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Abstract. This work proposes and analyzes a residual a posteriori error estimator for the Multiscale
Hybrid-Mixed (MHM) method for the Stokes and Brinkman equations. The error estimator relies on the
multi-level structure of the MHM method and considers two levels of approximation of the method. As a
result, the error estimator accounts for a first-level global estimator defined on the skeleton of the partition
and second-level contributions from element-wise approximations. The analysis establishes local e�ciency
and reliability of the complete multiscale estimator. Also, it yields a new face-adaptive strategy on the
mesh’s skeleton which avoids changing the topology of the global mesh. Specially designed to work on
multiscale problems, the present estimator can leverage parallel computers since local error estimators are
independent of each other. Academic and realistic multiscale numerical tests assess the performance of the
estimator and validate the adaptive algorithms.

1. Introduction

The Stokes and Brinkman equations are widely used in applications involving multiple scales as found in
geosciences (e.g., reservoirs computations) and biomedical engineering (e.g., blood flow simulations) prob-
lems, to cite a few. In such a scenario, exact pressure and velocity may show highly changing behaviors either
due to highly heterogeneous or singularly perturbed physical coe�cients, or when the media presents cavities
and fractures as those structures can dramatically change the flow field. Standard finite element methods
must rely on very fine meshes to capture such multiscale features of the velocity and pressure solutions,
which yields to costly linear systems. This fact makes realistic three-dimensional simulations prohibitive
even on modern parallel computers.

Multiscale finite element methods became an attractive alternative to simulate complex phenomena on
coarse meshes. Behind the multiscale methods is the fundamental idea that base functions can upscale un-
resolved multiscale structures. Such basis satisfies local problems which resemble the original one, and then,
they incorporate real coe�cients and element’s geometry in their design. This strategy was first proposed
and analyzed in [8] for a one-dimensional Poisson problem and further extended to higher dimensions in
[28]. Since, several variants of it have been proposed for fluid flow problems as the Heterogeneous Multiscale
method (HMM) [38], the Variational Multiscale method (VMS) [29], the Generalized Multiscale finite ele-
ment method [18], and the Localized Orthogonal Decomposition method (LOD) [32], to mention a few. For
some of those methods a posteriori error analysis is provided, see for instance [9, 30, 1, 33, 14, 27, 36, 34]
and the references therein.

The Multiscale Hybrid-Mixed (MHM) method is a member of the family of multiscale methods. Initially
proposed for the Darcy model in [25] , the MHM method yields superconvergent solutions and provides a
face-based a posteriori error estimates which drives adaptativity (c.f. [6]). The MHM method is a byproduct
of the primal hybridization of the original weak formulation analyzed in [35]. The strategy consists of
characterizing, first, the exact solution of the hybrid formulation as the solution of an equivalent local-global
problem. Then, discretization uncouples local and global problems making the (independent) local problems
responsible for the computation of the multiscale base functions. The global problem, defined on the skeleton
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of the coarse partition, responds for the computations of degrees of freedom. Also, the MHM method can
be used to approximate the solution of singularly perturbed reactive-advective-di↵usive problems [26], linear
elasticity [24] and Maxwell equations [31]. It is important to mention that the hybridization strategy has
also been used at the discrete level to develop domain decomposition methods (c.f. [3, 13, 12]).

This work proposes a new residual a posteriori error estimator for the MHM method applied to the
Stokes/Brinkman problem. It accounts for the multi-level numerical approximation of the method presented
in [7]. Indeed, the error indicator has two-levels of contributions: ⌘1 related to the jump of the discrete
velocity on the skeleton of the first-level mesh, similar to those that appear in previous works (see [6, 24], for
instance), and ⌘2 coming from the approximation error of the solutions at the local problems. The proofs
of e�ciency and reliability of ⌘1 follow closely the strategy presented in [6] and [24] for the transport and
elasticity equations, respectively. Here, we extend it to cope with mixed Stokes/Brinkman problems. The
proof of the e�ciency of ⌘2 depends on the choice of the second-level solver. Here, we chose the stabilized
finite element method USFEM [10], which allow equal-order interpolations for the pressure and velocity,
and then, we revisit the proof of e�ciency proposed in the classic work [37] in the context of the MHM
methodology. As a result, we prove that the new multiscale a posteriori error estimator is locally e�cient
and reliable. Also, we use the two-level information of the error estimator to drive skeleton mesh refinement
and to select appropriate independent second-level meshes. The latter is fundamental to secure MHM’s
super-convergence. The proposed a posteriori error estimator is, up to our knowledge, the first for the MHM
method to leverage the approximation error coming from the second-level solutions.

The paper is organized as follows: Section 2 introduces the model problem, and Section 3 revisits the one
and two-level MHM methods proposed in [7], and gives some preliminary results. Section 4 presents the
multiscale a posteriori error estimator and its analysis. Also, it outlines two adaptive algorithms based on
the multi-level structure of the estimator. Three examples assess the theoretical results in Section 5, and
conclusions are in Section 6. The appendix section contains some intermediary theoretical results.

2. Model problem and Preliminaries

Let ⌦ ⇢ Rd, d 2 {2, 3}, be an open and bounded polytopal domain with boundary @⌦. The generalized
Stokes problem, also called Brinkman problem, consists of finding a velocity u : ⌦ ! Rd and a pressure
p : ⌦ ! R fields such that

�⌫�u+ � u+rp = f in ⌦,

r · u = 0 in ⌦,

u = g on @⌦.

(2.1)

Here ⌫ 2 R+ is the di↵usion coe�cient, � 2 L
1(⌦)d⇥d is a tensor which may contains multiscale features of

the media, f 2 L
2(⌦)d is a body force and the function g 2 H

1/2(@⌦)d satisfies the compatibility conditionR
@⌦

g · n ds = 0, where n is the outward unit normal vector of @⌦.
Also, we assume � is a symmetric and definite positive tensor which is uniformly elliptic, i.e., there exist

constants �min, �max > 0 such that

�min |⇠|2  ⇠T� (x) ⇠  �max |⇠|2, 8⇠ 2 Rd
, 8x 2 ⌦, (2.2)

where | · | is the Euclidean norm. Above and hereafter the Sobolev spaces have their usual meaning.

2.1. Notations. The standard variational mixed formulation of problem (2.1) reads: Find u 2 H
1(⌦)d,

with u = g on @⌦, and p 2 L
2
0
(⌦) such that

a(u,v) + b(v, p) = (f , v)⌦ for all v 2 H
1

0
(⌦)d,

b(u, q) = 0 for all q 2 L
2

0
(⌦),

(2.3)

where L
2
0
(⌦) stands for the space of functions in L

2(⌦) with zero mean value in ⌦, and the bilinear forms
a(·, ·) and b(·, ·) are defined by

a(w,v) := (⌫rw,rv)⌦ + (� w,v)⌦ and b(v, q) := �(r · v, q)⌦, (2.4)

for all w, v 2 H
1(⌦)d and q 2 L

2
0
(⌦). As usual, (·, ·)D denotes the L

2 inner product on a open set D (we
don’t make a distinction between vector-valued and scalar-valued functions). Problem (2.3) is well-posed
(see for instance [21]).
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Let {TH}H>0 be a family of shape-regular meshes of ⌦, composed of simplex K of diameter HK , and
of global mesh size H := max{HK : K 2 TH}. Hereafter we shall use the terminology usually employed
for three-dimensional domains, with the restriction to two-dimensional problems being straightforward. As
such, each element K has a boundary @K consisting of faces F , with diameter HF . The collection of all
faces F , in a triangulation TH , is denoted by EH , which is decomposed into the set of internal faces E0 and
the set of faces on the Dirichlet boundary ED. We denote by T

H̃
(F ) a triangulation of F 2 EH , where H̃ is

the maximum size of all F̃ belonging to T
H̃
(F ). For each K 2 TH , we denote by nK the outward normal on

@K, and let nK

F
:= nK |F for each F ⇢ @K.

On top of a mesh TH , we define the following spaces

V := H
1(TH)d := {v 2 L

2(⌦)d : v |K 2 H
1(K)d for all K 2 TH }, (2.5)

⇤ :=
n
�nK |@K 2 H

�1/2(@K)d for all K 2 TH : � 2 H(div;⌦)
o
, (2.6)

and Q := L
2(⌦). We define an inner product on V by

(u,v)V :=
1

d
2

⌦

(u,v)⌦ +
X

K2TH

(ru,rv)K for all u,v 2 V,

where d⌦ is the diameter of ⌦. We equip the spaces H(div;⌦), V and V ⇥Q with the norms,

k�k2
div,⌦

:=
X

K2TH

�
k�k2

0,K
+ d

2

⌦
kr · �k2

0,K

�
, (2.7)

kvk2V :=
X

K2TH

⇣
d
�2

⌦
kvk2

0,K
+ krvk2

0,K

⌘
, (2.8)

and

k(v, q)k2V⇥Q
:= kvk2V + kqk2

Q
, (2.9)

respectively, and the space ⇤ with the quotient norm

kµk⇤ := inf
�2H(div;⌦)

�nK
=µ on @K,K2TH

k�kdiv,⌦. (2.10)

We denote by h·, ·i@D the dual pairing between H
�1/2(@D)d and H

1/2(@D)d for D ✓ ⌦ and

(µ,v)@TH
:=

X

K2TH

hµ,vi@K ,

and the following norms in H
�1/2(@D)d and H

1/2(@D)d, respectively,

kµk�1/2,@D := sup
v2H1/2(@D)d

hµ,vi@D
kvk1/2,@D

and kvk1/2,@D := inf
w2H

1
(D)

d

w=v on @D

kwk1,D. (2.11)

We recall from [6, Lemma 8.3] that the norm (2.10) is equivalent to a dual norm, namely,
p
2

2
kµk⇤  sup

v2V

(µ,v)@TH

kvkV
 kµk⇤ for all µ 2 ⇤. (2.12)

Above and hereafter we lighten notation and understand the supremum to be taken over sets excluding the
zero function, even though this is not specifically indicated.

Next, following [6], we replace (2.3) by the following hybrid formulation: Find (u, p,�, ⇢) 2 V⇥Q⇥⇤⇥R
such that

8
>>><

>>>:

a(u,v) + b(v, p) + (�,v)@TH
= (f ,v)TH

for all v 2 V,

b(u, q) + (⇢, q)⌦ = 0 for all q 2 Q,

(µ,u)@TH
= hµ, gi@⌦ for all µ 2 ⇤,

(⇠, p)⌦ = 0 for all ⇠ 2 R,

(2.13)
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and we found that (u, p) solution of (2.13) coincides with the solution of (2.3) as shown in [7, Theorem 6].
Above and hereafter, we surcharge the notation a(·, ·) and b(·, ·) to extend them to the space V as follows

a(w,v) :=
X

K2TH

aK(w,v) with aK(w,v) := (⌫rw,rv)K + (�w,v)K ,

and

b(v, q) :=
X

K2TH

bK(v, q) with bK(v, q) := �(r · v, q)K ,

for all w, v 2 V and q 2 Q.

2.2. Preliminar results. Let V0 be the closed subspace of the Hilbert space V defined by

V0 := {v 2 V : a(v,w) = 0 for all w 2 V} .
Observe that for the Stokes problem (� = 0)

V0 =
�
v 2 V : v |K 2 P0(K)d for all K 2 TH

 
,

where P0(K) stands for the space of constant polynomials defined on K, and V0 = {0} otherwise. As such,
we can decompose V as follows

V = V0 �V?
0
, (2.14)

where V?
0

is the orthogonal complement with respect to the inner-product (·, ·)V. Note that for the Stokes
equations (� = 0), it is given by

V?
0
=
�
v 2 V : v |K 2 [H1(K) \ L

2

0
(K)]d for all K 2 TH

 
,

and V?
0
= V otherwise. We shall denote by V?

0
(K), V(K) and Q(K) the spaces of vector functions in V?

0
,

V and Q restricted to K, respectively. Also, the corresponding restricted norms are denoted by k · kV(K)

and k · kQ(K), and the local product norm by k·, ·kV(K)⇥Q(K).
The next results shall be intensively used in the rest of this work. Although being a direct consequence of

standard saddle-point theory, they may not be easy to find in the literature, and then, we decided to detail
them here.

Theorem 2.1. There exists a constant ↵ > 0, independent of K, such that

sup
v2V0(K)?

(r·v, q)K
kvkV(K)

� ↵ kqk
Q(K)

for all q 2 Q(K).

Proof. We first consider the Stokes case, that is,

V0(K)? = [H1(K) \ L
2

0
(K)]d.

Let q 2 Q(K). Thanks to the decomposition L
2(K) = L

2
0
(K)� P0(K), it holds q = q̃ + q0 with q̃ 2 L

2
0
(K)

and q0 = |K|�1
R
K
q dx. Let w̃ 2 H

1
0
(K)d be such that

r· w̃ = q̃ in K, (2.15)

satisfying

|w̃|1,K  Cd

HK

⇢K
kq̃k0,K , (2.16)

where ⇢K is the radius of the ball inscribed in K and Cd is a positive constant which depends only on d.
The existence of such a function w̃ is ensured in [17, Theorem 5.2]. Since we supposed that {TH}H>0 is
shape-regular, there exists �0 > 0 such that

HK

⇢K
 �0,

for all K 2 TH and all HK , thus from (2.16) we have

|w̃|1,K  Cd �0 kq̃k0,K . (2.17)

Setting

w := w̃ +
q0

d
x� 1

|K|

Z

K

⇣
w̃ +

q0

d
x
⌘
dx,
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from (2.15) we have that
r·w = q in K, (2.18)

and from (2.17)

|w|1,K  |w̃|1,K + |d�1
q0x|1,K

 Cd �0 kq̃k0,K + d
�1/2kq0k0,K

 max{Cd �0, d
�1/2} kqk0,K . (2.19)

In addition, since w 2 [H1(K) \ L
2
0
(K)]d, from [11, Theorem 3.2], we have

kwk0,K  HK

⇡
|w|1,K . (2.20)

Then, from (2.18), (2.19) and (2.20), we get

sup
v2[H1(K)\L

2
0(K)]d

(r·v, q)K
kvkV(K)

� (r·w, q)K
(d�2

⌦
kwk2

0,K
+ |w|2

1,K
)1/2

�
 ✓

1

⇡2
+ 1

◆1/2

max{Cd �0, d
�1/2}

!�1

kqk0,K . (2.21)

For the Brinkman case, that is V0(K)? = H
1(K)d, we use (2.21) to obtain

sup
v2H

1(K)d

(r·v, q)K
kvkV(K)

� sup
v2[H1(K)\L

2
0(K)]d

(r·v, q)K
kvkV(K)

�
 ✓

1

⇡2
+ 1

◆1/2

max{Cd �0, d
�1/2}

!�1

kqk0,K

ending the proof. ⇤
Theorem 2.2. There exists a constant � > 0, independent of HK , such that

sup
(v,q)2V0(K)?⇥Q(K)

aK(w,v) + bK(v, r)� bK(w, q)

k(v, q)kV(K)⇥Q(K)

� � k(w, r)kV(K)⇥Q(K)

for all (w, r) 2 V0(K)? ⇥Q(K).

Proof. The result follows from the ellipticity of the bilinear form aK(·, ·) and Theorem 2.1. ⇤
Remark 1. Using Theorem 2.2 and Riesz Representation Theorem, the following global inf-sup condition

holds

sup
(v,q)2V?

0 ⇥Q

a(w,v) + b(v, r)� b(w, q)

k(v, q)kV⇥Q

=

8
><

>:

X

K2TH

0

@ sup
(v,q)2V0(K)?⇥Q(K)

aK(w,v) + bK(v, r)� bK(w, q)

k(v, q)kV(K)⇥Q(K)

1

A
2
9
>=

>;

1/2

� � k(w, r)kV⇥Q (2.22)

for all (w, r) 2 V?
0
⇥Q, where � > 0 is independent of H.

Let us now adresse the second-level discretization. To this end, we denote by
�
T K

h

 
h>0

a regular family

of meshes of K, where h is the characteristic length of T K

h
. We notice that the family

�
T K

h

 
h>0

may di↵er

in each K 2 TH . Also, we denote by EK

h
the set of faces on T K

h
, and by EK

0
the set of internal faces. To each

⇣ 2 EK

h
we associate a normal vector n⌧

⇣
, taking care to ensure this is facing outward on @K.

Associated to the second-level meshes for each K 2 TH , we define the standard polynomial bubble
functions which shall be used in the proofs. Specifically, let bK

⌧
and b

K

⇣
be the bubble functions with support

in ⌧ 2 T K

h
and !⇣ 2 EK

h
, respectively, and defined with respect to the barycentric coordinates (see for instance

[4, Section 2.3.1] for details). For the sake of completeness, we line up two theorems that summarize the
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main properties of these functions, observing that their vector versions counterpart are straightforward. For
this, we adopt in the rest of the paper the following notation

a � b () a  C b,

a ' b () a � b and b � a,

where the positive constant C is independent of H and h, and Pn(T K

h
) is the space of piecewise polynomial

functions of degree equal or less than n in each element ⌧ 2 T K

h
.

Theorem 2.3. Let K 2 TH and let b
K

⌧
be the element bubble function corresponding to ⌧ 2 T K

h
. Then

kvhk20,⌧ � (bK
⌧
vh, vh)⌧ � kvhk20,⌧

and

kvhk0,⌧ � kbK
⌧
vhk0,⌧ + h⌧ |bK⌧ vh|1,⌧ � kvhk0,⌧

for all vh 2 Pn(T K

h
), n � 0.

Proof. See [4, Theorem 2.2]. ⇤

Theorem 2.4. Let K 2 TH and let b
K

⇣
be the corresponding face bubble function on face ⇣ 2 EK

h
and ⌧ 2 T K

h

such that ⌧ is in the support of b
K

⇣
. Then

kvhk20,⇣ � (bK
⇣
vh, vh)⇣ � kvhk20,⇣

and

h
�1/2

⌧
kbK

⇣
vhk0,⌧ + h

1/2

⌧
|bK

⇣
vh|1,⌧ � kvhk0,⇣

for all vh 2 Pn(T K

h
), n � 0.

Proof. See [4, Theorem 2.4].
⇤

Also, let CK

h
: H1(K) ! V

K

1
be the Clément interpolation operator defined on each K 2 TH , where V

K

1

is given by

V
K

1
:= {vh 2 C

0(K) : vh 2 P1(⌧) for all ⌧ 2 T K

h
}.

It verifies the following local stability and approximation properties (cf. [16] and [19]):

kCh(v)k0,⌧ � kvk0,!̃⌧
8⌧ 2 T K

h
, (2.23)

kv � Ch(v)k0,⌧ � h⌧ |v|1,!̃⌧
8⌧ 2 T K

h
, (2.24)

kv � Ch(v)k0,⇣ � h
1/2

⇣
|v|1,!̃⇣

8⇣ 2 EK

h
, (2.25)

for all v 2 H
1(K), where !̃⌧ and !̃⇣ are the set of elements ⌧ 2 T K

h
sharing at least one vertex with ⌧ and

⇣, respectively. Furthermore, we denote by CK

h
(v) the vector function whose components are the Clément

interpolation of each component of v 2 H
1(K)d.

3. The MHM method

This section summarizes the main ideas of the MHM method proposed in [7]. The basic idea behind
the MHM approach is to leverage the nature of hybrid problem (2.13), and characterize the exact solution
regarding the well-posed independent local problems and a face-based global problem which ties everything
together. The one- and two-level MHM method results from the discretization of the global (one-level) and
local (two-level) problems, respectively.
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3.1. Characterizing the exact solution. Let us consider the following local bilinear form BK : (V?
0
(K)⇥

Q(K))⇥ (V?
0
(K)⇥Q(K)) defined by

BK((w, r), (v, q)) := aK(w,v) + bK(v, r)� bK(w, q) (3.1)

for all (w, r), (v, q) 2 V?
0
(K)⇥Q(K).

We define the following linear mappings:

• T : ⇤ ! V?
0
⇥Q such that Tµ|K := (Tu µ, T p µ) solves

BK((Tu µ, T p µ), (v, q)) = �hµ,vi@K for all (v, q) 2 V?
0
(K)⇥Q(K); (3.2)

• T̂ : L2(⌦)d ! V?
0
⇥Q such that T̂ r|K := (T̂u r, T̂ p r) solves

BK((T̂u r, T̂ p r), (v, q)) = (r,v)K for all (v, q) 2 V?
0
(K)⇥Q(K); (3.3)

• T̄ : R ! V?
0
⇥Q such that T̄ ⇠|K := (T̄u

⇠, T̄
p
⇠) solves

BK((T̄u
⇠, T̄

p
⇠), (v, q)) = �(⇠, q)K for all (v, q) 2 V?

0
(K)⇥Q(K). (3.4)

Owing to decomposition (2.14), and noting that a(w,v) = 0 when w 2 V0 or v 2 V0, we rewrite (2.13) as
the following global-local problem: Find (u0,�, ⇢) 2 V0 ⇥⇤⇥ R such that

8
>><

>>:

(�,v0)@TH
= (f ,v0)TH

,

(µ,u0)@TH
+(µ, Tu �)@TH

+(µ, T̄u
⇢)@TH

= hµ, gi@⌦�(µ, T̂u f)@TH
,

(⇠, T p �)⌦ + (⇠, T̄ p
⇢)⌦ = �(⇠, T̂ p f)⌦,

(3.5)

for all (v0,µ, ⇠) 2 V0 ⇥⇤⇥ R.
Hereafter, we assume that the global problem (3.5) is well-posed. Hence, from the linearity of problems

(3.2)-(3.4), we find that the exact u and p can be characterized as follows

u = u0 + T
u�+ T̂

uf and p = T
p�+ T̂

pf (3.6)

where we used (see [7]) that ⇢ = 0. Next, we prove that operators T , T̂ and T̄ are stable with respect to
the given data.

Theorem 3.1. The operators T , T̂ and T̄ , given by (3.2), (3.3) and (3.4), respectively, are well-defined.

Moreover, we have that

kT µkV⇥Q � kµk⇤ for all µ 2 ⇤,

kT̂ rkV⇥Q � krk0,⌦ for all r 2 L
2(⌦)d,

kT̄ ⇠kV⇥Q � |⇠| for all ⇠ 2 R.

Proof. From (2.12) and the global inf-sup (2.22) we get

kT µkV⇥Q = k(Tu µ, T p µ)kV⇥Q

 1

�
sup

(v,q)2V?
0 ⇥Q

a(Tu µ,v) + b(v, T p µ)� b(Tu µ, q)

k(v, q)kV⇥Q

=
1

�
sup

(v,q)2V?
0 ⇥Q

�(µ,v)@TH

k(v, q)kV⇥Q

 1

�
kµk⇤,

where � > 0 is independent of H. The proofs of the other two inequalities are analogous.
⇤

Note that the solution of the coupled global-local problem (3.2)–(3.5) coincides with the solution of the
hybrid problem (2.13).
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3.2. The one-level MHM method. The one-level MHM method stems from the coupled problems (3.2)–
(3.5). We search the approximate Lagrange multipliers in the following space

⇤H := {�H 2 ⇤ : �H |
F̃
2 Pl(F̃ )d, for all F̃ ⇢ T

H̃
(F ), for all F 2 EH}, (3.7)

where Pl(F̃ ) stands for the space of polynomials of degree less or equal to l � 0 on F̃ . Observe that
(3.7) permits discontinuous interpolations on faces which can di↵er on each F 2 EH . See Figure 1 for an
illustration. We shall denote by ⇤m

l
the space when T

H̃
(F ) is compose of m elements. When m = 1, we

denote ⇤1

l
by ⇤l.

@K @K

Figure 1. Two examples of ⇤H restricted to an element K 2 TH .

Replacing ⇤ by ⇤H uncouples local and global problems as shown in [7]. The multiscale basis functions
are computed from (3.2) with the right-hand side replaced by the polynomial base functions on faces, and the
degrees of freedom are obtained from the following one-level MHMmethod: Find (uH

0
,�H , ⇢H) 2 V0⇥⇤H⇥R

such that 8
>><

>>:

(�H ,v0)@TH
= (f , v0)TH

,

(µ
H
,uH

0
)@TH

+(µ
H
, T

u �H)@TH
+(µ

H
, T̄

u
⇢H)@TH

= hµ
H
, gi@⌦�(µ

H
, T̂

u f)@TH
,

(⇠H , T
p �H)⌦ + (⇠H , T̄

p
⇢H)⌦ = �(⇠H , T̂

p f)⌦,

(3.8)

for all v0 2 V0, µH
2 ⇤H and ⇠H 2 R. Here T , T̂ and T̄ are given by (3.2)-(3.4), respectively. Observe that,

in the one-level method (3.8), we assume that close formulas are available for the corresponding solutions of
local problems (3.2)-(3.4). Thereby, the discrete one-level approximation (uH , pH , ⇢H) of the exact solutions
read

uH := uH

0
+ T

u �H + T̂
u f + T̄

u
⇢H and pH := T

p �H + T̂
p f + T̄

p
⇢H . (3.9)

We remark that the one-level MHM method is non-conform in H
1(⌦)d. Nevertheless, it provides a discrete

stress tensor �H given by

�H := �⌫ruH + pH I in H(div;⌦),

since �H nK |@K 2 ⇤H for all K 2 TH . Also, the discrete stress tensor �H is automatically in equilibrium,
in each element K 2 TH , i.e.,

Z

@K

�H nK
ds =

Z

@K

�H ds =

Z

K

f dx,

where we used the first equation in (3.8).
In order to make the MHMmethod e↵ective, one must provide approximate solutions for the local problems

(3.2), (3.3) and (3.4). This is the subject of the next section.

3.3. The two-level MHM method. We begin selecting local finite dimensional spaces Vh(K) ⇢ V?
0
(K)

and Qh(K) ⇢ Q(K), given by

Vh(K) :=
�
vh 2 V?

0
(K) \ C

0(K)d : vh |⌧ 2 Pk(⌧)
d for all ⌧ 2 T K

h

 
(3.10)

and

Qh(K) :=
�
qh 2 Q(K) \ C

0(K) : qh |⌧ 2 Pn(⌧) for all ⌧ 2 T K

h

 
, (3.11)
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where Pr(⌧) is the polynomial space of functions defined on ⌧ 2 T K

h
with total degree less or equal to r. The

corresponding global finite dimensional space are given by

Vh := �K2TH
Vh(K) and Qh := �K2TH

Qh(K). (3.12)

The two-level MHM method reads: Find (uH,h

0
,�H,h, ⇢H) 2 V0 ⇥⇤H ⇥ R such that

8
>><

>>:

(�H,h,v0)@TH
= (f , v0)TH

,

(µ
H
,uH,h

0
)@TH

+(µ
H
, T

u
h
�H,h)@TH

+(µ
H
, T̄

u
h
⇢H)@TH

= hµ
H
, gi@⌦�(µ

H
, T̂

u f)@TH
,

(⇠H , T
p

h
�H,h)⌦ + (⇠H , T̄

p

h
⇢H)⌦ = �(⇠H , T̂

p

h
f)⌦,

(3.13)

for all (v0,µH
, ⇠H) 2 V0 ⇥⇤H ⇥ R.

Operators T h, T̄ h and T̂ h are defined such that they approximate T , T̄ and T̂ when h goes to zero. In
this work, one adopts the unusual stabilized finite element method (USFEM) proposed in [10] to define T h,
T̄ h and T̂ h. The USFEM allows using nodal equal-order pair of spaces for the velocity and the pressure
variables, i.e., we can set k = n in (3.10) and (3.11). It is worth to mention that, in its more general version,
the MHM method may adopt di↵erent order of interpolation spaces in each K 2 TH (and even di↵erent
numerical methods). Here, for the sake of clarity, we adopt the USFEM method with the same degree of
interpolation in all elements of the partition.

We recall (see [10] for details) that the USFEM consists of finding (u, p) 2 Vh(K)⇥Qh(K) such that

B̃K((u, p), (v, q)) = FK(v, q) for all (v, q) 2 Vh(K)⇥Qh(K),

where

B̃K((u, p), (v, q)) :=aK(u,v) + bK(v, p)� bK(u, q)

�
X

⌧2T K

h

⌧ (�⌫�u+ �u+rp,�⌫�v + �v �rq)⌧ (3.14)

and

FK(v, q) := (f ,v)K �
X

⌧2T K

h

⌧ (f ,�⌫�v + �v �rq)⌧ .

The stabilization parameter is given by

⌧ :=
h
2
⌧

�min h
2
⌧
max{1,�⌧}+

4⌫

mk

with �⌧ :=
4⌫

mk �min h
2
⌧

, (3.15)

where �min is defined in (2.2), mk := min
�

1

3
, Ck

 
and

Ck h
2

⌧
k�vk2

0,⌧
 krvk2

0,⌧
for all v 2 Vh(K). (3.16)

Note that the only unknown constant in the design of the stabilization parameter is Ck. This constant,
depending only on d and the polynomial degree for the velocity, is tabulated in [23] for some 2D cases. A
general way to calculate Ck numerically is proposed in [20].

Owing to the above definitions, we define the corresponding discrete operators as follows:

• T h : ⇤H ! Vh ⇥Qh such that T h �H,h |K := (Tu
h
�H,h, T

p

h
�H,h) solves

B̃K((Tu
h
�H,h, T

p

h
�H,h), (vh, qh)) = �h�H,h,vhi@K for all (vh, qh) 2 Vh(K)⇥Qh(K); (3.17)

• T̂ h : L2(⌦)d ! Vh ⇥Qh such that T̂ h f |K := (T̂u
h
f , T̂ p

h
f) solves

B̃K((T̂u
h
f
H
, T̂

p

h
f), (vh, qh)) = FK(vh, qh) for all (vh, qh) 2 Vh(K)⇥Qh(K); (3.18)

• T̄ h : R ! Vh ⇥Qh such that T̄ h ⇢H |K := (T̄u
h
⇢H , T̄

p

h
⇢H) solves

B̃K((T̄u
h
⇢H , T̄

p

h
⇢H), (vh, qh)) = �(⇢H , qh)K for all (vh, qh) 2 Vh(K)⇥Qh(K). (3.19)
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Operators T h, T̂ h and T̄ h are well-defined since the discrete problems (3.17), (3.18) and (3.19) are well-
posed from [10]. As a result, the discrete two-level solution (uH,h, pH,h, ⇢H) is given through the expressions

uH,h := uH,h

0
+ T

u
h
�H,h + T̂

u
h
f and pH,h := T

p

h
�H,h + T̂

p

h
f , (3.20)

where we used that ⇢H = 0 (c.f. [7]).

Remark 2. By taking (vh, qh) = (0, 1K) in equations (3.17), (3.18) and (3.19), the following local conser-

vation property holds for the discrete velocity field uH,h

Z

K

r·uH,h dx = 0 for all K 2 TH , (3.21)

and the approximate flux �H,h is in equilibrium with external forces, i.e.,

Z

@K

�H,h ds =

Z

K

fdx for all K 2 TH , (3.22)

4. A posteriori error analysis

This section introduces the multiscale a posteriori error estimator, which is proved to be locally e�cient
and reliable.

4.1. The multiscale a posteriori error estimator. This section presents the residual-based error esti-
mator for the MHM method. Given F 2 EH , we define a face-residual estimator as follows:

RF :=

⇢
� 1

2
JuH,hK F 2 E0,

g � uH,h F 2 ED,
(4.1)

where the jump over a face F 2 E0 of a vector v 2 V is defined by

JvK := (v|K+)|F � (v|K�)|F
with K

+ and K
� are the two elements sharing F . Thus, we define

⌘1,F :=

8
<

:
X

F̃2T
H̃
(F )

⌘
2

1,F̃

9
=

;

1/2

(4.2)

where

⌘
1,F̃

:=
kRF k0,F̃
H

1/2

F

for all F̃ 2 T
H̃
(F ). Owing to previous definitions, the first level a posteriori error estimator reads

⌘1 :=

(
X

K2TH

⌘
2

1,K

)1/2

, where ⌘
2

1,K
:=

X

F⇢@K

⌘
2

1,F
. (4.3)

To propose a second-level estimator, we first need some notations related to local residuals in each sub-
element ⌧ 2 T K

h
and on each sub-face ⇣ 2 EK

h
. They are the following:

RK

⌧
:=
�
⌫�uH,h � �uH,h �rpH,h + f

�
|⌧ for all ⌧ 2 T K

h
(4.4)

and

RK

⇣
:=

8
>><

>>:

J�⌫
@uH,h

@n⌧

⇣

+ pH,hn⌧

⇣
K on ⇣ 2 EK

0

��H,h � ⌫
@uH,h

@n⌧

⇣

+ pH,hn⌧

⇣
on ⇣ 2 EK

h
\ EK

0
.

(4.5)

Using previous definitions, the second-level a posteriori error estimator reads as follows

⌘2 :=

(
X

K2TH

⌘
2

2,K

)1/2

(4.6)
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where

⌘2,K :=
h X

⌧2T K

h

⇥
h
2

⌧
kRK

⌧
k2
0,⌧

+ kr·uH,hk20,⌧
⇤
+
X

⇣2EK

h

h⇣kRK

⇣
k2
0,⇣

i1/2
.

Summing up (4.3) and (4.6), we build an a posteriori error estimator, which includes the first and second
level residuals, given by

⌘ = ⌘1 + ⌘2. (4.7)

Remark 3. The contribution of ⌘1 depends only on the jump of the velocity across the faces of the first-level

mesh. It has the same form of the a posteriori estimator introduced in [6] for the Darcy equation. We

recall that the error associated to the local problems were not considered in [6], which explains the absence of

contribution ⌘2 in [6].

Remark 4. Note that ⌘2 behaves asymptotically as a high order term compare to ⌘ when h  H
↵+1

, with

↵ > 0. With such a choice, second-level error estimator ⌘2 may be disregarded in the numerical tests, i.e.,

⌘ = ⌘1. As shown in the next section, such a simplified version is also an e�cient and reliable a posteriori

error estimator for the two-level MHM method.

4.2. E�ciency and reliability. This section proves that the estimator (4.7) is close to the real error. To
this end, we need some intermediary estimates which are addressed first.

The first result mesures the quality of the second-level approximation with respect to the second-level a
posteriori error estimator ⌘2,K in each K 2 TH .

Lemma 4.1. The following estimate holds

k
�
(Tu � T

u
h
)�H,h + (T̂u � T̂

u
h
)f , (T p � T

p

h
)�H,h + (T̂ p � T̂

p

h
)f
�
kV(K)⇥Q(K) � ⌘2,K .

Proof. Recalling from (3.20) that

pH,h = T
p

h
�H,h + T̂

p

h
f

we define 8
>><

>>:

ũ := T
u�H,h + T̂

uf ,

p̃ := T
p�H,h + T̂

pf ,

ũH,h := T
u
h
�H,h + T̂

u
h
f ,

and (
e
ũ := ũ� ũH,h,

e
p̃ := p̃� pH,h.

Let v 2 V(K), q 2 Q(K) and vh := CK

h
(v) be the Clément interpolant of v on K 2 TH . From the

definition of the bilinear form BK(·, ·) given in (3.1), (3.2), (3.3), (3.20) and integration by parts, it holds

BK((eũ, ep̃), (v, q)) = aK(ũ� ũH,h,v) + bK(v, p̃� pH,h)� bK(ũ� ũH,h, q)

= �h�H,h,vi@K + (f ,v)K �
⇥
aK(uH,h,v) + bK(v, pH,h)� bK(uH,h, q)

⇤

=
X

⌧2T K

h

⇥
(RK

⌧
,v)⌧ + (r·uH,h, q)⌧

⇤
+
X

⇣2EK

h

(RK

⇣
,v)⇣ , (4.8)

thus, replacing v by v � vh in (4.8) and using Cauchy–Schwartz inequality, we get

BK((eũ, ep̃), (v � vh, q)) 
X

⌧2T K

h

⇥
kRK

⌧
k0,⌧kv � vhk0,⌧ + kr·uH,hk0,⌧kqk0,⌧

⇤

+
X

⇣2EK

h

kRK

⇣
k0,⇣kv � vhk0,⇣ . (4.9)
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On the other hand, testing (4.8) with (v, q) = (vh, 0) 2 Vh ⇥Qh, we arrive at

BK((eũ, ep̃), (vh, 0)) = aK(ũ� ũH,h,vh) + bK(vh, p̃� pH,h)

=�
X

⌧2T K

h

⌧ (�⌫�uH,h + �uH,h +rpH,h � f ,�⌫�vh + �vh)⌧

=
X

⌧2T K

h

⌧ (R
K

⌧
,�⌫�vh + �vh)⌧ . (4.10)

From the definition of ⌧ (see (3.15)), it is easy to verify that

⌧  h
2
⌧

12⌫
, (4.11)

thus, using (3.16) and (4.11), we get

⌧k � ⌫�vh + �vhk0,⌧  h⌧

Ck12⌫
krvhk0,⌧ + k�k1

h
2
⌧

12⌫
kvhk0,⌧

� h⌧ {krvhk0,⌧ +
1

d⌦
kvhk0,⌧}. (4.12)

Then, combining (4.9), (4.10), (4.12), the properties of Clément interpolation operator (2.23)-(2.25) and the
mesh regularity, we arrive at

BK((eũ, ep̃), (v, q)) =BK((eũ, ep̃), (v � vh, q)) +BK((eũ, ep̃), (vh, 0))

�
X

⌧2T K

h

⇥
kRK

⌧
k0,⌧kv � vhk0,⌧ + kr·uH,hk0,⌧kqk0,⌧

⇤

+
X

⇣2EK

h

kRK

⇣
k0,⇣kv � vhk0,⇣ +

X

⌧2T K

h

h⌧kRK

⌧
k0,⌧{krvhk0,⌧ +

1

d⌦
kvhk0,⌧}

�
X

⌧2T K

h

⇥
h⌧kRK

⌧
k0,⌧ |v|1,!̃⌧

+ kr·uH,hk0,⌧kqk0,⌧
⇤

+
X

⇣2EK

h

h
1/2

⇣
kRK

⇣
k0,⇣ |v|1,!̃⇣

+
X

⌧2T K

h

h⌧kRK

⌧
k0,⌧{krvhk0,⌧ +

1

d⌦
kvhk0,⌧}

�
h X

⌧2T K

h

⇥
h
2

⌧
kRK

⌧
k2
0,⌧

+ kr·uH,hk20,⌧
⇤
+
X

⇣2EK

h

h⇣kRK

⇣
k2
0,⇣

i1/2

⇥
h X

⌧2T K

h

⇥
krvk2

0,⌧
+

1

d
2

⌦

kvhk20,⌧ + |v|2
1,!̃⌧

+ kqk2
0,⌧

⇤
+
X

⇣2EK

h

|v|2
1,!̃⇣

i1/2

�
h X

⌧2T K

h

⇥
h
2

⌧
kRK

⌧
k2
0,⌧

+ kr·uH,hk20,⌧
⇤
+
X

⇣2EK

h

h⇣kRK

⇣
k2
0,⇣

i1/2
⇥ k(v, q)kV(K)⇥Q(K).

Thus, the result follows from the inf-sup condition given in Theorem 2.2.
⇤

Now, we adapt the ideas of the proof in [6, Lemma 5.1] to include second-level approximations.

Lemma 4.2. Let uH,h 2 Vh be the discrete solution given by (3.20). Then, there exists � 2 V satisfying

(µ,�)@TH
= hµ, gi@⌦ � (µ,uH,h)@TH

for all µ 2 ⇤,

such that

k�kV � ⌘1.

Proof. Let (�̄, ⇠̄) 2 V ⇥⇤ be the solution of the following problem

1

d
2

⌦

(�̄,v)TH
+ (r�̄,rv)TH

+ (⇠̄,v)@TH
=

1

d
2

⌦

(uH,h,v)TH
�
X

K2TH

X

⌧2T K

h

(�uH,h,v)⌧

(µ, �̄)@TH
= hµ, gi@⌦

(4.13)
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for all (v,µ) 2 V⇥⇤. From [22] we have that ⇠̄ belongs to L
2(EH)d. Then, there exists � 2 H(div;⌦) such

that �n = ⇠̄ on EH , and we define ⇠̃ := �n⌧

⇣
on EK

h
. Using v|K 2 H

1(K)d, we can rewrite (4.13) as follows

1

d
2

⌦

(�̄,v)TH
+ (r�̄,rv)TH

+
X

K2TH

X

⌧2T K

h

h⇠̃,vi@⌧ =
1

d
2

⌦

(uH,h,v)TH
�
X

K2TH

X

⌧2T K

h

(�uH,h,v)⌧

(µ, �̄)@TH
= hµ, gi@⌦

for all (v,µ) 2 V⇥⇤. Now, define � := �̄�uH,h and ⇠ := ⇠̃+ruH,h n. Then, (�, ⇠) 2 H
3/2(TH)d⇥L

2(EH)d

and satisfies
1

d
2

⌦

(�,v)TH
+ (r�,rv)TH

+ (⇠,v)@TH
= 0 for all v 2 V,

(µ,�)@TH
= �(µ,uH,h)@TH

+ hµ, gi@⌦ for all µ 2 ⇤.

(4.14)

Testing (4.14) with (v,µ) = (�, ⇠) and using Cauchy–Schwartz inequality, we get

k�k2V =
X

K2TH

⇢
1

d
2

⌦

k�k2
0,K

+ kr�k2
0,K

�
= �(⇠,�)@TH

= (⇠,uH,h)@TH
� (⇠, g)@⌦

=
X

F2E0

k⇠k0,F kJuH,hKk0,F +
X

F2@⌦

k⇠k0,F kg � uH,hk0,F


(
X

F2EH

HF k⇠k20,F

)1/2(X

F2E0

1

HF

kJuH,hKk2
0,F

+
X

F2@⌦

1

HF

kg � uH,hk20,F

)1/2

=

(
X

F2EH

HF kr�nk2
0,F

)1/2

⌘1 � k�kV⌘1

and the result follows.
⇤

In what follows, we will use the following local norm

kvk2V,!F
:=

X

K2!F

�
H

�2

K
kvk2

0,K
+ krvk2

0,K

�
,

where F 2 EH and !F stands for the set of elements sharing the face F . The next theorem proves a bound
for ⌘2,K with respect to the local error.

Theorem 4.3. Let K 2 TH . For ⌧ 2 T K

h
, then it holds

h⌧ kRK

⌧
k0,⌧ �

h
h⌧ku� uH,hk0,⌧ + |u� uH,h|1,⌧ + kp� pH,hk0,⌧

i

and

kr·uH,hk0,⌧ � |u� uH,h|1,⌧ .
Furthermore, for ⇣ 2 EK

0
we have that

h
1/2

⇣
kRK

⇣
k0,⇣ �

X

⌧2!⇣

n
|u� uH,h|1,⌧ + h⌧ku� uH,hk0,⌧ + kp� pH,hk0,⌧

o

and, for ⇣ 2 EK

h
\EK

0
we get

h
1/2

⇣
kRK

⇣
k0,⇣ �

X

⌧2!⇣

n
|u� uH,h|1,⌧ + h⌧ku� uH,hk0,⌧ + kp� pH,hk0,⌧

o
+ k�� �H,hk�1/2,@K .

Therefore, it holds

⌘
2

2,K
� ku� uH,hk2V(K)

+ kp� pH,hk2Q(K)
+ k�� �H,hk2�1/2,@K

, (4.15)

for all K 2 TH .
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Proof. Let K 2 TH , ⌧ 2 T K

h
and ⇣ 2 EK

h
. We define bK

⌧
:= b

K

⌧
RK

⌧
and bK

⇣
:= b

K

⇣
PK

⇣
(RK

⇣
), where

PK

⇣
: Pk(⇣)d ! Pk(!⇣)d is a extension of functions defined on a face ⇣ to the patch !⇣ , as in [5, Section 4.1].

Since bK
⌧
|⌧ 2 H

1
0
(⌧)d, using integration by parts, (2.13) and Theorem 2.3 we obtain

(RK

⌧
, bK

⌧
)⌧ = (⌫�uH,h � �uH,h �rpH,h + f , bK

⌧
)⌧

= (⌫r(u� uH,h),rbK
⌧
)⌧ + (�(u� uH,h), b

K

⌧
)⌧ � (r· bK

⌧
, p� pH,h)⌧

�
h
h
�1

⌧
|u� uH,h|1,⌧ + ku� uH,hk0,⌧ + h

�1

⌧
kp� pH,hk0,⌧

i
kRK

⌧
k0,⌧

and then

h⌧ kRK

⌧
k0,⌧ � h⌧ku� uH,hk0,⌧ + |u� uH,h|1,⌧ + kp� pH,hk0,⌧ .

Using Theorem 2.3 again, we arrive at

kr·uH,hk20,⌧ � (r·uH,h, b
K

⌧
r·uH,h)⌧ = (r· (uH,h � u), bK

⌧
r·uH,h)⌦

=
�
r· (uH,h � u), bK

⌧
r·uH,h

�
⌧

� |uH,h � u|1,⌧kr·uH,hk0,⌧

and hence

kr·uH,hk0,⌧ � |u� uH,h|1,⌧ .

Now we proceed to bound the term h
1/2

⇣
kRK

⇣
k0,⇣ . For ⇣ 2 EK

0
, from (2.13) and using Theorem 2.4, we get

(RK

⇣
, bK

⇣
)⇣ =

X

⌧2!⇣

n
� (RK

⌧
, bK

⇣
)⌧ +

�
⌫r(u� uH,h),rbK

⇣

�
⌧
+
�
�(u� uH,h), b

K

⇣

�
⌧

�
�
r· bK

⇣
, p� pH,h

�
⌧

o

�
X

⌧2!⇣

n
kRK

⌧
k0,⌧kbK⇣ k0,⌧ + ⌫|u� uH,h|1,⌧ |bK⇣ |1,⌧ + k�(u� uH,h)k0,⌧kbK⇣ k0,⌧

+|bK
⇣
|1,⌧kp� pH,hk0,⌧

o

�
X

⌧2!⇣

h
h
1/2

⌧
kRK

⌧
k0,⌧ + h

�1/2

⌧
|u� uH,h|1,⌧ + h

1/2

⌧
ku� uH,hk0,⌧

+h
�1/2

⌧
kp� pH,hk0,⌧

i
kRK

⇣
k0,⇣

and then, from the regularity of the second level meshes, it holds

h
1/2

⇣
kRK

⇣
k0,⇣ �

X

⌧2!⇣

n
h⌧kRK

⌧
k0,⌧ + |u� uH,h|1,⌧ + h⌧ku� uH,hk0,⌧ + kp� pH,hk0,⌧

o
.

For ⇣ 2 EK

h
\EK

0
, from (2.13) and the definition of the norm k · k1/2,@K in (2.11), and Theorem 2.4, we get

(RK

⇣
, bK

⇣
)⇣ =

X

⌧2!⇣

n
� (RK

⌧
, bK

⇣
)⌧ +

�
⌫r(u� uH,h),rbK

⇣

�
⌧
+
�
�(u� uH,h), b

K

⇣

�
⌧

�
�
r· bK

⇣
, p� pH,h

�
⌧

o
+ h�� �H,h, b

K

⇣
i@K

�
X

⌧2!⇣

n
kRK

⌧
k0,⌧kbK⇣ k0,⌧ + |u� uH,h|1,⌧ |bK⇣ |1,⌧ + ku� uH,hk0,⌧kbK⇣ k0,⌧

+ |bK
⇣
|1,⌧kp� pH,hk0,⌧

o
+ k�� �H,hk�1/2,@KkbK

⇣
k1/2,@K

�
h X

⌧2!⇣

n
h
1/2

⌧
kRK

⌧
k0,⌧ + h

�1/2

⌧
|u� uH,h|1,⌧ + h

1/2

⌧
ku� uH,hk0,⌧

+ h
�1/2

⌧
kp� pH,hk0,⌧

o
+ h

�1/2

⇣
k�� �H,hk�1/2,@K

i
kRK

⇣
k0,⌧ .
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Now, from the regularity of the second-level meshes we get

h
1/2

⇣
kRK

⇣
k0,⇣ �

X

⌧2!⇣

n
h⌧kRK

⌧
k0,⌧ + |u� uH,h|1,⌧ + h⌧ku� uH,hk0,⌧

+ kp� pH,hk0,⌧
o
+ k�� �H,hk�1/2,@K ,

and estimate (4.15) follows.
⇤

A first equivalence between the real error and the multiscale a posteriori estimator is presented in the
next theorem.

Theorem 4.4. Let (u, p) 2 V ⇥Q and (uH,h, pH,h) 2 Vh ⇥Qh be the solutions of continuous and discrete

problems given by (3.6) and (3.9), respectively. Then we have that

ku� uH,hkV + kp� pH,hkQ + k�� �H,hk⇤ � (⌘1 + ⌘2) + h.o.t. (4.16)

Moreover, for F 2 EH , we have that

⌘1,F � ku� uH,hkV,!F
. (4.17)

Proof. We begin by proving the reliability of the estimator. From (3.6) and (3.20), it holds

k(u, p)� (uH,h, pH,h)kV⇥Q

= k(u0 + T
u�+ T̂

uf , T p�+ T̂
pf)� (uH,h

0
+ T

u
h
�H,h + T̂

u
h
f , T p

h
�H,h + T̂

p

h
f)kV⇥Q

 ku0 � uH,h

0
kV + k(Tu � T

u
h
)�H,h + (T̂u � T̂

u
h
)fkV + kTu(�� �H,h)kV

+ k(T p � T
p

h
)�H,h + (T̂ p � T̂

p

h
)fkQ + kT p(�� �H,h)kQ. (4.18)

Furthermore, given µ
H

2 ⇤H and using (3.5) and (3.13), we obtain

�(µ
H
,u0 � uH,h

0
)@TH

= (µ
H
, T

u�� T
u
h
�H,h)@TH

+ (µ
H
, T̂

uf � T̂
u
h
f)@TH

= (µ
H
, T

u(�� �H,h))@TH
+ (µ

H
, (Tu � T

u
h
)�H,h + (T̂u � T̂

u
h
)f)@TH

 kµ
H
k⇤
�
kTu(�� �H,h)kV + k(Tu � T

u
h
)�H,h + (T̂u � T̂

u
h
)fkV

 
.

Consequently, we get

sup
µH2⇤H

�(µ
H
,u0 � uH,h

0
)@TH

kµ
H
k⇤

 kTu(�� �H,h)kV + k(Tu � T
u
h
)�H,h + (T̂u � T̂

u
h
)fkV. (4.19)

Now, since u0 � uH,h

0
2 V0, there exists a matrix function �? such that each of its rows belong to the

lowest order Raviart–Thomas space, satisfying

r·�? = u0 � uH,h

0
in ⌦ and k�?kdiv,⌦  C ku0 � uH,h

0
k0,⌦. (4.20)

Defining µ? := �? n 2 ⇤H , and using (4.20), it holds

sup
µH2⇤H

�(µ
H
,u0 � uH,h

0
)@TH

kµ
H
k⇤

� (µ?
,u0 � uH,h

0
)@TH

kµ?k⇤
� (�? n,u0 � uH,h

0
)@TH

k�?kdiv,⌦

=
(r·�?

,u0 � uH,h

0
)@TH

k�?kdiv,⌦
� C ku0 � uH,h

0
k0,⌦ � C ku0 � uH,h

0
kV. (4.21)

Using (4.21) in (4.19), and replacing the result in (4.18), and from Lemmas 4.1, using (A.13) and Lemmas
A.2 and A.3 in the appendix, estimate (4.16) follows.

As for the e�ciency of the a posteriori error estimator, we first recall the following scaling property (cf.
[2, Theorem 3.10]): Given v 2 H

1(K), we have that

kvk0,@K �
✓

1

HK

kvk2
0,K

+HKkrvk2
0,K

◆1/2

. (4.22)

Since RF 2 L
2(F )d,

kRF k20,F  2 (RF , Ju� uH,hK)F  2 kRF k0,F kJu� uH,hKk0,F
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and using (4.22) and the mesh regularity, it holds

kRF k0,F  2kJu� uH,hKk0,F

�
X

K2!F

�
H

�1

K
ku� uH,hk20,K +HKkr(u� uH,h)k20,K

�1/2

� H
1/2

F

X

K2!F

�
H

�2

K
ku� uH,hk20,K + kr(u� uH,h)k20,K

�1/2

� H
1/2

F
ku� uH,hkV,!F

,

and the estimate (4.17) follows.
⇤

We are ready to present the main result of this section.

Theorem 4.5. Let (u, p,�) 2 V ⇥ Q ⇥ ⇤ and (uH,h, pH,h,�H,h) 2 Vh ⇥ Qh ⇥ ⇤H be the solutions of

continuous and discrete problems, characterized through (3.6) and (3.9), respectively. Then, we have that

ku� uH,hkV + kp� pH,hkQ + k�� �k⇤ � (⌘1 + ⌘2) + h.o.t. (4.23)

Moreover, given K 2 TH and F 2 EH , we have

⌘1,F � ku� uH,hkV,!F
(4.24)

and

⌘2,K � ku� uH,hkV(K) + kp� pH,hkQ(K) + k�� �H,hk�1/2,@K . (4.25)

Proof. The result is straightforward from Theorem 4.3 and Theorem 4.4. ⇤

5. Numerical results

Using the definitions of the error estimators ⌘1 and ⌘2 given in (4.3) and (4.6), respectively, we validate
two adaptive refinement algorithms: a classical procedure based on refining the elements of the first level
mesh, and a new one based on refining faces which keeps the topology of the first-level mesh untouched.

5.1. First strategy: Adaptivity by elements. For all K 2 TH , we define

⌘K := ⌘2,K +
X

F2EH\@K

⌘1,F .

The adaptive mesh generation strategy is given in the Algorithm 1.

Algorithm 1 : Adaptivity by elements

Require: ✓ 2 (0, 1) and a coarse first-level mesh TH .
1: Solve the discrete problem on the current mesh.
2: For each element K 2 TH , compute the local error indicator ⌘K .
3: Mark the elements K 2 TH such that ⌘K � ✓ max

K2TH

⌘K , and create a new first-level mesh TH refining the

marked elements.
4: If the stop criterion is not satisfied, repeat the algorithm.

Note that Algorithm 1 does not induce local mesh refinement in the second-level sub-meshes. This fact is
supported by the numerical experiments that show that second-level meshes may consist only of one element
when the first-level mesh diameter goes to zero.
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5.2. Second strategy: Adaptivity by faces. For all F 2 EH , we define

⌘F := ⌘1,F +
X

K2!F

⌘2,K .

Algorithm 2 : Adaptivity by faces

Require: ✓ 2 (0, 1) and a coarse first-level mesh TH .
1: Solve the discrete problem on the current mesh.
2: For each F 2 EH , compute the local error indicator ⌘F .
3: Mark the faces F 2 EH such that ⌘F � ✓ max

F2EH

⌘F , and refine F̃ 2 T
H̃
(F ) such that ⌘

1,F̃
= max

F̃2T
H̃
(F )

⌘
1,F̃

for each marked F , and if ⌘1,F <

X

K2!F

⌘2,K also refine the second-level meshes T K

h
for K 2 !F .

4: If the stop criterion is not satisfied, repeat the algorithm.

Owing to Algorithm 2, the first-level mesh does not change as the adaptive process runs unlike in the
classical mesh adaptation described in Algorithm 1. As a result, only the local problems associated with
the elements “touched” by the estimator need to be revisited. This fact leads to a few extra entries go
into the global system. Algorithm 2 is particularly attractive for use with real three-dimensional problems
since it dramatically decreases the computational cost involved in the adaptive procedure, and avoids three-
dimensional global re-meshing.

5.3. An example with analytical solution. In this example, we consider a Stokes problem with vis-
cosity ⌫ = 1 and ⌫ = 10�2 on the unit square domain ⌦. We chose f and g such that the exact so-
lution u = (u1, u2) is given by u1(x, y) := 256 y2(y � 1)2x(x � 1)(2x � 1) and u2(x, y) := �u1(y, x), and
p(x, y) := 150(x� 0.5)(y � 0.5).

A typical quantity to measure the quality of an error estimator, is the so-called e↵ectivity index, Ei,
defined by Ei = ⌘

k(u�uH,h,p�pH,h)kV⇥Q

. In tables 1, 2, 3 and 4 we tabulate this index for some di↵erent

values of H and using one element as second-level meshes.
We observe that ⌘1 and ⌘2 have, in general, equivalent rates of convergence (see Tables 1 and 3). However,

if one chooses h = H
2 then ⌘2 achieves a higher order of convergence when compare to ⌘1 (see Tables 2 and

4). This is in accordance with the theory and was announced in Remark 4.

k(u� uH,h, p� pH,h)kV⇥Q ⌘1 ⌘2

l H error rate error rate value rate Ei

1/2 5.001E�01 – 1.091E�01 – 9.548E+00 – 0.218
1/4 6.947E�02 2.848 1.437E�02 2.925 1.276E+00 2.904 0.207

2 1/8 8.663E�03 3.003 1.780E�03 3.013 1.557E�01 3.034 0.205
1/16 1.079E�03 3.006 2.254E�04 2.981 1.925E�02 3.016 0.209
1/32 1.345E�04 3.003 2.858E�05 2.980 2.397E�03 3.006 0.212
1/2 8.001E�01 – 4.747E�01 – 5.708E+00 – 0.593
1/4 3.516E�01 1.186 2.000E�01 1.247 1.818E+00 1.651 0.569

1 1/8 8.642E�02 2.024 5.168E�02 1.953 4.640E�01 1.970 0.598
1/16 2.144E�02 2.011 1.335E�02 1.953 1.135E�01 2.031 0.623
1/32 5.365E�03 1.998 3.418E�03 1.965 2.787E�02 2.027 0.637
1/2 9.719E+00 – 6.203E+00 – 6.187E+00 – 0.638
1/4 4.762E+00 1.029 3.503E+00 0.825 2.151E+00 1.524 0.736

0 1/8 2.339E+00 1.026 2.001E+00 0.808 1.040E+00 1.048 0.855
1/16 1.148E+00 1.027 1.064E+00 0.911 5.189E�01 1.003 0.927
1/32 5.686E�01 1.014 5.456E�01 0.964 2.594E�01 1.001 0.960

Table 1. History of convergence for the Stokes problem with ⌫ = 1, uH,h 2 P3(TH)2,
ph 2 P3(TH) and �H,h 2 ⇤1

l
.
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k(u� uH,h, p� pH,h)kV⇥Q ⌘1 ⌘2

l H error rate error rate value rate Ei

1/2 2.993E�01 – 6.850E�02 – 1.562E+00 – 0.229
1/4 3.250E�02 3.203 9.136E�03 2.906 4.013E�02 5.282 0.281

2 1/8 3.701E�03 3.135 1.171E�03 2.964 1.407E�03 4.834 0.316
1/16 4.480E�04 3.046 1.515E�04 2.951 5.545E�05 4.665 0.338

1/2 7.746E�01 – 3.523E�01 – 1.803E+00 – 0.455
1/4 3.564E�01 1.120 1.487E�01 1.244 1.589E�01 3.504 0.417

1 1/8 8.783E�02 2.021 3.854E�02 1.948 1.321E�02 3.589 0.439
1/16 2.178E�02 2.012 9.941E�03 1.955 1.054E�03 3.647 0.456

1/2 9.720E+00 – 4.387E+00 – 1.370E+00 – 0.451
1/4 4.764E+00 1.029 2.477E+00 0.825 2.034E�01 2.752 0.520

0 1/8 2.340E+00 1.025 1.415E+00 0.808 3.354E�02 2.600 0.605
1/16 1.148E+00 1.027 7.524E�01 0.911 5.439E�03 2.625 0.655

Table 2. History convergence for the Stokes problem with ⌫ = 1, uH,h 2 P3(TH)2, ph 2
P3(TH) and �H,h 2 ⇤1

l
. Here h = H

2.

k(u� uH,h, p� pH,h)kV⇥Q ⌘1 ⌘2

l H error rate error rate value rate Ei

1/2 4.365E�01 – 7.712E�02 – 2.306E�01 – 0.705
1/4 6.190E�02 2.818 1.016E�02 2.925 2.776E�02 3.055 0.613

2 1/8 7.709E�03 3.005 1.259E�03 3.013 3.255E�03 3.092 0.586
1/16 9.593E�04 3.006 1.594E�04 2.981 3.981E�04 3.032 0.581
1/32 1.197E�04 3.003 2.021E�05 2.980 4.943E�05 3.009 0.582
1/2 5.342E+01 – 2.717E+01 – 8.219E+00 – 0.662
1/4 1.350E+01 1.985 6.936E+00 1.970 2.106E+00 1.964 0.670

1 1/8 3.388E+00 1.994 1.746E+00 1.990 5.313E�01 1.987 0.672
1/16 8.483E�01 1.998 4.378E�01 1.996 1.333E�01 1.995 0.673
1/32 2.122E�01 1.999 1.096E�01 1.998 3.338E�02 1.998 0.674
1/2 4.889E+02 – 2.842E+02 – 6.531E+00 – 0.595
1/4 2.793E+02 0.808 1.828E+02 0.637 3.267E+00 0.999 0.666

0 1/8 1.505E+02 0.892 1.097E+02 0.736 1.634E+00 1.000 0.740
1/16 7.748E+01 0.958 5.918E+01 0.891 8.170E�01 1.000 0.774
1/32 3.913E+01 0.985 3.048E+01 0.957 4.085E�01 1.000 0.789

Table 3. History of convergence for the Stokes problem with ⌫ = 10�2, uH,h 2 P3(TH)2,
ph 2 P3(TH) and �H,h 2 ⇤1

l
.
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k(u� uH,h, p� pH,h)kV⇥Q ⌘1 ⌘2

l H error rate error rate value rate Ei

1/2 2.254E�01 – 6.850E�02 – 3.861E�02 – 0.475
1/4 2.663E�02 3.082 9.136E�03 2.906 1.090E�03 5.146 0.384

2 1/8 3.147E�03 3.081 1.171E�03 2.964 3.866E�05 4.818 0.384
1/16 3.878E�04 3.020 1.515E�04 2.951 1.520E�06 4.668 0.395

1/2 5.147E+01 – 2.932E+01 – 3.404E+00 – 0.636
1/4 1.308E+01 1.976 7.526E+00 1.962 2.941E�01 3.533 0.598

1 1/8 3.288E+00 1.992 1.895E+00 1.990 2.404E�02 3.613 0.584
1/16 8.237E�01 1.997 4.750E�01 1.996 1.945E�03 3.627 0.579

1/2 4.890E+02 – 2.843E+02 – 2.561E+00 – 0.587
1/4 2.795E+02 0.807 1.826E+02 0.638 4.074E�01 2.652 0.655

0 1/8 1.506E+02 0.892 1.096E+02 0.736 6.476E�02 2.653 0.728
1/16 7.752E+01 0.958 5.913E+01 0.890 1.039E�02 2.640 0.763

Table 4. History of convergence for the Stokes problem with ⌫ = 10�2, uH,h 2 P3(TH)2,
ph 2 P3(TH) and �H,h 2 ⇤1

l
. Here h = H

2.

5.4. The 2D lid-driven cavity problem. We consider the well-known 2D cavity problem for the Stokes
(� = 0) and Brinkman (� = 104 I) problems with ⌫ = 1. In Figures 2 and 3, we show the meshes obtained
by the two versions of the adaptive algorithms looking for uh 2 P2(K)2, ph 2 P2(K) and �H,h 2 ⇤0. Higher
polynomial degrees does not change conclusions and then they are not presented.
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Figure 2. Lid-driven cavity problem for the Stokes equation with uh 2 P2(K)2, ph 2
P2(K), �H,h 2 ⇤0 and ⌫ = 1. Second and third rows correspond, respectively, to the final
step of the adaptive procedure by elements (6,216 dof) and adaptive procedure by faces (912
dof), and the first row shows the start step in both adaptive procedures. Second and third
columns represent the magnitude of the velocity and pressure, respectively.
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Figure 3. Lid-driven cavity problem for the Brinkman equation with uh 2 P2(K)2, ph 2
P2(K), �H,h 2 ⇤0, ⌫ = 1 and � = 104 I. Second and third rows correspond, respectively, to
the final step of the adaptive procedure by elements (32,337 dof) and adaptive procedure by
faces (786 dof), and the first row shows the start step in both adaptive procedures. Second
and third columns represent the magnitude of the velocity and pressure, respectively.

As expected, in the cavity problem for Stokes and Brinkman, the adaptive algorithms refine the upper
part of the domain, where the solution has boundary layers and/or singularities. Note that Algorithm 2
requires less degrees of freedom than Algorithm 1 to get good numerical results.

5.5. A highly heterogeneous case. This numerical test illustrates the capacity of the MHM method to
simulate fluid flow in a highly heterogeneous porous media. The domain is ⌦ :=]0, 1200[⇥]0, 2200[ with
boundary conditions given in Figure 4. We adopt a heterogeneous isotropic coe�cient � obtained from the
85th layer of the SPE10 project [15] (second dataset). The domain represents a quite realistic prototype of
a reservoir. Here, we adopt the following version of the Brinkman model

�⌫�u+ � u+rp = 0 in ⌦, r·u = 0 in ⌦,

with ⌫ = 0.3 and � = (0.3/) I, where I stands for the identity tensor. The permeability  is depicted
in Figure 4. The reference solution is calculated using the USFEM scheme of [10] using a uniform mesh
of 1,081,344 triangles. The P1(⌧)d ⇥ P1(⌧) element is adopt to approximate the velocity and pressure
variables. As such, the total number of degrees of freedom is 1, 625, 283. As for the MHM solution, we select
uh 2 P3(K)2, ph 2 P3(K) and �H,h 2 ⇤1.
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Figure 4. Boundary conditions (left) and the permeability  (right) in logarithmic scale.

Figure 5. Initial mesh (left) with 1,652 dof, an intermediate adapted mesh (center) with
3,352 dof and the final adapted mesh (right) with 7,800 dof.

Figure 6. Isolines of the pressure corresponding (from left to right) to the solution using the
initial mesh (1,652 dofs), the adaptive one (7,800 dofs), and the reference solution (1,625,283
dofs), respectively.
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Figure 7. Magnitude of velocity corresponding (from left to right) to the solution using the
initial mesh (1,652 dofs), the adaptive one (7,800 dofs), and the reference solution (1,625,283
dofs), respectively.

We observe that the solution of the MHM method using the adaptive strategy given by the Algorithm
2 is very close to the reference solution, and captures the heterogeneity of the reservoir clearly with the
advantage of using considerably less degrees of freedom.

6. Conclusion

Intrinsically attached to the design of the MHM method, the a posteriori error estimator proposed in this
work accounts for the multi-level approximations of the method. We restricted the numerical analysis to the
first and second level MHM methods for the Stokes and Brinkman equations, for which we proved that the
estimator is locally e�cient and reliable in the natural norms. The results are, up to our knowledge, the first
to address the impact of two-levels of approximation in a multiscale finite element method for the Stokes
operator. As a result, the multiscale a posteriori error estimator yielded novel adaptivity strategies which
drive first-level meshes as well as (independent) elementwise second level meshes. Fluid flow problems in
highly heterogeneous validated the underlying multi-level adaptative algorithms. We showed that the MHM
method on such first- and second-level adapted meshes preserves the accuracy of the velocity and pressure
fields on coarse global meshes. The missing scales are upscaled through base functions computed in parallel.

Appendix A. Some technical lemmas

This section presents some technical results needed in the proof of Theorems 4.3 and 4.4.

Lemma A.1. Let � 2 ⇤ and �H,h 2 ⇤H be the solutions of problems (3.5) and (3.13), respectively. Then

Z

K

T
p(�� �H,h) dx = 0,

in the Stokes case (� = 0), and

����
Z

K

T
p(�� �H,h) dx

���� � HK |K|1/2 ⌘2,K

otherwise.
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Proof. Let w := 1

d

⇣
x� 1

|K|
R
K
x dx

⌘
. Noticing that w 2 [H1(K) \ L

2
0
(K)]d, r·w = 1, and rw = 1

d
I, and

testing (3.2) and (3.17) with (w, 0), we get

Z

K

T
p�H,h dx =(T p�H,h,r·w)K = (⌫rT

u�H,h,rw)K + (� T
u�H,h,w)K + h�H,h,wi@K

=
⌫

d

Z

K

r·Tu�H,h dx+ (� T
u�H,h,w)K + h�H,h,wi@K

=(� T
u�H,h,w)K + h�H,h,wi@K

=
⌫

d

Z

K

r·Tu
h
�H,h dx+ (� T

u�H,h,w)K + h�H,h,wi@K

=(⌫rT
u
h
�H,h,rw)K + (� T

u�H,h,w)K + h�H,h,wi@K
=(T p

h
�H,h,r·w)K + (� (Tu � T

u
h
)�H,h,w)K

+
X

⌧2T K

h

⌧ (�⌫�T
u
h
�H,h + � T

u
h
�H,h +rT

p

h
�H,h, �w)⌧

=

Z

K

T
p

h
�H,h dx+ (� (Tu � T

u
h
)�H,h,w)K

+
X

⌧2T K

h

⌧ (�⌫�T
u
h
�H,h + � T

u
h
�H,h +rT

p

h
�H,h, �w)⌧ . (A.1)

Proceeding in a similar way but now with the equations (3.3) and (3.18), we arrive that

Z

K

T̂
pf dx =(T̂ pf ,r·w)K = (⌫rT̂

uf ,rw)K + (� T̂
uf ,w)K � (f ,w)K

=
⌫

d

Z

K

r· T̂uf dx+ (� T̂
uf ,w)K � (f ,w)K = (� T̂

uf ,w)K � (f ,w)K

=
⌫

d

Z

K

r· T̂u
h
f dx+ (� T̂

uf ,w)K � (f ,w)K

=(⌫rT̂
u
h
f ,rw)K + (� T̂

uf ,w)K � (f ,w)K

=(T̂ p

h
f ,r·w)K + (� (T̂u � T̂

u
h
)f ,w)K

+
X

⌧2T K

h

⌧ (�⌫�T̂
u
h
f + � T̂

u
h
f +rT̂

p

h
f � f , �w)⌧

=

Z

K

T̂
p

h
f dx+ (� (T̂u � T̂

u
h
)f ,w)K

+
X

⌧2T K

h

⌧ (�⌫�T̂
u
h
f + � T̂

u
h
f +rT̂

p

h
f � f , �w)⌧ (A.2)
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and then, from (A.1), (A.2) and the third equations in (3.5) and (3.13), it holds
Z

K

T
p(�� �H,h) dx =

Z

K

T
p� dx�

Z

K

T
p�H,h dx = �

Z

K

T̂
pf dx�

Z

K

T
p�H,h dx

=�
Z

K

T̂
pf dx�

h Z

K

T
p

h
�H,h dx+ (� (Tu � T

u
h
)�H,h,w)K

+
X

⌧2T K

h

⌧ (�⌫�T
u
h
�H,h + � T

u
h
�H,h +rT

p

h
�H,h, �w)⌧
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u
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,�w)⌧ . (A.3)

Observe that for the Stokes problem (� = 0), equation (A.3) vanishes and the result follows. For the
Brinkman case, applying Cauchy–Schwartz’s inequality, Lemma 4.1, using (4.11) and recalling from [11,
Theorem 3.2] that, since w 2 [H1(K) \ L

2
0
(K)]d and the convexity of K, we have that

kwk0,K  HK

⇡
|w|1,K =

1

d⇡
HK |K|1/2

the result follows.
⇤

The second auxiliary result establishes bounds for the local pressure associated to the error � � �H,h in
terms of its velocity counterpart.

Lemma A.2. Let � 2 ⇤ and �H,h 2 ⇤H be the solutions of problems (3.5) and (3.13), respectively. Then,

we have that

kT p (�� �H,h)kQ(K) � kTu (�� �H,h)kV(K)

for the Stokes problem, and

kT p (�� �H,h)kQ(K) � kTu (�� �H,h)kV(K) +HK ⌘2,K

for the Brinkman problem.

Proof. Let µ := �� �H,h and consider the Stokes case. From Lemma A.1, the function T
p µ 2 L

2
0
(K) and

then there exists w̃ 2 H
1
0
(K)d such that

r· w̃ = T
p µ in K, (A.4)

satisfying
|w̃|1,K � kT p µk0,K . (A.5)

Next, defined w := w̃ � 1

|K|w̃ 2 V?
0
(K). From the first equation of (3.5) and (3.13), and the local

problems (3.2) and (3.3), it holds

0 = �hµ, w̃i@K = �hµ,wi@K
= aK(Tu µ,w) + bK(w, T

p µ) = aK(Tu µ, w̃) + bK(w̃, T
p µ). (A.6)
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Hence, from (A.4), (A.5), (A.6), and Cauchy–Schwartz’s inequality, we get

kT p µk2
Q(K)

= (T p µ,r· w̃)K = �bK(w̃, T
p µ) = aK(Tu µ, w̃) � kT p µkQ(K)kTu µkV(K)

and the result follows.
Now, we proceed to the Brinkman case following the proof for the Stokes one. First, we notice that T p µ

is not necessarily an element of L2
0
(K). Then, we decompose

T
p µ = q̃ + q0 where q̃ 2 L

2

0
(K) and q0 =

1

|K|

Z

K

T
p µ dx, (A.7)

and pick w̃ 2 H
1
0
(K)d such that

r· w̃ = q̃ in K, (A.8)

and
|w̃|1,K � kq̃k0,K . (A.9)

Also, from (A.7) it holds

kq̃kQ(K)  kT p µkQ(K). (A.10)

From local problems (3.2) and (3.3), we arrive at

0 = �hµ, w̃i@K = aK(Tu µ, w̃) + bK(w̃, T
p µ) (A.11)

and then, from (A.8), (A.9), (A.11), Cauchy–Schwartz’s inequality, (A.10) and Lemma A.1, we get

kT p µk2
Q(K)

= (T p µ, q̃)K + (T p µ, q0)K = (T p µ,r· w̃)K + (T p µ, q0)K

= �bK(w̃, T
p µ) + (T p µ, q0)K = aK(Tu µ, w̃) + (T p µ, q0)K

� kTu µkV(K)kq̃kQ(K) + kT p µkQ(K)kq0kQ(K)

� kTu µkV(K)kT p µkQ(K) + kT p µkQ(K)kq0kQ(K)

=
⇣
kTu µkV(K) + kq0k0,K

⌘
kT p µkQ(K) �

⇣
kTu µkV(K) +HK ⌘2,K

⌘
kT p µkQ(K)

and the result follows. ⇤
Now, we detail an intermediate error estimate for the local velocity associated to � � �H,h with respect

to ⌘1 and ⌘2.

Lemma A.3. Let � 2 ⇤ and �H,h 2 ⇤H be the solutions of problems (3.5) and (3.13), respectively. The

following estimates hold

kTu(�� �H,h)kV �
(
⌘1 + ⌘2 if � = 0,

⌘1 + ⌘2 +H{(⌘1 + ⌘2)⌘2}1/2 otherwise.

Proof. Let µ = �� �H,h. From (2.2), using (T p µ,r · Tu µ)TH
= 0 and (3.2), we obtain that

�(µ, Tu µ)@TH
=
X

K2TH

BK((Tu µ, T p µ), (Tu µ, 0)) � C kTu µk2V, (A.12)

where C depends only on ⌫, �max and d⌦. Using (µ,v0)@TH
= 0, for all v0 2 V0, and from (2.2), (2.12),

(3.2) and the orthogonality between functions in V and V?
0
, it holds
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, 0)

kv?
0
kV

� kTu µkV + kT p µkQ.
Thus, from Lemma A.2 we get

kµk⇤ �
(
kTu µkV if � = 0,

kTu µkV +H ⌘2 otherwise.
(A.13)
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Now, using again (µ,u0)@TH
= (µ,uH,h

0
)@TH

= 0, from (3.6), (3.20) and Lemmas 4.1 and 4.2, we obtain
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�
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Hence, for the Stokes equations (� = 0) we use (A.12), (A.13) and (A.14) to get the desired result. For the
Brinkman equation, we use again (A.12), (A.13) and (A.14), to obtain that

kTu µk2V �
�
⌘1 + ⌘2

�
(kTu µkV +H

2
⌘2)

�
�
⌘1 + ⌘2

�2
+

1

2
kTu µk2V +

�
⌘1 + ⌘2

�
H

2
⌘2,

thus

kTu µkV �
�
⌘1 + ⌘2

�
+ H{

�
⌘1 + ⌘2

�
⌘2}1/2,

and the result follows. ⇤
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