖vh‖a,h=1

Eh(vh) .

{∑
T∈Th

KTρ
2α+1
T h

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

. (26)

Moreover, applying Lemma 2.3, there holds

‖K1/2(∇u−Gk
huh)‖Ω .

{∑
T∈Th

KTρ
2α+1
T h

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

. (27)

Proof. We observe from (21) that Eh(vh) = ah(I
k
hu− uh,vh) for all vh ∈ U

k,0
h . Then, the first

inequality in (26) results from (24) and the fact that Ikhu− uh ∈ U
k,0
h .

Now, we derive a bound for the consistency error for a generic vh ∈ U
k,0
h . Taking w := pkT IkTu

in the definition of Gk
TvT for all T ∈ Th, and using (10) and (22), we infer that

ah(I
k
hu,vh) =

∑
T∈Th

{
(∇vT , K∇pkT IkTu)T +

∑
F∈FT

(vF − vT , K∇pkT IkTu · nTF )F

}
+sh(I

k
hu,vh).

(28)
Since f = −∇ · (K∇u) in Ω (in distributional sense), an element-wise integration by parts in
the first term of bh yields

∑
T∈Th

(f, vT )T =
∑
T∈Th

{
(K∇u,∇vT )T −

∑
F∈FT

(vT , K∇u · nTF )F

}
. (29)

In addition, from the fact that g = K∇u · n on Γ (in distributional sense), we infer that the
second term of bh can write as∑

F∈F∂
h

(g, vF )F =
∑
F∈F∂

h

(vF , K∇u · nTF )F . (30)
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Then, from (29), (30) and noticing that vF is single-valued on Fh, and the fluxes K∇u · n are
continuous at interior faces, we infer that

bh(vh) =
∑
T∈Th

{
(K∇u,∇vT )T +

∑
F∈FT

(vF − vT , K∇u · nTF )F

}
. (31)

Combining (28) with (31), we arrive at

Eh(vh) =
∑
T∈Th

{(
∇vT , K∇(pkT IkTu− u)

)
T

+
∑
F∈FT

(
vF − vT , K∇(pkT IkTu− u) · nTF

)
F

}
+ sh(I

k
hu,vh) := T1 + T2. (32)

Aplying Cauchy-Schwarz inequality on each term of T1, we obtain

|T1| ≤
∑
T∈Th

{
ρ
−1/2
T ‖K1/2∇vT‖T ρ1/2

T ‖K
1/2∇(pkT IkTu− u)‖T

+
∑
F∈FT

ρ
−1/2
T

({
kF
hF

}1/2

‖vF − vT‖F

)
ρ

1/2
T

({
hF
kF

}1/2

‖ K∇(pkT IkTu− u)nTF‖F

)}
,

(33)

Then, applying Cauchy-Schwarz inequality again, the fact that ‖K∇w ·nTF‖F ≤ ‖K1/2∇w‖F ,
the mesh regularity property (4), and (15), we deduce

|T1| .

(∑
T∈Th

ρT

{
‖K1/2∇(pkT IkTu− u)‖2

T + hT‖K1/2∇(pkT IkTu− u)‖2
∂T

})1/2

‖vh‖K,h. (34)

Next, by the approximation property (14) of pkT IkT , and the spectral norm of K, we infer that

‖K1/2∇(pkT IkTu− u)‖2
T + hT‖K1/2∇(pkT IkTu− u)‖2

∂T . KTρ2α
T h

2(k+1)
T ‖u‖2

Hk+2(T )
. (35)

Then, replacing (35) in (34), we derive

|T1| .

(∑
T∈Th

KTρ
2α+1
T h

2(k+1)
T ‖u‖2

Hk+2(T )

)1/2

‖vh‖K,h. (36)

Next, we bound T2. Applying triangle inequality and Cauchy-Schwarz inequality, we have∣∣sh(Ikhu,vh)∣∣ ≤ sh(I
k
hu, I

k
hu)1/2 sh(vh,vh)

1/2. (37)

Taking into account (17), the definition of Ikhu, triangle inequality, discrete trace inequality and
the L2-stability of the projectors, we deduce

h
−1/2
F ‖πkF (u− P k

T Ikhu)‖F . h
−1/2
F ‖u− pkT IkTu‖F + h−1

F ‖u− p
k
T IkTu‖T . (38)
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Now, since kF ≤ KT for all F ∈ FT , together with the fact that card(FT ) is uniformly bounded,
and the mesh regularity property (4), we infer from (38) that∑

F∈FT

kF
hF
‖πkF (u− P k

T Ikhu)‖2
F . KT

(
h−1
T ‖u− pkT IkTu‖2

∂T + h−2
T ‖u− pkT IkTu‖2

T

)
. (39)

Then, using (39), and the approximation property (14) of pkT IkT , we derive

sT (IkTu, I
k
Tu) . KTρ2α

T h
2(s−1)
T ‖u‖2

Hs(T ) ∀ s ∈ {2, · · · , k + 2}. (40)

Replacing (40) in (37) with s = k + 2, we obtain

|T2| .

(∑
T∈Th

KTρ2α
T h

2(k+1)
T ‖u‖2

Hk+2(T )

)1/2

‖vh‖a,h. (41)

Then, the second inequality in (26) results from (32), (36), (41), and the Lemma 3.1.
On the other hand, by triangle inequality, we obtain

‖K1/2(∇u−Gk
huh)‖Ω ≤ ‖K1/2(∇u−Gk

hI
k
hu)‖Ω + ‖K1/2Gk

h(I
k
hu− uh))‖Ω (42)

Finally, (27) follows from (42), (24), (26), and (35). �

Next, we provide an estimate of the L2-error between uh and Ikhu such that

uh|T := uT and Ikhu|T := πkTu ∀T ∈ Th. (43)

To this end, we need an additional elliptic regularity assumption in the following form: Given
w ∈ L2

0(Ω) := {q ∈ L2(Ω) : (q, 1)Ω = 0}, we let z ∈ U be the unique function such that

(K∇z,∇v)Ω = (w, v)Ω ∀v ∈ U, (44)

which satisfies the a priori estimate:

‖z‖H2(Ω) . K
−1‖w‖Ω, K := minT∈Th KT . (45)

Now, to establish the following result, we assume that K is a piecewise constant diffusivity
tensor.

Theorem 4.2 (L2-error estimate) Under the assumptions of Theorem 4.1, elliptic regularity
(45) and that f ∈ Hk(Th), g ∈ Hk+1/2(F∂h ) , there holds:

‖Ikhu− uh‖Ω . K
−1

(
(K)1/2ρh

{∑
T∈Th KTρ

2
Th

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

+ hk+2
{
‖f‖Hk(Th) + ‖g‖Hk+1/2(F∂

h )

})
, (46)

where, K := maxT∈Th KT , ρ := K/K, and h := maxT∈Th hT .
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Proof. First, we set eh := Ikhu − uh ∈ L2
0(Ω) and eh := Ikhu − uh ∈ U

k,0
h . Next, let z ∈ U

be the solution of (44) when considering w := eh. Then, proceeding as in Theorem 4.1 for the
auxiliary problem (44)-(45), we deduce

‖eh‖2
Ω = (eh, w)Ω =

∑
T∈Th

{
(∇eT , K∇z)T −

∑
F∈FT

(eT , K∇z · nTF )F

}
. (47)

Then, since K∇z ∈ H(div,Ω), and K∇z · n = 0 a.e. Γ, we can write (47) as

‖eh‖2
Ω =

∑
T∈Th

{
(∇eT , K∇z)T +

∑
F∈FT

(eF − eT , K∇z · nTF )F

}
. (48)

By taking, vh := Ikhz ∈ U
k,0
h in (21), we infer that

ah(eh, I
k
hz)− ah(Ikhu, Ikhz) +

∑
T∈Th

(f, πkT z)T +
∑
F∈F∂

h

(g, πkF z)F = 0. (49)

Besides, from the definition (23) and since Gk
T IkT z = ∇pkT IkT z, we derive

ah(eh, I
k
hz) =

∑
T∈Th

{
(∇eT , K∇pkT IkT z)T+

∑
F∈FT

(eF−eT , K∇pkT IkT z·nTF )F

}
+sh(eh, I

k
hz). (50)

Combining (48) and (49) with (50), we arrive at

‖eh‖2
Ω =

(
ah(I

k
hu, I

k
hz)−

∑
T∈Th

(f, πkT z)T −
∑
F∈F∂

h

(g, πkF z)F

)
+

(∑
T∈Th

{(
∇eT , K∇(z − pkT IkT z)

)
T

+
∑
F∈FT

(
eF − eT , K∇(z − pkT IkT z) · nTF

)
F

}
− sh(eh, Ikhz)

)
:= T1 + T2. (51)

Now, testing the equation (3) with v = z, and reordering conveniently, we obtain

T1 =
∑
T∈Th

{(
K∇pkT IkTu,∇pkT IkT z

)
T
− (K∇u,∇z)T

}
−
∑
T∈Th

(f, πkT z − z)T

−
∑
F∈F∂

h

(g, πkF z − z)F + sh(I
k
hu, I

k
hz) := T1,1 + T1,2 + T1,3 + T1,4. (52)

To bound T1,1, we write

(K∇u,∇z)T −
(
K∇pkT IkTu,∇pkT IkT z

)
T

=
(
K∇(u− pkT IkTu),∇(z − pkT IkT z)

)
T

+(
K∇(u− pkT IkTu),∇pkT IkT z)

)
T

+
(
K∇pkT IkTu,K∇(z − pkT IkT z)

)
T
. (53)
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The two last terms vanish by orthogonality property (12). Then, by approximation properties
of pkT IkT (14), Cauchy-Schwarz inequality, and (45) we deduce

|T1,1| .

(∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

)1/2(∑
T∈Th

KTρTh
2
T‖z‖2

H2(T )

)1/2

. K
−1(K)1/2ρ1/2h

{∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖eh‖Ω (54)

Turning to T1,2, by the definition of πkT z, we can write (f, πkT z − z)T = (f − πkTf, πkT z − z)T .
Then, applying approximation property (5) of πkT , Cauchy-Schwarz inequality and (45), we
obtain

|T1,2| . hk+2‖f‖Hk(Ω)‖z‖H2(Ω) . K
−1hk+2‖f‖Hk(Ω)‖eh‖L2(Ω). (55)

Proceeding similarly to bound T1,3, first we notice that

T1,3 = −
∑
F∈F∂

h

(g − Πk
Fg, π

k
F z − z)F .

For each F ∈ F∂h , we let TF ∈ Th be such that F is a face of ∂TF . Then, applying Cauchy-
Schwarz inequality, the fact that ‖πkF z − z‖L2(F ) ≤ 2‖πkTF z − z‖L2(F ), and the approximation
properties, we obtain

|T1,3| .
∑
F∈F∂

h

hk+2
TF
‖g‖Hk+1/2(F )||z||H2(TF ) .

After applying Minkowski inequality, we derive

|T1,3| . hk+2

∑
F∈F∂

h

hk+2
K ‖g‖

2
Hk+1/2(F )

1/2

||z||H2(Ω) ,

and then by (45)
|T1,3| . K

−1hk+2‖g‖Hk+1/2(F∂
h )||eh||L2(Ω) . (56)

To estimate T1,4, we apply triangle inequality, Cauchy-Schwarz inequality, the bound (40), and
(45), obtaining

|T1,4| ≤ sh(I
k
hu, I

k
hu)1/2 sh(I

k
hz, I

k
hz)1/2

. K
−1(K)1/2ρ1/2h

{∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖eh‖L2(Ω). (57)

Then, we infer from (54)-(57) that

|T1| . K
−1

(
(K)1/2ρ1/2h

{∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

+hk+2
{
‖f‖Hk(Th) + ‖g‖Hk+1/2(F∂

h )

})
‖eh‖L2(Ω).
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Now, we denote by T2,1, T2,2 the two terms of T2. Proceeding as in the proof of Theorem
4.1, we bound T2,1 by considering (36), the Lemma 3.1, (26) and the elliptic regularity property
(45)

|T2,1| . ‖eh‖K,h
{∑
T∈Th

KTρ2
Th

2(k+1)
T ‖z‖2

H2(T )

}1/2

. (K)1/2ρh

{∑
T∈Th

KTρ2
Th

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖z‖H2(Ω)

. K
−1(K)1/2ρh

{∑
T∈Th

KTρ2
Th

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖eh‖Ω (58)

Turning to T2,2, we take into account (41), (26) and (45), to obtain

|T2,2| ≤ sh(eh, eh)
1/2 sh(I

k
hz, I

k
hz)1/2

. (K)1/2ρ1/2h

{∑
T∈Th

KTρ2
Th

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖z‖H2(Ω)

. K
−1(K)1/2ρ1/2h

{∑
T∈Th

KTρ2
Th

2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

‖eh‖Ω. (59)

Finally, we conclude the proof from (58)-(59). �

5 Implementation

For computational implementation purposes, finding a basis for U k,0
h could be a hard task, due

to the zero mean value condition that must satisfy all its elements. One way to circumvent this
difficulty, is to impose this restriction with the help of a Lagrange multiplier. This lets us to
introduce the following discrete scheme, which reads as: Find (uh, λ) ∈ U k

h × R such that

ah(uh,vh) + λ(vh, 1)Ω + µ(uh, 1)Ω = bh(vh) ∀ (vh, µ) ∈ U k
h × R. (60)

Theorem 5.1 The problems (21) and (60) are equivalent, in the sense:

1. If (uh, λ) is a solution of (60), then λ = 0 and uh ∈ U
k,0
h solution of (21).

2. If uh ∈ U
k,0
h is a solution of (21), then (uh, 0) ∈ U k

h × R is a solution of (60).

Proof. It is immediate from the compatibility condition (2). �
To deduce associated linear system to (60), we rewrite the term bh as

bh(vh) :=
∑
T∈Th

bT (vT ) , bT (vT ) := (f, vT )T +
∑

F∈FT∩F∂
h

(g, vF )F . (61)
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For integers l ≥ 0 and n ≥ 0, we denote by N l
n :=

(
l + n
l

)
the dimension of the space

composed of n-variate polynomials of degree at most l.
For any vh in the global discrete space U k

h, we collect its components with respect to the
polynomial bases attached to the mesh cells and faces in a global component vector denoted by
VTF ∈ RNk

T with

Nk
T := dim(U k

h) = card(Th)×Nk
d + card(Fh)×Nk

d−1, (62)

where Nk
d and Nk

d−1 denote the dimension of the local cell and face bases, respectively, while d
represents the space dimension. We can decompose the global vector of coefficients as

VTF =

[
VT
VF

]
, (63)

where the vectors VT and VF collect the coefficients associated to element-based and face-based
DOFS, respectively.

Also, we can collect, for every vT ∈ U k
T , its components associated to T and ∂T , in a local

component vector denoted by VTFT
∈ RNk

T , and in the similar way, we split the local vector of
coefficients associated to the element T as

VTFT
=

[
VT
VFT

]
, (64)

with VT and VFT
collecting the coefficients associated to the bases of the element and faces

linked to T , respectively.
Expressing the functions in the discrete formulation (60) as a linear combination of its re-

spective basis functions, we obtain the following problem: Find (UTF , λ) ∈ RNk
T × R such

that ∑
T∈Th

V T
TFT

A(T )UTFT
+ λ

∑
T∈Th

V T
T MT + µ

∑
T∈Th

MT
T UT =

∑
T∈Th

V T
TFT

B(T ), (65)

for all (VTF , µ) ∈ RNk
T × R. Here, the local matrix A(T ) represents the local bilinear form aT ,

the local vector B(T ) represents the linear functional bT , and the vector MT ∈ RNk
d collects the

average of the local base functions on T :

A(T ) =

[
ATT ATFT

ATTFT
AFTFT

]
, B(T ) =

[
BT

BFT

]
, (66)

Arranging the equation (65) in a matrix form, in order to eliminate the element-based DOFS (by
static condensation), we obtain the following linear global system corresponding to the discrete
problem (60): 

ATT ATF MT

ATTF AFF 0F

MT
T 0TF 0



UT

UF

λ

 =


BT

BF

0

 , (67)
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where the vector MT ∈ RNk
T denote the vector collecting the average of the functions of the

element-based DOFs, and 0F is the zero vector in Rcard(Fh)×Nk
d−1 , and the number of unknowns

is
card(Th)×Nk

d + card(Fh)×Nk
d−1 + 1. (68)

Instead of assembling the full system (67), we can effectively compute the Schur complement
of ATT , following the system

ATT UT + ÂTF ÛF = BT , (69)

ÂTTFUT + ÂFF ÛF = B̂F , (70)

where

ÂFF =

[
AFF 0F

0TF 0

]
, ÂTF =

[
ATF MT

]
, ÛF =

[
UF λ

]T
, and B̂F =

[
BF 0

]T
.

From (69), we obtain
UT = A−1

TT

[
BT − ÂTF ÛF

]
. (71)

Then, replacing (71) in (70), we derive[
ÂFF − ÂTTFA−1

TT ÂTF

]
ÛF =

[
B̂F − ÂTTFA−1

TTBT

]
. (72)

After simplifying the system (72), we obtain the following reduced system, where the element-
based DOFs collected in the vector UT no longer appears:[

AFF − ATTFA−1
TTATF −ATTFA−1

TTMT

−MT
T A
−1
TTATF −MT

T A
−1
TTMT

][
UF

λ

]
=

[
BF − ATTFA−1

TTBT

−MT
T A
−1
TTBT

]
. (73)

The advantage of implementing the reduced system (73) over the global system (67) is that the
number of unknowns in (73) is reduced to

card(Fh)×Nk
d−1 + 1. (74)

Denoting by←−−−
T∈Th

the usual assembling procedure based on a global DOF map, we can assem-

ble all matrix products appearing in (73) directly from their local counterparts, as

BF − ATTFA−1
TTBT ←−−−

T∈Th
BFT

− ATTFT
A−1
TTBT , ATTFA

−1
TTMT ←−−−

T∈Th
ATTFT

A−1
TTMT ,

AFF − ATTFA−1
TTATF ←−−−

T∈Th
AFTFT

− ATTFT
A−1
TTATFT

,

MT
T A
−1
TTMT =

∑
T∈Th

MT
T A
−1
TTMT , and MT

T A
−1
TTBT =

∑
T∈Th

MT
T A
−1
TTBT .

Besides, the global vector UT can be recovered from (69), letting λ = 0 in ÛF , so that

UT = A−1
TT

(
BT − ATFUF

)
, (75)

Finally, for all T ∈ Th, the local vector UT of element-based DOFs can be recovered from (75)
following element-by-element post-processing:

UT = A−1
TT

(
BT − ATFT

UFT

)
. (76)

14



6 Numerical results
In this section we present a comprehensive set of numerical tests to assess the properties of our
method. We use different meshes for the numerical tests, which were originally prosed for the
FVCA5 benchmark [19].

We based our code on the one developed by Di Pietro ([8],[11]), where, the implementation
of local gradient reconstruction (9), L2-orthogonal projectors πkT and πkF , are based on the linear
algebra facilities (robust Cholesky factorization) provided by the Eigen3 library [18]. The re-
duced system on the skeleton (73) is solved using SuperLU [5] through the PETSc 3.4 interface
[2].

For each of the examples presented here, we consider four meshes family, which are de-
picted in Figure 1. In addition, we compute the experimental order of convergence (r) as

r = log(eT1/eT2)/ log(hT1/hT2) ,

where eT1 and eT2 are the errors associated to the corresponding variable considering two con-
secutive meshsizes hT1 and hT2 , respectively.

6.1 Example 1: Constant diffusivity
First, we consider a Neumann problem defined in Ω := (0, 1)2, whose data are such that its
exact solution is given by the smooth function

u(x, y) = sin(πx) sin(πy)− 4

π2
, (77)

with diffusivity tensor K := I . Tables 1 and 2 show the behavior of potential an flux errors, for
each one of the described triangulations. In all cases, it is noticed that the scheme converges,
and it does at the expected optimal rates of convergence: k + 2 for the potential, and k + 1 for
the flux, when the solution is approximated by piecewise polynomials of degree at most k. This
is in agreement with Theorems 4.1 and 4.2, and it can be observed in Figure 2.

6.2 Example 2: Polynomial diffusivity
The aim here is to check the robustness of the method, when we solve on the unit square domain
Ω = (0, 1)2 the non-homogeneous Neumann problem with

u(x, y) = sin(πx) sin(πy)− 4

π2
, (78)

and diffusion tensor (from [20]):

K(x, y) =

(
(y − ȳ)2 + ε(x− x̄)2 −(1− ε)(x− x̄)(y − ȳ)
−(1− ε)(x− x̄)(y − ȳ) (x− x̄) + ε(y − ȳ)2

)
, (79)

where (x̄, ȳ) = −(0.1, 0.1). This defines an anisotropic problem, where the principal axes of
the diffusion tensor vary at each point of the domain. For the case ε = 10−1, we obtain an
anisotropic ratio ρ = 10. Figure 3 exhibits the well behavior of the Potential (first column) and
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Flux (second column) L2-errors with respect to the mesh size h, and for each one of the four
meshes family. Their corresponding histories of convergence are given in Tables 3 and 4, and
they are in agreement with Theorems 4.1 and 4.2, despite the fact that it is not covered (at all) by
the theory since K is not piecewise constant (as required for proving Theorem 4.2). This gives
some numerical evidence that our results could be improved for a general kind of diffusivity
tensor.

6.3 Example 3: Neumann problem with numerical singularity
Here, we consider the Neumann problem on the unit square domain Ω = (0, 1)2, where its data
are such that the exact solution is given by the potential function:

u(x, y) =
xy

(x+ 0.05)2 + y2
− u , (80)

with homogeneous anisotropic diffusion tensor:

K(x, y) =

(
1.5 0.5
0.5 1.5

)
. (81)

We remark that u represents the mean value of u in Ω, and notice that u has a singularity at
(−0.05, 0), which is close to ∂Ω. The history of errors for potential and flux are shown in
Tables 5 and 6, for k ∈ {0, 1, 2, 3}, and for each of the four considered triangulations. For the
first three triangulations, they exhibit that the HHO method converges with the corresponding
optimal rate of convergence k+ 2 and k+ 1 for the potential and flux error, respectively. This is
also observed in Figure 4. For the latter triangulation, we observe that the order of convergence
behaves as k + 1 and k, respectively. This phenomena could be explained since the sequence
of uniformed hexagonal meshes does not refine enough in the neighborhood of (−0.05, 0), and
then it is not capable of capturing the induced numerical singularity. This should be improve by
performing certain a posteriori error adaptivity procedure, which would be the subject of future
work.
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(a) Triangular (b) Cartesian

(c) Refined (d) Hexagonal

Figure 1: Triangular, Cartesian, Refined and Hexagonal initial meshes that define the triangula-
tions considered for the numerical examples.

Conclusions
In this work we have developed an a priori error analysis for a pure Neumann problem, when
applying HHO method. We have proved the convergence of the method, with the optimal
rates of convergence when the exact solution is smooth enough: order k + 1 for the flux error,
and k + 2 for potential error. This technique can deal with hanging nodes, as in the Refined
mesh (Figure 1c), and also with general element (Figure 1a, 1b and 1d). Although we do not
show 3D examples, it is possible to work with meshes in 3D. For that purpose, we refer to the
library, named DiSk++, which is available as open-source, under MPL License, at the address
https://github.com/datafl4sh/diskpp. Numerical results presented here, are in
agreement with our theoretical results, although is possible to extent the Theorem 4.2 to general
tensor as in the Example 2. These allow us to extend this technique to solve a linear transmission
problem with Neumann condition, in a bounded region of the plane. This will be report in a
separate work, which at the present, is under development.
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(Chile), for the kind hospitality and facilities that was offered to him during his visits to this
center. In addition, R. Bustinza wishes to express his gratitude to Instituto de Matemática y
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(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 2: Rates of convergence of Potential and Flux errors, considering each one of the four
triangulations (Example 1).
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(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 3: Rates of convergence of potential and flux errors, considering each one of the four
triangulations (Example 2).
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(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 4: Rates of convergence of potential and flux errors, considering each one of the four
triangulations (Example 3).

22



Table 1: History of convergence of L2-norm of the Potential error, for each one of the four
triangulations and k ∈ {0, 1, 2, 3} (Example 1).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 1.23e-01 1.93e-02 1.69e-03 1.05e-04
1.54e-02 2.95e-02 2.065 2.43e-03 2.999 1.05e-04 4.034 3.24e-06 5.036
7.68e-03 7.32e-03 2.005 3.06e-04 2.982 6.49e-06 3.995 1.01e-07 4.991
3.84e-03 1.82e-03 2.004 3.83e-05 2.997 4.04e-07 4.005 3.13e-09 5.006
1.92e-03 4.56e-04 2.001 4.79e-06 2.999 2.52e-08 4.003 9.77e-11 5.003

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
6.25e-02 2.07e-01 5.13e-02 8.47e-03 8.41e-04
3.12e-02 5.15e-02 2.004 6.44e-03 2.987 5.41e-04 3.959 2.79e-05 4.903
1.56e-02 1.29e-02 2.002 7.97e-04 3.015 3.40e-05 3.992 8.91e-07 4.969
7.81e-03 3.21e-03 2.004 9.92e-05 3.013 2.13e-06 4.005 2.81e-08 4.996
3.91e-03 8.03e-04 2.004 1.24e-05 3.008 1.33e-07 4.007 8.82e-10 5.003
1.95e-03 2.01e-04 1.993 1.55e-06 2.990 8.32e-09 3.985 2.77e-11 4.975

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 1.65e-01 4.39e-02 7.15e-03 6.79e-04
1.25e-01 4.82e-02 1.773 5.62e-03 2.964 4.66e-04 3.940 2.34e-05 4.861
6.25e-02 1.30e-02 1.890 6.96e-04 3.014 2.94e-05 3.986 7.59e-07 4.944
3.12e-02 3.37e-03 1.943 8.63e-05 3.004 1.84e-06 3.987 2.41e-08 4.963
1.56e-02 8.57e-04 1.975 1.08e-05 3.005 1.15e-07 3.999 7.60e-10 4.988

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 1.70e-01 4.43e-02 4.63e-03 3.81e-04
2.59e-02 4.21e-02 2.013 6.22e-03 2.832 3.17e-04 3.872 1.31e-05 4.866
1.29e-02 1.07e-02 1.965 8.16e-04 2.915 2.05e-05 3.927 4.24e-07 4.917
6.47e-03 2.70e-03 1.996 1.04e-04 2.984 1.30e-06 3.995 1.35e-08 4.997
3.24e-03 6.77e-04 1.999 1.31e-05 2.993 8.20e-08 3.998 4.25e-10 4.999
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Table 2: History of convergence of L2-norm of the Flux error, for each one of the four triangu-
lations, and k ∈ {0, 1, 2, 3} (Example 1).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 2.38e-01 2.42e-02 1.67e-03 1.01e-04
1.54e-02 1.19e-01 1.003 6.02e-03 2.013 2.18e-04 2.954 6.98e-06 3.874
7.68e-03 5.96e-02 0.998 1.50e-03 1.995 2.75e-05 2.973 4.56e-07 3.921
3.84e-03 2.98e-02 1.001 3.76e-04 2.001 3.45e-06 2.995 2.91e-08 3.970
1.92e-03 1.49e-02 1.001 9.39e-05 2.000 4.31e-07 2.998 1.84e-09 3.986

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
6.25e-02 3.17e-01 6.18e-02 7.60e-03 7.44e-04
3.12e-02 1.60e-01 0.986 1.54e-02 1.996 9.58e-04 2.980 4.71e-05 3.972
1.56e-02 8.01e-02 0.997 3.83e-03 2.013 1.20e-04 2.998 2.95e-06 3.996
7.81e-03 4.01e-02 1.001 9.52e-04 2.010 1.50e-05 3.005 1.85e-07 4.006
3.91e-03 2.00e-02 1.002 2.38e-04 2.006 1.88e-06 3.005 1.16e-08 4.007
1.95e-03 1.00e-02 0.996 5.94e-05 1.993 2.34e-07 2.989 7.22e-10 3.985

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 2.84e-01 5.37e-02 6.61e-03 6.57e-04
1.25e-01 1.43e-01 0.990 1.35e-02 1.991 8.32e-04 2.990 4.11e-05 3.998
6.25e-02 7.15e-02 0.999 3.36e-03 2.009 1.04e-04 2.999 2.57e-06 4.002
3.12e-02 3.58e-02 0.997 8.34e-04 2.004 1.30e-05 2.993 1.60e-07 3.992
1.56e-02 1.79e-02 1.000 2.08e-04 2.004 1.63e-06 3.000 1.00e-08 4.001

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 3.36e-01 4.75e-02 4.90e-03 3.41e-04
2.59e-02 1.67e-01 1.007 1.21e-02 1.967 6.45e-04 2.926 2.22e-05 3.937
1.29e-02 8.24e-02 1.014 3.06e-03 1.977 8.23e-05 2.954 1.41e-06 3.953
6.47e-03 4.08e-02 1.021 7.68e-04 2.003 1.04e-05 3.000 8.91e-08 4.006
3.24e-03 2.02e-02 1.013 1.92e-04 2.002 1.30e-06 3.001 5.59e-09 4.003
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Table 3: History of convergence of L2-norm of the potential error, for each one of the four
triangulations, and k ∈ {0, 1, 2, 3} (Example 2).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 7.69e-01 2.25e-02 1.66e-03 1.00e-04
1.54e-02 2.46e-01 1.652 3.24e-03 2.809 1.20e-04 3.812 3.67e-06 4.790
7.68e-03 6.89e-02 1.829 4.29e-04 2.905 8.06e-06 3.877 1.23e-07 4.877
3.84e-03 1.80e-02 1.938 5.51e-05 2.959 5.23e-07 3.946 4.00e-09 4.948
1.92e-03 4.57e-03 1.977 6.99e-06 2.980 3.33e-08 3.973 1.27e-10 4.974

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.12e-02 3.22e-01 8.58e-03 5.97e-04 2.92e-05
1.56e-02 9.95e-02 1.696 1.10e-03 2.960 4.12e-05 3.857 1.01e-06 4.862
7.81e-03 2.72e-02 1.872 1.41e-04 2.974 2.72e-06 3.930 3.30e-08 4.939
3.91e-03 7.06e-03 1.952 1.79e-05 2.982 1.74e-07 3.969 1.06e-09 4.974
1.95e-03 1.79e-03 1.972 2.26e-06 2.975 1.10e-08 3.966 3.36e-11 4.958

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 5.96e-01 5.84e-02 6.74e-03 7.11e-04
1.25e-01 2.03e-01 1.552 7.66e-03 2.930 5.04e-04 3.740 2.68e-05 4.732
6.25e-02 5.70e-02 1.836 9.65e-04 2.988 3.44e-05 3.873 9.18e-07 4.864
3.12e-02 1.49e-02 1.934 1.23e-04 2.964 2.24e-06 3.930 3.01e-08 4.921
1.56e-02 3.78e-03 1.974 1.57e-05 2.975 1.43e-07 3.971 9.62e-10 4.966

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 7.34e-01 4.08e-02 3.92e-03 2.90e-04
2.59e-02 2.41e-01 1.610 5.91e-03 2.790 2.83e-04 3.791 1.08e-05 4.743
1.29e-02 7.33e-02 1.704 7.75e-04 2.914 1.91e-05 3.873 3.71e-07 4.842
6.47e-03 1.99e-02 1.887 9.93e-05 2.978 1.24e-06 3.961 1.21e-08 4.956
3.24e-03 5.13e-03 1.963 1.26e-05 2.989 7.90e-08 3.979 3.88e-10 4.978
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Table 4: History of convergence of L2-norm of the flux error, for each one of the four triangu-
lations, and k ∈ {0, 1, 2, 3} (Example 2).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 3.97e-01 2.80e-02 2.04e-03 1.16e-04
1.54e-02 2.13e-01 0.902 7.05e-03 2.002 2.63e-04 2.970 7.30e-06 4.013
7.68e-03 1.09e-01 0.968 1.77e-03 1.989 3.34e-05 2.966 4.61e-07 3.970
3.84e-03 5.46e-02 0.993 4.42e-04 1.997 4.21e-06 2.989 2.90e-08 3.992
1.92e-03 2.73e-02 0.999 1.11e-04 1.998 5.28e-07 2.995 1.82e-09 3.995

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.12e-02 1.76e-01 1.68e-02 1.08e-03 4.91e-05
1.56e-02 8.84e-02 0.996 4.14e-03 2.025 1.34e-04 3.022 3.09e-06 3.991
7.81e-03 4.42e-02 1.001 1.03e-03 2.016 1.66e-05 3.014 1.93e-07 4.005
3.91e-03 2.21e-02 1.002 2.56e-04 2.008 2.07e-06 3.008 1.21e-08 4.006
1.95e-03 1.11e-02 0.996 6.39e-05 1.994 2.59e-07 2.990 7.56e-10 3.984

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 3.34e-01 6.69e-02 8.25e-03 7.53e-04
1.25e-01 1.69e-01 0.982 1.65e-02 2.019 1.03e-03 3.009 4.77e-05 3.982
6.25e-02 8.50e-02 0.995 4.05e-03 2.026 1.27e-04 3.017 2.99e-06 3.996
3.12e-02 4.25e-02 0.997 1.00e-03 2.008 1.58e-05 3.000 1.87e-07 3.990
1.56e-02 2.12e-02 1.000 2.50e-04 2.004 1.97e-06 3.002 1.17e-08 3.999

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 3.76e-01 5.06e-02 5.20e-03 3.63e-04
2.59e-02 1.88e-01 0.999 1.29e-02 1.970 6.88e-04 2.919 2.34e-05 3.953
1.29e-02 9.18e-02 1.030 3.25e-03 1.978 8.76e-05 2.956 1.49e-06 3.951
6.47e-03 4.51e-02 1.030 8.15e-04 2.006 1.10e-05 3.001 9.42e-08 4.004
3.24e-03 2.23e-02 1.016 2.04e-04 2.003 1.39e-06 3.001 5.92e-09 4.002
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Table 5: History of convergence of L2-norm of the potential error, for each one of the four
triangulations, and k ∈ {0, 1, 2, 3} (Example 3).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 3.35e-01 1.69e-01 6.49e-02 4.83e-02
1.54e-02 1.17e-01 1.522 2.42e-02 2.813 1.57e-02 2.056 8.80e-03 2.468
7.68e-03 3.52e-02 1.727 6.55e-03 1.881 2.65e-03 2.558 7.10e-04 3.617
3.84e-03 9.32e-03 1.918 1.23e-03 2.411 2.17e-04 3.607 3.12e-05 4.508
1.92e-03 2.41e-03 1.953 1.53e-04 3.007 1.44e-05 3.915 1.10e-06 4.828

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
6.25e-02 8.11e-01 4.34e-01 1.97e-01 1.25e-01
3.12e-02 2.79e-01 1.538 1.05e-01 2.043 3.79e-02 2.369 1.97e-02 2.655
1.56e-02 8.57e-02 1.699 2.33e-02 2.173 8.09e-03 2.229 2.50e-03 2.982
7.81e-03 2.49e-02 1.790 4.10e-03 2.509 1.04e-03 2.971 2.46e-04 3.350
3.91e-03 6.65e-03 1.906 5.94e-04 2.792 7.70e-05 3.756 1.04e-05 4.574
1.95e-03 1.70e-03 1.962 7.85e-05 2.910 4.96e-06 3.941 3.17e-07 5.018

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 1.93e-01 3.13e-02 9.06e-03 2.62e-03
1.25e-01 4.93e-02 1.969 5.25e-03 2.575 1.08e-03 3.074 2.48e-04 3.404
6.25e-02 1.26e-02 1.964 7.46e-04 2.813 7.95e-05 3.758 1.04e-05 4.569
3.12e-02 3.19e-03 1.983 9.85e-05 2.914 5.13e-06 3.945 3.18e-07 5.024
1.56e-02 7.99e-04 1.996 1.26e-05 2.969 3.25e-07 3.981 9.65e-09 5.042

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 2.46e-01 1.54e-01 5.33e-02 4.60e-02
2.59e-02 8.40e-02 1.553 2.72e-02 2.503 1.64e-02 1.697 9.21e-03 2.321
1.29e-02 3.22e-02 1.376 8.97e-03 1.592 3.08e-03 2.402 9.56e-04 3.251
6.47e-03 1.08e-02 1.580 1.93e-03 2.224 3.62e-04 3.104 7.79e-05 3.633
3.24e-03 3.24e-03 1.742 2.96e-04 2.712 3.33e-05 3.447 4.26e-06 4.203
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Table 6: History of convergence of L2-norm of the flux error, for each one of the four triangu-
lations, and k ∈ {0, 1, 2, 3} (Example 3).

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
3.07e-02 4.70e-01 1.87e-01 1.18e-01 8.50e-02
1.54e-02 2.73e-01 0.788 9.94e-02 0.918 5.24e-02 1.181 2.31e-02 1.889
7.68e-03 1.71e-01 0.672 5.12e-02 0.952 1.21e-02 2.107 3.24e-03 2.823
3.84e-03 9.79e-02 0.804 1.70e-02 1.592 2.28e-03 2.407 3.95e-04 3.036
1.92e-03 5.02e-02 0.965 4.36e-03 1.961 3.93e-04 2.537 3.92e-05 3.331

Cartesian
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
6.25e-02 7.96e-01 3.33e-01 2.08e-01 1.56e-01
3.12e-02 4.49e-01 0.823 1.63e-01 1.029 1.01e-01 1.040 6.89e-02 1.181
1.56e-02 2.47e-01 0.864 8.85e-02 0.881 3.62e-02 1.479 1.77e-02 1.961
7.81e-03 1.31e-01 0.911 3.13e-02 1.502 9.19e-03 1.981 2.46e-03 2.854
3.91e-03 6.68e-02 0.977 8.56e-03 1.874 1.53e-03 2.587 2.32e-04 3.413
1.95e-03 3.34e-02 0.997 2.19e-03 1.959 2.00e-04 2.928 1.66e-05 3.784

Refined
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
2.50e-01 2.97e-01 9.71e-02 3.73e-02 1.78e-02
1.25e-01 1.55e-01 0.936 3.30e-02 1.559 9.28e-03 2.007 2.46e-03 2.857
6.25e-02 7.83e-02 0.986 8.93e-03 1.884 1.54e-03 2.588 2.32e-04 3.408
3.12e-02 3.91e-02 1.000 2.28e-03 1.967 2.01e-04 2.933 1.67e-05 3.790
1.56e-02 1.95e-02 1.003 5.71e-04 1.996 2.42e-05 3.056 1.07e-06 3.963

Hexagonal
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
5.18e-02 4.95e-01 2.11e-01 1.14e-01 6.34e-02
2.59e-02 3.16e-01 0.647 1.22e-01 0.790 5.85e-02 0.964 2.50e-02 1.344
1.29e-02 2.07e-01 0.604 6.36e-02 0.934 2.10e-02 1.468 7.20e-03 1.785
6.47e-03 1.24e-01 0.745 2.43e-02 1.395 5.67e-03 1.899 1.29e-03 2.488
3.24e-03 6.74e-02 0.883 7.69e-03 1.664 1.12e-03 2.351 1.59e-04 3.029
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