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This paper deals with the numerical analysis of a system of second-order in time partial differential equa-
tions modeling the vibrations of a coupled system that consists of an elastic solid in contact with an
inviscid compressible fluid. We analyze a weak formulation with the unknowns in both media being
the respective displacement fields. For its numerical approximation, we propose first a semi-discrete in
space discretization based on standard Lagrangian elements in the solid and Raviart-Thomas elements
in the fluid. We establish its wellposedness and derive error estimates in appropriate norms for the pro-
posed scheme. In particular, we obtain an L∞(L2) optimal rate of convergence under minimal regularity
assumptions of the solution, which are proved to hold for appropriate data of the problem. Then, we
consider a fully discrete approximation based on a family of implicit finite difference schemes in time,
from which we obtain optimal error estimates for sufficiently smooth solutions. Finally, we report some
numerical results, which allow us to assess the performance of the method. These results also show that
the numerical solution is not polluted by spurious modes as is the case with other alternative approaches.

Keywords: fluid-structure interaction; linear hyperbolic equations; non-conforming finite element dis-
cretization; error estimates.

1. Introduction

The aim of this paper is to analyze a numerical scheme to solve the elastoacoustic transient problem,
namely, the evolution in time of a coupled system that consists of an elastic structure in contact with an
acoustic fluid.

Different formulations have been tried to solve elastoacoustic problems, mainly in the frequency
domain. While displacements are typically used for the solid, different variables have been used for
the fluid: pressure (Zienkiewicz & Taylor (1991)), displacement potential (Morand & Ohayon (1979)),
displacements (Kiefling & Feng (1976)), velocity potential (Everstine (1981)) or combinations of some
of them (Morand & Ohayon (1995)). See also Garcı́a et al. (2017a,b) for formulations in which pressure-
stress variables are used instead of displacements for the solid.

We consider in this paper a pure displacements formulation, so that the same variable is used in
both media, what makes easy to handle different interface conditions (see, for instance, Bermúdez &
Rodrı́guez (1999)). A drawback of this formulation is the fact that the fluid displacements do not lie in
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H1 but in H(div). In spite of this, the first attempts to numerically solve the corresponding free-vibrations
eigenproblem were based on using H1 finite elements. However, such a procedure was readily seen to
introduce spurious modes, which pollute the physical spectrum (Hamdi et al. (1978)). An alternative
based on using H(div) elements in the fluid was proposed and analyzed in Bermúdez & Rodrı́guez
(1994), Bermúdez et al. (1995) and Rodrı́guez & Solomin (1996), where in particular it was shown that
the resulting method was free of spurious modes. In this paper, we consider a similar space discretization
for the time domain elastoacoustic problem.

We consider first a continuous-time discrete Galerkin method and study its convergence. As in
Bermúdez et al. (1995), we use a non-conforming space approximation based on lowest-order La-
grangian and Raviart-Thomas elements in the solid and the fluid domains, respectively. We prove
optimal L∞(L2) error estimate of order O(hr), where h is the mesh size and r ∈ (0,1] depends on
the regularity of the solution. The result is achieved under minimal regularity assumptions, which are
proved to hold for appropriate data of the problem. The techniques used are based on classical results;
see Baker (1976) for the wave equation and the more recent paper Basson & van Rensburg (2013) for
an abstract setting. However, the results from the latter can not be directly applied to our setting due to
the non-conforming character of the approximation.

Next, we study a fully discrete approximation resulting from applying a second-order Newmark-
like scheme for the time discretization of the semidiscrete problem (see Bermúdez et al. (2003), where
a similar approach was proved to be stable). Following the work of Karaa (2011) for the wave equation,
we prove that the error exhibits a combined space-time asymptotic behavior of order O(hr+∆ t2), where
∆ t is the time step.

The outline of the paper is as follows. In Section 2, we introduce the model and some functional
spaces and obtain a well posed weak formulation. In Section 3, we introduce space discretizations
for the solid and fluid displacements based on standard lowest-order Lagrangian and Raviart-Thomas
elements, respectively. Then, we introduce a projector and use it to prove some properties that will
be used for the error analysis. Section 4 is devoted to obtain an error estimate of the semi-discrete in
space approximation under minimal regularity assumptions of the solution, which are proved to hold for
appropriate data of the problem. In Section 5, we combine it with a family of implicit finite difference
schemes in time and prove error estimates for the resulting full discretization. Finally, in Section 6,
we report numerical results obtained for a test example, which show the convergence of the proposed
numerical method. We also compare these results with those arising from an alternative H1-approach
usual in the engineering practice.

2. Problem statement

We consider a vessel completely filled with a fluid. Let ΩF and ΩS ⊂ Rd , d = 2,3, be the polyhedral
(polygonal for d = 2) domains occupied by the fluid and the solid, respectively, as shown in Fig. 1.
Although all the forthcoming analysis holds true for d = 2 as well as d = 3, for the sake of definiteness
we will use three-dimensional (3D) terminology throughout the paper. We assume that ΩF is simply
connected. Let ΓI denote the interface between the solid and the fluid and nnn its unit normal vector
pointing towards ΩS. The exterior boundary of the solid is the union of ΓD and ΓN, the structure being
fixed along ΓD. Finally, let ννν be the unit outward normal vector along ΓN.
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FIG. 1: Physical domain.

We consider the following notation for the physical quantities in the fluid:

• uuuF is the displacement vector,

• c is the sound velocity,

• ρF is the density

and in the solid:

• uuuS is the displacement vector,

• ρS is the density,

• λS and µS are the Lamé coefficients,

• εεε
(
uuuS
)

is the strain tensor defined by εi j :=
1
2

(
∂uS

i /∂x j +∂uS
j/∂xi

)
, i, j = 1, . . . ,d,

• σσσ
(
uuuS
)

is the stress tensor, which we assume related with the strains by Hooke’s law, namely,
σi j = λS

(
∑

d
k=1 εkk

)
δi j +2µSεi j, i, j = 1, . . . ,d.

When surface and volumetric loads ggg and fff are applied on ΓN and ΩS, respectively, the equations
governing the motion of the coupled system are

ρS∂ttuuuS−divσσσ
(
uuuS)= fff in ΩS, (2.1)

ρF∂ttuuuF−∇
(
ρFc2 divuuuF)= 000 in ΩF, (2.2)

uuuS ·nnn = uuuF ·nnn on ΓI, (2.3)

σσσ
(
uuuS) ·nnn = ρFc2 divuuuFnnn on ΓI, (2.4)

σσσ
(
uuuS) ·ννν = ggg on ΓN, (2.5)

uuuS = 000 on ΓD, (2.6)

which must be completed with initial conditions

uuuS(0) = uuuS
0 , uuuF(0) = uuuF

0 , ∂tuuuS(0) = uuuS
1 and ∂tuuuF(0) = uuuF

1 . (2.7)
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Throughout this paper, we use standard notation for Sobolev spaces, norms and seminorms. More-
over, we introduce the spaces H1

ΓD
(ΩS)

d :=
{

vvvS ∈ H1(ΩS)
d : vvvS = 000 on ΓD

}
, which is a closed sub-

space of H1(ΩS)
d , H(div,ΩF) :=

{
vvvF ∈ L2(ΩF)

d : divvvvF ∈ L2(ΩF)
}

, endowed with the norm defined

by
∥∥vvvF
∥∥2

H(div,ΩF)
:=
∥∥vvvF
∥∥2

L2(ΩF)d +
∥∥divvvvF

∥∥2
L2(ΩF)

, and

Hα,1(div,ΩF) :=
{

vvvF ∈ Hα(ΩF)
d : divvvvF ∈ H1(ΩF)

}
, α > 0,

with norm defined by
∥∥vvvF
∥∥2

Hα,1(div,ΩF)
:=
∥∥vvvF
∥∥2

Hα (ΩF)
+
∥∥divvvvF

∥∥2
H1(ΩF)

. We define the product spaces

HHH := L2(ΩS)
d×L2(ΩF)

d and XXX := H1
ΓD
(ΩS)

d×H(div,ΩF)

endowed with the corresponding product norms ‖ · ‖HHH and ‖ · ‖XXX , respectively. We will use the notation
vvv :=

(
vvvS,vvvF

)
for functions in HHH. (·, ·) for the classical inner product in HHH. We will also denote (·, ·)S,

where S = ΩS, ΩF, ΓN or ΓI, the respective L2(S)d inner product and (·, ·)
ρ

the weighted inner product
in HHH defined by

(uuu,vvv)
ρ

:=
∫

ΩS

ρSuuuS · vvvS +
∫

ΩF

ρFuuuF · vvvF.

Finally, we define the following spaces:

XXXα,β := H1+β (ΩS)
d×Hα,1(div,ΩF), α,β > 0, VVV :=

{
vvv ∈ XXX : vvvS ·nnn = vvvF ·nnn on ΓI

}
,

GGG :=
{
(vvv,∇q) : vvv ∈ L2(ΩS)

d , q ∈ H1(ΩF)
}

and KKK := {000}×H0(div0,ΩF),

where H0(div0,ΩF) :=
{

vvvF ∈ H(div,ΩF) : divvvvF = 0 in ΩF and vvvF ·nnn = 0 on ΓI
}

.
The following lemma gives a simple decomposition result of HHH and VVV which will be used below.

LEMMA 2.1 Let GGGV := GGG∩VVV . Then,

(a) HHH = KKK⊕GGG is an orthogonal decomposition in HHH.

(b) VVV = KKK⊕GGGV is an orthogonal decomposition in both, HHH and XXX inner products.

(c) There exists α̃ > 1/2 and C > 0 such that, for all
(
ϕϕϕS,ϕϕϕF

)
∈ GGGV , there exists q ∈ H1+α̃(ΩF),

such that ϕϕϕF = ∇q and

‖∇q‖Hα̃ (ΩF)d 6C
[∥∥divϕϕϕ

F∥∥
L2(ΩF)

+
∥∥ϕϕϕ

S∥∥
H1(ΩS)d

]
.

Proof. Notice that (a) follows immediately from the Helmholtz decomposition, whereas (b) follows
from (a) and the fact that KKK ⊂VVV . Note also that orthogonality in XXX and HHH coincide for functions in KKK.
Finally, let

(
ϕϕϕS,ϕϕϕF

)
∈ GGGV . To prove (c), notice that ϕϕϕF = ∇q, where q is a solution of the following

Neumann problem: {
div(∇q) = divϕϕϕF in ΩF,

∇q ·nnn = ϕϕϕS ·nnn on ΓI.
(2.8)

The compatibility condition of this problem follows from the definition of the space VVV . Moreover, from
standard additional regularity results (Grisvard (2011); Dauge (1988)) we have that ∇q ∈ Hα̃(ΩF)

d for
some α̃ > 1/2. �
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To obtain a variational formulation of (2.1)–(2.7), we test equations (2.1) and (2.2) with vvvS and vvvF

such that vvv =
(
vvvS,vvvF

)
∈VVV , respectively, to write∫

ΩS

ρS∂ttuuuS · vvvS +
∫

ΩS

σσσ
(
uuuS) : εεε

(
vvvS)+∫

ΓI

σσσ
(
uuuS)nnn · vvvS−

∫
ΓN

σσσ
(
uuuS)

ννν · vvvS =
∫

ΩS

fff · vvvS

and ∫
ΩF

ρF∂ttuuuF · vvvF +
∫

ΩF

ρFc2 divuuuF divvvvF−
∫

ΓI

ρFc2 divuuuFvvvF ·nnn = 0.

By taking into account the interface and boundary conditions (2.4)–(2.5) and the fact that, for vvv ∈ VVV ,
vvvF ·nnn = vvvS ·nnn on ΓI, we arrive at the following problem.

Problem 2.1 Given
(
uuuS

0 ,uuu
F
0
)
∈VVV ,

(
uuuS

1 ,uuu
F
1
)
∈HHH, fff ∈ L2

(
0,T ;L(ΩS)

d
)

and ggg∈ L2
(
0,T ;L2(ΓN)

d
)
, find

uuu ∈ L2(0,T ;VVV ) with ∂tuuu ∈ L2(0,T ;HHH) and ∂ttuuu ∈ L2(0,T ;XXX ′) such that∫
ΩS

ρS∂ttuuuS · vvvS +
∫

ΩF

ρF∂ttuuuF · vvvF +
∫

ΩS

σσσ
(
uuuS) : εεε

(
vvvS)+∫

ΩF

ρFc2 divuuuF divvvvF

=
∫

ΩS

fff · vvvS +
∫

ΓN

ggg · vvvS ∀vvv ∈VVV (2.9)

and
uuuS(0) = uuuS

0 , uuuF(0) = uuuF
0 , ∂tuuuS(0) = uuuS

1 and ∂tuuuF(0) = uuuF
1 . (2.10)

Let us remark that the first two integrals in the equation above actually represent the duality pairing
〈∂ttuuu,ρvvv〉XXX ′×XXX , which is well defined. On the other hand, in view of (Dautray & Lions, 1992, Chapter
XVIII, §1 Theorem 1), we known that uuu∈C(0,T ;HHH) and ∂tuuu∈C(0,T ;XXX ′). Consequently the equalities
(2.10) above make sense.

Next, we define the bilinear symmetric form a : XXX×XXX → R by

a(vvv,www) :=
∫

ΩF

ρFc2 divvvvF divwwwF +
∫

ΩS

σσσ
(
vvvS) : εεε

(
wwwS) , vvv = (vvvF,vvvS), www = (wwwF,wwwS) ∈ XXX .

It is clear that, for all γ > 0, there exists c > 0 such that

a(vvv,vvv)+ γ ‖vvv‖2
HHH > c‖vvv‖2

XXX ∀vvv ∈ XXX . (2.11)

The existence and uniqueness of the solution uuu to Problem 2.1 is a consequence of the following
result (see, (Bermúdez et al., 2003, Theorem 1) and Santamarina (2002)).

THEOREM 2.2 (Existence) If fff ∈ L2
(
0,T ;L2(ΩS)

d
)

and ggg ∈ H1
(
0,T ;L2(ΓN)

d
)
, then there exists a

unique solution to Problem 2.1, which satisfies

uuu ∈ L∞(0,T ;VVV ) and ∂tuuu ∈ L∞(0,T ;HHH).

3. Finite element space discretization

In this section, we introduce finite element spaces to approximate VVV in Problem 2.1. We notice that
the equations for solid and fluid displacements involve different differential operators and functional
spaces. Then, it makes sense to use different type of finite elements for each of them to discretize the
variational problem. In fact, when those spaces are not chosen properly, non-physical oscillations may
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appear as will be shown in Section 6. In Bermúdez et al. (1995), a discretization avoiding spurious
modes and leading to optimal order computation of eigenvalues and eigenfunctions was introduced
and analyzed for the corresponding free-vibrations spectral problem. In this section we will use the
same space discretization for the time-domain problem. Let us remark that a similar approach was
proposed in Bermúdez et al. (2003), which was proved to be stable, although no convergence analysis
was performed.

We consider a regular family of triangulations T F
h and T S

h of ΩF and ΩS, respectively, such that ΓD
and ΓN are union of faces of tetrahedra in T S

h . We also assume that the meshes are compatible on ΓI in
the sense that all faces of tetrahedra in T S

h lying on ΓI are faces of tetrahedra in T F
h , too.

For space discretization we use standard continuous piecewise linear elements for the solid displace-
ment:

LLLh :=
{

vvvS
h ∈ H1(ΩS)

d : vvvS
h |T ∈ P1(T )d ∀T ∈T S

h

}
,

whereas for the fluid displacement we use lowest-order Raviart-Thomas elements:

RRRh :=
{

vvvF
h ∈ H(div;ΩF) : vvvF

h |T ∈ RRRTTT 0(T ) ∀T ∈T F
h
}
,

where
RRRTTT 0(T ) :=

{
vvvF

h ∈ P1(T )d : vvvF
h(xxx) = aaa+bxxx, aaa ∈ Rd , b ∈ R, xxx ∈ T

}
.

Since imposing the kinematic constrain (2.4) in the discrete space would be too stringent, following
Bermúdez et al. (1995) we do it in the following weak sense:∫

E
uuuF

h ·nnn =
∫

E
uuuS

h ·nnn for all faces E ⊂ ΓI. (3.1)

Thus, the discrete analogue of VVV is

VVV h :=
{(

uuuS
h ,uuu

F
h
)
∈ LLLh×RRRh satisfying (3.1) and uuuS = 000 on ΓD

}
.

From the definition of the continuous space VVV and its discrete counterpart VVV h, it can be seen that we
are dealing with a non-conforming approximation of Problem 2.1. Indeed, in general uuuF

h ·nnn 6= uuuS
h ·nnn on

ΓI and, then, VVV h 6⊂VVV .
To deal with this non-conforming approximation, the following estimate will be used in the sequel.

The same result can be found in Bermúdez et al. (1995) in a two-dimensional (2D) setting. For the sake
of completeness, we include an elementary proof. Here and thereafter, we will denote by C a generic
positive constant, not necessarily the same at each occurrence, but always independent of the mesh-size
h and, in the following sections, of the time-step ∆ t, too.

LEMMA 3.1 Let zzzh =
(
zzzS

h ,zzz
F
h

)
∈VVV h and wwwF ∈ H0,1(div,ΩF). Then,∫

ΓI

divwwwF (zzzF
h− zzzS

h
)
·nnn6Ch

∣∣divwwwF∣∣
H1(ΩF)

∣∣zzzS
h

∣∣
H1(ΩS)d .

Proof. Let zzzh ∈ VVV h and wwwF ∈ H(div,ΩF) be such that divwwwF ∈ H1(ΩF). For any face E ⊂ ΓI, let
TF ∈ T F

h and TS ∈ T S
h be the tetrahedra such that ∂TF ∩∂TF = E. Let PE denote the L2(E)-projection

of H1/2(E) onto the constants. Since zzzF
h ·nnn = PE

(
zzzS

h ·nnn
)
, we have that∫

E
divwwwF (zzzF

h− zzzS
h
)
·nnn =

∫
E

[
divwwwF−PE

(
divwwwF)][PE

(
zzzS

h ·nnn
)
− zzzS

h ·nnn
]

6
∥∥divwwwF−PE

(
divwwwF)∥∥

L2(E)

∥∥PE
(
zzzS

h ·nnn
)
− zzzS

h ·nnn
∥∥

L2(E) .
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If PTF denotes the L2(TF)-projection of H1(TF) onto the constants, from a local trace theorem and
standard error estimates we have∥∥divwwwF−PE

(
divwwwF)∥∥

L2(E) 6
∥∥divwwwF−PTF

(
divwwwF)∥∥

L2(E)

6C
[
h−1/2∥∥divwwwF−PTF

(
divwwwF)∥∥

L2(TF )
+h1/2 ∣∣divwwwF−PTF

(
divwwwF)∣∣

H1(TF )

]
6Ch1/2 ∣∣divwwwF∣∣

H1(TF )
.

Similarly,
∥∥PE

(
zzzS

h ·nnn
)
− zzzS

h ·nnn
∥∥

L2(E) 6Ch1/2
∣∣zzzS

h

∣∣
H1(TS)d . Thus, the result follows from the two previous

estimates. �
For the numerical analysis that will be performed in the following sections, we will use the elliptic

projector Ph : VVV →VVV h, defined for any vvv ∈VVV by

Phvvv ∈VVV h : a(Phvvv− vvv,wwwh)+(Phvvv− vvv,wwwh)ρ
= 0 ∀wwwh ∈VVV h. (3.2)

From (2.11), it is clear that Ph : VVV →VVV h is a well posed continuous operator. In 2D, the following error
estimate follows from (Bermúdez et al., 1995, Theorem 5.2):

‖vvv−Phvvv‖XXX 6C inf
wwwh∈VVV h

‖vvv−wwwh‖XXX 6Chmin{α,β} ‖vvv‖XXXα,β ∀vvv ∈ XXXα,β ∩VVV (3.3)

with α ∈
( 1

2 ,1
]

and β ∈ (0,1]. Its extension to 3D is straightforward.
We will also need an approximation result for the projector Ph in the HHH-norm for functions vvv not

necessarily in XXXα,β . With this end, we will use the following lemma, which can be proved by proceeding
as in (Bermúdez et al., 1995, Lemma 5.5).

LEMMA 3.2 Let vvvh =
(
vvvS

h ,vvv
F
h

)
∈VVV h be such that

(vvvh,ϕϕϕh)ρ
= 0 ∀ϕϕϕh ∈ KKK∩VVV h.

Then, there exist vvvKKK ∈ KKK and vvvGGG ∈ GGG such that vvvh = vvvKKK + vvvGGG and

‖vvvKKK‖HHH 6Chα

[∥∥divvvvF
h

∥∥
L2(ΩF)

+
∥∥vvvS

h

∥∥
H1(ΩS)d

]
,

where α := min{α̃,1}, with α̃ as in Lemma 2.1(c).

We will also use the VVV h interpolant defined in (Bermúdez et al., 1995, Section 5): IV
h : XXXα,β ∩VVV →

VVV h, with α ∈
( 1

2 ,1
]

and β ∈ (0,1]. It is proved in Theorem 5.2 from this reference that, in 2D,∥∥vvv− IV
h vvv
∥∥

XXX 6Chmin{α,β} ‖vvv‖XXXα,β . (3.4)

Once again, its extension to 3D is straightforward.
Now, we are in a position to prove an estimate for the projector Ph in the HHH-norm by means of a

duality argument.

LEMMA 3.3 There exist constants C > 0, α ∈
( 1

2 ,1
]

and β ∈ (0,1] such that, for all vvv ∈ GGGV ,

‖vvv−Phvvv‖HHH 6Chmin{α,β} ‖vvv‖XXX .
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Proof. Let vvv ∈ GGGV . We consider the following auxiliary problem: Find ϕϕϕ =
(
ϕϕϕS,ϕϕϕF

)
∈VVV such that

â(www,ϕϕϕ) := a(www,ϕϕϕ)+(www,ϕϕϕ)
ρ
= (www,Phvvv− vvv)

ρ
∀www ∈VVV . (3.5)

From (2.11), it follows that there exists a unique ϕϕϕ ∈VVV solution of the above problem and that it satisfies

‖ϕϕϕ‖XXX 6C‖Phvvv− vvv‖HHH . (3.6)

Moreover, it is easy to check that ϕϕϕ =
(
ϕϕϕS,ϕϕϕF

)
is the solution to the following problem:

divσσσ
(
ϕϕϕ

S)+ρSϕϕϕ
S = ρS (Phvvv)S−ρSvvvS in ΩS, (3.7)

σσσ
(
ϕϕϕ

S) ·nnn = ρFc2 divϕϕϕ
Fnnn on ΓI, (3.8)

σσσ
(
ϕϕϕ

S) ·ννν = 000 on ΓN, (3.9)

ϕϕϕ
S = 000 on ΓD, (3.10)

∇
(
ρFc2 div

(
ϕϕϕ

F))+ρF ϕϕϕ
F = ρF (Phvvv)F−ρF vvvF in ΩF, (3.11)

ϕϕϕ
S ·nnn = ϕϕϕ

F ·nnn onΓI. (3.12)

We readily see from (3.11) that divϕϕϕF ∈ H1(ΩF) and

∥∥∇
(
divϕϕϕ

F)∥∥
L2(ΩF)d 6C

[∥∥∥(Phvvv)F− vvvF
∥∥∥

L2(ΩF)d
+
∥∥ϕϕϕ

F∥∥
L2(ΩF)d

]
.

Thus, from (3.6) we obtain ∥∥divϕϕϕ
F∥∥

H1(ΩF)
6C‖Phvvv− vvv‖HHH .

On the other hand, (3.7)–(3.10) is a standard problem of linear elasticity. Hence, by using classical
additional regularity results for this problem (see Grisvard (2011); Dauge (1988)) it turns out that ϕϕϕS

belongs to H1+β̃ (ΩS)
d for some β̃ > 0. Moreover, the following estimate holds true:

∥∥ϕϕϕ
S∥∥

H1+β̃ (ΩS)
6C

[∥∥∥(Phvvv)S− vvvS
∥∥∥

L2(ΩS)d
+
∥∥divϕϕϕ

F∥∥
H1(ΩF)

]
6C‖Phvvv− vvv‖HHH .

Next, by using Lemma 2.1(b) we decompose ϕϕϕ = ϕϕϕKKK +ϕϕϕGGG with ϕϕϕKKK ∈ KKK and ϕϕϕGGG ∈ GGGV . From
Lemma 2.1(c) it follows that ϕϕϕGGG =

(
ϕϕϕS,∇q

)
with ∇q ∈ Hα̃(ΩF)

d and α̃ > 1/2. Moreover, since
div(∇q) = divϕϕϕF, from the above equations we obtain that

ϕϕϕGGG ∈ H1+β̃ (ΩS)
d×Hα̃,1(div,ΩF) and ‖ϕϕϕGGG‖XXX α̃,β̃ 6 ‖Phvvv− vvv‖HHH . (3.13)

Now, from Lemma 2.1(a) we write Phvvv = ηηη + χχχ with ηηη ∈ GGG and χχχ ∈ KKK. By taking www ∈ KKK in (3.5),
it follows that ϕϕϕKKK = χχχ; in fact,

(www,ϕϕϕKKK)ρ
= (www,ϕϕϕ)

ρ
= (www,Phvvv− vvv)

ρ
= (www,χχχ)

ρ
∀www ∈ KKK.

Moreover, from (3.2) it follows that

(Phvvv,wwwh)ρ
= 0 ∀wwwh ∈ KKK∩VVV h
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and, thus, from Lemma 3.2 we arrive at

‖ϕϕϕKKK‖HHH 6Chα

[∥∥∥div(Phvvv)F
∥∥∥

L2(ΩF)d
+
∥∥∥(Phvvv)S

∥∥∥
H1(ΩS)d

]
(3.14)

with α := min{α̃,1}. To obtain the estimate of Phvvv− vvv in the HHH-norm, we take www = Phvvv− vvv in (3.5)
and, then, from (3.2) we write

(Phvvv− vvv,Phvvv− vvv)
ρ
= â(ϕϕϕ,Phvvv− vvv) = â

(
ϕϕϕGGG− IV

h ϕϕϕGGG,Phvvv− vvv
)
+(ϕϕϕKKK ,Phvvv− vvv)

ρ
.

For the first term on the right-hand side above we use the following estimate (cf. (3.4) and (3.13)):∥∥ϕϕϕGGG− IV
h ϕϕϕGGG

∥∥
XXX 6Chmin{α,β} ‖ϕϕϕGGG‖XXXα,β 6Chmin{α,β} ‖Phvvv− vvv‖HHH ,

where β := min{β̃ ,1}. For the second one we use Cauchy-Schwarz inequality and estimate (3.14).
Thus, we obtain

‖Phvvv− vvv‖HHH 6Chmin{α,β} (‖Phvvv− vvv‖XXX +‖Phvvv‖XXX ) .

Therefore, the result follows from the previous inequality by estimating the right-hand side by using
that ‖Phvvv− vvv‖XXX +‖Phvvv‖XXX 6C‖vvv‖XXX . �

REMARK 3.1 The numerical methods that will be introduced below will be proved to converge with
order O

(
hmin{α,β}), where α := min{α̃,1} and β := min{β̃ ,1} with α̃ and β̃ being the Sobolev expo-

nents of the Neumann problem (2.8) and the linear elasticity problem (3.7)–(3.10), respectively.

4. The semidiscrete in space Galerkin approximation

The aim of this section is to introduce a semidiscrete in space Galerkin approximation of Problem 2.1
and to obtain error estimates under regularity assumptions of the solution that will be shown to hold for
appropriate data of the problem. For the forthcoming analysis we will only need to assume that

∂tuuu ∈ L1(0,T ;VVV ) and ∂ttuuu ∈ L2(0,T ;HHH), (4.1)

in order to prove an L2-like error estimate for this semidiscrete approximation. Although this assump-
tion could seem restrictive, in the following lemma we will show that it holds true under appropriate
assumptions that include the following compatibility condition on uuu0 :=

(
uuuS

0 ,uuu
F
0
)
:

div
(
σσσ
(
uuuS

0
))
∈ L2(ΩS)

d , ∇
(
divuuuF

0
)
∈ L2(ΩF)

d ,

σσσ
(
uuuS

0
)
·nnn = ρFc2 divuuuF

0 nnn on ΓI and σσσ
(
uuuS

0
)
·ννν = ggg on ΓN.

(4.2)

LEMMA 4.1 (Regularity) Let uuu be the solution to Problem 2.1. If fff ∈ H1
(
0,T ;L2(ΩS)

d
)
, ggg = 000,(

uuuS
0 ,uuu

F
0
)

satisfies (4.2) and
(
uuuS

1 ,uuu
F
1
)
∈VVV , then

uuu ∈C1(0,T ;VVV )∩C2(0,T ;HHH) (4.3)

and, consequently, (4.1) holds true. Moreover, the following estimate holds:

‖∂ttuuu‖L∞(0,T ;HHH)+‖∂tuuu‖L∞(0,T ;XXX)

6C
[
‖uuu1‖VVV +

∥∥divσσσ
(
uuuS

0
)∥∥

L2(ΩS)d +
∥∥∇
(
divuuuF

0
)∥∥

L2(ΩF)d +‖ fff‖H1(0,T ;L2(ΩS)d)

]
. (4.4)
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Proof. Since C1
(
0,T ;L2(ΩS)

d
)

is dense in H1
(
0,T ;L2(ΩS)

d
)
, it is enough to prove the lemma for fff

in the former. Let uuu be the unique solution to Problem 2.1. We will derive (4.3) as a consequence of
Theorem 2.1 from Basson & van Rensburg (2013) (see also (Showalter, 1994, Chapter IV)). With this
aim we consider the following auxiliary problem: find φφφ ∈C(0,T ;VVV ) such that ∂tφφφ is continuous at 0
and for each t ∈ [0,T ], φφφ(t) ∈VVV , ∂tφφφ(t) ∈VVV , ∂ttφφφ(t) ∈ HHH and

(∂ttφφφ ,vvv)ρ
+2(∂tφφφ ,vvv)ρ

+a(φφφ ,vvv)+(φφφ ,vvv)
ρ
= ( f̂ff ,vvv)S ∀vvv ∈VVV (4.5)

with f̂ff := et fff ∈C1
(
0,T ;L2(ΩS)

d
)

and initial conditions

φφφ(0) = uuu0 and ∂tφφφ(0) = uuu1 +uuu0. (4.6)

In order to apply (Basson & van Rensburg, 2013, Theorem 2.1), we notice that assumptions (E.1)–(E.4)
from this reference can be easily checked. Moreover, it is also necessary to check that there exits uuu2 ∈HHH
such that

(uuu2,vvv)ρ
= a(uuu0,vvv) ∀vvv ∈VVV , (4.7)

which according to (4.2) follows in our case for uuu2 :=
(
divσσσ

(
uuuS

0
)
,∇
(
divuuuF

0
))

. Thus we are in a
position to apply (Basson & van Rensburg, 2013, Theorem 2.1) and conclude that problem (4.5)–(4.6)
has a unique solution φφφ that belongs to C1(0,T ;VVV )∩C2(0,T ;HHH). Moreover, it is straightforward to
check that e−tφφφ is the solution to Problem 2.1, which allows us to conclude the first part of the lemma.

Estimate (4.4) follows from classical arguments which include the Faedo-Galerkin method (see, for
instance, (Lions & Magenes, 1972, Chapter 5)). For the sake of completeness we include the main
arguments. We (formally) differentiate (2.9) with respect to time and take vvv = ∂ttuuu(t) as a test function.
Then, by integration by parts it follows that

1
2
(∂ttuuu(t),∂ttuuu(t))ρ

+
1
2

a(∂tuuu(t),∂tuuu(t))

=
1
2
(∂ttuuu(0),∂ttuuu(0))ρ

+
1
2

a(∂tuuu(0),∂tuuu(0))+
∫ t

0
(∂t fff (s),∂ttuuu(s))S ds.

To estimate the first term on the right-hand side we notice that (∂ttuuu(0),vvv)ρ
= ( fff (0),vvv)− a(uuu0,vvv) for

all vvv ∈VVV . Then, from (4.7) it follows that

‖∂ttuuu(t)‖2
HHH +a(∂tuuu(t),∂tuuu(t))

6C
[
‖ fff (0)‖2

L2(ΩS)d +‖uuu2‖2
HHH +‖uuu1‖2

VVV +
∫ t

0
‖∂t fff (s)‖2

L2(ΩS)d ds
]
+
∫ t

0
‖∂ttuuu(s)‖2

HHH ds.

Finally, (4.4) follows from this, Gronwall’s inequality (see, Evans (2010)) and (2.11). �
From the regularity of uuu we can also obtain the following property of the solution.

LEMMA 4.2 Let uuu be the solution to Problem 2.1. If uuu0,uuu1 ∈GGGV , then uuu(t) and ∂tuuu(t) belong to GGGV a.e.
t ∈ (0,T ).

Proof. We integrate equation (2.9) with respect to time once and twice, respectively, to obtain

(∂tuuu(t),vvv)ρ
= (uuu1,vvv)ρ

+
∫ t

0

[
−a(uuu,vvv)+

∫
ΩS

fff · vvvS +
∫

ΓN

ggg · vvvS
]

∀vvv ∈VVV
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and

(uuu(t),vvv)
ρ
= (uuu0,vvv)ρ

+ t (uuu1,vvv)ρ
+
∫ t

0

∫ s

0

[
−a(uuu,vvv)+

∫
ΩS

fff · vvvS +
∫

ΓN

ggg · vvvS
]

∀vvv ∈VVV .

Hence, the result follows from Lemma 2.1(b). �
Next, we consider the discrete space VVV h defined in Section 3 and introduce the following semidis-

crete Galerkin approximation of Problem 2.1.

Problem 4.1 Given uuu0h and uuu1h approximations in VVV h of uuu0 and uuu1, respectively, ggg∈H1
(
0,T ;L2(ΓN)

d
)

and fff ∈ H1
(
0,T ;L2(ΩS)

d
)
, find

(
uuuS

h ,uuu
F
h

)
∈C2(0,T ;VVV h) such that∫

ΩS

ρS∂ttuuuS
h · vvvS

h +
∫

ΩF

ρF∂ttuuuF
h · vvvF

h +
∫

ΩS

σσσ
(
uuuS

h
)

: εεε
(
vvvS

h
)
+
∫

ΩF

ρFc2 divuuuF
h divvvvF

h

=
∫

ΓN

ggg(t) · vvvS
h +

∫
ΩS

fff (t) · vvvS
h ∀

(
vvvS

h ,vvv
F
h
)
∈VVV h.

By choosing a basis of VVV h, the above problem can be written as a linear system of ordinary differ-
ential equations. Hence, it is well known that there exists a unique solution uuuh to Problem 4.1 (see, for
instance, Coddington (1961)).

To study the convergence of the semidiscrete scheme, we consider the projector Ph : VVV →VVV h defined
in (3.2), for which we have the following property that follows by a density argument from (Basson &
van Rensburg, 2013, Lemma 3.1) (see also Baker (1976)).

LEMMA 4.3 If vvv ∈ H1(0,T ;VVV ), then Phvvv ∈ H1(0,T ;VVV ) and ∂t (Phvvv)(t) = Ph (∂tvvv)(t) a.e. t ∈ (0,T ).

From the definition of the continuous space VVV and its discrete approximation VVV h, it can be seen that
we are dealing with a non-conforming approximation of Problem 2.1. Moreover, the Galerkin orthog-
onality of the error does not hold. In fact, under the regularity assumption (4.1), by taking appropriate
test functions in (2.9), it follows that the solution uuu to Problem 2.1 satisfies (2.1)–(2.6) a.e t ∈ (0,T ).
In particular, from (2.2) we have that ∇

(
divuuuF

)
∈ L2

(
0,T ;L2(ΩF)

d
)
. Therefore, by testing (2.1)–(2.6)

with vvvh ∈VVV h we obtain

(∂ttuuu,vvvh)ρ
+a(uuu,vvvh) =

∫
ΩS

fff · vvvS
h +

∫
ΓN

ggg · vvvS
h +

∫
ΓI

ρFc2 divuuuF (vvvF
h− vvvS

h
)
·nnn ∀vvvh ∈VVV h, (4.8)

for all t ∈ (0,T ). Therefore, equation (2.9) holds for test functions in VVV but not in VVV h. Moreover,
subtracting the above equation from that of Problem 4.1, we arrive at

(∂ttuuu−∂ttuuuh,vvvh)ρ
+a(uuu−uuuh,vvvh) =

∫
ΓI

ρFc2 divuuuF (vvvF
h− vvvS

h
)
·nnn ∀vvvh ∈VVV h. (4.9)

Thus, from this (among others reasons mentioned in the sequel) we cannot apply known results for the
semidiscrete approximation as those from Baker (1976) or from Basson & van Rensburg (2013) in a
more abstract framework.

As usual, in order to estimate the error between the continuous and the semidiscrete in space solu-
tions, we decompose

uuu−uuuh = ηηη +φφφ , where ηηη := uuu−Phuuu and φφφ := Phuuu−uuuh. (4.10)

The term ηηη will be bounded by using (3.3) and Lemma 3.3, whereas for φφφ we have the following lemma.
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LEMMA 4.4 Let uuu and uuuh be the solutions to Problems 2.1 and 4.1, respectively. Let ηηη and φφφ be as in
(4.10). Then,

‖φφφ‖L∞(0,T ;HHH)+

∥∥∥∥∫ t

0
φφφ

∥∥∥∥
L∞(0,T ;XXX)

6C
[
‖Phuuu0−uuu0h‖HHH +‖uuu1−uuu1h‖HHH +‖∂tηηη‖L1(0,T ;HHH)+‖ηηη‖L2(0,T ;HHH)+h

∥∥∂ttuuuF∥∥
L2(0,T ;L2(ΩF)d)

]
.

Proof. We proceed as in (Basson & van Rensburg, 2013, Section 4) and follow the approach from Baker
(1976). With this end, we define vvvh(t) :=

∫
ξ

t φφφ ∈VVV h, which implies that vvvh(ξ ) = 0 and ∂tvvvh =−φφφ . We
consider the following equality, which is easy to check:

d
dt

[
1
2
(φφφ ,φφφ)

ρ
− 1

2
a(vvvh,vvvh)+(∂tuuu−∂tuuuh,vvvh)ρ

]
= (∂tφφφ ,φφφ)ρ

+a(φφφ ,vvvh)+(∂ttuuu−∂ttuuuh,vvvh)ρ
− (∂tuuu−∂tuuuh,φφφ)ρ

.

Moreover, using (4.9), it is also easy to check that

(∂ttuuu−∂ttuuuh,vvvh)ρ
+a(φφφ ,vvvh) =

∫
ΓI

ρFc2 divuuuF (vvvF
h− vvvS

h
)
·nnn+(ηηη ,vvvh)ρ

∀vvvh ∈VVV h.

Hence, by noticing that ∂tuuu−∂tuuuh = ∂tηηη +∂tφφφ , we arrive at the following equality:

d
dt

[
1
2
(φφφ ,φφφ)

ρ
− 1

2
a(vvvh,vvvh)+(∂tuuu−∂tuuuh,vvvh)ρ

]
=
∫

ΓI

ρFc2 divuuuF (vvvF
h− vvvS

h
)
·nnn+(ηηη ,vvvh)ρ

− (∂tηηη ,φφφ)
ρ
.

Now, we integrate the previous equation from 0 to ξ :

1
2
(φφφ(ξ ),φφφ(ξ ))

ρ
− 1

2
(φφφ(0),φφφ(0))

ρ
+

1
2

a(vvvh(0),vvvh(0))− (∂tuuu(0)−∂tuuuh(0),vvvh(0))ρ

=−
∫

ξ

0
(∂tηηη ,φφφ)

ρ
+
∫

ξ

0
(ηηη ,vvvh)ρ

+
∫

ξ

0

[∫
ΓI

ρFc2 divuuuF (vvvF
h− vvvS

h
)
·nnn
]
.

Then, by integrating by parts in time, we can rewrite the last two terms on the right-hand side above as
follows: ∫

ξ

0
(ηηη ,vvvh)ρ

=
∫

ξ

0

(
∂t

∫ t

0
ηηη ,vvvh

)
ρ

=
∫

ξ

0

(∫ t

0
ηηη ,φφφ

)
ρ

.

Similarly,

∫
ξ

0

(
ρFc2 divuuuF,

(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
=
∫

ξ

0

(∫ t

0
ρFc2 divuuuF,

(
φφφ

F−φφφ
S) ·nnn)

ΓI

=

(∫
ξ

0
ρFc2 divuuuF,

∫
ξ

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

−
∫

ξ

0

(
ρFc2 divuuuF,

∫ t

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

.
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Thus, from the last three equations we arrive at

(φφφ(ξ ),φφφ(ξ ))
ρ
+a
(∫

ξ

0
φφφ ,
∫

ξ

0
φφφ

)
= (φφφ(0),φφφ(0))

ρ
+2
(

∂tuuu(0)−∂tuuuh(0),
∫

ξ

0
φφφ

)
ρ

−2
∫

ξ

0
(∂tηηη ,φφφ)

ρ
+2

∫
ξ

0

(∫ t

0
ηηη ,φφφ

)
ρ

+2
(∫

ξ

0
ρFc2 divuuuF,

∫
ξ

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

−2
∫

ξ

0

(
ρFc2 divuuuF,

∫ t

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

. (4.11)

Next, we estimate the terms on the right-hand side above. From Cauchy-Schwarz and Young’s
inequalities, it follows that for all γ > 0(

∂tuuu(0)−∂tuuuh(0),
∫

ξ

0
φφφ

)
ρ

−
∫

ξ

0
(∂tηηη ,φφφ)

ρ
+
∫

ξ

0

(∫ t

0
ηηη ,φφφ

)
ρ

6
C
γ

[
T ‖∂tuuu(0)−∂tuuuh(0)‖HHH +‖∂tηηη‖L1(0,T ;HHH)+T ‖ηηη‖L2(0,T ;HHH)

]2
+ γ ‖φφφ‖2

L∞(0,T ;HHH) .

To estimate the last two terms of (4.11), we recall that divuuuF ∈ L2
(
0,T ;H1(ΩF)

)
. Thus, these terms

can be bounded by using Lemma 3.1 with zzzh =
∫ t

0 φφφ , (2.2) and the fact that
∥∥vvvS
∥∥2

H1(ΩS)d 6 Ca(vvv,vvv)

∀vvv =
(
vvvS,vvvF

)
∈ XXX as follows:(∫

ξ

0
ρFc2 divuuuF,

∫
ξ

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

−
∫

ξ

0

(
ρFc2 divuuuF,

∫ t

0

(
φφφ

F−φφφ
S) ·nnn)

ΓI

6C

{
h
∫

ξ

0

∣∣divuuuF∣∣
H1(ΩF)

∣∣∣∣∫ ξ

0
φφφ

S
∣∣∣∣
H1(ΩS)d

+h
∫

ξ

0

[∣∣divuuuF∣∣
H1(ΩF)

∣∣∣∣∫ t

0
φφφ

S
∣∣∣∣
H1(ΩS)d

]}

6
1
4

sup
t∈[0,T ]

a
(∫ t

0
φφφ ,
∫ t

0
φφφ

)
+Ch2∥∥∂ttuuuF∥∥2

L2(0,T ;L2(ΩF)d) . (4.12)

Finally the result follows from (4.11)–(4.12) by straightforward computations, which include taking the
supremum over 06 ξ 6 T , choosing γ = 1

4 min{ρF,ρS} and using the fact that a(·, ·)+(·, ·)
ρ

is a norm
equivalent to the XXX-norm. �

From Lemmas 3.3, 4.2 and 4.4, we obtain the following convergence result for the semidiscrete
scheme.

THEOREM 4.2 For uuu0,uuu1 ∈ GGGV , let uuu and uuuh be the solutions to Problems 2.1 and 4.1, respectively. If
uuu ∈ L∞(0,T ;VVV ), ∂tuuu ∈ L1(0,T ;VVV ) and ∂ttuuu ∈ L2(0,T ;HHH), then

‖uuu−uuuh‖L∞(0,T ;HHH) 6Chmin{α,β}
[
‖∂tuuu‖L1(0,T ;XXX)+‖uuu‖L∞(0,T ;XXX)+

∥∥∂ttuuuF∥∥
L2(0,T ;L2(ΩF)d) +‖uuu0‖XXX

]
+C (‖uuu0−uuu0h‖HHH +‖uuu1−uuu1h‖HHH) , (4.13)

with α ∈ (1/2,1] and β ∈ (0,1] as in Remark 3.1.

REMARK 4.1 According to Lemma 4.1 and the previous theorem, if ggg = 000, fff ∈ H1(0,T ;L2(ΩS)
d),

uuu0,uuu1 ∈GGGV and (4.7) is satisfied, then uuu satisfies the regularity assumed in this theorem, so that, in such
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a case, (4.13) holds true without any further assumption. Moreover, if the discrete initial conditions are
taken as uuu0h := IV

h uuu0 and uuu1h := IV
h uuu1, then, from (4.13) and Lemma 3.3, it follows that

‖uuu−uuuh‖L∞(0,T ;HHH)

6Chmin{α,β}
[∥∥divσσσ

(
uuuS

0
)∥∥

L2(ΩS)d +
∥∥∇
(
divuuuF

0
)∥∥

L2(ΩF)d +‖ fff‖H1(0,T ;L2(ΩS)d) +‖uuu0‖XXX +‖uuu1‖XXX

]
.

Finally, if some further regularity of the solution is assumed, then we obtain the following XXX-like
error estimate for the semidiscrete approximation from Lemmas 3.3, 4.2 and 4.4 and estimate (3.3).

THEOREM 4.3 Under the assumptions of Theorem 4.2, if moreover uuu ∈ L∞

(
0,T ;XXXα,β

)
, then

‖uuu−uuuh‖L∞(0,T ;HHH)+

∥∥∥∥∫ t

0
(uuu−uuuh)

∥∥∥∥
L∞(0,T ;XXX)

6C (‖uuu0−uuu0h‖HHH +‖uuu1−uuu1h‖HHH)

+Chmin{α,β}
[
‖∂tuuu‖L1(0,T ;XXX)+‖uuu‖L∞(0,T ;XXXα,β ) +

∥∥∂ttuuuF∥∥
L2(0,T ;L2(ΩF)d) +‖uuu0‖XXX

]
,

where α ∈ (1/2,1] and β ∈ (0,1] are as in Remark 3.1.

5. Fully discrete Galerkin approximation

In this section, we introduce a fully discrete Galerkin approximation of Problem 2.1 based on finite
elements and a Newmark’s method for the space and time discretization, respectively. For the former
we consider the finite element spaces introduced in Section 3. For the latter we introduce a partition
of the time interval [0,T ] with step size ∆ t = T/N, N ∈ N, and define tn := n∆ t, n = 0, . . . ,N. If vvv is
regular enough with respect to t, we denote vvvn := vvv(tn), n = 0, . . . ,N.

For the numerical scheme, we consider that fff and ggg are continuous in time and that we dispose of an
approximation uuu0h ∈ VVV h of the initial data uuu0. We propose the following Newmark scheme (Newmark
(1959)) with the initial step as in Karaa (2011) and a given value of the parameter θ ∈ [0,1]:

Problem 5.1 Let uuu0h ∈VVV h, uuu1 ∈ HHH, fff ∈C
(
0,T ;∈ L2(ΩS)

d
)

and ggg ∈C
(
0,T ;L2(ΓN)

d
)

be given data.

• Let uuu0
h := uuu0h.

• Let uuu1
h ∈VVV h be the solution to(

uuu1
h−uuu0

h,vvvh
)

ρ
+∆ t2

θa
(
uuu1

h−uuu0
h,vvvh

)
= ∆ t (uuu1,vvvh)ρ

+
∆ t2

2

[(
fff 0,vvvS

h
)

S +
(
ggg0,vvvS

h
)

ΓN
−a(uuu0h,vvvh)

]
∀vvvh ∈VVV h. (5.1)

• For n = 1, . . . ,N−1, let uuun+1
h ∈VVV h be the solution to(

∂ ttuuun
h,vvvh

)
ρ

+a
(

uuun,θ
h ,vvvh

)
=
(

fff n,θ ,vvvS
h

)
S
+
(

gggn,θ ,vvvS
h

)
ΓN

∀vvvh ∈VVV h. (5.2)

In the previous problem we have used the notation

∂ ttuuun
h :=

uuun+1
h −2uuun

h +uuun−1
h

∆ t2 and uuun,θ
h := θuuun+1

h +(1−2θ)uuun
h +θuuun−1

h .
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We recall that we are dealing with a non-conforming approximation of Problem 2.1. Notice that this
fact does not allow us to apply classical results for the fully discrete approximation like those in Baker
(1976), or more recent results like those in Karaa (2011).

In what follows, we will obtain error estimates for the fully discrete approximation proposed above.
From now on we assume that θ > 1/4, so that the scheme is unconditionally stable (see, for instance,
Raviart & Thomas (1983)). For the forthcoming analysis we will assume that the solution uuu to Prob-
lem 2.1 satisfies

∂ttuuu ∈C(0,T ;XXX), ∂tttuuu ∈C(0,T ;HHH) and ∂ttttuuu ∈ L1(0,T ;HHH). (5.3)

We notice that under the above regularity assumption, by taking appropriate test functions in (2.9), it
follows that uuu satisfies (2.1)–(2.6) for all t ∈ (0,T ). In particular, from (2.2), we have that ∇

(
divuuuF

)
∈

C(0,T ;L2(ΩF)
d). Moreover, as was shown in the previous section, the solution uuu to Problem 2.1 satis-

fies (4.8).
To study the convergence of the fully discrete scheme at time tn, n = 1, . . . ,N, the error is decom-

posed as usual:

uuun−uuun
h = ηηη

n +φφφ
n, where ηηη

n := uuun−Phuuun and φφφ
n := Phuuun−uuun

h. (5.4)

The term ηηηn will be bounded by using Lemma 3.3. Therefore, to bound the error, we only need to
estimate φφφ

n. This is the aim of the forthcoming analysis. With this end, let us define the following
functions of the space variable:

rrrm := ∂ ttPhuuum− (∂ttuuu)
m,θ , RRRm := ∆ t

m

∑
n=1

rrrn, PPPm := ∆ t
m

∑
n=1

(I−Ph)uuun,θ , m = 1, . . . ,N−1.

Moreover, let L , J m and Θ m in VVV ′h, m= 1, . . . ,N−1, be respectively defined for all vvvh ∈VVV h as follows:

L (vvvh) := ∆ t−2 (
φφφ

1−φφφ
0,vvvh

)
ρ
+θa

(
φφφ

1−φφφ
0,vvvh

)
,

J m (vvvh) :=
(

ρFc2 div
(
uuuF)m,θ

,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
,

Θ
m (vvvh) := ∆ t

m

∑
n=1

J n (vvvh) .

Finally, we define

Φ
0 :=−1

2
φφφ

0 and Φ
m :=−1

2
φφφ

0 +
m−1

∑
n=0

φφφ
n+1/2, m = 1, . . . ,N,

where

φφφ
n+1/2 :=

φφφ
n+1 +φφφ

n

2
, n = 0, . . . ,N−1.

To prove an estimate for φφφ
n, n = 1, . . . ,N, we follow several steps. First, we show the following

estimate of φφφ
n in terms of the above defined quantities.
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LEMMA 5.1 For all n = 1, . . . ,N, it follows that

(φφφ n,φφφ n)
ρ
+∆ t2

(
θ − 1

4

)
a(φφφ n,φφφ n)+∆ t2a(Φn,Φn)

=
(
φφφ

0,φφφ 0)
ρ
+∆ t2

θa
(
φφφ

0,φφφ 0)+∆ t
n−1

∑
m=1

(
RRRm +PPPm,φφφ m+1 +φφφ

m)
ρ

+2∆ t
n−1

∑
m=1

Θ
m (

Φ
m+1−Φ

m)+2∆ t2L
(
Φ

n−Φ
0) ∀vvvh ∈VVV h. (5.5)

Proof. From the first assumption in (5.3), divuuuF ∈C
(
0,T ;H1(ΩF)

)
. Then, since uuu satisfies (4.8), we

have(
(∂ttuuu)

n,θ ,vvvh

)
ρ

+a
(

uuun,θ ,vvvh

)
=
(

fff n,θ ,vvvS
h

)
S
+
(

gggn,θ ,vvvS
h

)
ΓN

+
∫

ΓI

ρFc2 div
(
uuuF)n,θ (

vvvF
h− vvvS

h
)
·nnn, (5.6)

for all vvvh ∈VVV h and n = 1, . . . ,N−1. By subtracting (5.2) and (5.6) we arrive at(
(∂ttuuu)

n,θ −∂ ttuuun
h,vvvh

)
ρ

+a
(

uuun,θ −uuun,θ
h ,vvvh

)
= J n (vvvh) ∀vvvh ∈VVV h, n = 1, . . . ,N−1.

Hence, using the definition of Ph (cf. (3.2)), we have that, for n = 1, . . . ,N−1,(
∂ ttφφφ

n,vvvh

)
ρ

+a
(

φφφ
n,θ ,vvvh

)
= (rrrn,vvvh)ρ

+J n (vvvh)+
(

uuun,θ −Phuuun,θ ,vvvh

)
ρ

∀vvvh ∈VVV h. (5.7)

On the other hand, we notice that

∆ t2
(

θ − 1
4

)
∂ ttφφφ

n +

(
φφφ

n+1/2 +φφφ
n−1/2

2

)
= φφφ

n,θ .

Then, we can rewrite (5.7) as follows:(
∂ ttφφφ

n,vvvh

)
ρ

+∆ t2
(

θ − 1
4

)
a
(

∂ ttφφφ
n,vvvh

)
+

1
2

a
(

φφφ
n+1/2 +φφφ

n−1/2,vvvh

)
= (rrrn,vvvh)ρ

+J n (vvvh)+
(
(I−Ph)uuun,θ ,vvvh

)
ρ

∀vvvh ∈VVV h.

Summing over n the above equation from n = 1 to n = m and multiplying by ∆ t, we arrive at

1
∆ t

(
φφφ

m+1−φφφ
m,vvvh

)
ρ
− 1

∆ t

(
φφφ

1−φφφ
0,vvvh

)
ρ
+∆ t

(
θ − 1

4

)
a
(
φφφ

m+1−φφφ
m,vvvh

)
−∆ t

(
θ − 1

4

)
a
(
φφφ

1−φφφ
0,vvvh

)
+

∆ t
2

m

∑
n=1

a
(

φφφ
n+1/2 +φφφ

n−1/2,vvvh

)
= ∆ t

m

∑
n=1

(rrrn,vvvh)ρ
+∆ t

m

∑
n=1

J n (vvvh)+∆ t
m

∑
n=1

(
(I−Ph)uuun,θ ,vvvh

)
ρ

∀vvvh ∈VVV h. (5.8)

On the other hand, from the definition of Φm,
m

∑
n=1

φφφ
n+1/2
h +

m

∑
n=1

φφφ
n−1/2
h +

1
2
(
φφφ

1−φφφ
0)= Φ

m+1 +Φ
m, m = 0, . . . ,N−1.
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Hence,

− 1
∆ t

(
φφφ

1−φφφ
0,vvvh

)
ρ
−∆ t

(
θ − 1

4

)
a
(
φφφ

1−φφφ
0,vvvh

)
+

∆ t
2

m

∑
n=1

a
(

φφφ
n+1/2 +φφφ

n−1/2,vvvh

)
=− 1

∆ t

(
φφφ

1−φφφ
0,vvvh

)
ρ
−∆ tθa

(
φφφ

1−φφφ
0,vvvh

)
+

∆ t
2

a
(
Φ

m+1 +Φ
m,vvvh

)
ρ

∀vvvh ∈VVV h.

From the above equality and the definitions of RRRm,PPPm,Θ m and L , equation (5.8) can be rewritten as

1
∆ t

(
φφφ

m+1−φφφ
m,vvvh

)
ρ
+∆ t

(
θ − 1

4

)
a
(
φφφ

m+1−φφφ
m,vvvh

)
+

∆ t
2

a
(
Φ

m+1 +Φ
m,vvvh

)
ρ

= (RRRm +PPPm,vvvh)ρ
+Θ

m (vvvh)+L (vvvh)∆ t ∀vvvh ∈VVV h, m = 0, . . . ,N−1.

We choose vvvh = φφφ
m+1 +φφφ

m = 2
(
Φm+1−Φm

)
in the above equality and multiply by ∆ t to write

(
φφφ

m+1,φφφ m+1)
ρ
− (φφφ m,φφφ m)

ρ
+∆ t2

(
θ − 1

4

)[
a
(
φφφ

m+1,φφφ m+1)−a(φφφ m,φφφ m)
]

+∆ t2 [a(Φm+1,Φm+1)−a(Φm,Φm)
]

= ∆ t
(
RRRm +PPPm,φφφ m+1 +φφφ

m)
ρ
+2Θ

m (
Φ

m+1−Φ
m)+2∆ t2L

(
Φ

m+1−Φ
m) ∀vvvh ∈VVV h.

Summing over m from m = 0 to n−1, for 16 n6 N, yields

(φφφ n,φφφ n)
ρ
−
(
φφφ

0,φφφ 0)
ρ
+∆ t2

(
θ − 1

4

)[
a(φφφ n,φφφ n)−a

(
φφφ

0,φφφ 0)]+∆ t2 [a(Φn,Φn)−a
(
Φ

0,Φ0)]
= ∆ t

n−1

∑
m=1

(
RRRm +PPPm,φφφ m+1 +φφφ

m)
ρ
+2∆ t

n−1

∑
m=1

Θ
m (

Φ
m+1−Φ

m)+2∆ t2L
(
Φ

n−Φ
0) ∀vvvh ∈VVV h.

The result follows from the above equation and the fact that that Φ0 =− 1
2 φφφ

0. �
Next, we need to deal with the terms on the right-hand side of the above lemma. Notice that PPPm can

be easily estimated by using Lemma 3.3:

∆ t
N−1

∑
m=0
‖PPPm‖HHH 6Chmin{α,β} ‖uuu‖C(0,T ;XXX) . (5.9)

For RRRm we have the following estimate, where, once more, α and β are as in Remark 3.1:

LEMMA 5.2 There holds

∆ t
N−1

∑
m=1
‖RRRm‖HHH 6C

[
hmin{α,β} ‖∂ttuuu‖C(0,T ;XXX)+∆ t2 ‖∂ttttuuu‖L1(0,T ;HHH)

]
.

Proof. By triangle inequality we have

‖rrrn‖HHH =
∥∥∥∂ ttPhuuun− (∂ttuuu)

n,θ
∥∥∥

HHH
6
∥∥∥∂ tt (Ph− I)uuun

∥∥∥
HHH
+
∥∥∥∂ ttuuun− (∂ttuuu)

n,θ
∥∥∥

HHH
.
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Hence, by proceeding as in the proof of (Karaa, 2011, Lemma 2) and using Lemma 3.3 to estimate
(Ph− I), we arrive at

‖rrrn‖HHH 6C
[

∆ t−1hmin{α,β}
∫ tn+1

tn−1

‖∂ttuuu(s)‖XXX ds+∆ t
∫ tn+1

tn−1

‖∂ttttuuu(s)‖HHH ds
]
.

Then, the result follows from the previous inequality and the definition of RRRm. �
The last two terms on the right-hand side of (5.5) can be bounded by using the following results:

LEMMA 5.3 Let wwwn =
(
wwwn

S,www
n
F
)
∈VVV h, n = 1, . . . ,N. For 16 n6 N, it follows that

∆ t
n−1

∑
m=1

Θ
m (wwwm+1−wwwm)6C

[
∆ t max

16n6N
|wwwn

S|H1(ΩS)d

][
h‖∂ttuuu‖C(0,T ;HHH)

]
.

Proof. First notice that

∆ t
n−1

∑
m=1

Θ
m (wwwm+1−wwwm)= ∆ t2

n−1

∑
m=1

(Am,bm+1−bm)ΓI
,

where

Am :=
m

∑
l=1

al , al := ρFc2 div
(
uuuF)l,θ

and bm := (wwwm
F −wwwm

S ) ·nnn.

By summation by parts we arrive at

∆ t
n−1

∑
m=1

Θ
m (

Φ
m+1−Φ

m)= ∆ t2 (An,bn)ΓI
−∆ t2

n

∑
m=1

(am,bm)ΓI

= ∆ t2

(
ρFc2

n

∑
m=1

div
(
uuuF)m,θ

,(wwwn
F −wwwn

S) ·nnn

)
ΓI

−∆ t2
n

∑
m=1

(
ρFc2 div

(
uuuF)m,θ

,(wwwm
F −wwwm

S ) ·nnn
)

ΓI
.

We apply Lemma 3.1 to both terms on the right-hand side of the previous equation and (2.2) to write

∆ t2

(
ρFc2

n

∑
m=1

div
(
uuuF)m,θ

,(wwwn
F −wwwn

S) ·nnn

)
ΓI

6Ch∆ t2 |wwwn
S|H1(ΩS)d

n

∑
m=1

∣∣∣div
(
uuuF)m,θ

∣∣∣
H1(ΩF)

6Ch∆ t
(

max
16n6N

|wwwn
S|H1(ΩS)d

)
‖∂ttuuu‖2

C(0,T ;HHH) .

∆ t2
n

∑
m=1

(
ρFc2 div

(
uuuF)m,θ

,(wwwm
F −wwwm

S ) ·nnn
)

ΓI
6Ch∆ t2

n

∑
m=1
|wwwm

S |H1(ΩS)d

∣∣∣div
(
uuuF)m,θ

∣∣∣
H1(ΩF)

6Ch∆ t
(

max
16n6N

|wwwn
S|H1(ΩS)d

)
‖∂ttuuu‖2

C(0,T ;HHH) .

The result follows from the last three equations. �
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LEMMA 5.4 For all vvvh ∈VVV h it follows that

∆ t2L (vvvh)6C
[
hmin{α,β} ‖∂tuuu‖C(0,T ;XXX)+∆ t2 ‖∂tttuuu‖C(0,T ;HHH)+∆ t2 ‖∂t fff‖C(0,T ;L2(ΩS)d)

]
∆ t ‖vvvh‖HHH

+C∆ t3
[
‖∂tggg‖C(0,T ;L2(ΓN)d) +h‖∂tttuuu‖C(0,T ;HHH)

]
‖vvvh‖XXX ,

with α and β as in Remark 3.1.

Proof. We recall that

L (vvvh) = ∆ t−2 (
φφφ

1−φφφ
0,vvvh

)
ρ
+θa

(
φφφ

1−φφφ
0,vvvh

)
∀vvvh ∈VVV h.

For the first term on the right-hand side, we have that(
φφφ

1−φφφ
0,vvvh

)
ρ
=
(
Phuuu1−uuu1

h,vvvh
)

ρ
−
(
Phuuu0−uuu0

h,vvvh
)

ρ

=
(
Phuuu1−uuu1,vvvh

)
ρ
+
(
uuu1−uuu1

h,vvvh
)

ρ
−
(
Phuuu0−uuu0,vvvh

)
ρ
−
(
uuu0−uuu0

h,vvvh
)

ρ

=
(
(Ph− I)

(
uuu1−uuu0) ,vvvh

)
ρ
+
(
uuu1−uuu0,vvvh

)
ρ
−
(
uuu1

h−uuu0
h,vvvh

)
ρ
,

whereas, for the second one, by using the definition of Ph (cf. (3.2)) we have

a
(
φφφ

1−φφφ
0,vvvh

)
= a

(
Phuuu1−uuu1

h,vvvh
)
−a
(
Phuuu0−uuu0

h,vvvh
)

= a
(
Phuuu1−uuu1,vvvh

)
+a
(
uuu1−uuu1

h,vvvh
)
−a
(
Phuuu0−uuu0,vvvh

)
−a
(
uuu0−uuu0

h,vvvh
)

=
(
(Ph− I)

(
uuu1−uuu0) ,vvvh

)
ρ
+a
(
uuu1−uuu0,vvvh

)
−a
(
uuu1

h−uuu0
h,vvvh

)
.

On the other hand, from Taylor’s theorem we obtain

uuu1−uuu0 = ∆ t (∂tuuu)
0 +

∆ t2

2
∂ttuuu0 +

1
2

∫ t1

0
(∆ t− s)2

∂tttuuu(s)ds,

whereas evaluating (4.8) at t = t0 and t = t1, we obtain

a
(
uuu1−uuu0,vvvh

)
=
(

fff 1− fff 0,vvvS
h
)

S +
(
ggg1−ggg0,vvvS

h
)

ΓN
−
(
(∂ttuuu)

1− (∂ttuuu)
0 ,vvvh

)
ρ

+
(

ρFc2 div
((

uuuF)1−
(
uuuF)0

)
,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
.

Thus, from the previous two equations we arrive at(
uuu1−uuu0,vvvh

)
ρ
+θ∆ t2a

(
uuu1−uuu0,vvvh

)
= ∆ t (uuu1,vvvh)ρ

+
∆ t2

2
(
∂ttuuu0,vvvh

)
ρ
+

1
2

∫ t1

0
(∆ t− s)2 (∂tttuuu(s),vvvh)ρ

ds

−θ∆ t2
(
(∂ttuuu)

1− (∂ttuuu)
0 ,vvvh

)
ρ

+θ∆ t2 ( fff 1− fff 0,vvvS
h
)

S +θ∆ t2 (ggg1−ggg0,vvvS
h
)

ΓN

+θ∆ t2
(

ρFc2 div
((

uuuF)1−
(
uuuF)0

)
,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
.

On the other hand, we recall that uuu1
h is the solution to (5.1), namely, ∀vvvh ∈VVV h(

uuu1
h−uuu0

h,vvvh
)

ρ
+θ∆ t2a

(
uuu1

h−uuu0
h,vvvh

)
= ∆ t (uuu1,vvvh)ρ

+
∆ t2

2

((
fff 0,vvvS

h
)

S +
(
ggg0,vvvS

h
)

ΓN
−a
(
uuu0,vvvh

))
.



20 of 28 R. ARAYA ET AL.

Thus, from the previous two equations and (3.2) we arrive at

∆ t2L (vvvh) =
(
(Ph− I)

(
uuu1−uuu0) ,vvvh

)
ρ
+θ∆ t2 ((Ph− I)

(
uuu1−uuu0) ,vvvh

)
ρ

+
1
2

∫ t1

0
(∆ t− s)2 (∂tttuuu(s),vvvh)ρ

ds+θ∆ t2 ( fff 1− fff 0,vvvS
h
)

S +θ∆ t2 (ggg1−ggg0,vvvS
h
)

ΓN

−θ∆ t2
(
(∂ttuuu)

1− (∂ttuuu)
0 ,vvvh

)
ρ

+θ∆ t2
(

ρFc2 div
((

uuuF)1−
(
uuuF)0

)
,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI

=
(
1+θ∆ t2)((Ph− I)

(
uuu1−uuu0) ,vvvh

)
ρ
+

1
2

∫ t1

0
(∆ t− s)2 (∂tttuuu(s),vvvh)ρ

ds

+θ∆ t2 ( fff 1− fff 0,vvvS
h
)

S +θ∆ t2 (ggg1−ggg0,vvvS
h
)

ΓN
−θ∆ t2

(
(∂ttuuu)

1− (∂ttuuu)
0 ,vvvh

)
ρ

+θ∆ t2
(

ρFc2 div
((

uuuF)1−
(
uuuF)0

)
,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
.

The next step is to estimate each term on the right-hand side above. For the former we use Lemma 3.3
and Taylor’s formula to obtain(

(Ph− I)
(
uuu1−uuu0) ,vvvh

)
ρ
6Chmin{α,β}

∆ t ‖∂tuuu‖C(0,T ;XXX) ‖vvvh‖HHH .

For the latter, we resort to Lemma 3.1 and differentiate in time (2.2). Thus, we have(
div
((

uuuF)1−
(
uuuF)0

)
,
(
vvvF

h− vvvS
h
)
·nnn
)

ΓI
6Ch∆ t

∣∣∂t
(
divuuuF)∣∣

C(0,T ;H1(ΩF))

∥∥vvvS
h

∥∥
H1(ΩS)d

6Ch∆ t ‖∂tttuuu‖C(0,T ;HHH) ‖vvvh‖XXX .

For the rest of the terms we have the following bounds which are easy to check:∫ t1

0
(∆ t− s)2 (∂tttuuu(s),vvvh)ρ

ds6C∆ t3 ‖∂tttuuu‖C(0,T ;HHH) ‖vvvh‖HHH ,(
fff 1− fff 0,vvvS

h
)

S 6C∆ t ‖∂t fff‖C(0,T ;L2(ΩS)d)

∥∥vvvS
h

∥∥
L2(ΩS)d ,(

ggg1−ggg0,vvvS
h
)

ΓN
6C∆ t ‖∂tggg‖C(0,T ;L2(ΓN)d) ‖vvvh‖XXX ,(

∂ttuuu1−∂ttuuu0,vvvh
)

ρ
6C∆ t ‖∂tttuuu‖C(0,T ;HHH) ‖vvvh‖HHH .

The lemma follows from the above equations. �
Putting together the above lemmas we obtain the following result.

LEMMA 5.5 There exist C > 0, independent of h and ∆ t, such that

max
06n6N

‖φφφ n‖HHH 6C
{∥∥Phuuu0−uuu0h

∥∥
XXX +hmin{α,β}

[
‖uuu‖C(0,T ;XXX)+‖∂tuuu‖C(0,T ;XXX)+‖∂ttuuu‖C(0,T ;XXX)

]}
+C∆ t2

[
‖∂tttuuu‖C(0,T ;HHH)+‖∂ttttuuu‖L1(0,T ;HHH)+‖∂t fff‖C(0,T ;L2(ΩS)d) +‖∂tggg‖C(0,T ;L2(ΓN)d)

]
with α and β as in Remark 3.1.

Proof. We begin with equation (5.5) and use the previous lemmas to bound each term on its right-hand
side. With this end, first notice that, from the definition of Φn, n = 1, . . . ,N, we have

∆ t ‖Φn‖HHH 6C max
06m6n

‖φφφ m‖HHH and ∆ t2 ‖Φn‖2
XXX 6C

[(
max

06m6n
‖φφφ m‖HHH

)2

+∆ t2a(Φn,Φn)

]
.
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Then, from (5.9), Lemmas 5.2, 5.3 and 5.4 and Young’s inequality, it follows that for all γ > 0

∆ t
n−1

∑
m=1

(
RRRm +PPPm,φφφ m+1 +φφφ

m)
ρ

6 γ max
16n6N

‖φφφ n‖2
HHH +

C
γ

{
hmin{α,β}

[
‖∂ttuuu‖C(0,T ;XXX)+‖uuu‖C(0,T ;XXX)

]
+∆ t2 ‖∂ttttuuu‖L1(0,T ;HHH)

}2
,

2∆ t
n−1

∑
m=1

Θ
m (

Φ
m+1−Φ

m)6 1
8

∆ t2 max
16n6N

a(Φn,Φn)+Ch2 ‖∂ttuuu‖2
C(0,T ;HHH)

and

2∆ t2L
(
Φ

n−Φ
0)6 γ max

06m6N
‖φφφ m‖2

HHH +
1
8

∆ t2a(Φn,Φn)+C

[
∆ t
∥∥Φ

0∥∥
XXX +

hmin{α,β}

γ
‖∂tuuu‖C(0,T ;XXX)

+∆ t2
(

1
γ
+h
)
‖∂tttuuu‖C(0,T ;HHH)+

∆ t2

γ
‖∂t fff‖C(0,T ;L2(ΩS)d) +∆ t2 ‖∂tggg‖C(0,T ;L2(ΓN)d)

]2

.

Adding all these inequalities we arrive at

∆ t
n−1

∑
m=1

(
RRRm +PPPm,φφφ m+1 +φφφ

m)
ρ
+2∆ t

n−1

∑
m=1

Θ
m (

Φ
m+1−Φ

m)+2∆ t2L
(
Φ

n−Φ
0)

6 2γ max
06n6N

‖φφφ n‖2
HHH +

1
4

∆ t2 max
06n6N

a(Φn,Φn)+Cγ

[
∆ t4∥∥Φ

0∥∥2
XXX +h2min{α,β} ‖∂ttuuu‖2

C(0,T ;XXX)

+∆ t4 ‖∂ttttuuu‖2
L1(0,T ;HHH)+∆ t4 ‖∂tttuuu‖2

C(0,T ;HHH)+∆ t4 ‖∂t fff‖2
C(0,T ;L2(ΩS)d) +∆ t4 ‖∂tggg‖2

C(0,T ;L2(ΓN)d)

]
,

where Cγ > 0 depends on γ . Using that φφφ
0 = Phuuu0− uuu0h and recalling that Φ0 = − 1

2 φ 0 and θ > 1/4,
straightforward computations allow us to conclude the proof. �

We are now in a position to write the main result of this section, which establishes error estimate for
the fully-discrete scheme in the L2-norm.

THEOREM 5.2 Let uuu and
{

uuun
h

}N
n=1 be the solutions to Problems 2.1 and 5.1, respectively. Then,

max
06n6N

‖uuun−uuun
h‖HHH 6C

{∥∥Phuuu0−uuu0h
∥∥

XXX +hmin{α,β} ‖uuu‖C2(0,T ;XXX)

+∆ t2
[
‖∂ttttuuu‖L1(0,T ;HHH)+‖∂tttuuu‖C(0,T ;HHH)+‖∂tggg‖C(0,T ;L2(ΓN)d) +‖∂t fff‖C(0,T ;L2(ΩS)d)

]}
,

where α ∈
( 1

2 ,1
]

and β ∈ (0,1] are as in Remark 3.1.

Proof. The result is a consequence of the decomposition (5.4) and Lemmas 3.3 and 5.5. �

6. Numerical examples

In this section we will report a couple of numerical tests performed with the method analyzed in this
paper. First, we will check that the resulting numerical solution converges as the discretization param-
eters h and ∆ t go to zero. Secondly, we will compare our results with those arising from an alternative
approach usual in the engineering practice.
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We have considered a 2D geometry as shown in Fig. 2 (left). We have taken unit physical parameters,
namely, ρF = ρS = λS = µS = c = 1. We have solved the problem in the time interval [0,T ] with T := 3π

8
and an initial condition (0,u0), where u0(xxx) :=(max{0.125−‖xxx− xxx0‖1 ,0})

2 with xxx0 as shown in Fig. 2.
This initial condition is shown in Fig. 3 where it can be seen that is localized in the surroundings of the
point xxx0. We have also taken fff := ggg := 000 and ΓN := ∂Ω . For the Newmark scheme we have chosen the
parameter θ := 3

8 > 1
4 , in order to improve stability.

FIG. 2: Physical domain (left) and initial mesh (right).

FIG. 3: Initial condition u0.

To observe the convergence of the proposed method, we have solved the problem with different
time-steps and mesh-sizes. We have taken as initial mesh that shown in Fig. 2 (right) (whose mesh-
size we denote by h0) and an initial partition of the time interval with time-step ∆ t0 := T/100. We have
computed the numerical solution on the meshes and partitions of the time interval obtained by uniformly
subdividing the initial ones, so that the mesh-size and the time steps are h0/M and ∆ t0/M, respectively,
for several values of M ∈ N.
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Figure 4 shows the second component of the displacement at the point xxx1 (which is shown in Fig. 2).
Notice that, because of the symmetry of the problem and of the used meshes, the first component of the
displacement vanishes identically.

FIG. 4: Second component of the displacement at the point xxx1 versus time for different levels of refine-

ment of the initial mesh. Here ∆ t :=
∆ t0
M

=
3π

800M
and h := h0/M, where h0 is the mesh-size of the

mesh shown in Fig. 2.

It can be seen from Fig. 4 that the computed solutions converge as the refinement parameter M goes
to infinity (and, hence, the discretization parameters h and ∆ t go to zero).

A common procedure in fluid-solid computations is to consider the fluid as a solid without resistance
to shear strain; namely, with Lamé coefficient µF := 0, the other Lamé coefficient being taken as λF :=
ρFc2 (see Kiefling & Feng (1976), for instance). This leads to search a displacement field uuu : [0,T ]→
H1(Ω)d (with Ω := Ω F∪ΩS) by means of a standard code for linear elasticity based on using standard
Lagrangian elements in the whole domain Ω . However, when this approach is used for the free-vibration
problem, it is well known that it leads to spurious modes (Hamdi et al. (1978); Bermúdez & Rodrı́guez
(1994)). To the best of the authors knowledge, the behavior of this approach applied to the time domain
problem has not been reported. The aim of the second test is to compare the results obtained with this
common engineering practice (that we will call H1) and with the method analyzed in this paper (that we
will call H(div)). Figures 5 and 6 show the Euclidean norm of the displacement field at several times
computed with both approaches.
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H(div) approach at t = tn, for n = 200. H1 approach at t = tn, for n = 200.

H(div) approach at t = tn, for n = 480. H1 approach at t = tn, for n = 480.

H(div) approach at t = tn, for n = 640. H1 approach at t = tn, for n = 640.

FIG. 5: Comparison between our method and the H1-approach for different times tn := n∆ t with ∆ t :=
∆ t0
16

=
3π

12800
and h := h0/16, where h0 is the mesh-size of the mesh shown in Fig. 2. Here we plot the

magnitude of the displacement field.
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H(div) approach at t = tn, for n = 1000. H1 approach at t = tn, for n = 1000.

H(div) approach at t = tn, for n = 1280. H1 approach at t = tn, for n = 1280.

H(div) approach at t = tn, for n = 1500. H1 approach at t = tn, for n = 1500.

FIG. 6: Comparison between our method and the H1-approach for different times tn := n∆ t with ∆ t :=
∆ t0
16

=
3π

12800
and h := h0/16, where h0 is the mesh-size of the mesh shown in Fig. 2. Here we plot the

magnitude of the displacement field.
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It can be seen that the wave propagation is much more noisy for the H1-approach than for the method
analyzed in this paper. Moreover, the wave arrives at the point xxx1 earlier with the H1-approach. This
can also be seen in Fig. 7, which shows the vertical displacement computed with both methods on the
finest mesh (M = 32) on a longer time interval [0, π

2 ].

FIG. 7: Second component of the displacement at the point xxx1 computed with our scheme (solid blue)
and the H1-approach (dashed red) in a refined mesh (M = 32) versus time.

Acknowledgments

The authors thank Klaus Bataille for bringing this problem to their attention. R. Araya and R. Rodrı́guez
were partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program:
Concurso Apoyo a Centros Cientı́ficos y Tecnológicos de Excelencia con Financiamiento Basal. R.
Araya and P. Venegas were also partially supported by CONICYT-Chile through Fondecyt projects
1150174 and 11160186, respectively.

References

BAKER, G. A. (1976) Error estimates for finite element methods for second order hyperbolic equations.
SIAM J. Numer. Anal., 13, 564–576.



REFERENCES 27 of 28

BASSON, M. & VAN RENSBURG, N. F. J. (2013) Galerkin finite element approximation of general
linear second order hyperbolic equations. Numer. Func. Anal. Opt., 34, 976–1000.
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BERMÚDEZ, A. & RODRÍGUEZ, R. (1999) Modelling and numerical solution of elastoacoustic vibra-
tions with interface damping. Internat. J. Numer. Methods Engrg., 46, 1763–1779.

CODDINGTON, E. A. (1961) An Introduction to Ordinary Differential Equations. Prentice-Hall Math-
ematics Series. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

DAUGE, M. (1988) Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymp-
totics of Solutions. Lecture Notes in Mathematics. Berlin: Springer Verlag.

DAUTRAY, R. & LIONS, J.-L. (1992) Mathematical Analysis and Numerical Methods for Science and
Technology. Vol. 5. Berlin: Springer-Verlag, pp. xiv+709.

EVANS, L. C. (2010) Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, second
edn. Providence, RI: American Mathematical Society, pp. xxii+749.

EVERSTINE, G. C. (1981) A symmetric potential formulation for fluid-structure interaction. J. Sound
& Vibration, 79, 157–160.
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