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Abstract

In this paper we analyze the coupling of the Stokes equations with a transport problem modelled
by a scalar nonlinear convection-diffusion problem, where the viscosity of the fluid and the dif-
fusion coefficient depend on the solution to the transport problem and its gradient, respectively.
An augmented mixed variational formulation for both the fluid flow and the transport model is
proposed. As a consequence, no discrete inf-sup conditions are required for the stability of the
associated Galerkin scheme, and therefore arbitrary finite element subspaces can be used, which
constitutes one of the main advantages of the present approach. In particular, the resulting fully-
mixed finite element method can employ Raviart-Thomas spaces of order k for the Cauchy stress,
continuous piecewise polynomials of degree k + 1 for the velocity and for the scalar field, and dis-
continuous piecewise polynomial approximations for the gradient of the concentration. In turn,
the Lax-Milgram lemma, monotone operators theory, and the classical Schauder and Brouwer fixed
point theorems are utilized to establish existence of solution of the continuous and discrete formu-
lations. In addition, suitable estimates, arising from the combined use of a regularity assumption
with the Sobolev embedding and Rellich-Kondrachov compactness theorems, are also required for
the continuous analysis. Then, sufficiently small data allow us to prove uniqueness of solution
and to derive optimal a priori error estimates. Finally, several numerical tests, illustrating the
performance of our method and confirming the predicted rates of convergence, are reported.
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1 Introduction

In recent years there has been an increasing interest in studying finite element approximations to
simulate the transport of a species density in an immiscible fluid. In particular, the continuous and
discrete solvability of a flow-transport model given by the coupling of the Stokes equations with a
scalar nonlinear convection-diffusion equation, in which the viscosity of the fluid and the effective
diffusivity depend on the solution to the transport problem and its gradient, respectively, was recently
analyzed in [2] by using a mixed-primal variational approach. Regarding the underlying coupled
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model, and while the original unknowns of it are the velocity of the flow, the pressure, and the local
solids concentration, it is well known that other variables, such as stress tensors, vorticity, and the
aforementioned gradient, are also of great interest in applications, which include natural and thermal
convection, sedimentation-consolidation processes, and granular flows, among others. According to
this motivation, the model is reformulated in [2] as an augmented dual-mixed formulation for the fluid
flow, coupled with the usual primal method for the transport model. As a consequence, the Cauchy
stress and the velocity of the fluid are sought in H(div; Ω) and H1(Ω), respectively, whereas the
concentration lies in H1(Ω). In this way, each row of the stress tensor is approximated with Raviart-
Thomas elements of order k, whereas the other two unknowns are approximated with continuous
piecewise polynomials of degree ≤ k + 1. Furthermore, fixed point arguments, suitable regularity
hypotheses, the well-know Lax-Milgram theorem, classical results on monotone operators, the Sobolev
embedding and Rellich-Kondrachov compactness theorems, and sufficiently small data assumptions,
constitute the main tools yielding well-posedness of the continuous and Galerkin schemes, and the
associated optimal a priori error estimates.

Other contributions concerning the solvability of flow-transport problems are certainly available in
the literature as well. For example, the technique of parabolic regularization has been employed in [8]
for the case of large fluid viscosity, whereas the existence of solutions to a model of chemically reacting
non-Newtonian fluid with the effective diffusivity depending also on the gradient of the concentration,
has been established in [7]. In turn, the extension of the approach from [2] to the more realistic case
of steady sedimentation-consolidation systems, in which both the viscosity and the diffusivity depend
only on the scalar value of the concentration, and hence neither of them on the concentration gradient
(as in [2] and [7] for the latter), was developed in [3]. In this case, the model consist in the Brinkman
problem with variable viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the
mixture, coupled with a nonlinear advection – diffusion equation describing the transport of the solids
volume fraction. Then, similarly to [2], the variational formulation is based on an augmented mixed
approach for the Brinkman equations and the usual primal approach for the transport equation. In
addition, the solvability analyses make use of basically the same arguments from [2], the finite element
subspaces employed are exactly those from [2], and suitable Strang-type inequalities are utilized to
derive optimal error estimates in the natural norms.

On the other hand, it is worth mentioning that flow-transport models, and specially those in-
volving sedimentation-consolidation processes, share some analytical similarities with Boussinesq and
related problems, for which several mixed-primal and fully-mixed formulations have been proposed
in recent years (see, e.g. [11], [12], [13], [15], [16], and [24]). In particular, the mixed finite element
method for the Boussinesq problem developed in [15] introduces the gradient of velocity as an aux-
iliary unknown. In turn, following [9], the approach from [11] employs the nonlinear pseudostress
tensor linking the pseudostress and the convective term, and then augment the resulting mixed for-
mulation of the stationary Boussinesq problem with suitable Galerkin type terms. Furthermore, the
technique of [12] proceeds similarly to [11], but in contrast to the latter, an augmented mixed formu-
lation for the equation modelling the temperature is also proposed. More precisely, a new auxiliary
vector unknown, involving the temperature, its gradient and the velocity, is introduced, and then the
resulting new mixed formulation for the convection–diffusion equation is augmented with alternative
testings of the constitutive and equilibrium temperature equations. In this way, classical fixed point
theorems, together with the Lax-Milgram lemma and the Babuška-Brezzi theory, are applied to prove
the well-posedness of the continuous and discrete formulations in [11] and [12]. However, up to our
knowledge, fully-mixed formulations specifically designed for flow-transport models, and aiming to
introduce further unknows of physical interest, are not yet available in the literature.

According to the previous bibliographic discussion, the purpose of the present paper is to keep
contributing in the direction of [2] and [3] by applying now an augmented mixed variational formulation
to both the fluid flow and the transport model. In this way, and besides the incorporation of other
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unknowns of physical interest, such as the gradient of concentration, the resulting decoupled problems
yield a strongly elliptic bilinear form and a strongly monotone operator equation, respectively, and
hence arbitrary finite element subspaces can be employed for defining the associated discrete schemes.
The contents of the paper are organized as follows. The remainder of this section introduces some
standard notation and functional spaces. In Section 2 we first describe the boundary value problem
of interest, then slightly simplify it by eliminating the pressure unknown in the fluid and defining the
gradient of the concentration as a new unknown variable. Next, in Section 3 we introduce and analyze
the continuous formulation, which is defined by an augmented mixed approach in both media. The
necessity of augmentation is clearly justified, and the solvability analysis is based on a fixed point
strategy that makes use of the Lax-Milgran lemma, the Schauder theorem, and a well-known result
on strongly monotone operators. We prove existence of solution and for sufficiently small data we
derive uniqueness. The associated Galerkin scheme is introduced in Section 4 by employing Raviart-
Thomas elements for the stress, continuous piecewise polynomial approximations for the velocity
and concentration, and discontinuous piecewise polynomial approximations for the gradient of the
concentration. Here the solvability is established by applying now the Brouwer fixed point theorem
and analogue arguments to those employed in Section 3. In Section 5 we assume again sufficiently
small data and, using a suitable Strang-type estimate for nonlinear problems, provide optimal a priori
error estimates. Finally, in Section 6 we present numerical examples illustrating the good performance
of the fully-mixed method and confirming the theoretical rates of convergence.

Preliminary notations

Let Ω ⊆ Rn, n = 2, 3, be a given bounded domain with polyhedral boundary Γ = Γ̄D ∪ Γ̄N , with
|ΓD|, |ΓN | > 0, ΓD ∩ ΓN = ∅ and denote by ν the outward unit normal vector on Γ. A standard
notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and
seminorm | · |s,Ω. In particular, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ)
denotes its dual. In addition, given Γ∗ ⊆ Γ with ∗ ∈ {D,N}, denote by 〈·, ·〉Γ∗ the duality pairing
between H1/2(Γ∗) and H−1/2(Γ∗). Also, we let M and M be the vectorial and tensorial counterparts
of a generic scalar functional space M. In turn, I stands for the identity tensor in Rn×n, and | · |
denotes both the euclidean norm in Rn and the Frobenius norm in Rn×n. On the other hand, for any

vector field υ = (vi)i=1,n we set ∇υ :=
( ∂vi
∂xj

)
i,j=1,n

and divυ :=
n∑
j=1

∂vj
∂xj

. Additionaly, for any

tensor fields τ = (τi,j)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence operator div acting
along the rows of τ , and define the transpose, the trace, the tensor product, and the deviatoric tensor,
respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑

i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij and τ d := τ − 1

n
tr(τ )I .

Furthermore, we recall that the space

H(div,Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm ‖τ‖2div ;Ω := ‖τ‖20,Ω + ‖divτ‖20,Ω, is a Hilbert space.

2 The model problem

The following system of partial differential equations, written as to apply a fully-mixed approach,
describes the stationary state of the transport of species in an immiscible fluid occupying the domain
Ω ⊆ Rn:
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σ = µ(φ)∇u− pI, in Ω ,
−div σ = fφ, in Ω ,

div u = 0 in Ω ,
p = θ(|∇φ|)∇φ− φu− γ(φ)k in Ω ,

div p = −g in Ω ,
u = uD on ΓD ,

σν = 0 on ΓN ,
φ = φD on ΓD ,

p · ν = 0 on ΓN ,

(2.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, the pressure p, and the local concentration of species φ. Regarding this study, we will restrict
ourselves to a specific physical scenario corresponding to the process of sedimentation-consolidation
of a mixture. Also, µ : R+ → R+ is the kinematic effective viscosity, θ : R+ → R+ is the diffusion
term modelling e.g. sediment compressibility, and γ : R+ → R is the one dimensional flux describing
hindered settling, all them nonlinear functions. In addition, k is a constant vector pointing in the
direction of gravity, and f ∈ L∞(Ω), g ∈ L2(Ω), uD ∈ H1/2(ΓD) and φD ∈ H1/2(ΓD) are given
functions. We assume that:

i) there exist µ1, µ2, γ1, γ2 > 0 such that

µ1 ≤ µ(φ) ≤ µ2 and γ1 ≤ γ(φ) ≤ γ2 ∀φ ∈ R+ , (2.2)

ii) θ ∈ C1(R+) and there exist θ1, θ2 > 0 such that

θ1 ≤ θ(s) ≤ θ2 and θ1 ≤ θ(s) + sθ′(s) ≤ θ2 ∀ s ∈ R+ , (2.3)

iii) there exist Lµ, Lγ > 0 such that

|µ(s)− µ(t)| ≤ Lµ|s− t| and |γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R+ . (2.4)

Now, following the approach employed in [2] y [3] , it can be seen from the first and third equations
of (2.1) that

p = − 1

n
tr (σ) inΩ, (2.5)

which allows us to eliminate the pressure. Next, introducing the auxiliary unknown t := ∇φ in Ω, the
fourth equation of (2.1) is rewritten as

p = θ(|t|) t− φu− γ(φ)k in Ω ,

and hence, the coupled problem (2.1) becomes

1

µ(φ)
σd = ∇u in Ω ,

−div σ = fφ, in Ω ,

t = ∇φ in Ω ,

p = θ(|t|) t− φu− γ(φ)k in Ω ,

div p = −g in Ω ,

u = uD on ΓD ,

σν = 0 on ΓN ,

φ = φD on ΓD ,

p · ν = 0 on ΓN .

(2.6)
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We remark here that the incompressibility constraint div u = 0 ∈ Ω is implicitly present in the
first equation of (2.6), that is in the constitutive equation relating σ and u. Also, we observe that the
pressure can be approximated later on through the post-process suggested by (2.5).

3 The continuous formulation

3.1 The augmented fully-mixed formulation

We begin by observing that the homogeneous Neumann boundary conditions for σ and p in ΓN
suggest the introduction of the following spaces

HN (div,Ω) :=
{
τ ∈ H(div,Ω) : τν = 0 on ΓN

}
,

HN (div,Ω) :=
{

q ∈ H(div,Ω) : q · ν = 0 on ΓN

}
.

Then, multiplying the first equation of (2.6) by τ ∈ HN (div,Ω), integrating by parts, and using the
Dirichlet boundary condition for u, we obtain∫

Ω

1

µ(φ)
σd : τ d +

∫
Ω

u · div τ = 〈τν,uD〉ΓD ∀ τ ∈ HN (div,Ω) . (3.1)

In addition, the equilibrium equation, that is the second equation of (2.6), is rewritten as∫
Ω
υ · divσ = −

∫
Ω

fφ · υ ∀υ ∈ L2(Ω) . (3.2)

Similarly for deriving the weak formulation of the transport equation we multiply by q ∈ HN (div,Ω)
the third equation of (2.6), integrate by parts, and use the Dirichlet boundary condition for φ, to yield∫

Ω
t · q +

∫
Ω
φ div q = 〈q · ν, φD〉ΓD ∀q ∈ HN (div,Ω) . (3.3)

Also, the corresponding equilibrium equation is stated as∫
Ω
ϕdiv p = −

∫
Ω
g ϕ ∀ϕ ∈ L2(Ω) . (3.4)

Finally, multiplying by s ∈ L2(Ω) the fourth equation of (2.1) and integrating, we arrive at∫
Ω
θ(|t|)t · s−

∫
Ω

p · s−
∫

Ω
φu · s =

∫
Ω
γ(φ)k · s ∀s ∈ L2(Ω) . (3.5)

Summarizing, given φ ∈ L2(Ω), we obtain form (3.1) and (3.2) the following mixed formulation for
the flow equations: Find (σ,u) ∈ HN (div,Ω)× L2(Ω) such that

aφ(σ, τ ) + b(τ ,u) = 〈τν,uD〉ΓD ∀τ ∈ HN (div,Ω) ,

b(σ,υ) = −
∫

Ω
fφ · υ ∀υ ∈ L2(Ω) ,

(3.6)

where aφ : HN (div,Ω)×HN (div,Ω)→ R and b : HN (div,Ω)× L2(Ω)→ R are the bounded bilinear
forms defined by

aφ(ζ, τ ) :=

∫
Ω

1

µ(φ)
ζd : τ d and b(τ ,υ) :=

∫
Ω
υ · div τ ,

5



for ζ, τ ∈ HN (div,Ω) and υ ∈ L2(Ω).

In turn, given u ∈ L2(Ω), at first instance we get from (3.3), (3.4) and (3.5) the following mixed
formulation for the transport equations: Find (t,p, φ) ∈ L2(Ω)×HN (div,Ω)× L2(Ω) such that∫

Ω
t · q +

∫
Ω
φ div q = 〈q · ν, φD〉ΓD ∀q ∈ HN (div,Ω),∫

Ω
θ(|t|)t · s−

∫
Ω

p · s−
∫

Ω
φu · s =

∫
Ω
γ(φ)k · s ∀s ∈ L2(Ω) ,∫

Ω
ϕdiv p = −

∫
Ω
g ϕ ∀ϕ ∈ L2(Ω) .

(3.7)

Then, we observe that the assumption on µ given by (2.2) and the Babuska-Brezzi theory suffice to
show that (3.6) is well-possed (see, e.g. [18, Thm. 2.1] for details). However, in order to deal with
the analysis of (3.7), particularly to handle the third term of the second equation, it is required that
actually u and φ belong to H1(Ω) and H1(Ω) respectively. In fact, using Cauchy-Schwarz’s inequality
and the continuous injections i : H1(Ω)→ L4(Ω) and i : H1(Ω)→ L4(Ω), we have that∣∣∣∣∫

Ω
ϕυ · s

∣∣∣∣ ≤ c(Ω)‖υ‖1,Ω ‖ϕ‖1,Ω ‖s‖0,Ω ∀ (υ, ϕ, s) ∈ H1(Ω)×H1(Ω)× L2(Ω) , (3.8)

with c(Ω) := ‖i‖ ‖i‖. Furthermore, while the exact solutions of (3.6) and (3.7) satisfy
1

µ(φ)
σd = ∇u

in D′(Ω) and t = ∇φ in D′(Ω), which implies that u ∈ H1(Ω) and φ ∈ H1(Ω), these distributional
identities do not necessarily extend to the discrete cases of (3.6) and (3.7). Therefore, proceeding as
in [2], we now incorporate the following redundant Galerkin terms

k1

∫
Ω

(
∇u− 1

µ(φ)
σd
)

: ∇υ = 0 ∀υ ∈ H1(Ω) ,

k2

∫
Ω

divσ · div τ = −k2

∫
Ω

fφ · div τ ∀ τ ∈ HN (div,Ω) ,

k3

∫
ΓD

u · υ = k3

∫
ΓD

uD · υ ∀υ ∈ H1(Ω) ,

(3.9)

where (k1, k2, k3) is a vector of positive parameters to be specified later on. Notice that the first and
third equations in (3.9) implicitly require the velocity u to belong to H1(Ω). In this way, instead
of (3.6), from now on we consider the following augmented mixed formulation: Find (σ,u) ∈ H1 :=
HN (div,Ω)×H1(Ω) such that

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 , (3.10)

where

Bφ((σ,u), (τ ,υ)) := aφ(σ, τ ) + b(τ ,u)− b(σ,υ) + k1

∫
Ω

(
∇u− 1

µ(φ)
σd
)

: ∇υ

+ k2

∫
Ω

divσ · div τ + k3

∫
ΓD

u · υ
(3.11)

and

Fφ(τ ,υ) := 〈τ ,uD〉ΓD +

∫
Ω

fφ · υ − k2

∫
Ω

fφ · div τ + k3

∫
ΓD

uD · υ . (3.12)
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Similarly, the transport formulation (3.7) is augmented with the following redundant Galerkin terms

l1

∫
Ω

(p− θ(|t|)t + φu) · q = −l1
∫

Ω
γ(φ) k · q ∀q ∈ HN (div,Ω) ,

l2

∫
Ω

div p div q = −l2
∫

Ω
g div q ∀q ∈ HN (div,Ω) ,

l3

∫
Ω

(∇φ− t) · ∇ϕ = 0 ∀ϕ ∈ H1(Ω) ,

l4

∫
ΓD

φϕ = l4

∫
ΓD

φD ϕ ∀ϕ ∈ H1(Ω) ,

(3.13)

where (l1, l2, l3, l4) is a vector of positive parameters to be specified later on. Analogously as before,
the third and fourth equations of (3.13) require that φ belongs to H1(Ω). In this way, instead of
(3.7), we consider from now on the following augmented mixed formulation: Find (t,p, φ) ∈ H2 :=
L2(Ω)×HN (div,Ω)×H1(Ω) such that

[(A+ B̃u)(t,p, φ), (s,q, ϕ)] = F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ L2(Ω)×HN (div,Ω)×H1(Ω) (3.14)

where [·, ·] stands for the duality pairing between H2 and H ′2, A : H ′2 → H2 and B̃u : H ′2 → H2 are
the nonlinear and linear operators, respectively, given by

[A(t,p, φ), (s,q, ϕ)] :=

∫
Ω
θ(|t|)t · s−

∫
Ω

p · s +

∫
Ω

t · q +

∫
Ω
φ div q−

∫
Ω
ϕdiv p

+ l1

∫
Ω

(p− θ(|t|)t) · q + l2

∫
Ω

div p div q + l3

∫
Ω

(∇φ− t) · ∇ϕ+ l4

∫
ΓD

φϕ ,
(3.15)

and

[B̃u(t,p, φ), (s,q, ϕ)] :=

∫
Ω
φu · (l1q− s) , (3.16)

and F̃φ ∈ H ′2 is defined by

F̃φ(s,q, ϕ) := 〈q · ν, φD〉ΓD +

∫
Ω
γ(φ)k · (s− l1q) +

∫
Ω
ϕg − l2

∫
Ω
gdiv q + l4

∫
ΓD

φDϕ (3.17)

for all (s,q, ϕ) ∈ H2. The well-posedness of (3.10) and (3.14) is proved below in Section 3.3. Con-
sequently, the augmented fully mixed formulation of the coupled problem (2.6) reduces to: Find
((σ,u, ), (t,p, φ)) ∈ H1 ×H2 such that

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 ,[
(A+ B̃u)(t,p, φ), (s,q, ϕ)

]
= F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ H2 .

(3.18)

3.2 A fixed point strategy

According to the alternative formulations (3.10) and (3.14), and proceeding as in [2] and [3] (se also,
[11] and [12]), we suggest a fixed point strategy to analyze (3.18). Indeed, let S : H1(Ω)→ H1 be the
operator defined by

S(ψ) = (S1(ψ),S2(ψ)) := (σ,u) ∈ H1 ∀ψ ∈ H1(Ω) ,

where (σ,u) is the unique solution of (3.10) with the given φ = ψ. In turn, let S̃ : H1(Ω)×H1(Ω)→ H2

be the operator defined by

S̃(ψ,u) = (S̃1(ψ,u), S̃2(ψ,u), S̃3(ψ,u)) := (t,p, φ) ∈ H2 ,
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where (t,p, φ) is the unique solution of (3.14) with φ = ψ and u given. Then, we define the operator
T : H1(Ω)→ H1(Ω) by

T(ψ) := S̃3(ψ,S2(ψ)) (3.19)

and realize that solving (3.18) is equivalent to seeking a fixed point of T, that is : Find ψ ∈ H1(Ω)
such that

T(ψ) = ψ . (3.20)

3.3 Well-posedness of the uncoupled problems

In this section, we show that the operators S and S̃ are well defined, that is that the uncoupled
problems (3.10) and (3.14) are in fact well-posed. We begin by recalling (see, e.g. [6]) that

H(div,Ω) = H0(div,Ω)⊕ RI , where H0(div,Ω) :=
{
ζ ∈ H(div,Ω) :

∫
Ω

tr (ζ) = 0
}
.

More precisely, for each ζ ∈ H(div,Ω) there exists unique ζ0 := ζ −
{ 1

n|Ω|

∫
Ω

tr (ζ)
}
I ∈ H0(div,Ω)

and d :=
1

n|Ω|

∫
Ω

tr (ζ) ∈ R such that ζ = ζ0 + dI. The following three lemmas from [6], [19] and [17],

which concern the above decomposition and an equivalence of norm, will be employed to show the
well-posedness of (3.10) and (3.14).

Lemma 3.1. There exists c1 = c1(Ω) > 0 such that

c1‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div (τ )‖20,Ω ∀ τ = τ 0 + cI ∈ H(div,Ω) ,

with τ 0 ∈ H0(div,Ω) and c ∈ R.

Proof. See [6, Proposition 3.1].

Lemma 3.2. There exists c2 = c2(Ω,ΓN ) > 0) such that

c2‖τ‖2div ;Ω ≤ ‖τ 0‖2div ;Ω ∀ τ = τ 0 + cI ∈ HN (div,Ω)

with τ 0 ∈ H0(div,Ω) and c ∈ R.

Proof. See [19, Lemma 2.2].

Lemma 3.3. There exists ci = ci(Ω, γD) > 0 , with i ∈ {3, 4} such that

|υ|21,Ω + ‖υ‖20,ΓD ≥ c3‖υ‖21,Ω ∀υ ∈ H1(Ω)

|ϕ|21,Ω + ‖ϕ‖20,ΓD ≥ c4‖ϕ‖21,Ω ∀ϕ ∈ H1(Ω)

Proof. It corresponds to a slight modification of the proof of [17, Lemma 3.3].

On the other hand, the following results refers to the nonlinear term forming part of A (cf. (3.15)).

Lemma 3.4. Let θ̃2 := max{θ2, 2θ2 − θ1} (cf. (2.3)). Then

‖θ(|r|)r− θ(|s|)s‖0,Ω ≤ θ̃2‖r− s‖0,Ω∫
Ω
{θ(|r|)r− θ(|s|)s} · (r− s) ≥ θ1‖r− s‖0,Ω2

for all r, s ∈ L2(Ω).
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Proof. See [20, Theorem 3.8] for details.

In what follows, we consider

‖(τ ,υ)‖H1 :=
{
‖σ‖2div ;Ω + ‖υ‖21,Ω

}1/2
∀ (τ ,υ) ∈ H1

and

‖(s,q, ϕ)‖H2 :=
{
‖s‖20,Ω + ‖q‖2div ;Ω + ‖ϕ‖21,Ω

}1/2
∀ (s,q, ϕ) ∈ H2 .

We now prove the well-definiteness of S.

Lemma 3.5. Assume that k1 ∈
(

0,
2δµ1

µ2

)
with δ ∈ (0, 2µ1), and that 0 < k2, k3. Then, for each

φ ∈ H1(Ω) the problem (3.10) has a unique solution S(φ) := (σ,u) ∈ H1. Moreover, there exists
CS > 0, independent of φ, such that

‖S(φ)‖H1 = ‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
∀φ ∈ H1(Ω) . (3.21)

Proof. It reduces to show that, under the stipulated ranges for the parameters κ1, κ2, κ3, and δ, the
bilinear form Bφ becomes H1-elliptic with an ellipticity constant independent of φ ∈ H1(Ω). We omit
details and refer to [2, Lemma 3.4].

Throughout the rest of the paper, a regularity assumption will be made for the problem defining
the operator S. More precisely, we assume that uD ∈ H1/2+ε for some

ε ∈
{

(0, 1) if n = 2 ,
(1

2 , 1) if n = 3 ,
(3.22)

and that for each φ ∈ H1(Ω) with ‖φ‖1,Ω ≤ r, r > 0, there holds S(φ) = (ζ, s) ∈ (HN (div,Ω) ∩Hε(ε))
×
(
H1(Ω) ∩H1+ε(Ω)

)
and

‖ζ‖ε,Ω + ‖s‖1+ε,Ω ≤ C̃S̃
(r)
{
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

}
, (3.23)

with a positive constant C̃
S̃
(r) independent of the given φ but depending on the upper bound r of its

H1-norm. We remark that the reason of the stipulated ranges for ε will be clarified in the forthcoming
analysis (see below proof of Lemma 3.11). For more details see [2].

Next, in order to demonstrate that S is well-posed, we need the following two previous Lemmas.

Lemma 3.6. For each u ∈ H1(Ω), A+ B̃u is Lipschitz-continuous.

Proof. Given (t,p, φ), (r,o, ψ) and (s,q, ϕ) ∈ H2, we first notice that∣∣[A(t,p, φ) − A(r,o, ψ), (s,q, ϕ)]
∣∣ =

∣∣∣ ∫
Ω
{θ(|t|)t− θ(|r|)r} · s +

∫
Ω

(o− p) · s +

∫
Ω

(t− r) · q

+

∫
Ω

(φ− ψ) · q +

∫
Ω
ϕdiv (o− p) + l1

∫
Ω

(o− p) · q + l1

∫
Ω
{θ(|t|)t− θ(|r|)r} · q

+ l2

∫
Ω

div (p− q) div q + l3

∫
Ω
∇(φ− ψ) · ∇ϕ+ l3

∫
Ω

(r− t) · ∇ϕ+ l4

∫
ΓD

(φ− ψ)ϕ
∣∣∣

9



Now, using the Cauchy-Schwarz inequality, the Lipschitz-continuity of the operator induced by θ (cf.
Lemma 3.4) and the trace theorem (with constant c0 ), we deduce from the foregoing equation that∣∣[A(t,p, φ)−A(r,o, ψ), (s,q, ϕ)]

∣∣ ≤ ‖θ(|t|)t− θ(|r|)r‖0,Ω‖s‖0,Ω + ‖o− p‖0,Ω‖s‖0,Ω

+ ‖t− r‖0,Ω‖q‖0,Ω + ‖φ− ψ‖0,Ω‖q‖0,Ω + ‖ϕ‖0,Ω‖div (o− p)‖0,Ω

+ l1‖o− p‖0,Ω‖q‖0,Ω + l1‖θ(|t|)t− θ(|r|)r‖0,Ω‖q‖0,Ω + l2‖div (p− q)‖0,Ω‖div q‖0,Ω

+ l3|φ− ψ|1,Ω|ϕ|1,Ω + l3‖r− t‖0,Ω|ϕ|1,Ω + l4‖φ− ψ‖0,ΓD‖ϕ‖0,ΓD

≤ L̃A(4‖t− r‖20,Ω + 2‖p− o‖20,Ω + 2‖φ− ψ‖21,Ω

+ 2‖div (p− o)‖20,Ω + |φ− ψ|21,Ω)1/2(2‖s‖20,Ω + 4‖q‖20,Ω + ‖ϕ‖20,Ω + ‖div q‖20,Ω

+ 2|ϕ|21,Ω + ‖ϕ‖21,Ω)1/2 ,

with L̃A = max{θ̃2, 1, l1, l1θ̃2, l2, l3, l4c0}, which yields∣∣[A(t,p, φ)−A(r,o, ψ), (s,q, ϕ)]
∣∣ ≤ LA‖(t,p, φ)− (r,o, ψ)‖H2‖(s,q, ϕ)‖H2 (3.24)

for all (t,p, φ), (r,o, ψ), (s,q, ϕ) ∈ H2, with LA := 4L̃A. In turn, it readily follows from (3.8) and
(3.16) that

|[B̃u(s,q, ϕ), (r,o, ψ)]| =
∣∣∣ ∫

Ω
ϕu · (l1o− r)

∣∣∣
≤ ‖ϕ‖L4(Ω)‖u‖L4(Ω)(l

2
1 + 1)1/2

{
‖r‖20,Ω + ‖o‖2div ;Ω

}1/2

≤ c(Ω)(l22 + 1)1/2‖u‖1,Ω‖ϕ‖1,Ω‖(r,o, ψ)‖H2

≤ c(Ω)(l22 + 1)1/2‖u‖1,Ω‖(s,q, ϕ)‖H2‖(r,o, ψ)‖H2 ,

(3.25)

which, thanks to the linearity of B̃u, and together with (3.24), confirms that A + B̃u is Lipschitz-
continuous with constant LC := LA + c(Ω)(l22 + 1)1/2‖u‖1,Ω.

The strong monotonicity of the operator A+ B̃u is established next.

Lemma 3.7. Assume that l1 ∈
(

0, 2θ1δ

θ̃2

)
and l3 ∈

(
0, 2δ̃

(
θ1 − θ̃2l1

2δ )
)
, with δ ∈

(
0, 2

θ̃2

)
and δ̃ ∈ (0, 2),

and that l2, l4 > 0. Then, for each u ∈ H1(Ω) such that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, A+ B̃u is strongly

monotone.

Proof. Given (s,q, ϕ), (r,o, ψ) ∈ H2, we first observe that

[A(s,q, ϕ)−A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] =

∫
Ω

{
θ(|s|)s− θ(|r|)r

}
· (s− r) + l1‖q− o‖20,Ω

−l1
∫

Ω
(θ(|s|)s− θ(|r|)r) · (q− o) + l2‖div (q− o)‖20,Ω + l3|ϕ− ψ|21,Ω

−l3
∫

Ω
(s− r) · ∇(ϕ− ψ) + l4‖ϕ− ψ‖20,ΓD .
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Then, thanks to Lemma 3.4 and the Cauchy-Schwarz and Young inequalities, we obtain

[A(s,q, ϕ)−A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ θ1‖s− r‖20,Ω + l1‖q− o‖20,Ω + l2‖div (q− o)‖20,Ω
− l1‖θ(|s|)s− θ(|r|)r‖0,Ω‖q− o‖0,Ω + l3|ϕ− ψ|21,Ω − l3‖s− r‖0,Ω|ϕ− ψ|1,Ω + l4‖ϕ− ψ‖0,ΓD

≥ θ1‖s− r‖20,Ω + l1‖q− o‖20,Ω − l1θ̃2‖s− r‖0,Ω‖q− o‖0,Ω + l2‖div (q− o)‖20,Ω + l3|ϕ− ψ|21,Ω

− l3‖s− r‖0,Ω|ϕ− ψ|1,Ω + l4‖ϕ− ψ‖0,ΓD

≥ θ1‖s− r‖20,Ω + l1‖q− o‖20,Ω − l1θ̃2
1

2δ
‖s− r‖20,Ω − l1θ̃2

δ

2
‖q− o‖20,Ω + l2‖div (q− o)‖20,Ω

+ l3|ϕ− ψ|21,Ω − l3
1

2δ̃
‖s− r‖20,Ω − l3

δ̃

2
|ϕ− ψ|21,Ω + l4‖ϕ− ψ‖0,ΓD ,

which gives

[A(s,q, ϕ)−A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥
(
θ1 − l1θ̃2

1
2δ − l3

1

2δ̃

)
‖s− r‖20,Ω

+l1

(
1− θ̃2δ

2

)
‖q− o‖20,Ω + l2‖div (q− o)‖20,Ω + l3

(
1− δ̃

2

)
|ϕ− ψ|21,Ω + l4‖ϕ− ψ‖0,ΓD

(3.26)

In this way, assuming the stipulated hypotheses on δ, l1, l2, l3, l4, we can define the positive constants

α0(Ω) :=
(
θ1 − l1θ̃2

1

2δ
− l3

1

2δ̃

)
, α1(Ω) := min

{
l1

(
1− θ̃2δ

2

)
, l2

}
,

and

α2(Ω) := min
{
l3

(
1− δ̃

2

)
, l4

}
,

which, together with (3.26), imply that

[A(s,q, ϕ)−A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ α(Ω)‖(s,q, ϕ)− (r,o, ψ)‖2H2
, (3.27)

with
α(Ω) := min

{
α0(Ω), α1(Ω), c4α2(Ω)

}
. (3.28)

Moreover, by combining (3.25) and (3.27), we obtain

[(A+B̃u)(s,q, ϕ)− (A+ B̃u)(r,o, ψ), (s,q, ϕ)− (r,o, ψ)]

≥
{
α(Ω)− (1 + l21)1/2c(Ω)‖u‖1,Ω

}
‖(s,q, ϕ)− (r,o, ψ)‖2H2

,

(3.29)

and assuming that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
we conclude that

[(A+ B̃u)(s,q, ϕ)− (A+ B̃u)(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ α(Ω)

2
‖(s,q, ϕ)− (r,o, ψ)‖2H2

, (3.30)

which shows the strong monotonicity of A+ B̃u with constant α(Ω)
2 .

Having proved the properties of A+ B̃u given by the previous Lemmas 3.6 and 3.7, we are now in
a position to show the well-posedness of the operator S̃.
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Lemma 3.8. Assume that l1 ∈
(

0, 2θ1δ

θ̃2

)
and l3 ∈

(
0, 2δ̃

(
θ1 − θ̃2l1

2δ )
)
, with δ ∈

(
0, 2

θ̃2

)
and δ̃ ∈ (0, 2),

and that l2, l4 > 0. Then given φ ∈ H1(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there

exists a unique S̃(φ,u) := (t,p, φ) ∈ H2 solution of (3.14) and there hols

‖S̃(φ,u)‖H2 = ‖(t,p, φ)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
, (3.31)

where C
S̃

=
2

α(Ω)
C
F̃φ

and C
F̃φ

= max
{

1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
.

Proof. Given φ ∈ H1(Ω), we begin by noticing that the Cauchy-Schwarz inequality and the trace
theorems imply

|F̃φ(s,q, ϕ)| ≤ |〈q · ν, φD〉ΓD |+
∣∣∣∣∫

Ω
γ(φ)k · (s− l1q)

∣∣∣∣+

∣∣∣∣∫
Ω
ϕg

∣∣∣∣+ l2

∣∣∣∣∫
Ω
gdiv q

∣∣∣∣+ l4

∣∣∣∣∫
ΓD

φDϕ

∣∣∣∣
≤ ‖q‖−1/2,ΓD‖φD‖1/2,ΓD + γ2|Ω|1/2‖k‖‖s− l1q‖0,Ω + ‖g‖0,Ω‖ϕ‖0,Ω

+ l2‖g‖0,Ω‖div q‖0,Ω + l4‖φD‖0,ΓD‖ϕ‖0,ΓD

≤ ‖q‖div ;Ω‖φD‖1/2,ΓD + γ2|Ω|1/2‖k‖(‖s‖0,Ω + l1‖q‖div ;Ω) + ‖g‖0,Ω‖ϕ‖1,Ω

+ l2‖g‖0,Ω‖q‖div ;Ω + l4c0‖φD‖0,ΓD‖ϕ‖1,Ω

≤ C
F̃φ

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
‖(s,q, ϕ)‖H2 ,

(3.32)

with C
F̃φ

= max
{

1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
, which shows that F̃φ ∈ H ′2. In this way,

knowing from Lemmas 3.6 and 3.7 that for each u ∈ H1(Ω) the operator A+B̃u is Lipschitz-continuous
and strongly monotone, a classical result on the bijectivity of monotone operators (see e.g. [23,
Theorem 3.3.23]) allows us to conclude that there exists a unique solution S̃(φ,u) := (t,p, φ) ∈ H2 of
(3.14). Then, by applying (3.30) with (s,q, ϕ) = (t,p, φ) and (r,o, ψ) = (0,0, 0), we obtain

α(Ω)

2
‖(t,p, φ)‖2H2

≤ [(A+ B̃u)(t,p, φ), (t,p, φ)] ≤ |F̃φ(t,p, φ)|

≤ C
F̃φ

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
‖(t,p, φ)‖H2 ,

which yields

‖(t,p, φ)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
.

We end this section by remarking that a suitable constant α0(Ω) can be computed by taking the
parameters δ, l1, δ̃ and l3 as the middle points of their feasible ranges. Then we choose l2 and l4 so that

the minima defining α1(Ω) and α2(Ω) are maximized. More precisely, we simply take δ =
1

θ̃2

and δ̃ = 1,

which implies l1 =
θ1

θ̃2
2

, and l3 =
θ1

2
, and then we set l2 = l1

(
1− θ̃2δ

2

)
= l1

2 , and l4 = l3

(
1− δ̃

2

)
= l3

2 ,

whence

α0(Ω) =
(
θ1 − l1θ̃2

1

2δ
− l3

1

2δ̃

)
=
θ1

2
,
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α1(Ω) = min{l1
(

1− θ̃2δ

2

)
, l2} =

l1
2

=
θ1

4θ̃2
2

,

α2(Ω) = min{l3
(

1− δ̃

2

)
, l4} =

l3
2

=
θ1

4
,

and

α(Ω) = min
{
α0(Ω), α1(Ω), c4α2(Ω)

}
= min

{θ1

2
,
θ1

4θ̃2
2

, c4
θ1

4

}
.

The foregoing explicit values of the stabilization parameters li, i ∈ {1, ..., 4}, will be employed in
Section 5 for the corresponding numerical experiments.

3.4 Solvability analysis of the fixed point equation

Having established in the previous section the well-posedness of the uncoupled problems (3.10) and
(3.14), thus showing that the operators S, S̃ and T are well defined, we now address the solvability
analysis of the fixed point equation (3.20). For this purpose, in what follows we verify the hypotheses
of the Schauder fixed point theorem, which is recalled next (cf. [10, Theorem. 9.12-1(b)]).

Theorem 3.9. Let W be a closed and convex subset of a Banach space X and let T : W→W be a
continuous mapping such that T(W) is compact. Then T has at least one fixed point.

We start with the following result.

Lemma 3.10. Given r > 0, set W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.33)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.34)

Then T(W) ⊆W.

Proof. Given φ ∈W, we get from (3.21) (cf. Lemma 3.5) that

‖S(φ)‖H1 = ‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
and hence, thanks to the restriction (3.33), we observe that u = S2(φ) satisfies the assumption
requested in the statement of Lemma 3.8. Moreover, the corresponding estimate (3.31) gives

‖T(φ)‖1,Ω = ‖S̃3(φ,u)‖1,Ω ≤ ‖S̃(φ,u)‖H2 = ‖(t,p, φ)‖H1

≤ C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
,

(3.35)

which, according to the hypothesis (3.34), guarantees that ‖T(φ)‖1,Ω ≤ r, and hence T(W) ⊆W.

Next, we will demonstrate the continuity and compactness of T, which will be consequence of the
following Lemmas proving the continuity of S and S̃.

Lemma 3.11. There exists a constant C > 0, depending on µ1, l1, l2, Lµ the ellipticity constant α of
Bφ (cf. [2, eq. (3.19)]), and the regularity parameter ε (cf. (3.23)), such that

‖S(φ)− S(ϕ)‖H1 ≤ C
{
‖f‖∞,Ω‖φ− ϕ‖0,Ω + ‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

}
∀φ , ϕ ∈ H1(Ω) . (3.36)
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Proof. It follows exactly as in ([2, Lemma 3.9]) irrespective of the fact that now φ ∈ H1(Ω).

Lemma 3.12. There exists C̃ :=
2

α(Ω)
(1 + l21)1/2 max

{
c(Ω), Lγ

}
(cf. (3.8), (3.28)) such that for all

(φ1,u1), (φ2,u2) ∈ H1(Ω)×H1(Ω) with ‖u1‖1,Ω , ‖u2‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there holds

‖S̃(φ1,u1)− S̃(φ2,u2)‖H2 ≤ C̃
{
‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + ‖k‖‖φ1 − φ2‖0,Ω

}
. (3.37)

Proof. Given (φ1,u1), (φ2,u2) ∈ H1(Ω)×H1(Ω) such that ‖u1‖1,Ω and ‖u2‖1,Ω are bounded above by
(3.21), we let

(t1,p1, φ1) = S̃(φ1,u1) = (S̃1(φ1,u1), S̃2(φ1,u1), S̃3(φ1,u1)) ∈ H2

and
(t2,p2, φ2) = S̃(φ2,u2) = (S̃1(φ2,u2), S̃2(φ2,u2), S̃3(φ2,u2)) ∈ H2 ,

which means
[(A+ B̃u1)(t1,p1, φ1), (s,q, ϕ)] = F̃φ1(s,q, ϕ)

and
[(A+ B̃u2)(t2,p2, φ2), (s,q, ϕ)] = F̃φ2(s,q, ϕ)

for all (s,q, ϕ) ∈ H2. Then, thanks to the strong monotonicity of A+ B̃u1 , we have

α(Ω)

2
‖(t1,p1, φ1)− (t2,p2, φ2)‖2H2

≤ [(A+ B̃u1)(t1,p1, φ1)− (A+ B̃u1)(t2,p2, φ2), (t1,p1, φ1)− (t2,p2, φ2)] ,

(3.38)

from which, adding and subtracting B̃u2(t2,p2, φ2), we find that

α(Ω)

2
‖(t1,p1, φ1)− (t2,p2, φ2)‖2H2

≤ [(A+ B̃u1)(t1,p1, φ1) + B̃u2(t2,p2, φ2)− B̃u2(t2,p2, φ2)

−(A+ B̃u1)(t2,p2, φ2), (t1,p1, φ1)− (t2,p2, φ2)]

≤ F̃φ1((t1,p1, φ1)− (t2,p2, φ2))− F̃φ2((t1,p1, φ1)− (t2,p2, φ2))

+[B̃u2−u1(t2,p2, φ2), (t1,p1, φ1)− (t2,p2, φ2)] .

In this way, using the injections of i : H1(Ω) → L4(Ω) and i : H1(Ω) → L4, and denoting again
c(Ω) := ‖i‖‖i‖ as we did in (3.8), we get

|[B̃u2−u1(t2,p2, φ2), (t1,p1, φ1)− (t2,p2, φ2)]| =
∣∣∣ ∫

Ω
φ2(u1 − u2) · {l1(p1 − p2)− (t1 − t2)}

∣∣∣
≤ ‖φ2‖L4(Ω)‖u1 − u2‖L4(Ω)(1 + l21)1/2

{
‖p1 − p2‖20,Ω + ‖t1 − t2‖20,Ω

}1/2

≤ c(Ω)(1 + l21)1/2‖φ2‖1,Ω‖u2 − u1‖1,Ω‖(t1,p1, φ1)− (t2,p2, φ2)‖H2

= c(Ω)(1 + l21)1/2‖S̃3(φ2,u2)‖1,Ω‖u2 − u1‖1,Ω‖(t1,p1, φ1)− (t2,p2, φ2)‖H2 ,
(3.39)
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whereas the Lipchitz continuity of γ (cf. (2.4)) yields

|F̃φ1((t1,p1, φ1)− (t2,p2, φ2))− F̃φ2((t1,p1, φ1)− (t2,p2, φ2))|

=
∣∣∣ ∫

Ω
(γ(φ1)− γ(φ2))k · ((t1 − t2)− l1(p1 − p2))

∣∣∣
≤ Lγ(1 + l21)1/2‖k‖‖φ1 − φ2‖0,Ω‖(t1,p1, φ1)− (t2,p2, φ2)‖H2 .

(3.40)

In this way, it follows from (3.39) and (3.40) that

‖S̃(φ1,u1)− S̃(φ2,u2)‖H2 = ‖(t1,p1, φ1)− (t2,p2, φ2)‖H2

≤ 2

α(Ω)
(1 + l21)1/2

{
c(Ω)‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + Lγ‖k‖‖φ1 − φ2‖0,Ω

}
≤ C̃

{
‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + ‖k‖‖φ1 − φ2‖0,Ω

}
,

with C̃ as indicated, which finishes the proof.

As a consequence of Lemmas 3.11 and 3.12, we obtain the Lipschitz-continuity of T. More precisely,
we have the following result.

Lemma 3.13. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.41)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.42)

Then, with the constants C and C̃ from Lemmas 3.11 and 3.12, there holds

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

(3.43)

for all φ, ϕ ∈W.

Proof. Given φ and ϕ in W, we first recall from (3.20) that T(φ) := S̃3(φ,S2(φ)) and T(ϕ) :=
S̃3(ϕ,S2(ϕ)). Then, using Lemmas 3.11 and 3.12, we deduce that

‖T(φ)−T(ϕ)‖1,Ω = ‖S̃3(φ,S2(φ))− S̃3(ϕ,S2(ϕ))‖1,Ω

≤ ‖S̃(φ,S2(φ))− S̃(ϕ,S2(ϕ))‖H2

≤ C̃
{
‖S̃3(ϕ,υ)‖1,Ω‖u− υ‖1,Ω + ‖k‖‖φ− ϕ‖0,Ω

}
= C̃

{
‖T(ϕ)‖1,Ω‖S2(φ)− S2(ϕ)‖1,Ω + ‖k‖‖φ− ϕ‖0,Ω

}
≤ C̃

{
‖T(ϕ)‖1,Ω‖S2(φ)− S2(ϕ)‖H1 + ‖k‖‖φ− ϕ‖0,Ω

}
≤ C̃

{
‖T(ϕ)‖1,ΩC

{
‖f‖∞,Ω‖φ− ϕ‖0,Ω + ‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

}
+ ‖k‖‖φ− ϕ‖0,Ω

}
= C̃

{
C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖

}
‖φ− ϕ‖0,Ω + CC̃‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω) ,

which is the required estimate, thus completing the proof.
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Next, we prove the required compactness property of T.

Lemma 3.14. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.44)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.45)

Then T : W→W is continuous and T(W) is compact.

Proof. We first recall, thanks now to the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem
3.7]) that the injection i : H1(Ω) → Ls(Ω) is compact, and hence continuous, for each s ≥ 1 (when
n = 2), and for each s ∈ [1, 6) (when n = 3). Then, according to the assumptions on the further
regularity ε (cf. 3.23), that is ε ∈ (0, 1) in R2 and ε ∈ (1

2 , 1) in R3, we realize that n
ε belongs to

the indicated ranges for s. It follows that H1(Ω) is compactly, and hence continuously, embedded in
Ln/ε(Ω), with constant Ĉ, which together with (3.43) imply

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃Ĉ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖1,Ω ,
(3.46)

from which the continuity of T is obtained. In turn, let {φk}k∈N a sequence that live in W, which is

clearly bounded. It follows that there exist a subsequence {φ(1)
k }k∈N ⊆ {φk}k∈N and φ ∈ H1(Ω) such

that φ
(1)
k

w−→ φ. Then, since the injections i : H1(Ω)→ L2(Ω) and ĩ : H1(Ω)→ Ln/ε are compact, we

deduce that φ
(1)
k → φ in L2(Ω) and in Ln/ε, which thanks again to (3.43), implies that T(φ

(1)
k )→ T(φ)

in H1(Ω). This proves the compactness of T(W) and finishes the proof.

Finally, the main result of the section is given as follows.

Theorem 3.15. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.47)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.48)

Then, the augmented fully mixed problem (3.18) has at least one solution
(
(σ,u), (t,p, φ)

)
∈ H1×H2

with φ ∈W, and there holds

‖(t,p, φ)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
(3.49)

and
‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
. (3.50)

Moreover, if the data k, f and uD are sufficiently small so that, with the constant C, C̃ and CS(r)
from Lemmas 3.11 and 3.12 and the estimate (3.23), there holds

C̃
{
C r
(
‖f‖∞,Ω + ĈC̃

S̃
(r)
(
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

))
+ ‖k‖

}
< 1 , (3.51)

then the solution φ is unique in W.
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Proof. According to the equivalence between (3.18) and the fixed point equation (3.20), and thanks to
Lemmas 3.10 and 3.14, the existence of a solution is just a straightforward application of the Schauder
fixed point Theorem (cf. Theorem 3.9). In turn, the estimates (3.49) and (3.50) follow from (3.21)
and (3.31), respectively. Furthermore, according to (3.46) we have

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃Ĉ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖1,Ω

≤ C̃
{
C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖+ CĈ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω

}
‖φ− ϕ‖1,Ω

= C̃
{
C‖T(ϕ)‖1,Ω(‖f‖∞,Ω + Ĉ‖S1(ϕ)‖ε,Ω) + ‖k‖

}
‖φ− ϕ‖1,Ω ,

(3.52)

which, using from (3.35) and (3.23), that

‖T(ϕ)‖1,Ω ≤ ‖S̃(ϕ,S2(ϕ))‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r ,

and
‖S1(ϕ)‖ε,Ω ≤ C̃S̃

(r){‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω} ,

leads to

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃
{
C r
(
‖f‖∞,Ω + ĈC̃

S̃
(r)
(
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

))
+ ‖k‖

}
‖φ− ϕ‖1,Ω.

The foregoing inequality shows that T is a contraction if the condition (3.51) is satisfied, and hence
by the Banach fixed point Theorems we get that φ ∈ H1(Ω) is unique.

We end this section by remarking that the foregoing theorem ensures that, under the assumptions
(3.47), (3.48) and (3.51) on the data, there exists a unique solution

(
(σ,u), (t,p, φ)

)
∈ H1 × H2 of

problem (3.18) such that φ ∈W.

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the augmented fully mixed formulation (3.18), and
analyze its solvability by employing a discrete version of the fixed point strategy developed in Section
3.2. To this end, we now let Hσ

h ⊆ HN (div,Ω), Xu
h ⊆ H1(Ω), Yt

h ⊆ L2(Ω), Hp
h ⊆ HN (div,Ω), and

Xφ
h ⊆ H1(Ω), be arbitrary finite element subspaces for approximating the unknowns σ, u, t, p, and φ,

respectively, and set H1,h := Hσ
h ×Xu

h and H2,h := Yt
h×Hp

h×Xφ
h. In this way, the underlying Galerkin

scheme, given by the discrete counterpart of (3.18), reads: Find
(
(σh,uh), (th,ph, φh)

)
∈ H1,h ×H2,h

such that

Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h ,[
(A+ B̃uh)(th,ph, φh), (sh,qh, ϕh)

]
= F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h.

(4.1)

Throughout the rest of this section, we adopt the discrete analogue of the fixed point strategy
introduced in Section 3.2. In fact, we now let Sh : Xφ

h → H1,h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∈ H1,h ∀φh ∈ Xφ
h ,
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where (σh,uh) ∈ H2,h is the unique solution of the problem

Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h , (4.2)

and Bφh and Fφh are defined by (3.11) and (3.12), respectively, with φ = φh. In addition, we let

S̃h : Xφ
h ×Xu

h → H2,h be the operator defined by

S̃h(φh,uh) = (S̃1,h(φh,uh), S̃2,h(φh,uh), S̃3,h(φh,uh)) := (th,ph, φ̃h) ∈ H2,h ∀(φh,uh) ∈ Xu
h ×Xφ

h ,

where (th,ph, φ̃h) ∈ H2,h is the the unique solution of[
(A+ B̃uh)(th,ph, φ̃h), (sh,qh, ϕh)

]
= F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h , (4.3)

and B̃uh and F̃φh are defined by (3.16) and (3.17), respectively, with u = uh and φ = φh. Finally, we

define the operator Th : Xφ
h → Xφ

h by

Th(φh) := S̃3,h(φh,S2,h(φh)) ∀φh ∈ Xφ
h , (4.4)

and realize that (4.1) can be rewritten, equivalently, as the fixed point equation: Find φh ∈ Xφ
h such

that
Th(φh) = φh . (4.5)

At this point we remark that all the above makes sense if the discrete problems (4.2) and (4.3) are
well-possed. Indeed, it is easy to see that the respective proofs are almost verbatim as the continuous
versions provided in Section 3 (cf. Lemmas 3.5 and 3.8). More precisely, we obtain the following
results.

Lemma 4.1. Assume that k1 ∈
(

0, 2δµ1
µ2

)
with δ ∈ (0, 2µ1), and that k2, k3 > 0. Then, for each

φh ∈ Xφ
h the problem (4.2) has a unique solution Sh(φh) := (σh,uh) ∈ H1,h. Moreover, with the same

constant CS > 0 from Lemma 3.5, there holds

‖Sh(φh)‖H1 = ‖(σh,uh)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φh‖1,Ω

}
∀φh ∈ Xφ

h .

Proof. Similarly to the proof of Lemma 3.5, it is consequence of the uniform H1,h-ellipticity of the

bilinear form Bφh for each φh ∈ Xφ
h. We omit further details and refer to [2, Lemma 4.1].

Lemma 4.2. Assume that l1 ∈
(

0, θ1δ
θ̃2

)
and l3 ∈

(
0, θ1δ̃

)
, with δ ∈

(
0, 2

θ̃2

)
and δ̃ ∈ (0, 2), and that

l2, l4 > 0. In addition, let φh ∈ Xφ
h and uh ∈ Xu

h be such that ‖uh‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
. Then there

exists a unique S̃(φh,uh) = (th,ph, φh) ∈ H2,h solution of (3.14), and there holds

‖S̃(φh,uh)‖H2 = ‖(t,p, φ)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
, (4.6)

where C
S̃

=
2

α(Ω)
C
F̃φ

and C
F̃φ

= max
{

1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
.

Proof. Similarly to the proof of Lemma 3.8, it basically follows by observing that, under the assumption
on ‖uh‖1,Ω, A + B̃uh : H2,h → H ′2,h becomes Lipschitz-continuous and strongly monotone with the

same constants LC := LA + c(Ω)(l22 + 1)1/2‖uh‖1,Ω and
α(Ω)

2
, respectively, given in the proofs of

Lemmas 3.6 and 3.7. Further details are omitted.
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We now aim to show the solvability of (4.1) by analyzing the equivalent fixed point equation (4.5).
To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem, which is
given as follows (see e.g. [10, Theorem. 9.9-2]).

Theorem 4.3. Let W be a compact and convex subset of a finite dimensional Banach space X and
let T : W →W be a continuous mapping. Then T has at least one fixed point.

Then, the discrete form of Lemma 3.10 is established next.

Lemma 4.4. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.7)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.8)

Then Th(Wh) ⊆Wh.

Proof. It follows directly from Lemmas 4.1 and 4.2.

The discrete form of Lemma 3.11 is provided next. We notice in advance that, instead of the
regularity assumption employed in the proof of that result, which actually is not needed nor could be
applied in the present discrete case, we simply utilize a L4 − L4 − L2 factorization.

Lemma 4.5. There exists a constant C > 0, depending on µ1, l1, l2, Lµ the ellipticity constant α of
Bφ (cf. [2, eq. (3.19)]), and the regularity parameter ε (cf. (3.23)), such that

‖Sh(φh)− Sh(ϕh)‖H1 ≤ C
{
‖f‖∞,Ω‖φh − ϕh‖0,Ω + ‖S1,h(ϕh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

}
(4.9)

for all φh , ϕh ∈ Xφ
h.

Proof. The proof is the same as in [2, Lemma 4.5] .

Now, the discrete analogue of Lemma 3.12 is stated as follows.

Lemma 4.6. There exists C̃ :=
2

α(Ω)
(1 + l21)1/2 max

{
c(Ω), Lγ

}
(cf. (3.8), (3.28)) such that for all

(φ1,h,u1,h), (φ2,h,u2,h) ∈ Xφ
h ×Xu

h with ‖u1,h‖1,Ω , ‖u2,h‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there holds

‖S̃h(φ1,h,u1,h)− S̃h(φ2,h,u2,h)‖H2

≤ C̃
{
‖S̃3,h(φ2,h,u2,h)‖1,Ω‖u1,h − u2,h‖1,Ω + ‖k‖‖φ1,h − φ2,h‖0,Ω

}
.

(4.10)

Proof. The proof is analogous to the one of Lemma 3.12.

Then, using Lemmas 4.5 and 4.6, the following result is proved.
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Lemma 4.7. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.11)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.12)

Then, with the constants C and C̃ from, Lemmas 4.5 and 4.6, there holds

‖Th(φh)−Th(ϕh)‖1,Ω ≤ C̃(C‖Th(ϕh)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φh − ϕh‖0,Ω

+ C C̃‖Th(ϕh)‖1,Ω‖S1,h(ϕh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

(4.13)

for all φh, ϕh ∈ Xφ
h.

Therefore, using Lemma 4.7 and the continuous injection of H1(Ω) in L4(Ω), we deduce that Th is
continuous, and hence, thanks to the Brouwer fixed point theorem (cf. Theorem 4.3), and Lemmas
4.4 and 4.7, we obtain the main result of this section.

Theorem 4.8. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.14)

and
C
S̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.15)

Then, the augment fully mixed scheme (4.1) has at least one solution
(
(σh,uh), (th,ph, φh)

)
∈ H1,h×

H2,h with φh ∈Wh, and there holds

‖(th,ph, φh)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
(4.16)

and
‖(σh,uh)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
. (4.17)

5 A priori error analysis

Let
(
(σ,u), (t,p, φ)

)
∈ H1 × H2, with φ ∈ W, and

(
(σh,uh), (th,ph, φh)

)
∈ H1,h × H2,h, with

φh ∈Wh, be solutions of (3.18) and (4.1), respectively, that is

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 ,
Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h ,

(5.1)

and

[(A+ B̃u)(t,p, φ), (s,q, ϕ)] = F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ H2 ,

[(A+ B̃uh)(th,ph, φh), (sh,qh, ϕh)] = F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h .
(5.2)

We now aim to derive a corresponding a priori error estimate. For this purpose, we recall from [21] a
Strang-type lemma, which will be utilized in our subsequent analysis.
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Lemma 5.1. Let H be a Hilbert space, F ∈ H ′, and A : H → H ′ a nonlinear operator. In addition, let
{Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N consider a nonlinear
operator An : Hn → Hn and a functional Fn ∈ H ′n. Assume that the family {A} ∪ {An}n∈N is
uniformly Lipschitz continuous and strongly monotone with constants ΛLC and ΛSM , respectively. In
turn, let u ∈ H and un ∈ Hn such that

[A(u), v] = [F, v] ∀ v ∈ H and [An(un), vn] = [Fn, vn] ∀ vn ∈ Hn ,

where [·, ·] denotes the duality pairings of both H ′×H and H ′n×Hn . Then for each n ∈ N there holds

‖u− un‖H ≤ ΛST

{
sup

wn∈Hn
wn 6=0

|[F,wn]− [Fn, wn]|
‖wn‖H

+ inf
vn∈Hn
vn 6=0

‖u− vn‖H + sup
wn∈Hn
wn 6=0

|[A(vn), wn]− [An(vn), wn]|
‖wn‖H

} ,
with ΛST := Λ−1

SM max {1, ΛSM + ΛLC}.

Proof. It is a particular case of [21, Theorem. 6.4].

We begin our analysis defining and denoting as usual

dist((σ,u), H1,h) := inf
(τ h,υh)∈H1,h

‖(σ,u)− (τ h,υh)‖H1

dist((t,p, φ), H2,h) := inf
(sh,qh,ϕ)∈H2,h

‖(t,p, φ)− (sh,qh, ϕ)‖H2 .

Then, we have the following result concerning the error ‖(t,p, φ)− (th,ph, φh)‖H1 .

Lemma 5.2. Let C̃ST := 2
α(Ω) max

{
1, α(Ω)

2 + LA

}
(cf. Lemma 3.31). Then, there holds

‖(t,p, φ)− (th,ph, φh)‖H1 ≤ C̃ST
{
Lγ‖k‖(1 + l21)1/2‖φ− φh‖0,Ω

+ (1 + l21)1/2c(Ω)‖u− uh‖1,Ω‖φ‖1,Ω

+
(

1 + (1 + l21)1/2c(Ω)‖u− uh‖1,Ω
)

dist((t,p, φ), H2,h)
}
.

(5.3)

Proof. We begin by observing, thanks to Lemmas 3.6, 3.7 and 4.2, that A + B̃u and A + B̃uh are

Lipschitz-continuous and strongly monotone with constants LA := 4 max{θ̃2, 1, l1, l1θ̃2, l2, l3, l4c0} and
α(Ω)

2 , respectively. Then, by applying the abstract Lemma 5.1 to the context given by (5.2) we have

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C̃ST

{
sup

(sh,qh,ϕ)∈H2,h

wn 6=0

|F̃φ(sh,qh, ϕ)− F̃φh(sh,qh, ϕ)|
‖(sh,qh, ϕ)‖H2

+ inf
(rh,oh,ψh)∈H2,h

(rh,oh,ψh)6=0

(
‖(t,p, φ)− (rh,oh, ψh)‖H2

+ sup
(sh,qh,ϕ)∈H2,h

(sh,qh,ϕ)6=0

|[(A+ B̃u)(rh,oh, ψh), (sh,qh, ϕ)]− [(A+ B̃uh)(rh,oh, ψh), (sh,qh, ϕ)]|
‖(sh,qh, ϕ)‖H2

)}
,

(5.4)
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where C̃ST := 2
α(Ω) max

{
1, α(Ω)

2 + LA

}
. Then, using the Cauchy Schwarz inequality, we obtain that

|F̃φ((sh,qh, ϕ)) − F̃φh((sh,qh, ϕ))| =
∣∣∣ ∫

Ω
(γ(φ)− γ(φh))k · (sh − l1qh)

∣∣∣
≤ Lγ ‖k‖

∫
Ω
|φ− φh| |sh − l1qh|

≤ Lγ ‖k‖ (1 + l21)1/2 ‖φ− φh‖0,Ω ‖(sh,qh, ϕ)‖H2 ,

and hence

sup
(sh,qh,ϕ)∈H2,h

wn 6=0

|F̃φ((sh,qh, ϕ))− F̃φh((sh,qh, ϕ))|
‖(sh,qh, ϕ)‖H2

≤ Lγ‖k‖(1 + l21)1/2‖φ− φh‖0,Ω. (5.5)

In order to estimate the supreme, we notice that adding and subtracting B̃u−uh(t,p, φ), we find that

|[(A+ B̃u)(rh,oh, ψh), (sh,qh, ϕ)]− [(A+ B̃uh)(rh,oh, ψh), (sh,qh, ϕ)]|

= [B̃u−uh(rh,oh, ψh), (sh,qh, ϕ)]

= [B̃u−uh(rh,oh, ψh), (sh,qh, ϕ)] + [B̃u−uh(t,p, φ), (sh,qh, ϕ)]− [B̃u−uh(t,p, φ), (sh,qh, ϕ)]

=

∫
Ω

(ψh − φ)(u− uh) · (l1q− sh) +

∫
Ω
φ(u− uh) · (l1q− sh)

≤ c(Ω)(1 + l21)1/2‖u− uh‖1,Ω
{
‖ψh − φ‖1,Ω + ‖φ‖1,Ω

}
‖(sh,qh, ϕ)‖H2 .

(5.6)
In this way, replacing (5.5) and (5.6) back into (5.4), we arrive to (5.3) and conclude the proof.

The following lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖H1 .

Lemma 5.3. Let CST := α−1 max
{

1, α+‖B‖
}

, where ‖B‖ and α are the boundedness and ellipticity
constants, respectively, of the bilinear forms Bφ (cf. [2, Lemma 3.9]). Then there holds

‖(σ,u)− (σh,uh)‖H1 ≤ CST

{(
1 + 2‖B‖

)
dist((σ,u), H1,h)

+(1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

Cε‖σ‖ε,Ω‖φ− φh‖Ln/ε(Ω)

}
.

(5.7)

Proof. See the proof in [2, Lemma 5.3].

Now, combining the inequalities provided by Lemmas 5.2 and 5.3 we obtain the Cea estimate for
the total error ‖(σ,u)− (σh,uh)‖H1 + ‖(t,p, φ)− (th,ph, φh)‖H2 .

Theorem 5.4. Assume that the data k, f and uD are sufficiently small so that

C1‖k‖+ Ĉ2‖f‖∞,Ω + Ĉ3‖uD‖1/2+ε,ΓD <
1

2
, (5.8)

where the constants C1, Ĉ2, and Ĉ3 will be defined along the proof below. Then, there exist positive
constants Ĉ4 and Ĉ5, depending only on parameters, data, and other constants, all them independent
of h, such that

‖(σ,u)− (σh,uh)‖H1 + ‖(t,p, φ)− (th,ph, φh)‖H2

≤ Ĉ4 dist((σ,u), H1,h) + Ĉ5 dist((t,p, φ), H2,h).
(5.9)
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Proof. In order to simplify the subsequent writing, we first introduce the following constants

C1 := Lγ(1 + l21)1/2C̃ST , and C2 := (1 + l21)1/2c(Ω)C̃ST .

Therefore (5.3) becomes

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω
+C2‖φ‖1,Ω‖u− uh‖1,Ω + C̃ST dist((t,p, φ), H2,h) + C2‖u− uh‖1,Ω dist((t,p, φ), H2,h).

Now, replacing the second term ‖u− uh‖1,Ω by the bound given by (5.7), and noticing that thanks to
(3.23)

‖σ‖ε,Ω ≤ C̃(r)
{
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

}
,

and that ‖φ‖1,Ω ≤ r, we get

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω + C2rCST

{
(1 + 2‖B‖)dist((σ,u), H1,h)

+ (1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

CεC̃(r)
{
‖uD‖1/2+ε,ΓD

+ r‖f‖∞,Ω
}
‖φ− φh‖Ln/ε(Ω)

}
+ C̃ST dist((t,p, φ), H2,h) + C2‖u− uh‖1,Ω dist((t,p, φ), H2,h).

Besides, since u and uh are controled by the data according to (3.50) and (4.17), we obtain from the
foregoing inequality that

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω + C2rCST

{
(1 + 2‖B‖)dist((σ,u), H1,h)

+(1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

CεC̃(r)
{
‖uD‖1/2+ε,ΓD

+ r‖f‖∞,Ω
}
‖φ− φh‖Ln/ε(Ω)

}
+ C̃ST dist((t,p, φ), H2,h) + 2C2CS

(
‖uD‖1/2,ΓD

+ r‖f‖∞,Ω
)

dist((t,p, φ), H2,h)

(5.10)

Then, utilizing the continuous injection of H1(Ω) into Ln/ε(Ω), with constant C̃ε, and defining the
constants

C3 :=
Lµ(1 + k2

1)1/2

µ2
1

CεC̃εC̃(r) and C4 := CST (1 + 2‖B‖) ,

the estimate (5.10) yields

‖(t,p, φ)− (th,ph, φh)‖H2 ≤
(
C1‖k‖+ rC2CST

{
(1 + k2

2)1/2 + rC3

}
‖f‖∞,Ω

+rC2C3CST ‖uD‖1/2+ε,ΓD

)
‖(t,p, φ)− (th,ph, φh)‖H2 + rC2C4 dist((σ,u), H1,h)

+
(
C̃ST + 2C2CS{‖uD‖1/2,ΓD + r‖f‖∞,Ω}

)
dist((t,p, φ), H2,h)

(5.11)

On the other hand, the error estimate (5.7) can be rewritten as

‖(σ,u)− (σh,uh)‖H1 ≤ C4 dist((σ,u), H1,h) + CST

({
1 + k2

2)1/2 + rC3

}
‖f‖∞,Ω

+ C3‖uD‖1/2+ε,ΓD

)
‖(t,p, φ)− (th,ph, φh)‖H2 .

(5.12)

Consequently, combining the foregoing inequalities and defining the constants

Ĉ2 := CST {(1 + k2
2)1/2 + rC3}(rC2 + 1) and Ĉ3 := CSTC3(1 + rC2),

we arrive at (5.9) and conclude the proof.
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At this point we highlight that the well-posedness of the decoupled discrete problems (4.2) and
(4.3) (cf. Lemmas 4.1 and 4.2), as well as the existence of solution of the resulting augmented fully-
mixed scheme (4.1) (cf. Theorem 4.8), and the associated a priori error estimate provided by Theorem
5.4, are all valid for arbitrary finite element subspaces approximating the corresponding unknowns.
As previously remarked, we stress once again that this fact is consequence of the properties satisfied
by the continuous and discrete bilinear forms and nonlinear operators involved, thanks to which no
discrete inf-sup conditions to be satisfied by the aforementioned subspaces are required.

Having said the above, we now let Th be a regular triangulation of Ω by triangles K (or tetrahedra
in R3) of diameter hK , and define the mesh size h := max {hK : K ∈ Th}. In addition, given a generic
integer ` ≥ 0, for each K ∈ Th we let P`(K) be the space of polynomial functions on K of degree ≤ `,
and define the corresponding local Raviart-Thomas space of order ` as RT`(K) := P`(K) ⊕ P`(K) x,
where, according to the notations described in Section 1, P`(K) = [P`(K)]n and x is the generic
vector in Rn. Then, given a particular integer k ≥ 0, we introduce next the explicit finite element
subspaces to be employed in the numerical results reported below in Section 6:

Hσ
h :=

{
τ h ∈ HN (div,Ω) : ctτ h|K ∈ RTk(K) ∀c ∈ Rn ∀K ∈ Th

}
, (5.13)

Xu
h :=

{
υh ∈ C(Ω) : υh|K ∈ Pk+1(K) ∀K ∈ Th

}
, (5.14)

Yt
h :=

{
sh ∈ L2(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th

}
, (5.15)

Hp
h :=

{
τ h ∈ HN (div,Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
, (5.16)

Xφ
h :=

{
ϕ ∈ C(Ω) : ϕ|K ∈ Pk+1(K) ∀K ∈ Th

}
. (5.17)

In turn, the corresponding approximation properties are as follows:

(APσ
h ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each τ ∈

Hs(Ω) ∩HN (div,Ω) with div τ ∈ Hs(Ω), there holds

dist(τ ,Hσ
h ) ≤ Chs

{
‖τ‖s,Ω + ‖div τ‖s,Ω

}
.

(APu
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each υ ∈

Hs+1(Ω), there holds
dist(υ,Xu

h) ≤ Chs‖υ‖s+1,Ω .

(APt
h) there exists C > 0, independent of h, such that for each s ∈ (0, k+1], and for each r ∈ Hs(Ω),

there holds
dist(r,Yt

h) ≤ Chs‖r‖s,Ω .

(APp
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each q ∈

Hs(Ω) ∩HN (div,Ω) with div q ∈ Hs(Ω), there holds

dist(q,Hp
h) ≤ Chs

{
‖q‖s,Ω + ‖div q‖s,Ω

}
.

(APφ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each ϕ ∈

Hs+1(Ω), there holds

dist(ϕ,Xφ
h) ≤ Chs‖ϕ‖s+1,Ω .

In this way, the convergence rates of the Galerkin scheme are stated as follows.
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Theorem 5.5. In adition to the hypotheses of Theorems 3.15, 4.8 and 5.4, assume that there exists
s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), t ∈ Hs(Ω), p ∈ Hs(Ω), div p ∈ Hs(Ω) and
φ ∈ Hs+1(Ω). Then, there exists Ĉ > 0, independent of h, such that, with the finite element subspaces
defined by (5.13) – (5.17), there holds

‖(t,p, φ)− (th,ph, φh)‖H1 + ‖(σ,u)− (σh,uh)‖H2 ≤ Ĉhmin{s,k+1}
{
‖σ‖s,Ω

+‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖t‖s,Ω + ‖φ‖1+s,Ω

} (5.18)

Proof. It follows directly from the Cea estimate (5.8) and the above approximation properties.

6 Numerical results

In this section we present some examples illustrating the performance of our augmented fully-mixed
finite element 4.1 on a set of quasi-uniform triangulations of the corresponding domains and considering
the finite element spaces introduced in Section 5. Our implementation is based on a FreeFem++ code
(see [22]), in conjuntion with the direct nolinear solvers UMFPACK (see [14]) and MUMPS. A Newton
algorithm with a fixed given tolerance tol has been used for the corresponding fixed-point problem
(4.5) and the iterations are terminated once the relative error of the entire coefficient vectors between
two consecutive iterates, say coeffm and coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,

where ‖ · ‖ stands for the usual euclidean norm in RN , with N denoting the total number of degrees of

freedom defining the finite element subspaces Hσ
h , Xu

h , Yt
h, Hp

h and Xφ
h. The stabilization parameters

are chosen according to the ranges indicated in Lemmas 4.1 and 4.2 (see also Lemmas 3.5 and 3.7).

We now introduce some additional notation. The individual and total errors are denoted by:

e(σ) := ‖σ − σh‖div ;Ω , e(u) := ‖u− uh‖1,Ω ,

e(t) := ‖t− th‖0,Ω , e(p) := ‖p− ph‖div ;Ω , e(φ) := ‖φ− φh‖1,Ω .

Next, as usual, we let r(·) be the experimental rate of convergence given by

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(σ) :=

log(e(u)/ê(u))

log(h/ĥ)
,

r(t) :=
log(e(t)/ê(t))

log(h/ĥ)
, r(p) :=

log(e(p)ê(p))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

Example 1. In our first example we illustrate the accuracy of our method in 2D by considering a
manufactured exact solution defined on Ω := (0, 1)2. We introduce the coefficients µ(φ) = (1− cφ)−2,
γ(φ) = cφ(1 − cφ)2, ϑ(|t|) = m1 + m2(1 + |t|2)m3/2−1, and the source terms on the right hand sides
are adjusted in such a way that the exact solutions are given by the smooth functions

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)) , t = ∇φ ,

u(x1, x2) =

(
sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
, σ = µ(φ)∇u− (x2

1 − x2
2)I ,
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for (x1, x2) ∈ Ω. We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2 and set ΓD = ∂Ω, where
φ vanishes and uD is imposed accordingly to the exact solution. The mean value of trσh over
Ω is fixed via Lagrange multiplier strategy. As defined above, the scalar field φ is bounded in Ω
and so the coefficients are also bounded. In particular we have µ1 = 0.99, µ2 = 3.35, ϑ1 = 0.81,
ϑ2 = 1 and ϑ̃2 = 1.19. Therefore, the stabilization constants are chosen as κ1 = µ2

1/µ2 = 0.2976,
κ2 = 1/µ2 = 0.2985, κ3 = κ1/2 = 0.1488, l1 = ϑ1/ϑ̃

2
2 = 0.5720, l2 = l1/2 = 0.2860, l3 = ϑ1/2 = 0.4050

and l4 = 0.2025. The domain is partitioned into quasi-uniform meshes with 2n + 3, n=0,1,...,8
vertices on each side of the domain. Values and plots of errors and corresponding rates associated to
RTk −Pk+1 −Pk −RTk − Pk+1 approximations with k = 0 and k = 1 are summarized in Table 6.1
and Figure 6.1, respectively, where we observe convergence rates of O(hk+1) for stresses, velocities,
gradient of velocities and the scalar fields in the relevant norms. These findings are in agreement with
the theoretical error bounds of Section 5 (cf. 5.18).

Example 2. Our second test focuses on the case where, under quasi-uniform mesh refinement the
convergence rates are affected by a non-convex domain Ω = (0, 1)2\[0.5, 1]2, where an exact solution to
(2.6) and the functions µ, ϑ and γ are given as in the previous test. In this case, b = 3, c = m1 = m2 =
1/2, m3 = 3/2. Now the boundary is indeed split into ΓN = (0.5, 1) × (0.5, 1) and ΓD = ∂Ω \ ΓN .
Values and plots of errors and corresponding rates associated to RTk − Pk+1 − Pk − RTk − Pk+1

approximations with k = 0 and k = 1 are summarized in Table 6.2 and Figure 6.2. We can see that
with respect to Example 1, a more refined mesh is required to reach the convergence orders indicated
by the theory.

Example 3. In this example, we consider Ω = (0, 1)3. The functions µ, ϑ and γ are established as in
Example 1. With respect to boundary conditions, we impose Neumann conditions on ΓN := [0, 1]2×{1}
and Dirichlet conditions on the rest of the boundary, that is, ΓD := ∂Ω \ ΓN . We consider boundary
data φD and source therms f and g such that the exact solution is given by

φ(x1, x2, x3) = b− b exp(x1(x1 − 1)x2(x2 − 1)x3(x3 − 1)) , t = ∇φ ,

u(x1, x2, x3) =

 sin(πx1) cos(πx2)cos(πx3)
− cos(πx1) sin(πx2)cos(πx3)
cos(πx1) cos(πx2) sin(πx3)

 , σ = µ(φ)∇u− (x1 − 0.5)3 sin(x3 + x2)I ,

We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2. Concerning the stabilization parameters, we take
them again as in Example 1. Part of the solution is show in Figure 6.3, and a convergence history
for a set of quasi-uniform mesh refinements is shown in Table 6.3,thus showing also that, having the
problem a smooth exact solution, this fully-mixed finite element method converges optimally with
order O(h) (when using a first order element).

Example 4. To conclude, we replicate Example 2 in a three-dimensional setting. The domain
consists on the polyhedral region Ω = (0, 1)3 \ [0.5, 1]3, where we impose Neumann conditions on
ΓN := [0.5, 1]3 and ΓD = Ω \ ΓN . All parameters and functions are taken as in the previous test.
Part of the solution is show in Figure 6.4, and a convergence history for a set of quasi-uniform mesh
refinements is shown in Table 6.4. We can see that with respect to Example 3, the convergence rate
of σ is affected.

We end the paper by announcing that the corresponding a posteriori error analysis of the fully-mixed
finite element method proposed here, which follows the approach from [4] and [5] for the methods in
[2] and [3], respectively, will be reported in a forthcoming work.

Acknowledgement. The authors are very thankful to Sergio Caucao for his great help in the
computational implementation of the numerical examples reported in the paper.
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Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)

307 58.1408 7.5339 0.6924 1.4120 0.8780
463 48.2946 6.0966 0.5832 1.1562 0.7111
871 35.2493 4.0013 0.2765 0.8584 0.5127
2071 22.6828 2.2054 0.1594 0.5616 0.3278
6007 13.1637 1.1324 0.0862 0.3291 0.1899
20023 7.1376 0.5799 0.1792 0.1792 0.1031

h r(σ) r(u) r(t) r(p) r(φ)

0.3536 - - - - -
0.2828 0.8315 0.9486 0.7691 0.8957 0.9451
0.2020 0.9358 1.2516 0.8973 0.8852 0.9718
0.1286 0.9753 1.3179 0.9827 0.9386 0.9899
0.0744 0.9956 1.2196 1.0082 0.9775 0.9983
0.0404 1.0019 1.0955 1.0050 0.9944 0.9999

Augmented RT1 −P2 −P1 −RT1 − P2

DOF e(σ) e(u) e(t) e(p) e(φ)

821 19.8155 1.8648 0.1152 0.3691 0.1282
1245 13.5241 1.1568 0.0736 0.2709 0.0821
2357 7.2093 0.5596 0.0375 0.1557 0.0418
5637 2.9893 0.2150 0.0151 0.0692 0.0168
16421 1.0124 0.0694 0.0051 0.0232 0.0056
54885 0.2993 0.0201 0.0014 0.0067 0.0016

h r(σ) r(u) r(t) r(p) r(φ)

0.3536 - - - - -
0.2828 1.7118 2.1398 2.0101 1.3860 1.9978
0.2020 1.8697 2.1584 2.0047 1.6472 2.0094
0.1286 1.9477 2.1162 2.0057 1.7938 2.0105
0.0744 1.9810 2.0680 2.0009 2.0015 2.0056
0.0404 1.9985 2.0086 1.9999 1.9924 2.0004

Table 6.1: Convergence history for Example 1, with a quasi-uniform mesh refinement and a tolerance of
10−6. For the first order approximation, the first and second simulations took 8 fixed-point iterations,
the third took 7 fixed-point iterations and the last three simulations took 6 fixed-point iterations. For
the second order approximation all the simulations took 6 fixed-point iterations.

Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)

297 33.0811 4.1740 0.1191 0.2584 0.1388
625 21.0794 2.6568 0.0759 0.1784 0.0774
1585 13.0911 1.4813 0.0481 0.1082 0.0487
4769 7.3657 0.7983 0.0278 0.0642 0.0281
16753 3.8631 0.4073 0.0145 0.0332 0.0145
60465 1.9959 0.2113 0.0075 0.0173 0.0075
230321 1.0120 0.1079 0.0038 0.0088 0.0038
907393 0.5099 0.0544 0.0019 0.0044 0.0019

h r(σ) r(u) r(t) r(p) r(φ)

0.3601 - - - - -
0.2372 1.0797 1.0823 1.0801 0.8871 1.3973
0.1491 1.0266 1.2589 0.9799 1.0785 0.9980
0.0855 1.0328 1.1102 0.9817 0.9369 0.9838
0.0452 1.9810 1.0578 1.0261 1.0338 1.0392
0.0264 1.2293 1.2218 1.2127 1.2112 1.2124
0.0152 1.2379 1.2247 1.2248 1.2301 1.2297
0.0072 0.9223 0.9196 0.9259 0.9299 0.9253

Augmented RT1 −P2 −P1 −RT1 − P2

DOF e(σ) e(u) e(t) e(p) e(φ)

791 9.0327 1.0919 0.0169 0.0525 0.0166
1683 3.9097 0.4354 0.0075 0.0201 0.0074
4303 1.5381 0.1594 0.0028 0.0076 0.0027
13019 0.4787 0.0486 0.0009 0.0025 0.0008
45895 0.1304 0.0135 0.0002 0.0006 0.0002
165943 0.0364 0.0036 6.8348e-05 0.0001 6.5972e-05
632727 0.0094 0.0009 1.8102e-05 4.8961e-05 1.7185e-05
2494035 0.0024 0.0002 4.5159e-05 1.2450e-05 4.3366e-06

h r(σ) r(u) r(t) r(p) r(φ)

0.3601 - - - - -
0.2372 2.0062 2.2026 1.9655 2.2902 1.9391
0.1491 2.2547 2.2547 2.1678 2.1729 2.2159
0.0855 2.0640 2.0640 1.9845 1.9029 1.9925
0.0452 2.0137 2.0137 2.0442 2.0466 2.0291
0.0264 2.4374 2.4374 2.4015 2.4169 2.4171
0.0154 2.5301 2.5620 2.4866 2.5427 2.5177
0.0072 1.8050 1.8023 1.8330 1.8076 1.8178

Table 6.2: Convergence history for Example 2, with a quasi-uniform mesh refinement and a tolerance
of 10−6. For the first and second order approximation, all simulations took 7 fixed-point iterations.
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method for the stationary Boussinesq problem. Calcolo 54 (2017), no. 1, 167–205.

29



Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)

5108 18.9903 2.5832 0.1557 0.5325 0.2445
9714 16.7408 2.0745 0.1265 0.4308 0.1997
25862 13.2246 1.4643 0.0917 0.3106 0.1452
97662 9.0988 0.9101 0.0589 0.1987 0.0935
493358 5.5202 0.5155 0.0342 0.1153 0.0544

h r(σ) r(u) r(t) r(p) r(φ)

0.3601 - - - - -
0.2372 0.5650 0.9828 0.9282 0.9497 0.9081
0.1491 0.7007 1.0352 0.9562 0.9722 0.9454
0.0855 0.8273 1.0522 0.9788 0.9877 0.9741
0.0452 0.9143 1.0398 0.9919 0.9901 0.9901

Table 6.3: Convergence history for Example 3, with a quasi-uniform mesh refinement and first order
approximation. The first simulatons took 9 fixed-point iterations and the rest took 8 fixed-point
iterations with a tolerance tol= 10−8.

Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)

2032 19.8915 2.7683 0.1885 0.6237 0.3009
4548 16.7019 2.1680 0.1468 0.4790 0.2369
14602 12.6054 1.4720 0.1006 0.3255 0.1620
64974 8.4005 0.8881 0.0613 0.1970 0.0984
369094 5.0242 0.4943 0.0342 0.1098 0.0549

h r(σ) r(u) r(t) r(p) r(φ)

0.4714 - - - - -
0.3535 0.6075 0.8496 0.8699 0.9174 0.8305
0.2357 0.6940 0.9549 0.9314 0.9530 0.9378
0.1414 0.7944 0.9890 0.9696 0.9821 0.9757
0.0785 0.8744 0.9968 0.9892 0.9941 0.9919

Table 6.4: Convergence history for Example 4, with a quasi-uniform mesh refinement and first order
approximation. All simulatons took 6 fixed-point iterations with a tolerance tol= 10−8.

[13] C. Cox, H. Lee and D. Szurley, Finite element approximation of the non-isothermal Stokes-
Oldroyd equations. Int. J. Numer. Anal. Model. 4 (2007), no. 3–4, 425–440.

[14] T. Davis, Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM.
Trans. Math. Software 30 (2004), no. 2, 196–199.

[15] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite element method for the
Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21 (2001), no. 2, 525–551.

[16] M. Farhloul and A. Zine, A dual mixed formulation for non-isothermal Oldroyd-Stokes prob-
lem. Math. Model. Nat. Phenom. 6 (2011), no. 5, 130–156.

[17] L.E. Figueroa, G.N. Gatica and A. Márquez, Augmented mixed finite element methods for
the stationary Stokes equations.. SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1082–1119.

30



0.0577 0.115 0.173 -3.07e-06 0.231 0.226 0.452 0.678 5.38e-06 0.904

0.494 0.987 1.48  0.00638 1.98

-1.68 0.0108 1.70  -3.36 3.38 -1.55 0.00  1.55  -3.04 3.16
-1.51 0.00  1.51  -3.19 2.86

-3.34 -0.0148 3.31  -6.66 6.63

-2.98 0.131 3.25  -6.1 6.36
-1.52 0.0699 1.66  -3.1 3.24

Figure 6.3: Numerical Results for Example 3: From left to right and from up to down: approximation
of scalar field concentration φh , gradient of concentration th, velocity uh and stress components σh.
Snapshots obtained from a simulation with 493 358 DOF.

[18] G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress
formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010),
no. 17-20, 1064–1079.

[19] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applica-
tions. SpringerBriefs in Mathematics, Springer, 2014.

[20] Gatica, G.N. and Wendland, W.L, Coupling of mixed finite elements and boundary elements
for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996), no. 1-2, 39–75.

[21] G.N. Gatica and G.C. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet
problem in R2 . Numer. Math. 61 (1992), no. 2, 171–214.

31



0.0572 0.114 0.172 -7.02e-35 0.229
0.234 0.456 0.678 0.0117  0.9 0.493 0.985 1.48  0.00122 1.97

-1.64 0.0333 1.71  -3.32 3.39

-1.60 0.00542 1.61  -3.2 3.21 -1.61 -0.0236 1.56  -3.2 3.15

-3.34 -0.00270 3.33  -6.67 6.67
-2.70 0.330 3.36  -5.73 6.39

-1.69 -0.0726 1.55  -3.31 3.16

Figure 6.4: Numerical Results for Example 4: From left to right and from up to down: approximation of
scalar field concentration φh , gradient of concentration th, velocity components uh, stress components
σh. Snapshots obtained from a simulation with 369 094 DOF.

[22] F. Hecht, New Development in FreeFem++, J. Numer. Math. 20 (2012), no. 3-4, 251-265.
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