
A posteriori error estimates for primal and mixed finite element

approximations of the deformable image registration problem∗

Nicolas Barnafi†, Gabriel N. Gatica‡, Daniel E. Hurtado§,
Willian Miranda‡, Ricardo Ruiz-Baier¶

Abstract

In this paper we consider primal and mixed variational formulations that have been recently
proposed for the deformable image registration (DIR) problem, and derive reliable and efficient
residual-based a posteriori error estimators suitable for adaptive mesh-refinement methods. Our
theoretical results, being based on the a posteriori error analysis for the linear elasticity problem
with Neumann boundary conditions, make use of the standard tools for that purpose. In particular,
these include global inf-sup conditions, Helmholtz decompositions, and the approximation proper-
ties of the Raviart-Thomas and Clément interpolants for proving reliability. Localization techniques
using bubble functions and inverse inequalities are employed to prove the corresponding efficiency
estimates. The adaptive mesh-refinement schemes for the primal and mixed DIR formulations are
implemented and tested using synthetic images as well as brain images, and the corresponding
numerical results confirm the theoretical properties of the estimators.
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1 Introduction

Deformable image registration (DIR) is the process of aligning a given set of images by means of a
transformation that warps one or more of these images. It arises in several applications, particularly
in the medical imaging field [30]. Its formulation requires three inputs: a transformation model
(composed by a family of mappings that warp the target images), a function that measures the
differences between images known as similarity measure and a regularizer that renders the problem
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well-posed. In addition to the many variants of these components, different modeling approaches exist,
between which we highlight: traditional variational minimization [22,27], optimal mass transport [21]
and level-set modeling [31]. The solution strategy in general considers the incorporation of an auxiliary
time variable, which can be seen as a semi-implicit formulation of the proximal point algorithm [29]
recently extended to a more general class of proximal operators by using Forward-backward splitting
[18]. Also, machine learning techniques have been developed for the solution of this problem, which
do not depend on the existence of ground truth solutions and support large deformations [6]. This
last work proved competitive against the well established software ANTs [5].

Our work has been mainly motivated by the study of lung regional deformation computed from
tomography images of the thorax [12]. The optimal warping u can be interpreted as a displacement
field, from which the gradient ∇u can be calculated to obtain the strain tensor and thus give local
descriptions in a Continuum Mechanics framework. The study of deformation from one side has
revealed the lungs to present a highly heterogeneous and anisotropic behaviour [23], thus providing new
deformation-based markers to understand lung disease and injury progression [4,13]. The proposal of
the optical flow formulation by Horn & Schunk [22] lead to a more rigorous mathematical analysis of the
DIR problem continuous formulation, which is in contrast with the lack of rigorous numerical analysis
of the discrete counterpart, recently developed in the variational formulation [28] in an algorithm-
specific fashion and also in the optimal-control setting within a more classical Galerkin framework
[26]. The estimation of strain by direct differentiation has been shown to be higly inaccurate [24],
which together with the lack of a general discrete analysis motivated the development of mixed finite
element schemes for DIR in [7]. This last work used null traction boundary conditions so as to avoid
spurious stress, and relied heavily on the mixed theory of linear elasticity problems with pure-traction
conditions [20].

The mixed finite element method (MFEM) is a well-established technique which allows to incorpo-
rate unknowns of physical interest, such as stress and rotation, and also delivers locking-free schemes
in the context of incompressible elasticity (see, e.g. [10, 19]). It also introduces additional difficulties:
(i) the new variables increase the dimension of the numerical scheme, making its computational so-
lution more expensive, (ii) the mixed formulation possesses a saddle-point structure, which results in
linear systems of equations that are harder to solve numerically and (iii) only discrete spaces that
satisfy the inf-sup condition grant a stable scheme, which restricts the choices for low-order approxi-
mations and also demands more attention in the formulation of the finite element spaces. For a mixed
formulation of DIR with elastic regularization and a target image with Lipschitz gradient, it has been
shown that classical existence of solutions is independent of the regularization parameter in the primal
case, both primal and mixed give existence and uniqueness for a sufficiently small regularization and
PEERS elements, as well as BDM-P0 for stress-displacement, are inf-sup stable [7]. Furthermore, the
drawback described by (iii) is overcome in [7] by using an augmented mixed variational formulation
whose discrete analysis does not require the verification of any inf-sup condition, and hence arbitrary
finite element subspaces can be employed.

DIR is a highly local problem, which involves many coarse-to-fine type strategies, such as iterated
gaussian convolution, image subsampling and total variation smoothing, to name a few [36]. In the
context of finite elements, this motivates the use of an a posteriori error estimator [33], which is a
global quantity Θ usually decomposed into a sum of local error indicators θT that give a norm-wise
equivalent of the error. The estimator Θ is said to be reliable (resp. efficient) if there exists Crel > 0
(resp. Ceff > 0) independent of the mesh sizes such that

Ceff Θ + h.o.t. ≤ ‖error‖ ≤ Crel Θ + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order. This estimator is
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constructed so as to be easily computable, and thus gives a way to choose regions where the error is
bigger, so as to perform local refinement. This prevents the refinement of areas where the error is
not significant, and so gives an efficient way of error reduction, in contrast to uniform refinement. A
posteriori estimates for MFEM in elasticity with weakly imposed symmetry were proposed in [11], and
later extended to a residual based estimator in the pure traction case in [16]. Thus, the aim of this
work is to propose an a posteriori estimator for the primal registration formulation, as well as extend
the current estimators developed for linear elasticity to the mixed formulation developed in [7]. We
validate our theoretical results with numerical experiments: one simple analytical case, another one
including steep gradients and real data.

Outline

We have organized the contents of this paper as follows. The remainder of this section introduces
some standard notations and definition of functional spaces. In Section 2 we recall from [7, Section
2] the model problem. Next, in Section 3 we define the associated continuous primal and mixed
variational formulations, and we introduce the corresponding Galerkin schemes. In Section 4 we
introduce a posteriori error indicators for both discrete formulations, and assuming small data and
certain regularity assumptions, we derive the corresponding theoretical bounds yielding reliability
and efficiency of each estimator. Finally, in Section 5 we present numerical examples confirming the
reliability and efficiency of the estimators, and illustrating the performance of the associated adaptive
algorithms.

Preliminaries

Let us denote Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with Lipschitz boundary Γ := ∂Ω, and
denote by n the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue
spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. Given a scalar space
A, we let A and A be its vectorial and tensor versions, respectively, and ‖ · ‖, with no subscripts, will
stand for the natural norm of either an element or an operator in any product functional space.

As usual, for any vector field v = (vi)i=1,n, we set the gradient and divergence operator as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div v :=
n∑
j=1

∂vj
∂xj

.

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
j=1

τii, τ : ζ :=
n∑
j=1

τijζij and τ d := τ − 1

n
tr(τ )I,

where I stands for the identy tensor in Rn×n. Then we recall that the space

H(div; Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)} ,

equipped with the usual norm

‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω,

is a Hilbert space. Finally, we employ 0 to denote a generic null vector.
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2 The model problem

In this section we recall from [7, Section 2] the elastic deformable image registration model. Let
n ∈ {2, 3} be the dimension of the images we are interested in analyzing, and let Ω ⊆ Rn be a compact
domain with Lipschitz boundary Γ := ∂Ω. Let R ∈ H1(Ω) be the reference image and T ∈ H1(Ω̃)
be the target image. The DIR problem consists in finding a transformation u : Ω → R, also known
as the displacement field, that best aligns the images R and T , which is expressed as the variational
problem (cf. [27])

inf
u∈V

αD[u;R, T ] + S[u], (2.1)

where V is typically H1(Ω), D : V → R is the similarity measure between the images R and T , α > 0
is a weighting constant, and S : V → R is a regularization term rendering the problem well-posed. A
common choice for the similarity measure is the sum of squares difference, i.e, the L2 error that takes
the form

D[u;R, T ] :=
1

2

∫
Ω

(T (x+ u(x))−R(x))2.

For the case of elastic DIR, the regularizing term is commonly taken to be the elastic deformation
energy, defined by

S[u] :=
1

2

∫
Ω
Ce(u) : e(u),

where

e(u) =
1

2
{∇u+ (∇u)t}

is the infinitesimal strain tensor, i.e., the symmetric component of the displacement field gradient, and
C is the elasticity tensor for isotropic solids, that is

Cτ = λtr(τ )I + 2µτ ∀τ ∈ L2(Ω). (2.2)

Assuming that (2.1) has at least one solution with sufficient regularity, the associated Euler-Lagrange
equations deliver the following strong problem: Find u such that

div(Ce(u)) = αfu in Ω,

Ce(u)n = 0 on ∂Ω,
(2.3)

where
fu(x) =

{
T (x+ u(x))−R(x)

}
∇T (x+ u(x)) ∀x ∈ Ω a.e. (2.4)

We assume the following conditions on the nonlinear load term fu:

|fu(x)− fv(x)| ≤ Lf |u(x)− v(x)| ∀x ∈ Ω a.e,

|fu(x)| ≤Mf ∀x ∈ Ω a.e,
(2.5)

where Lf and Mf are positive constants.

3 The continuous variational formulations

In this section we introduce the continuous primal and mixed variational formulations of (2.3) derived
in [7, Section 3] and [7, Section 4], respectively, and recall the respective solvability results.
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3.1 Primal DIR formulation

The primal variational formulation for the registration problem reads: Find u ∈H1(Ω) such that

a(u,v) = αFu(v), v ∈H1(Ω), (3.1)

where a : H1(Ω)×H1(Ω)→ R is the bilinear form defined by

a(u,v) :=

∫
Ω
Ce(u) : e(v) ∀u,v ∈H1(Ω), (3.2)

and for every u ∈H1(Ω), Fu : H1(Ω)→ R is the linear functional given by

Fu(v) := −
∫

Ω
fu · v ∀v ∈H1(Ω).

By imposing the conditions (2.5), we can deduce the Lipschitz continuity and uniform boundedness
properties for the functional Fu, that is

‖Fu − Fv‖H1(Ω)
′ ≤ LF ‖u− v‖0,Ω ∀u,v ∈H1(Ω), (3.3)

and
‖Fu‖H1(Ω)

′ ≤MF ∀u ∈H1(Ω),

respectively. We recall the results concerning the solvability of (3.1), as developed in [7, Section 3].
First, we define the following partial problem: Given z ∈H1(Ω), find u ∈H1(Ω) such that

a(u,v) = αFz(v), v ∈H1(Ω). (3.4)

Since this problem does not have unisolvency, we modify it by imposing weak orthogonality to the
rigid motions space, denoted by RM(Ω) and defined as (see [9, Eq. 11.1.7])

RM(Ω) :=
{
v ∈H1(Ω) : e(v) = 0

}
, (3.5)

which guarantees unique solvability of problem (3.4) since RM(Ω) is its null space. In fact, defining

H := RM(Ω)⊥ =

{
v ∈H1(Ω) :

∫
Ω
v = 0,

∫
Ω

rotv = 0

}
,

where rotv = −∂v1/∂x2 + ∂v2/∂x1, for v = (v1, v2)t, we consider the following restricted problem:
Given z ∈ H, find u ∈ H such that

a(u,v) = αFz(v), v ∈ H. (3.6)

Then, we have the following result:

Theorem 3.1 Given z ∈ H, the problem (3.6) has a unique solution u ∈ H, and there exists a
constant Cp > 0 such that

‖u‖1,Ω ≤ αCp‖Fz‖H1(Ω)
′ .

Proof. See [7, Theorem 2]. �

We now define the operator T̂ : H → H given by T̂(z) = u, where u is the unique solution to
problem (3.6) and thus rewrite (3.1) as the fixed-point equation: Find u ∈ H such that

T̂(u) = u. (3.7)

The following result establishes the existence of solution to the fixed-point equation (3.7).

Theorem 3.2 Under data assumptions (2.5), the operator T̂ has at least one fixed point. Moreover,
if αCpLF < 1, the fixed point is unique.

Proof. See [7, Theorem 3]. �
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3.2 Continuous mixed DIR formulation

In what follows, we introduce a mixed variational formulation of (2.3). We begin by defining an
auxiliary field given by the skew symmetric component of the displacement field gradient as

ρ :=
1

2
(∇u−∇ut).

We note that from a continuum mechanics perspective, ρ corresponds to the rotation tensor, which
accounts for displacement gradients that do not induce deformation energy. We further define the
auxiliary field σ := Ce(u). Further, we note that the constitutive relation (2.2) can be inverted (cf. [8]
or [19]) as

C−1σ =
1

2µ
σ − λ

2µ(2µ+ nλ)
tr(σ)I.

Then, the strong form of the mixed registration BVP problem of (2.3) becomes: Find u, σ and ρ such
that

C−1σ = ∇u− ρ in Ω,

div(σ) = αfu in Ω,

σ = σt in Ω,

σn = 0 on ∂Ω.

(3.8)

Introducing the spaces
H0(div; Ω) =

{
τ ∈ H(div; Ω) : γnτ = 0

}
,

and
Q := L2(Ω)× L2

skew(Ω),

where
L2

skew(Ω) := {η ∈ L2(Ω) : ηt = −η},
and using a standard integration by parts procedure, the weak formulation of the mixed DIR problem
(3.8) reads: Find (σ, (u,ρ)) ∈ H0(div; Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div; Ω),

b(σ, (v,η)) = αFu(v,η) ∀ (v,η) ∈ Q,
(3.9)

where a : H0(div; Ω)×H0(div; Ω)→ R and b : H0(div; Ω)×Q→ R are the bilinear forms defined by

a(σ, τ ) :=

∫
Ω
C−1σ : τ ∀σ, τ ∈ H0(div; Ω), (3.10)

and

b(τ , (v,η)) :=

∫
Ω
v · divτ +

∫
Ω
η : τ ∀ τ ∈ H0(div; Ω), ∀(v,η) ∈ Q. (3.11)

In turn, given u ∈ L2(Ω), Fu : Q→ R is the linear functional defined by

Fu(v,η) :=

∫
Ω
fu · v ∀(v,η) ∈ Q .

In order to have unisolvency of (3.9), we define the following partial problem: Given z ∈ L2(Ω), find
(σ, (u,ρ)) ∈ H0(div; Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div; Ω),

b(σ, (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,
(3.12)
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which corresponds to a mixed formulation of the linear elasticity problem with Neumann boundary
conditions. Since this problem does not yield unique solvability, we impose weak orthogonality to
the rigid motions space RM(Ω) (c.f. (3.5)). In this way, defining H := H0(div; Ω) × RM(Ω), we
arrive at the following equivalent mixed variational formulation of (3.12): Given z ∈ L2(Ω), find
((σ,χ), (u,ρ)) ∈H ×Q such that

A((σ,χ), (τ , ξ)) +B((τ , ξ), (u,ρ)) = 0 ∀ (τ , ξ) ∈H,

B((σ,χ), (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,
(3.13)

where A : H ×H → R and B : H ×Q→ R are the bilinear forms given by

A((σ,χ), (τ , ξ)) := a(σ, τ ) +

∫
Ω
χ · ξ ∀ (σ,χ), (τ , ξ) ∈H,

B((τ , ξ), (v,η)) := b(τ , (v,η)) +

∫
Ω
ξ · v ∀ ((τ , ξ), (v,η)) ∈H ×Q.

The following two lemmas are needed to establish the well-posedness of (3.13).

Lemma 3.3 Let V := {(τ , ξ) ∈ H : B((τ , ξ), (v,η)) = 0, ∀(v,η) ∈ Q}. Then, there holds V =
V × {0}, with

V := {τ ∈ H(div; Ω) : div τ = 0 and τ = τ t in Ω}, (3.14)

and there exists α̂ > 0, such that

α̂‖(τ , ξ)‖2H ≤ A((τ , ξ), (τ , ξ)) ∀ (τ , ξ) ∈ V.

Proof. See [20, Lemma 3.3]. �

Lemma 3.4 There exists β̂ > 0, such that

β̂‖(v,η)‖Q ≤ sup
(τ ,ξ)∈H
(τ ,ξ)6=0

|B((τ , ξ), (v,η))|
‖(τ , ξ)‖H

∀ (v,η) ∈ Q.

Proof. See [20, Lemma 3.4]. �

The well-posedness of the variational formulation (3.13) is stated as follows.

Theorem 3.5 There exists a unique solution ((σ,χ), (u,ρ)) ∈H ×Q of (3.13). In addition, χ = 0
and there exist Cm > 0, such that

‖((σ,χ), (u,ρ))‖H×Q ≤ αCm‖Fz‖Q′ .

Proof. See [20, Theorem 3.1]. �

The above allows us to define a fixed-point operator. Let T : L2(Ω) → L2(Ω) given by T (z) := u
∀z ∈ L2(Ω), where u is the displacement component of the unique solution of problem (3.13), and so
the mixed formulation (3.9) can be restated as: Find u ∈ L2(Ω) such that

T (u) = u . (3.15)

The following result establishes the existence of solution to the fixed-point problem (3.15):
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Theorem 3.6 Under data conditions (2.5) and assuming αCmLF < 1, there is a unique fixed point for
problem (3.15). With this, the mixed formulation (3.9) has a unique solution (σ, (u,ρ)) ∈ H0(div; Ω)×
Q. Moreover, there holds

‖(σ, (u,ρ))‖H0(div;Ω)×Q ≤ αCmMF .

Proof. See [7, Theorem 12]. �

3.3 The primal Galerkin scheme

In the following we formulate a Galerkin scheme to the primal DIR formulation (3.1). Let Hh be a
finite dimensional subspace of H1(Ω) and define Hh := RM⊥ ∩Hh. Then we formulate the nonlinear
discrete problem as follows: Find uh ∈ Hh such that

a(uh,vh) = αFuh
(vh), vh ∈ Hh. (3.16)

Analogously to the continuous case, we consider the discrete partial problem: Given zh ∈ Hh, find
uh ∈ Hh such that

a(uh,vh) = αFzh(vh), vh ∈ Hh, (3.17)

and also let Th : Hh → Hh be the discrete operator given by Th(zh) = uh, where uh is the solution
to problem (3.17). Considering the same data assumptions as in the continuous case, as well as the
continuity and bound obtained before, we arrive at the following result.

Theorem 3.7 Assume that data assumptions (2.5) hold. Then, the operator Th has at least one fixed
point. Moreover, if αCpLF < 1, the fixed point is unique.

Proof. See [7, Theorem 5]. �

3.4 The mixed Galerkin scheme

In this section we recall the Galerkin scheme for (3.9). First, let {Th}h>0 be a regular family of
triangulations of the polygonal region Ω̄ by triangles K of diameter hK with global mesh size h :=
max{hK : K ∈ Th}, such that they are quasi-uniform around Γ. Let us consider finite dimensional
subspaces Hσ

h , Quh , and Qρh of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively. Then we introduce the

product spaces
Hh := (Hσ

h ∩H0(div; Ω) )× RM, Qh := Quh ×Q
ρ
h,

and define the discrete version of (3.13): Given zh ∈ Quh , find ((σh,χh), (uh,ρh)) ∈ Hh ×Qh such
that

A((σh,χh), (τ h, ξh)) +B((τ h, ξh), (uh,ρh)) = 0 ∀ (τ h, ξh) ∈Hh,

B((σh,χh), (vh,ηh)) = αFzh(vh,ηh) ∀ (vh,ηh) ∈ Qh.
(3.18)

The unique solvability and stability of (3.18), being the Galerkin scheme of a linear elasticity problem
with Neumann boundary conditions, has already been established in [20, Theorem 4.1]. This allows
us to define the discrete operator T h : Quh → Quh given by T h(zh) := uh, where uh is the displacement
component of the unique solution of problem (3.18), and then we rewrite the discrete nonlinear problem
as: Find uh ∈ Quh such that

T h(uh) = uh. (3.19)

Now we establish the well-posedness of problem (3.19).
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Theorem 3.8 Assuming (2.5) and αCmLF < 1, the problem (3.19) has a unique solution uh ∈ Quh ,
which yields ((σh,χh), (uh,ρh)) ∈Hh×Qh the unique solution of (3.18) with zh = uh, which satifies

‖((σh,χh), (uh,ρh))‖H×Q ≤ αCmMF .

Proof. See [7, Theorem 14]. �

4 Residual-based a posteriori error estimators

In this section we derive a reliable and efficient residual-based a posteriori error estimator for each
one of the Galerkin schemes (3.16) and (3.18).

4.1 Preliminaries

We first let Eh be the set of all edges of the triangulation Th, and given K ∈ Th, we let E(K) be the
set of its edges. Then we decompose Eh as Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}
and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Further, he stands for the length of a given edge e. Also, for each
edge e ∈ Eh we fix a unit normal vector ne := (n1,n2)t and let se := (−n2,n1)t be the corresponding
fixed unit tangential vector along e. However, when no confusion arises, we simple write n and s
instead of ne and se, respectively. Now, let τ ∈ L2(Ω) such that τ |K ∈ C(K) on each K ∈ Th.
Then, given e ∈ Eh(Ω), we denote by [τ s] and [τ n] the tangential and normal jumps of τ across e,
that is, [τ s] := (τ |K − τ |K′)|es and [τ n] := (τ |K − τ |K′)|en, respectively, where K and K ′ are the
triangles of Th having e as a common edge. Additionally, given scalar, vector and tensor valued fields
v, ϕ = (ϕ1, ϕ2)t and τ := (τij)1≤i,j≤2, respectively, we let

curl(v) :=

(
∂v
∂x2
− ∂v
∂x1

)
, curl(ϕ) :=

(
∂ϕ1

∂x2
−∂ϕ1

∂x1
∂ϕ2

∂x2
−∂ϕ2

∂x1

)
, curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.

Next, we collect a few preliminary definitions and results that we need in what follows. Given an
integer k ≤ 0 and S ⊆ R2, we let Pk(S) be the space of polynomials of degree ≤ k. Then, we let
Ih : H1(Ω)→ Xh be the usual Clément interpolation operator (cf. [14]), where

Xh := {vh ∈ C(Ω̄) : vh|K ∈ P1(K), ∀K ∈ Th}.

The following lemma establishes the local approximation properties of Ih.

Lemma 4.1 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ih(v)‖0,K ≤ c1hK ‖v‖0,∆(K) ∀K ∈ Th

‖v − Ih(v)‖0,e ≤ c2h
1/2
e ‖v‖0,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ),

where
∆(K) := ∪{K ′ ∈ T : K ′ ∩K 6= ∅} and ∆(e) := ∪{K ′ ∈ T : K ′ ∩ e 6= ∅}.

Proof. See [14]. �

The main techniques involved below in the proof of efficiency include the localization technique
based on element-bubble and edge-bubble functions. Given K ∈ Th and e ∈ E(K), we let ψK and
ψe be the usual triangle-bubble and edge-bubble functions [34, eqs. (1.5)-(1.6)], respectively, which
satisfy:
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(i) ψK ∈ P3(K), ψK = 0 on ∂K, supp(ψK) ⊆ K, and 0 ≤ ψK ≤ 1 in K,

(ii) ψe ∈ P2(K), ψe = 0 on ∂K, supp(ψe) ⊆ ωe, and 0 ≤ ψe ≤ 1 in ωe,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}. Additional properties of ψK and ψe are collected in the
following lemma (c.f. [32, Lemma 1.3], [34, Section 3.4] or [35, Section 4]).

Lemma 4.2 Given k ∈ N ∪ {0}, there exist positive constants γ1, γ2, γ3, γ4 and γ5, depending only
on k and the shape regularity of the triangulations, such that for each K ∈ Th and e ∈ E(K), there
hold

γ1 ‖q‖20,K ≤
∥∥∥ψ1/2

K q
∥∥∥2

0,K
∀ q ∈ Pk(K),

‖ψKq‖1,K ≤ γ2h
−1
K ‖q‖0,K ∀ q ∈ Pk(K),

γ3 ‖p‖20,e ≤
∥∥∥ψ1/2

e p
∥∥∥2

0,e
∀ p ∈ Pk(e),

‖ψep‖1,ωe
≤ γ4h

−1/2
e ‖p‖0,e ∀ p ∈ Pk(e),

‖ψep‖0,ωe
≤ γ5h

1/2
e ‖p‖0,e ∀ p ∈ Pk(e).

(4.1)

4.2 A posteriori error analysis for the primal scheme

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (3.16). We basically follow the approach from [2, 3] (see also the monograph [33]).
Letting uh ∈ Hh be the unique solution of (3.16), we define for each K ∈ Th the a posteriori error
indicator:

Θ2
K := h2

K

∥∥αfuh
− div(Ce(uh))

∥∥2

0,K
+

∑
e∈E(K)∩Eh(Ω)

he‖[Ce(uh)ne]‖20,e

+
∑

e∈E(K)∩Eh(Γ)

he‖Ce(uh)ne‖20,e,
(4.2)

where, according to (2.4),

fuh

∣∣
K

(x) :=
{
T (x+ uh(x))−R(x)

}
∇T (x+ uh(x)) ∀x ∈ K,

and introduce the global a posteriori error estimator

Θ :=

∑
K∈Th

Θ2
K


1/2

.

The following theorem constitutes the main result of this section.

Theorem 4.3 Let u ∈ H and uh ∈ Hh be the solutions of the continuous and discrete formulations
(3.1) and (3.16), respectively and assume that αCpLF < 1/2. Then, there exist constants h, Crel, Ceff >
0, independent of h, such that for h ≤ h0 there holds

CeffΘ ≤ ‖u− uh‖H ≤ CrelΘ. (4.3)

The reliability of the global a posteriori error estimator (upper bound in (4.3)) and the corresponding
efficiency (lower bound in (4.3)) are established in Sections 4.2.1 and 4.2.2, respectively.
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4.2.1 Reliability

The upper bound for (4.3) is established as follows.

Lemma 4.4 Assume that αCpLF < 1/2. Then, there exist h0, Crel > 0, independent of h, such that
for h ≤ h0 there holds

‖u− uh‖H ≤ Crel Θ.

Proof. Let us first define

Rh(w −wh) := αFu(w −wh)− a(uh,w −wh) ∀wh ∈ Hh.

As a consequence of the ellipticity of a (c.f (3.2)) with ellipticity constant ᾱ (c.f. [9, Corollary 11.2.22]),
we obtain the following condition

ᾱ‖v‖1,Ω ≤ sup
w∈H
w 6=0

a(v,w)

‖w‖H
∀v ∈ H.

In particular, for v = u−uh ∈ H, we notice from (3.1) and (3.16) that a(u−uh,wh) = 0 ∀wh ∈ Hh,
and hence we obtain a(u− uh,w) = a(u− uh,w −wh) = Rh(w −wh), which yields

ᾱ‖u− uh‖H ≤ sup
w∈H
w 6=0

Rh(w −wh)

‖w‖H
∀wh ∈ Hh. (4.4)

From the definition of Rh(w−wh), integrating by parts on each K ∈ Th, and adding and subtracting
a suitable term, we can write

Rh(w −wh) = αFuh
(w −wh) + αFu(w −wh)− a(uh,w −wh)− αFuh

(w −wh),

= α {Fu(w −wh)− Fuh
(w −wh)} − α

∫
Ω
fuh
· (w −wh)

−
∑
K∈Th

∫
K
Ce(uh) : e(w −wh),

= α{(Fu − Fuh
)(w −wh)} − α

∫
Ω
fuh
· (w −wh)

−
∑
K∈Th

{
−
∫
K

div(Ce(uh)) · (w −wh) +

∫
∂K

(Ce(uh)ne) · (w −wh)

}
,

= α{(Fu − Fuh
)(w −wh)}+

∑
K∈Th

∫
K

(div(Ce(uh))− αfuh
) · (w −wh)

−
∑

e∈Eh(Ω)

∫
e

[(Ce(uh)ne)] · (w −wh)−
∑

e∈Eh(Γ)

∫
e
(Ce(uh)ne) · (w −wh).

(4.5)

Then, choosingwh as the Clément interpolant ofw, that iswh := Ih(w), the approximation properties
of Ih (cf. Lemma 4.1) yield

‖w −wh‖0,K ≤c1hK ‖w‖1,∆(K) ,

‖w −wh‖0,e ≤c2he ‖w‖1,∆(e) .
(4.6)
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In this way, applying the Cauchy-Schwarz inequality to each term (4.5), and making use of (4.6)
together with the Lipschitz continuity of Fu (cf. (3.3)), we obtain

Rh(w −wh) ≤ αc1LFhK‖u− uh‖H‖w‖1,∆(K)

+ Ĉ

∑
K∈Th

Θ2
K


1/2∑

K∈Th

‖w‖21,∆(K) +
∑

e∈Eh(Ω)

‖w‖21,∆(e)


1/2

,

where Ĉ is a constant depending on c1 and c2 and Θ2
K defined by (4.2). Additionally using the fact

that the number of triangles in ∆(K) and ∆(e) are bounded, we have∑
K∈Th

‖w‖21,∆(K) ≤ C1‖w‖21,Ω and
∑

e∈Eh(Ω)

‖w‖21,∆(e) ≤ C2‖w‖21,Ω

where C1, C2 are positive constant, and using that αCpLF ≤ 1/2, it follows that h0 := 1/(2c1αLF ),
finally substituting in (4.4), we conclude that

‖u− uh‖H ≤ Crel Θ,

where Crel is independent of h. �

4.2.2 Efficiency

Now we focus on establish the lower bound in (4.3). We begin with the following lemma whose proof
is a slight modification of [35, Section 6].

Lemma 4.5 There exist constants η1, η2, η3 > 0, independent of h, but depending on γ1, γ2, γ3, γ4 and
γ5 (c.f. (4.1)), such that for each K ∈ Th there holds

hK
∥∥αfuh

− div(Ce(uh))
∥∥

0,K
≤ η1‖u− uh‖0,K ,

h1/2
e ‖[Ce(uh) · ne]‖0,e ≤ η2

{
‖u− uh‖0,ωe +

∑
K∈ωe

hK‖u− uh‖0,K

}
,

h1/2
e ‖Ce(uh) · ne‖0,e ≤ η3‖u− uh‖0,K ,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.

Proof. Using the first inequality in (4.1), and let RK(uh) := αfuh
− div(Ce(uh)) we have

‖RK(uh)‖20,K ≤ γ
−1
1

∥∥∥ψ1/2
K RK(uh)

∥∥∥2

0,K
,

= γ−1
1

∫
K
ψKRK(uh)

{
αfuh

− div(Ce(uh))},

= γ−1
1

∫
K
αψKRK(uh)

{
fuh
− fu} − γ−1

1

∫
K
ψKRK(uh){div(Ce(uh)− Ce(u))},

= γ−1
1

∫
K
αψKRK(uh)

{
fuh
− fu}+ γ−1

1

∫
K

(Ce(uh)− Ce(u)) · ∇(ψKRK(uh)),

≤ αγ−1
1 ‖RK(uh)‖0,K‖fuh

− fu‖0,K + γ−1
1 γ2h

−1
K ‖Ce(uh)− Ce(u)‖0,K‖RK(uh)‖0,K ,
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where, for the last inequality we used the second inequality in (4.1), also know as inverse inequality.
Next, we have

hK‖RK(uh)‖0,K ≤ αhKγ−1
1 ‖fuh

− fu‖0,K + γ−1
1 γ2‖Ce(uh)− Ce(u)‖0,K ,

now, using (2.5) and grouping terms, we conclude with η1 > 0 independent of h, that

hK
∥∥αfuh

− div(Ce(uh))
∥∥

0,K
≤ η1‖u− uh‖0,K ,

We omit further details, for the remaining inequalities. �

4.3 A posteriori error analysis for the mixed scheme

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (3.18). Throughout the rest of this section we let ((σ,χ), (u,ρ)) ∈ H × Q and
((σh,χh), (uh,ρh)) ∈ Hh × Qh be the solutions of the continuous and discrete formulations (3.13)
and (3.18), respectively. We introduce the global a posteriori error estimator

Ψ :=

∑
K∈Th

Ψ2
K


1/2

,

where we define for each K ∈ Th

Ψ2
K :=

∥∥αfuh
− divσh

∥∥2

0,K
+ ‖σh − σt

h‖20,K + ‖χh‖20,K

+ h2
K‖curl(C−1σh + ρh)‖20,K + h2

K‖C−1σh + ρh‖20,K

+
∑

e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e +
∑

e∈E(K)∩Eh(Γ)

he‖(C−1σh + ρh)s‖20,e.

(4.7)

The following theorem constitutes the main result of this section.

Theorem 4.6 Assume that αCmLF < 1/2. Then, there exist constants Crel, Ceff > 0, independent of
h, such that

CeffΨ ≤ ‖(σ,χ)− (σh,χh)‖H + ‖(u,ρ)− (uh,ρh)‖Q ≤ CrelΨ. (4.8)

The reliability of the global a posteriori error estimator (upper bound in (4.8)) and the corresponding
efficiency (lower bound in (4.8)) are established in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Reliability

We begin by establishing a more general result due to Lemmas 3.3, 3.4 and Theorem 3.6, and that we
will use to establish the upper bound in (4.8). This result we establish in the following theorem.

Theorem 4.7 Given F̄ ∈H ′ and Ḡu ∈ Q′, there exists a unique ((σ̄, χ̄), (ū, ρ̄)) ∈H ×Q such that

A((σ̄, χ̄), (τ , ξ)) +B((τ , ξ), (ū, ρ̄)) = F̄ ((τ , ξ)) ∀(τ , ξ) ∈H ,

B((σ̄, χ̄), (v,η)) = Ḡu((v,η)) ∀(v,η) ∈ Q .
(4.9)

In addition, there exists C > 0, depending only on α̂, β̂, ‖a‖, and ‖b‖, such that

‖(σ̄, χ̄)‖H + ‖(ū, ρ̄)‖Q ≤ C{‖F̄‖H′ + ‖Ḡu‖Q′}. (4.10)
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To establish an upper bound for ‖(σ,χ)− (σh,χh)‖H , we consider the functional Sh : H(div; Ω)→
R defined by

Sh(τ ) := a(σh, τ ) + b(τ , (uh,ρh)) ∀ τ ∈ H(div; Ω), (4.11)

where a and b are the bilinear forms defined in (3.10) and (3.11), respectively, and let Sh|V be the
restriction of S to V , the first component of the kernel V of B (c.f. (3.14)) We note that Sh(τ h) = 0
for each τ h ∈ Hσ

h .

Now, we make use of a particular problem of the form (4.9) with F̄ ∈H ′ and Ḡu ∈ Q′ defined by

F̄ ((τ , ξ)) := 0 ∀ (τ , ξ) ∈H and Ḡu((v,η)) := B((σ,χ)− (σh,χh), (v,η)) ∀ (v,η) ∈ Q,

and let ((σ̄, χ̄), (ū, ρ̄)) ∈H ×Q be the unique solution of this particular problem. We note that

Ḡu((v,η)) =

∫
Ω

(αfu − divσh) · v −
∫

Ω
χh · v −

∫
Ω
σh : η,

this conforming the definition of B and the second equation of (3.13). Adding and subtracting a
suitable term we can rewrite the above equation as:

Ḡu((v,η)) =

∫
Ω

(
αfuh

− divσh
)
· v −

∫
Ω
χh · v −

∫
Ω
σh : η + α

∫
Ω

(fu − fuh
) · v.

Applying Cauchy Schwarz inequality and noting that σh : η = 1
2(σh − σt

h) : η, together with the
condition (2.5), we can establish

‖Ḡu‖Q′ ≤ C
{ ∥∥αfuh

− divσh
∥∥

0,Ω
+ ‖σh − σt

h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω
}
,

by the previous estimate and the continuous dependence results (4.10), we have

‖(σ̄, χ̄)‖H ≤ C
{ ∥∥αfuh

− divσh
∥∥

0,Ω
+ ‖σh − σt

h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω
}
. (4.12)

Now, applying the triangle inequality we obtain

‖(σ,χ)− (σh,χh)‖H ≤ ‖(σ,χ)− (σh,χh)− (σ̄, χ̄)‖H + ‖(σ̄, χ̄)‖H , (4.13)

and hence, it remains to estimate ‖(σ,χ)−(σh,χh)−(σ̄, χ̄)‖H . First observe that (σ,χ)−(σh,χh)−
(σ̄, χ̄) ∈ V , hence applying the ellipticity of A in V (cf. Lemma 3.3) and analogously to [16, Lemma
4.6], we obtain an estimate for this term that replacing together with (4.12) in (4.13), allows us to
establish that

‖(σ,χ)− (σh,χh)‖H ≤C
{
‖Sh|V ‖V ′ +

∥∥αfuh
− divσh

∥∥
0,Ω

+‖σh − σt
h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω

}
.

(4.14)

To estimate ‖Sh|V ‖V ′ , (cf. (4.11)) in (4.14), we have the following result

Lemma 4.8 There exists C > 0, such that

‖Sh|V ‖V ′ ≤ C

h2
K‖curl(C−1σh + ρh)‖20,K +

∑
e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e

+
∑

e∈E(K)∩Eh(Γ)

he‖(C−1σh + ρh)s‖20,e

 .

(4.15)
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Proof. See [16, Lemma 4.7] for details. �

From the above the following lemma is configured.

Lemma 4.9 Assume that αCmLF < 1/2. Then, there exists C > 0 such that

‖(σ,χ)− (σh,χh)‖H ≤ C

∑
K∈Th

Ψ̃2
K


1/2

,

where

Ψ̃2
K := h2

K‖curl(C−1σh + ρh)‖20,K +
∑

e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e

+
∑

e∈E(K)∩Eh(Γ)

he‖(C−1σh + ρh)s‖20,e + ‖αfu − divσh‖0,Ω

+ ‖σh − σt
h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω.

Proof. It follows straightforwardly from (4.14) and (4.15). �

Now we proceed to obtain the corresponding upper bound for ‖(u,ρ)− (uh,ρh)‖Q. More precisely,
we have the following result.

Lemma 4.10 Assume that αCmLF < 1/2. Then, there exists C > 0 such that

‖(u,ρ)− (uh,ρh)‖Q ≤ C

∑
K∈Th

Ψ2
K


1/2

,

where Ψ2
K is the local indicator defined in (4.7).

Proof. The proof follows directly from [16, Lemma 4.9] with small modifications. �

The reliability of Ψ, is a straightforward consequence of the Lemmas 4.9 and 4.10, under the
assumption that αCmLF < 1/2.

4.3.2 Efficiency

In this section, we focus on the efficiency of our a posteriori error estimator Ψ and provide upper
bounds depending on the actual errors for the seven terms defining the local indicator Ψ2

K (c.f. (4.7)).
For this, analogously to [16, Section 4.3] we begin with the first three ones appearing there, more
precisely, since div(σ) = αfu in Ω, we have that

‖αfu − divσh‖20,K ≤ ‖σ − σh‖
2
div,K .

Next, adding and subtracting σ, and we use that σ = σt in Ω, we see that

‖σh − σt
h‖20,K ≤ 4‖σ − σh‖20,K .

Finally, since χ = 0, we obtain
‖χh‖20,K = ‖χ− χh‖20,K .

The upper bounds for the terms involving only the tensor C−1σh + ρh, are established in the
following result.
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Lemma 4.11 There exist constants C1, C2, C3, C4 > 0, independents of h, such that for each K ∈ Th
there holds

h2
K‖curl(C−1σh + ρh)‖20,K ≤ C1

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
‖C−1σh + ρh‖20,K ≤ C2

{
‖u− uh‖20,K + h2

K‖σ − σh‖20,K + h2
K‖ρ− ρh‖20,K

}
he‖[(C−1σh + ρh)s]‖20,e ≤ C3

∑
K⊆ωe

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
∑

e∈Eh(Γ)

he‖(C−1σh + ρh)s‖20,e ≤ C4

∑
e∈Eh(Γ)

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
.

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.

Proof. See [16, Section 4.3]. �

5 Numerical results

5.1 Preliminaries and implementation details

We now turn to the implementation of some numerical tests that confirm the predicted reliability and
efficiency of the proposed a posteriori error estimators (4.2) and (4.7). The DIR problem is in all
cases restricted to images mapped to the unit square Ω = (0, 1)2, and uniform triangular partitions
are employed for all initial meshes. The discretization of the primal problem is done with continuous
piecewise linear and continuous piecewise quadratic approximations for the displacement vector field.
For the case of the mixed formulation, we consider the lowest-order family of Brezzi-Douglas-Marini
elements for the rows of the Cauchy stress tensor, and piecewise constant approximations of the
entries of the displacement vector and the rotation tensor. The Picard method is used to linearize
the problem and we set a fixed tolerance of 1e-5 on the energy norm of the difference between two
consecutive solutions. Unless otherwise specified, all linear solves related to the fixed-point iteration
(in both primal and mixed formulations) are carried out with the stabilized bi-conjugated gradient
method (BiCGStab) using an incomplete LU decomposition as preconditioner.

Mesh adaptation guided by the a posteriori error estimators proposed for the primal and mixed
methods is carried out by a classical conforming partitioning. No coarsening is applied (mainly due to
the capabilities of the current version of the finite element library we use herein [1]). After computing
locally the a posteriori error indicators, we proceed to tag elements for refinement using the Dörfler
strategy [17], where we mark sufficiently many elements so that one establishes equi-distribution of the
error indicator mass, and then the diameter of each triangle in the new adapted mesh (contained in a
generic element K on the initial grid) is set proportional to the diameter of the initial element times
the ratio ζ̄h/ζK , where ζ̄h is the mean value of a generic error estimator ζ over the initial mesh (see for
instance, [32]). In each of the accuracy tests below (Examples 1 and 2), these ratios are multiplied by
a constant γratio that is arbitrarily chosen so as to generate either a roughly similar number of degrees
of freedom, or similar individual error magnitudes than in the case of uniform refinement. However
the density of the refinement process is tuned at will.

Let us also recall from [7] that the implementation of the fixed-point scheme includes an additional
stabilization term associated with dynamic gradient flows, that essentially translates in having a
pseudo-time step in the Euler-Lagrange equations (2.3), that then read: knowing uk, for k = 1, . . .,
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(a) Primal method, uniform refinement

k DoF h eu rate iter

1 21 0.7071 2.050e-01 – 3
53 0.3536 1.389e-01 0.561 4

165 0.1768 7.283e-02 0.931 4
581 0.0884 3.360e-02 1.116 4

2181 0.0442 1.587e-02 1.082 4
8453 0.0221 7.774e-03 1.030 4

2 53 0.7071 7.094e-02 – 3
165 0.3536 2.261e-02 1.649 4
581 0.1768 5.872e-03 1.945 4

2181 0.0884 1.443e-03 2.025 4
8453 0.0442 3.530e-04 2.031 4

33285 0.0221 8.577e-05 2.041 4

(b) Primal method, adaptive refinement

k DoF hmin eu r̂ate eff(Θ) iter

1 21 0.7071 2.050e-01 – 0.6797 3
53 0.3536 1.219e-01 1.123 0.6984 4

165 0.1768 6.440e-02 1.123 0.7083 4
557 0.0884 3.252e-02 1.123 0.6964 4

2101 0.0442 1.629e-02 1.041 0.6962 4
8149 0.0221 8.150e-03 1.022 0.6950 4

2 53 0.7071 7.094e-02 – 0.2559 3
165 0.3536 2.061e-02 2.177 0.3599 4
581 0.1768 5.756e-03 2.026 0.3675 4

2181 0.0884 1.446e-03 2.088 0.3602 4
8453 0.0442 3.620e-04 2.045 0.3546 4

32933 0.0221 8.914e-05 2.061 0.3457 4

Table 5.1: Example 1A. Errors, convergence rates, and Picard iteration count for the approximate
displacements uh produced with the primal method (of degrees k=1 and k=2); and tabulated according
to the resolution level, under uniform (a) and adaptive mesh refinement guided by Θ, with γratio = 0.1
(b, also displaying the rescaled effectivity index).

solve
uk+1

δt
− div(Ce(uk+1)) =

uk

δt
− αfuk .

Further details can be found in [7, Appendix C]. Therefore the primal and mixed weak formulations,
the corresponding Galerkin methods, as well as the a posteriori error indicators Θ and Ψ are modified
accordingly, and only affecting the residual terms associated with the momentum equation. The Picard
iterations with pseudo time-stepping are located inside the adaptive refinement loop which consists in
solving, estimating, marking and refining.
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(a) Mixed method, uniform refinement

DoF h eσ rate eu rate eρ rate iter

91 0.7071 304.821 – 3.521e-02 – 1.337e-01 – 6
323 0.3536 150.763 1.016 1.845e-02 0.932 6.126e-02 1.125 7

1219 0.1768 70.2653 1.101 9.260e-03 0.994 2.961e-02 1.049 8
4739 0.0884 33.9119 1.051 4.629e-03 1.000 1.463e-02 1.017 8

18691 0.0442 16.7754 1.015 2.314e-03 1.000 7.284e-03 1.006 8
74243 0.0221 8.36553 1.004 1.157e-03 1.000 3.637e-03 1.002 10

(b) Mixed method, adaptive refinement

DoF hmin eσ r̂ate eu r̂ate eρ r̂ate eff(Ψ) iter

91 0.7071 304.821 – 3.521e-02 – 1.337e-01 – 0.4427 6
323 0.3536 138.151 1.249 1.842e-02 1.023 6.212e-02 1.210 0.4266 8

1219 0.1768 70.8962 1.005 9.252e-03 1.037 2.964e-02 1.114 0.4264 8
4128 0.0884 36.1260 1.105 4.896e-03 1.044 1.873e-02 0.752 0.4288 8
5902 0.0442 32.3187 0.623 4.410e-03 0.839 1.400e-02 1.628 0.4372 8

15846 0.0313 18.3526 1.146 2.497e-03 1.152 1.010e-02 0.661 0.4368 8
19534 0.0156 16.8697 0.805 2.316e-03 0.727 8.120e-03 2.085 0.4355 8
41440 0.0110 12.8837 0.716 1.764e-03 0.724 6.499e-03 0.592 0.4316 9

Table 5.2: Example 1B. Errors, convergence rates, and Picard iteration count for the approximate
Cauchy stress, displacements, and rotation σh,uh,ρh produced with our mixed method; and tabulated
according to the resolution level, under uniform (a) and adaptive mesh refinement guided by Ψ, with
γratio = 0.275 (sub-table b, also displaying the effectivity index).

5.2 Example 1: errors with respect to smooth solutions

First we assess the accuracy of the primal and mixed schemes using the following closed form exact
solutions to (2.3) defined on the unit square

u(x1, x2) =

 0.1 cos(πx1) sin(πx2) +
x21(1−x1)2x22(1−x2)2

2λ

−0.1 sin(πx1) cos(πx2) +
x31(1−x1)3x32(1−x2)3

2λ

 ,

σ(x1, x2) = Ce(u), ρ(x1, x2) =
1

2
(∇u−∇ut) ,

for a synthetic smooth reference image defined by R(x1, x2) = sin(2πx1) sin(2πx2), and constructing
a synthetic target image simply via the composition of the reference and the inverse warping, T =
R◦(id+u)−1. An initial target in the fixed-point scheme is a perturbation of the reference image, that
is T0(x1, x2) = sin(2πx1) sin(2π[x2 + 0.01]). These exact solutions satisfy the zero-traction boundary
condition, and they are used to construct an additional body load (apart from fu) that needs to be
incorporated as right-hand side in the discrete problems, as well as in the residual term associated with
the momentum conservation equation in the definition of the error indicators. The model parameters
employed in this test are Young modulus E = 1000, Poisson ratio ν = 0.4 (used to obtain the Lamé
constants of the solid, λ = Eν

(1+ν)(1−2ν) and µ = E
2+2ν ), a weight constant α = 100, and pseudo time-step

δt = α−2.

On sequences of uniformly or adaptively refined meshes, we solve the DIR problem with primal and
mixed methods and compute (non-normalized) errors between the approximate and exact solutions in
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Figure 5.1: Example 1. Projected fields of the reference R and composed T (x+uh(x)) images (a,b);
sample meshes refined according to the indicator Θ for the primal method (c,d,e), according to Ψ
after solving the problem with the mixed method (f,g,h); and approximate solutions computed with
the mixed method (i,j,k).

their natural norms, that is, for the primal method eu = ‖u−uh‖1,Ω; whereas for the mixed method
eu = ‖u − uh‖0,Ω and eρ = ‖ρ − ρh‖0,Ω, eσ = ‖σ − σh‖div,Ω. We also point out that in the case of
adaptive mesh refinement, the experimental rates of convergence r̂ate are computed differently than
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in the uniform case

rate = log(e/ê)[log(h/ĥ)]−1, r̂ate = −2 log(e/ê)[log(DoF/D̂oF)]−1,

where e and ê denote errors produced on two consecutive meshes. These grids have respective mesh
sizes h and h′ (needed to compute the experimental order of convergence rate), or they are associated
with DoF and D̂oF degrees of freedom, respectively (in when computing r̂ate). In addition, the effec-
tivity index associated with the global estimators proposed for the primal and mixed discretizations
is computed as

eff(Θ) =
λeu
Θ

, eff(Ψ) =

{
e2
σ + e2

u + e2
ρ

}1/2

Ψ
,

where the additional scaling (in this case with the dilation modulus λ) for the indicator Θ is motivated
by the fact that the efficiency bound arising from the proof of Lemma 4.5 is proportional to λ due
to the definition of the Hooke tensor C. Such an explicit scaling is however not required for the a
posteriori estimation in the mixed method.

Detailed information on the convergence of the primal scheme under uniform and adaptive mesh
refinement is collected in Table 5.1. Apart from errors and convergence rates that indicate optimal
convergence with O(hk), we also show the number of Picard iterations required to reach the desired
tolerance, where we remark that very little differences are observed in the two cases. Similarly, the
convergence history of the lowest-order mixed method is given in Table 5.2. The effectivity index for
the adaptive primal scheme has a roughly constant value of 0.69 for piecewise linear displacements
and roughly 0.36 for the second-order method. The values for the mixed scheme are also maintained
roughly constant to 0.43.

In Figure 5.1(a,b) we portray the projected reference image Rh and the composed image Th =
T (x + uh(x)) on the undeformed domain, and the panels (c-h) show examples of adaptively refined
meshes resulting from the estimators for the primal and mixed approximations. For instance, the
primal method refines largely near the domain center. We also display in panels (i,j,k) the approximate
solutions (the Frobenius norm of stress, displacement magnitude, and Frobenius norm of the rotation
matrix) generated with the mixed method at the final refinement level.

5.3 Example 2: convergence to solutions with higher gradients

Next we slightly modify the closed-form displacement and impose a higher gradient on the reference
image and initial target image (and we remark that typical benchmark tests in this context would be
L-shaped or other non-convex geometries, but they lack a strong motivation in view of the application
of the present methods in solving DIR problems). The model parameters are kept as in Example 1,
however the transformation used to construct the target image is now

u(x1, x2) =

 0.1 cos(πx1) sin(πx2) +
x21(1−x1)2x22(1−x2)2

2

−0.1 sin(πx1) cos(πx2) +
x31(1−x1)3x32(1−x2)3

2

 ,

and the synthetic reference image and initial target image are, respectively

R(x1, x2) =
x1x2(x1 − 1)(x2 − 1)

(x1 + 0.01)4 + (x2 + 0.01)4
, T0(x1, x2) = e−50[(x1−0.2)2+(x2−0.2)2].

We perform again a series of convergence tests whose results are reported in Table 5.3(a) and
Table 5.4(a). An consequence of these higher gradients is that optimal convergence for all the fields is
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(a) Primal method, uniform refinement

k DoF h eu rate iter

1 21 0.7071 6.390e-01 – 3
53 0.3536 4.578e-01 0.481 4

165 0.1768 3.180e-01 0.526 6
581 0.0884 1.752e-01 0.859 19

2181 0.0442 1.212e-01 0.793 24
8453 0.0221 9.567e-02 0.620 28

2 53 0.7071 4.364e-01 – 3
165 0.3536 2.429e-01 0.844 4
581 0.1768 1.684e-01 0.529 6

2181 0.0884 9.021e-02 0.900 20
8453 0.0442 4.013e-02 1.169 25

33285 0.0221 1.357e-02 1.564 29

(b) Primal method, adaptive refinement

k DoF hmin eu r̂ate eff(Θ) iter

1 21 0.7071 6.390e-01 – 0.4912 3
53 0.3536 4.907e-01 0.617 0.8314 4

165 0.1768 2.860e-01 1.277 0.8282 6
581 0.0884 1.489e-01 1.037 0.8205 11

2105 0.0442 7.413e-02 1.084 0.8187 15
8177 0.0221 3.516e-02 1.099 0.8219 18

2 53 0.7071 4.364e-01 – 0.9015 3
165 0.3536 1.973e-01 1.398 1.6422 4
581 0.1768 1.050e-01 1.489 1.6926 6

2181 0.0884 2.046e-02 1.891 1.6360 12
4959 0.0442 9.383e-03 1.786 1.6799 15

13129 0.0221 1.819e-03 2.097 1.6492 18

Table 5.3: Example 2A. Errors, convergence rates, and Picard iteration count for the approximate
displacements uh produced with the first and second-order primal method; and tabulated according to
the resolution level, under uniform (a) and adaptive mesh refinement guided by Θ, with γratio = 0.01
(b, also displaying the rescaled effectivity index).

no longer evidenced under uniform refinement. In contrast, when adaptive mesh refinement guided by
Θ and Ψ is applied, optimal convergence (in this case, linear) is restored. This is particularly visible
for the stress and rotation tensor approximation with the mixed method. Another clear indication of
the hindered convergence is the number of fixed-point steps needed to reach the tolerance. Irrespective
of the method (primal or mixed), the last columns in all sub-tables show that the adaptive algorithm
essentially halves the iteration count. As in Example 1, the effectivity indexes are again close to
constant values, with the ones generated by the primal scheme being quite small.

We show in Figure 5.2(a,b) the synthetic images projected onto the space of piecewise linear and
continuous functions, as well as a few adapted meshes produced using the two indicators (c-h), where
one sees that the agglomeration of vertices occurs not so much due to the high gradients of the
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(a) Mixed method, uniform refinement

DoF h eσ rate eu rate eρ rate iter

91 0.7071 1648.52 – 5.626e-02 – 6.323e-01 – 5
323 0.3536 1124.02 0.552 4.638e-02 0.278 2.801e-01 1.174 7

1219 0.1768 926.769 0.278 2.799e-02 0.728 1.755e-01 0.674 13
4739 0.0884 681.592 0.443 1.557e-02 0.846 9.520e-02 0.882 28

18691 0.0442 381.548 0.741 6.856e-03 1.183 7.267e-02 0.658 45
74243 0.0221 234.824 0.598 2.913e-03 1.235 4.850e-02 0.606 50

(b) Mixed method, adaptive refinement

DoF hmin eσ r̂ate eu r̂ate eρ r̂ate eff(Ψ) iter

91 0.7071 1648.54 – 5.626e-02 – 6.326e-01 – 0.7323 3
323 0.3536 894.299 0.964 4.053e-02 0.517 3.017e-01 1.169 0.7352 5

1219 0.1768 747.041 0.860 2.504e-02 0.725 1.695e-01 0.868 0.7425 8
4739 0.0884 546.386 0.933 1.348e-02 0.912 8.456e-02 1.024 0.7413 15

18680 0.0442 322.782 0.967 6.662e-03 1.027 4.131e-02 1.044 0.7447 20
64706 0.0221 128.559 1.148 2.937e-03 1.118 2.170e-02 1.036 0.7329 22

Table 5.4: Example 2B. Errors, convergence rates, and Picard iteration count for the approximate
Cauchy stress, displacements, and rotation σh,uh,ρh produced with our mixed method; and tabulated
according to the resolution level, under uniform (a) and adaptive mesh refinement guided by Ψ, with
γratio = 0.001 (b, also displaying the effectivity index).

synthetic images, but mainly because of the features in the solutions to the elasticity problem. Panels
(i,j,k) have snapshots of approximate solutions generated with the mixed method after five steps of
adaptive refinement, and plotted on the deformed domain.

5.4 Example 3: deformable registration for brain images

We now turn to the application of the adaptive primal and mixed methods in the solution of a DIR
problem involving medical images of human brains [15]. The reference and target images for the brain
have dimensions 258×258 and the voxel resolution corresponds to 1 mm (see top panels in Figure 5.3).
Interpolation from the initial images into finite element fields is done through B-splines applied to the
pixel images. We proceed to solve the DIR problem using both primal and mixed adaptive schemes,
starting from structured meshes with 32768 triangular elements. The elasticity parameters are set
to E = 15, ν = 0.3, the weight constant is α = 50, and the pseudo timestep is δt = 0.01/α. The
tolerance for the Picard scheme is increased to 1e-04, and for the mixed method the refinement density
proportion is ruled by the constant γratio = 0.1. The primal method requires an average (over the
number of mesh refinement steps, here assigned to 4) of 19 Picard steps to reach convergence, which is
slightly larger for the mixed method (22 iterations). The first two plots on the middle row of Figure 5.3
depict the converged composed images T ◦ (id+ uh) generated with the primal and mixed methods,
where we can notice very similar patterns in both cases. The two other figures on the right show the
similarity between reference and warped images, |R(x)−T (x+uh(x))| resulting from both methods.

We also plot an example of a mesh obtained after four steps of adaptive refinement with the primal
and mixed methods (see Figure 5.4). For illustration purposes we initiate the process from a coarse
mesh of 8196 triangles (corresponding to a low resolution image of 64×64 pixels. Starting with images
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Figure 5.2: Example 2. Projected fields of the reference R and composed T (x+uh(x)) images (a,b);
sample meshes refined according to the indicator Θ for the primal method (c,d,e), according to Ψ
after solving the problem with the mixed method (f,g,h); and approximate solutions computed with
the mixed method (i,j,k).

of higher resolution imply that the meshes obtained after adaptive refinement are too dense to be easily
visualized). The figures exemplify the concentration of refinement near the skull, which is consistently
the zone with highest gradients in the reference and target images, as well as in stress and rotations (as
inferred from panels (g,h,i) in Figure 5.3, where the Frobenius norm of the rotation tensor is plotted
in log-scale for clarity). On the other hand, the displacements are, in comparison, rather smooth and
they seem not to contribute substantially to the local error indicators.

Finally, for these tests we also provide information on the CPU time required in each step of the
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Figure 5.3: Example 3. Reference (a) and target (b) images for medical image registration; composed
images for primal and mixed (c,d), and similarity generated with primal and mixed methods (e,f);
and solutions to the mixed DIR problem obtained with the adaptive mixed scheme (g,h,i).

overall solution algorithm. We record the wall-time for the mixed and primal methods, when starting
from a coarse grid (representing 8715 DoFs for the primal method and 76573 DoFs for the mixed
scheme) and in both cases applying five iterations of adaptive mesh refinement. An average of 17
fixed-point iterations are needed for the primal approximations and 25 for the mixed scheme. We
collect the information in Table 5.5. For instance, the results indicate that the cost of evaluating
the local estimator for the primal method (also including assembly of the global one) is roughly half
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(a) (b)(a)

(a) (b)(b)

Figure 5.4: Example 3. Coarse mesh generated by four steps of adaptive refinement using the a
posteriori error indicators Θ (a) and Ψ (b), and sampling of two 7x zooms near the skull, all portrayed
on the deformed domain.

the time spent in the initial assembly of the left-hand side of the matrix systems, and representing
around 15% of the time spent in marking and refining. Also, evaluating the estimator for the mixed
method appears to be faster than the one for the primal scheme, possibly due to fewer applications
of numerical differentiation in constructing the residual terms. For the primal method, it should be
possible to construct robust preconditioners directly following the ideas in [25], however for the case
of mixed schemes the adaptation would be much more delicate.

Acknowledgement. The authors thank the fruitful discussions with Bryan Gomez-Vargas (Con-
cepción) and Kent-Andre Mardal (Oslo), regarding the implementation of finite element schemes for
elasticity with weakly imposed symmetry and pure traction conditions with Lagrange multipliers and
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[16] C. Doḿınguez, G.N. Gatica, and A. Márquez, A residual-based a posteriori error estimator
for the plane linear elasticity problem with pure traction boundary conditions. J. Comput. Appl.
Math. 292 (2016), 486–504.

[17] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.,
33 (1994), no. 3, 1106–1124.

[18] M. Ebner, M. Modat, S. Ferraris, S. Ourselin and T. Vercauteren, Forward-backward
splitting in deformable image registration: A demons approach. 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 2018, pp. 1065-1069.

[19] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applica-
tions Springer Briefs in Mathematics. Springer, Cham, 2014.

[20] G.N. Gatica, A. Márquez, and S. Meddahi, A new dual-mixed finite element method for the
plane linear elasticity problem with pure traction boundary conditions. Comput. Methods Appl.
Mech. Engrg. 197 (2008), no. 9-12, 1115–1130.

[21] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, Optimal mass transport for registra-
tion and warping. International Journal of Computer Vision, 60 (2004), pp. 225240.

[22] B. K. Horn and B. G. Schunck, Determining optical flow. Tech. rep., Cambridge, MA, USA,
1980.

[23] D. E. Hurtado, N. Villarroel, C. Andrade, J. Retamal, G. Bugedo, and A. R. Bruhn,
Spatial patterns and frequency distributions of regional deformation in the healthy human lung.
Biomechanics and Modeling in Mechanobiology, 16 (2017), pp. 1413–1423.

[24] D. E. Hurtado, N. Villarroel, J. Retamal, G. Bugedo, and A. Bruhn, Improving the
accuracy of registration-based biomechanical analysis: A finite element approach to lung regional
strain quantification. IEEE Transactions on Medical Imaging, 35 (2016), pp. 580–588.

[25] M. Kuchta, K.A. Mardal, and M. Mortensen, On the singular Neumann problem in linear
elasticity. Numer. Linear Alg. Appl. S1-23 (2018).

27



[26] E. Lee and M. Gunzburger, An optimal control formulation of an image registration problem.
Journal of Mathematical Imaging and Vision, 36 (2010), pp. 69–80.

[27] J. Modersitzki, Numerical Methods for Image Registration. Numerical Mathematics and Sci-
entific Computation, Oxford Science Publications, New York, 2004.

[28] C. Pschl, J. Modersitzki, and O. Scherzer, A variational setting for volume constrained
image registration. Inverse Problems and Imaging, 4 (2010), pp. 50–522.

[29] R. T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 14 (1976), pp. 877–898.

[30] A. Sotiras, C. Davatzikos, and N. Paragios, Deformable medical image registration: A
survey. IEEE Transactions on Medical Imaging 32 (2013), no. 7, 1153–1190.

[31] G. Unal and G. Slabaugh, Coupled pdes for non-rigid registration and segmentation. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR05), vol. 1,
June 2005, pp. 168–175.

[32] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Com-
put. Appl. Math. 50 (1994), no. 1-3, 67–83.

[33] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical
Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013.

[34] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Tech-
niques. Wiley-Teubner, Stuttgart, 1996.

[35] R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems. Com-
put. Methods Appl. Mech. Engrg. 176 (1999), no. 1-4, 419–440.

[36] B. Zitov, J. Flusser, Image registration methods: a survey. Image and Vision Computing 21
(2003), no. 11, 977-1000.

28


	Introduction
	The model problem
	The continuous variational formulations
	Primal DIR formulation
	Continuous mixed DIR formulation
	The primal Galerkin scheme
	The mixed Galerkin scheme

	Residual-based a posteriori error estimators
	Preliminaries
	A posteriori error analysis for the primal scheme
	Reliability
	Efficiency

	A posteriori error analysis for the mixed scheme
	Reliability
	Efficiency


	Numerical results
	Preliminaries and implementation details
	Example 1: errors with respect to smooth solutions
	Example 2: convergence to solutions with higher gradients
	Example 3: deformable registration for brain images


