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Abstract

We propose and analyze an efficient algorithm for the computation of a basis of

the space of divergence-free Raviart-Thomas finite elements. The algorithm is based

on graph techniques. The key point is to realize that, with very natural degrees of

freedom for fields in the space of Raviart-Thomas finite elements of degree r+1 and

for elements of the space of discontinuous piecewise polynomial functions of degree

r ≥ 0, the matrix associated with the divergence operator is the incidence matrix

of a particular graph. By choosing a spanning tree of this graph, it is possible to

identify an invertible square submatrix of the divergence matrix and to compute

easily the moments of a field in the space of Raviart-Thomas finite elements with

assigned divergence. This approach extends to finite elements of high degree the

method introduced by Alotto and Perugia in [4] for finite elements of degree one.

The analyzed approach is used to construct a basis of the space of divergence-free

Raviart-Thomas finite elements. The numerical tests show that the performance of

the algorithm depends neither on the topology of the domain nor or the polynomial

degree r.
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spanning tree, oriented graph, incidence matrix.
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1 Introduction

Given a function ρ ∈ L2(Ω), the classical way to compute u ∈ H(div; Ω) such that

div u = ρ is to solve the Dirichlet boundary value problem{
∆φ = ρ in Ω ,

φ = 0 on ∂Ω ,
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and take u = gradφ. The situation is not so easy if ρ is a discontinuous finite element

piecewise polynomial ρh and one looks for an approximation uh of u in an appropriate

finite element space such that div uh = ρh. If ρh is piecewise constant, then uh belongs

to the space of Raviart-Thomas finite elements of degree one. For this case an efficient

algorithm has been proposed in [3]. We now consider a discrete function ρh, that is a

polynomial of degree r ≥ 0 in each tetrahedron of the mesh of Ω, and we look for uh in

the space of Raviart-Thomas finite elements of degree r+1. The algorithm we present is

based on graph techniques and extends to higher polynomial degree the ideas introduced

in [4] for the case of Raviart-Thomas finite elements of degree one.

The proposed algorithm can be also used to construct a basis of the space of divergence-

free Raviart-Thomas finite elements of degree r + 1. This space appears naturally in

different applications. Let us consider the well-known Darcy problem
u +K grad p = g in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω,

that models the velocity u of an incompressible fluid flowing in a porous medium oc-

cupying the domain Ω, with coefficient of porosity equal to K. Its simpler variational

formulation is: find u ∈ H0(div; Ω) := {v ∈ H(div; Ω) : div v = 0} such that∫
Ω
K−1u · v =

∫
Ω
K−1g · v ∀v ∈ H0(div; Ω) .

Let us also mention the electromagnetic problem in its curl-div formulation
curl u = J in Ω,

div u = ρ in Ω,

u× n = a or u · n = b on ∂Ω,

as proposed in [1]. For a magnetostatic situation, u is the magnetic field in Ω generated

by an electric current density J (in this case, ρ = 0 and u · n = b on ∂Ω). For an

electrostatic situation, u is the electric field in Ω generated by the charge density ρ (in

this case, J = 0 and u× n = a on ∂Ω).

There are different techniques for constructing basis of a divergence free (or approx-

imately divergence free) finite elements spaces in R2 and R3; see, for instance, [13],

[10], [11], [12], [7], [14], [6]. Concerning the construction of a basis of the space of

Raviart-Thomas finite elements that are divergence free, it has been done, for elements

of degree one, in [19] for a simply-connected domain with a non-connected boundary

(see also [9] where curvilinear elements are considered), in [17] for a g-fold torus, and in

[2] for a domain with arbitrary topology. To our knowledge, there are not yet results

for the case of Raviart-Thomas finite elements of higher degree. (In [21] the authors
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construct a basis of divergence-free finite elements of degree r ≥ 1 by taking the curl

of corresponding potential spaces in two-dimensional domains, Ω ⊂ R2. However in the

three-dimensional space this approach is not so direct due to the large kernel of the curl

operator.) We treat the three-dimensional case, Ω ⊂ R3, and the same approach is valid

in the two-dimensional case too.

This paper is organized as follow. In Section 2 we introduce the necessary notation

and briefly present some results of graph theory that will be used in the sequel. Then

in Section 3 we write the matrix associated to the divergence operator when using

the standard degrees of freedom (moments) for fields in the space of Raviart-Thomas

finite elements of degree r + 1 and for elements of the space of discontinuous piecewise

polynomial functions of degree r ≥ 0. Moreover we prove that it is an incidence matrix

of a particular connected graph with no self-loop. Using this last property we compute in

Section 4 the moments of a discrete field in the space of Raviart-Thomas finite elements of

degree r+1 with assigned divergence. Notice that when using high order approximations,

the cardinal basis {φh,j}
dRT
j=1 of the finite elements space with respect to a chosen set of

degrees of freedom {m`}dRT
`=1 , (in this case the moments), has generally to be constructed

from a given (favorite) basis {ψh,k}
dRT
k=1 of the finite elements space. This construction

involves the inversion of a generalized Vandermonde matrix V , with [V ]`,k = m`(ψh,k).

The inverse matrix V −1 provides, column by column, the coefficients to express the

cardinal functions as a linear combination of elements of {ψh,k}
dRT
k=1 (see [5]), namely

φh,j(x) =
∑dRT

k=1[V −1]k,jψh,k(x). Once one has the vector U gathering the moments of

a discrete function uh, and a cardinal basis, we obtain

uh(x) =
∑dRT

j=1 Ujφh,j(x) =
∑dRT

j=1 Uj
∑dRT

k=1[V −1]k,jψh,k(x)

=
∑dRT

k=1

∑dRT
j=1 [V −1]k,jUjψh,k(x) =

∑dRT
k=1 U>[V −1]k,·ψh,k(x) .

In Section 5 we use the algorithm presented in Section 4 to compute the moments

of a basis of the divergence-free Raviart-Thomas finite elements space for any degree,

and Section 6 contains some numerical experiments illustrating the performance of the

method for the construction of a basis of the space of divergence-free Raviart-Thomas

finite elements of degree two and degree three.

2 Notation and preliminary results

Let Ω be a bounded polyhedral domain of R3 with Lipschitz boundary. Let us consider

a tetrahedral mesh Th = (V, E ,F , T ) over Ω. Here V is the set of vertices, E that of

edges, F that of faces and T the set of tetrahedra of Th. By nV , nE , nF , and nT we

denote their cardinalities, namely the number of vertices, edges, faces and tetrahedra of

the mesh, respectively.
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Fixing a total ordering v1,v2, . . . ,vnV of the elements of V we induce an orientation

of the edges, faces, and tetrahedra of Th.

• To any edge e ∈ E we can associate an increasing functionme : {0, 1} → {1, 2, . . . , nV}
indicating the vertices of e. In this way we assign an (inner) orientation to e and

by abuse of notation, the oriented edge [vme(0),vme(1)] is still denoted by e. The

unit tangential vector to e is τ e =
vme(1)−vme(0)

|vme(1)−vme(0)|
.

• To any face f ∈ F we can associate an increasing function mf : {0, 1, 2} →
{1, 2, . . . , nV} indicating the vertices of f . By abuse of notation, the oriented

face [vmf (0),vmf (1),vmf (2)] is still denoted by f . The unit vector normal to f is

nf =
(vmf (1)−vmf (0))×(vmf (2)−vmf (0))

|(vmf (1)−vmf (0))×(vmf (2)−vmf (0))|
.

• To any tetrahedron t ∈ T we can associate an increasing function mt : {0, 1, 2, 3} →
{1, 2, . . . , nV} indicating the vertices of t. By abuse of notation, the oriented tetra-

hedron [vmt(0),vmt(1),vmt(2),vmt(3)] is still denoted by t. The outward unit vector

normal to the boundary ∂t of t is nt.

We will denote ∆d(Th) the set of oriented subsimplex of Th of dimension d ≤ 3.

In the following λk will be the barycentric coordinate function of the vertex vk,

namely, the continuous piecewise linear function (λk|t ∈ P1 for all t ∈ T ) such that

λk(vj) = δk,j .

We will use multi-indices of the form

η ∈ I(n, d+1) =

{
η> = (η0, . . . , ηd) ∈ Nd+1 :

d∑
i=0

ηi = n

}
, # I(n, d+1) =

(
n+ d

d

)
.

For any η ∈ I(n, d+ 1) we denote

aη =
n!

η0!η1! · · · ηd!
.

Given s ∈ ∆d(Th) and η ∈ I(n, d+ 1) we denote

λη =

d∏
i=0

ληims(i) .

Note that

1 =

(
d∑
i=0

λms(i)

∣∣
s

)n
=

∑
η∈I(n,d+1)

aη λ
η . (1)
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Let Dr+1 be the following space of vector polynomials of degree r + 1 in R3:

Dr+1 := (Pr)3 ⊕ P̃r x ,

being P̃r the space of homogeneous polynomials of degree r. The space of Raviart-

Thomas finite elements of degree r + 1 is

RTh,r+1 = {zh ∈ H(div; Ω) : zh|t ∈ Dr+1 ∀ t ∈ T } .

It is known that dimRTh,r+1 = dRT = nF

(
r + 2

2

)
+ 3nT

(
r − 1 + 3

3

)
. This space have

been introduced in [16], but originally it had been introduced in [18] for Ω ⊂ R2.

We denote Ph,r the space of discontinuous finite elements that are piecewise polyno-

mial of degree r, namely,

Ph,r = {p ∈ L2(Ω) : p|t ∈ Pr ∀ t ∈ T } .

It is known that dimPh,r = dP = nT

(
r + 3

3

)
.

For a brief overview of these spaces and of the Nédélec finite elements of degree r+ 1

that will be mentioned in Section 5, see, e.g., [15]. The classical set of degrees of freedom

used to identify the elements of RTh,r+1 are moments supported in faces∫
f

zh · nf q , q ∈ Pr(f) , f ∈ F ,

and moments supported in tetrahedra∫
t
zh · q , q ∈ [Pr−1(t)]3 , t ∈ T .

Similarly, the classical set of degrees of freedom used to identify the elements of Ph,r are

moments supported in tetrahedra∫
t
ph q , q ∈ Pr(t) , t ∈ T .

Since we are free to choose any basis of the spaces Pr(f), [Pr−1(t)]3 and Pr(t), a possibility

is to consider the following set of moments for RTh,r+1:

Cα′

∫
f

zh · nf λα
′

with α′ ∈ I(r, 3) , f ∈ F ,

and

Ĉβ

∫
t
zh · λβ gradλmt(j) , with β ∈ I(r − 1, 4) , 1 ≤ j ≤ 3 , t ∈ T .
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For Ph,r one can consider moments of the form

Cα

∫
t
ph λ

α with α ∈ I(r, 4) , t ∈ T .

Here, Cα, Cα′ and Ĉβ are real numbers. We anticipate that we have introduced some

parameters in the definition of moments to have the divergence operator represented by

an incidence matrix in the high order case, as it occurs naturally in the low order case.

We will thus set, for any η ∈ I(n, d+ 1),

Cη = aη and Ĉη = (n+ 1)aη .

We recall some basic definitions and results of graph theory that will be used later

(they can be found, for instance, in [20]).

Definition 1. The all-vertex incidence matrix M e ∈ Zn×m of a directed graph M =

(N ,A), with n nodes N = {ni}ni=1, m arcs A = {aj}mj=1 and with no self-loop, is the

matrix with entries

[M e]i,j =


1 if aj is incident on ni and oriented away from it,

−1 if aj is incident on ni and oriented toward it,

0 if aj is not incident on ni .

An incidence matrix M ofM is any submatrix of M e with n−1 rows and m columns.

The node that corresponds to the row of M e that is not in M will be called the reference

node of M .

Note that

rankM e = rankM ≤ n− 1 ,

and if M is connected, then rankM e = rankM = n− 1, see, e.g., [20, Thm. 6.2].

We recall the definition of spanning tree of a graph M = (N ,A).

Definition 2. A tree of a graph M = (N ,A) is a connected acyclic subgraph of M. A

spanning tree S is a tree of M containing all its nodes.

If S is a spanning tree of M = (N ,A), then S = (N ,B) with B ⊂ A. Moreover B
has exactly n− 1 arcs.

In the next sections we will use the following result that joins Theorem 6.9 and

Theorem 6.12 in [20].

Theorem 3. Let M = (N ,A) be a directed connected graph with no self-loop and

M ∈ Z(n−1)×m an incidence matrix of M. Let S = (N ,B) be a spanning tree of M and

Mst the submatrix of order n − 1 of M given by the columns of M that correspond to

the arcs in B. Then Mst is invertible and the nonzero elements in each row of M−1
st are

either all 1 or all −1.
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Proof. The proof can be found, for instance, in [20]. However, for the sake of

completeness, we recall in the sequel the main ideas. Each column of Mst corresponds

to an arc of the spanning tree S = (N ,B) with B = {aj(k)}n−1
k=1 , for a certain function

j : {1, . . . , n− 1} → {1, . . . ,m}.
Each arc aj(k) ∈ B divides the graph S in two connected components S(k)

r and

S(k)
nr ; (the subindex r refers to reference node). We will denote S(k)

r = (N (k)
r ,B(k)

r ) the

connected component containing the reference node and S(k)
nr = (N (k)

nr ,B(k)
nr ) the other

one. We associate to aj(k) the vector w(k) ∈ Zn−1 with components:

[w(k)]i =


−1 if ni 6∈ N (k)

r and aj(k) points from S(k)
r to S(k)

nr ,

1 if ni 6∈ N (k)
r and aj(k) points from S(k)

nr to S(k)
r ,

0 if ni ∈ N (k)
r .

Now we will check that

[(w(k))>Mst]l = δk,l .

In fact, [(w(k))>Mst]l is the scalar product of the vector w(k) and the column of Mst

corresponding to the arc aj(l).

If the reference node is an extreme node of aj(l), then

• for k 6= l, the extreme node of aj(l) that is not the reference node, is in N (k)
r , hence

[(w(k))>Mst]l = (0) (1) = 0 (if the extreme node, that is not the reference node, is

the initial one), or [(w(k))>Mst]l = (0) (−1) = 0 (if the extreme node, that is not

the reference node, is the final one);

• for k = l, the extreme node of aj(l) that is not the reference node, is not in N (k)
r .

If aj(k) points from S(k)
r to S(k)

nr , then [(w(k))>Mst]l = (−1) (−1) = 1 while if aj(k)

points from S(k)
nr to S(k)

r , then [(w(k))>Mst]l = (1) (1) = 1.

If the reference node is not an extreme node of aj(l), then

• for k 6= l, the two extreme nodes of the arc aj(l), nli and nli′ are in the same

connected component S(k)
r or S(k)

nr ; we have

[(w(k))>Mst]l =


(−1) (−1) + (1) (−1) if nli , n

l
i′ 6∈ N

(k)
r and aj(k) points from S(k)

r to S(k)
nr

(−1) (1) + (1) (1) if nli , n
l
i′ 6∈ N

(k)
r and aj(k) points from S(k)

nr to S(k)
r

(−1) (0) + (1) (0) if nli , n
l
i′ ∈ N

(k)
r

so [(w(k))>Mst]l = 0;

• for k = l, one of the extreme nodes of aj(l) is in N (k)
r and the other is not. If aj(k)

points from S(k)
r to S(k)

nr , then the final node of aj(k) (with entry equal −1 in the
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k-th column of Mst) is not in N (k)
r and the scalar product is (−1) (−1) + (0) (1) =

1. If aj(k) points from S(k)
nr to S(k)

r , then the initial node of aj(k) (with entry

equal 1 in the k-th column of Mst) is not in N (k)
r and the scalar product now is

(1) (1) + (0) (−1) = 1.

So, it follows that M−1
st is the matrix with entries

[M−1
st ]k,j = [w(k)]j ,

since we have showed that∑
j

[M−1
st ]k,j [Mst]j,l =

∑
j

[w(k)]j [Mst]j,l = δk,l .

3 The divergence matrix

Our aim now is to identify the matrix that relates the moments of zh ∈ RTh,r+1 with

the moments of ph = div zh ∈ Ph,r. From the divergence theorem in a tetrahedron, for

any α ∈ I(r, 4) we have∫
t
phaαλ

α =

∫
t
div zhaαλ

α =

∫
∂t

zh · nt aαλα −
∫
t
zh · aα gradλα . (2)

Note that

gradλα =
d∑
i=0

αiλ
α−ei gradλmt(i) ,

being ei ∈ N4 the vector with components (ei)j = δi,j , 0 ≤ i, j ≤ 3. Clearly αiλ
α−ei is

zero if αi = 0, otherwise it is a polynomial of degree r−1 of the form αiλ
β with β ∈ I(r−

1, 4). We recall also that, since 1 =
∑d

i=0 λmt(i), then gradλmt(0) = −
∑d

i=1 gradλmt(i)

on the tetrahedron t. So we have

gradλα =
d∑
i=1

(
αiλ

α−ei − α0λ
α−e0) gradλmt(i) .

Finally we note that aααi = r!
α0!···α3!αi = raα−ei , hence∫

t
zh · aα gradλα =

d∑
i=1

∫
t
zh ·

(
raα−eiλ

α−ei − raα−e0λα−e0
)

gradλmt(i) .

Here α ∈ I(r, 4). However, if f ∈ ∂t and vmt(i) 6∈ f , then

(aαλ
α)|f =

{
0 if αi 6= 0 ,

aα′λ
α′ for a certain α′ ∈ I(r, 3) if αi = 0 .
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The multi-index α′ ∈ I(r, 3) is Rt,fα, being Rt,f ∈ Z3×4 the matrix obtained from the

4×4 identity matrix by omitting the i-th row. For instance, if f = [vmt(0),vmt(2),vmt(3)],

then

α′ = Rt,fα =

 1 0 0 0

0 0 1 0

0 0 0 1

α =

 α0

α2

α3

 .

Notice that, since αi = 0, then aα′ = aα. Hence∫
∂t

zh · nt aαλα =
∑
f∈∂t

nf · nt
∫
f

zh · nf a(Rt,fα)
λ

(Rt,fα)

,

and for each f ∈ ∂t, the multi-index α′ = Rt,fα is in I(r, 3), as it is the case in moments

supported in faces.

So, equation (2) reads∫
t
div zhaαλ

α =
∑
f∈∂t

nf · nt
∫
f

zh · nf a(Rt,fα)
λ

(Rt,fα)

−
d∑
i=1

∫
t
zh ·

(
raα−eiλ

α−ei − raα−e0λα−e0
)

gradλmt(i) .

(3)

Let p ∈ RdP be the vector with entries the moments of ph = div zh ∈ Ph,r and Z ∈ RdRT

the vector with entries the moments of zh ∈ RTh,r+1, then we can write (3) as:

p = DThZ ,

where the matrix DTh is the matrix associated to the divergence operator that is, in fact,

a linear operator from RTh,r+1 to Ph,r.

From the divergence theorem in the whole domain Ω we have also∫
Ω
ph =

∫
Ω

div zh =

∫
∂Ω

zh · n∂Ω =
∑
f∈∂Ω

(
nf · n∂Ω|f

∫
f

zh · nf
)
,

where n∂Ω denotes the outward unit vector normal to the boundary ∂Ω. From (1) we

have

1 =
∑

α′∈I(r,3)

aα′ λ
α′
∣∣∣
f

for any f ∈ F . Hence

−
∫

Ω
div zh = −

∑
f∈∂Ω

nf · n∂Ω|f
∑

α′∈I(r,3)

∫
f

zh · nfaα′λα
′

 . (4)

Denoting pe ∈ RdP +1 the vector pe = [p>, −
∫

Ω ph]>, we can write (3) and (4) as

pe = De
ThZ .
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Proposition 1. The matrix De
Th is the all-vertex incidence matrix of an oriented graph

M = (N ,A) with dP + 1 nodes:

(
r + 3

3

)
for each tetrahedron plus one corresponding

to ∂Ω, and dRT arcs. The divergence matrix DTh is the incidence matrix with reference

node the one corresponding to ∂Ω.

Proof. To see that each column of De
Th has exactly two elements different from zero,

one equal 1 and the other equal −1, we note that each column corresponds to a face

moment ∫
f

zh · nf aα′λα
′
, f ∈ F , α′ ∈ I(r, 3) ,

or to a tetrahedron moment∫
t
zhraβλ

β gradλmt(i), t ∈ T , β ∈ I(r − 1, 4), i = 1, 2, 3 .

The faces can be internal, if their interior is in Ω, or they can be on the boundary of Ω.

• If f is an internal face, then it belongs to two different tetrahedra, t− and t+.

Hence, in the column that corresponds to the moment
∫
f zh · nfaα′λα

′
, there

are two entries different from zero, one in the row corresponding to the moment∫
t− pha(R>

t−,f
α′)
λ

(R>
t−,f

α′)
and another one in the row corresponding to the moment∫

t+ pha(R>
t+,f

α′)
λ

(R>
t+,f

α′)
. They have opposite sign, because the non zero coefficients

are nf · nt− and nf · nt+ , with nt− = −nt+ .

• If f is on the boundary of Ω, then it belongs to just one tetrahedron, say t̂, and,

on f , nt̂ = n∂Ω. In the column that corresponds to the moment
∫
f zh · nfaα′λα

′

there is one entry different from zero in the row corresponding to the moment∫
t̂ pha(R>

t̂,f
α′)
λ

(R>
t̂,f

α′)
. This entry is equal to nf ·nt̂. There is another entry different

from zero in the row corresponding to ∂Ω with opposite signs, because it is equal

to −(nf · n∂Ω) = −(nf · nt̂).

• The column corresponding to
∫
t zhraβλ

β gradλmt(i) has two entries different from

zero: one in the row corresponding to
∫
t phaβ+e0λ

β+e0 , and the other in the row

corresponding to
∫
t phaβ+eiλ

β+ei with opposite sign as can be seen in (3).

Proposition 2. The graphM = (N ,A) corresponding to the all-vertex incidence matrix

De
Th is connected.

Proof. Let us recall that the set of nodes N is composed by elements of the form∫
t
div zh aαλ

α , t ∈ T , α ∈ I(r, 4) and

∫
∂Ω

zh · n∂Ω ,
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(that we will denote by [α, t] and [∂Ω], respectively) and the set of arcs A, by elements

of the form ∫
f

zh · nfaα′λα
′
, f ∈ F , α′ ∈ I(r, 3)

and ∫
t
zh · raβλβ gradλmt(i), t ∈ T , β ∈ I(r − 1, 4), i = 1, 2, 3,

(that we will denote by [α′, f ], and [β, t, i], respectively). As consequence of the diver-

gence theorem, we observe that

(i) for a fixed t ∈ T and any β ∈ I(r − 1, 4) the arc [β, t, i] link the nodes [β + e0, t]

and [β + ei, t], i = 1, 2, 3.

(ii) for any α′ ∈ I(r, 3), the arc [α′, f ] link the nodes

[R>t−,fα
′, t−] and [R>t+,fα

′, t+], if f is an internal face such that f = ∂t+ ∩ ∂t−

with t+, t− ∈ T .

[R>t,fα
′, t] and [∂Ω], if f is a face on the boundary of Ω, namely, f ⊆ ∂t ∩ ∂Ω

for some t ∈ T .

Now we will show that, for a fixed t ∈ T , any two nodes of the set S(t) = {[α, t] :

α ∈ I(r, 4)} are connected. More precisely we will show that any node [α, t] ∈ S(t) is

connected with the node [α, t] = [(r, 0, 0, 0), t] ∈ S(t). In fact, by using (i), it is possible

to construct a path of length α1 between the node [α, t] and the node [(r−α1, α1, 0, 0), t].

In the same way, there exists a path of length α2 between the nodes [(r−α1, α1, 0, 0), t]

and [(r − α1 − α2, α1, α2, 0), t] and finally, a path of length α3 between the nodes [(r −
α1−α2, α1, α2, 0), t] and [(r−α1−α2−α3, α1, α2, α3), t] = [α, t]. Thus, the nodes [α, t]

and [α, t] are connected.

Moreover if f is an internal face, then there exists t1 and t2 in T such that f =

∂t1 ∩ ∂t2. From (ii), we know that any arc [α′, f ] connects the nodes [R>t1,fα
′, t1] and

[R>t2,fα
′, t2]. On the other hand, if f is a face on the boundary of Ω, then f ⊆ ∂t ∩ ∂Ω

for some t ∈ T . In this case, the arc [α′, f ] connects the nodes [R>t,fα
′, t] and [∂Ω].

Since Ω is connected we can arrive from any tetrahedron in the mesh to any other

following a path constructed by its common faces and this fact guarantees that all nodes

are connected.

Example 1: the case r = 1.

The moments of ph ∈ Ph,1 are
∫
t phλmt(i) for all t ∈ T . So, for 0 ≤ i ≤ 3 we have∫

t
div zh λmt(i) =

∫
∂t

zh · nt λmt(i) −
∫
t
zh · gradλmt(i) . (5)

11



Moreover

∂[vmt(0),vmt(1),vmt(2),vmt(3)] = −[vmt(0),vmt(1),vmt(2)] + [vmt(0),vmt(1),vmt(3)]

−[vmt(0),vmt(2),vmt(3)] + [vmt(1),vmt(2),vmt(3)] .

This means that

nt|[vmt(0)
,vmt(1)

,vmt(2)
] = −n[vmt(0)

,vmt(1)
,vmt(2)

] ,

nt|[vmt(0)
,vmt(1)

,vmt(3)
] = n[vmt(0)

,vmt(1)
,vmt(3)

] ,

nt|[vmt(0)
,vmt(2)

,vmt(3)
] = −n[vmt(0)

,vmt(2)
,vmt(3)

] ,

nt|[vmt(1)
,vmt(2)

,vmt(3)
] = n[vmt(1)

,vmt(2)
,vmt(3)

] .

Finally, taking into account that gradλmt(0) = −
∑d

i=1 gradλmt(i), we see that the matrix
Dt relating the moments of ph = div zh ∈ Ph,1 and zh ∈ RTh,2 in a tetrahedron t is

Dt =


−1 0 0

0 −1 0

0 0 −1

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

−1 0 0

0 0 0

0 −1 0

0 0 −1

0 0 0

1 0 0

0 1 0

0 0 1

1 1 1

−1 0 0

0 −1 0

0 0 −1

 [0 1 2 3] .

[0 1 2] [0 1 3] [0 2 3] [1 2 3] [0 1 2 3]

When assembling the whole matrix, DTh , relating the moments of ph and zh, we will have

four lines for each tetrahedron, three columns for each face and another three columns

for each tetrahedron. In the three columns corresponding to an internal face, there are

exactly two non null blocks of four lines corresponding to the two tetrahedra sharing

this face. The non zero elements on each block have opposite signs, due to the different

orientation of the face on the boundary of the two tetrahedra. On the other hand, each

boundary face has exactly one non zero block on its columns, because such a face belongs

to the boundary of just one tetrahedron.
Let us consider now the matrix De

t that incorporates to Dt a row corresponding to
the equation (4)

De
t =


−1 0 0 1 0 0 −1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 1 0 0 −1 0 0 1

1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

1 1 1

−1 0 0

0 −1 0

0 0 −1

0 0 0

 .

The last (blue) row is the one corresponding to equation (4).

Example 2: the case r = 2.

The moments of ph ∈ Ph,2 are
∫
t ph (ai,jλmt(i)λmt(j)) , for all t ∈ T , with 0 ≤ i ≤ j ≤ 3

and

ai,j =

{
1 if i = j ,

2 if i 6= j .

12



The face moments in RTh,3 are∫
f

zh · nf (ai,jλmf (i)λmf (j)) , 0 ≤ i ≤ j ≤ 2 ,

and the tetrahedron moments are∫
t
zh · (2λmt(i) gradλmt(j)) , 0 ≤ i ≤ 3 , 1 ≤ j ≤ 3 .

So∫
t
div zh (ai,jλmt(i)λmt(j)) =

∫
∂t

zh · nt (ai,jλmt(i)λmt(j))−
∫
t
zh grad(ai,jλmt(i)λmt(j)) ,

where gradλmt(0) = −
∑d

i=1 gradλmt(i) and

grad(ai,jλmt(i)λmt(j)) = ai,j(λmt(i) gradλmt(j) + λmt(j) gradλmt(i)) =

=

{
2λmt(i) gradλmt(i) if i = j ,

2(λmt(i) gradλmt(j) + λmt(j) gradλmt(i)) if i 6= j .

So in the case of just one tetrahedron we can write the divergence matrix. We divide

it in two blocks: the block Dtf , that relates the tetrahedron moments of Ph,2 with the

face moments of RTh,3, and the block Dtt, that relates the tetrahedron moments of Ph,2
with the tetrahedron moments of RTh,3.

00

01

02

03

11

12

13

22

23

33



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


= Dtf ,

00 01 02 11 12 22 00 01 03 11 13 33 00 02 03 22 23 33 11 12 13 22 23 33

[0 1 2] [0 1 3] [0 2 3] [1 2 3]

00

01

02

03

11

12

13

22

23

33



1 1 1 0 0 0 0 0 0 0 0 0

−1 0 0 1 1 1 0 0 0 0 0 0

0 −1 0 0 0 0 1 1 1 0 0 0

0 0 −1 0 0 0 0 0 0 1 1 1

0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1


= Dtt .

01 02 03 11 12 13 21 22 23 31 32 33
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Then

Dt = [Dtf , Dtt] .

4 An element of RTh,r+1 with assigned divergence

We now propose an efficient algorithm for the computation of the moments of a solution

of the following problem: given ρh ∈ Ph,r, find uh ∈ RTh,r+1 such that div uh = ρh .

Denoting U ∈ RdRT the vector with entries the moments of uh and ρ ∈ RdP the vector

with entries the moments of ρh, we are looking for a solution of the rectangular linear

system

DThU = ρ . (6)

Let S = (N ,B) be a spanning tree of M = (N ,A). By definition B has exactly dP
of the dRT arcs of A. For instance, if r = 1, the submatrix in red of the matrix De

t below

De
t =


−1 0 0 1 0 0 −1 0 0 0 0 0 1 1 1

0 −1 0 0 1 0 0 0 0 1 0 0 −1 0 0

0 0 −1 0 0 0 0 −1 0 0 1 0 0 −1 0

0 0 0 0 0 1 0 0 −1 0 0 1 0 0 −1

1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 0 0 0

 ,

is the all-vertex incidence matrix of a spanning tree S ofM. In Figure 1 we present, on

the left, the graph M (one style of line for each block of three columns in the matrix

De
t ), and on the right, the spanning tree S.

0

1

3

4

2

0

1

3

4

2

Figure 1: The graph M that corresponds to the matrix De
t with a different style of line

for each three-column block in De
t (left) and the spanning tree S (right).

In the matrix DTh we distinguish the columns corresponding to the arcs in S (and

we denote Dst the submatrix of DTh composed by these columns; the subindex st refers

to spanning tree), and the columns corresponding to arcs not in S (and we denote Dct
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the submatrix of DTh composed by these columns; the subindex ct refers to co-tree). So,

reordering the columns of DTh by using a permutation matrix P , we can write

DTh P = [Dst, Dct] .

From Theorem 3 and Propositions 1 and 2, we know that Dst is non singular. De-

noting U = P>U, we have

DThU = ρ⇔ DThPU = ρ ,

and DTh P = [Dst, Dct]. So, if we denote Ust the vector with the first dP components

of U and Uct the vector with the remaining dRT − dP components, we can write the

rectangular linear system to be solved as

Dst Ust +Dct Uct = ρ . (7)

For any choice of Uct ∈ RdRT−dP , solving DstUst = ρ −DctUct , we obtain a solution of

(7). If we choose for instance Uct = 0 we obtain

U =

[
D−1
st ρ

0

]
,

and then U = PU .

5 A basis of the space RT 0
h,r+1 = RTh,r+1 ∩H0(div; Ω)

Proceeding in a similar way, we can compute the moments of the elements of a basis of

the space RT 0
h,r+1 = RTh,r+1 ∩H0(div; Ω).

Proposition 3. The columns of the matrix

B = P

[
−D−1

st Dct

I

]
∈ ZdRT×(dRT−dP ) ,

being I the identity matrix in R(dRT−dP )×(dRT−dP ), are the moments of dRT − dP linear

independent functions in RTh,r+1, that are divergence-free.

Proof. Taking ρ = 0 in (7) and replacing Uct with the identity matrix of dimension

dRT − dP , it is easy to check that

DThB = DThP

[
−D−1

st Dct

I

]
= [Dst , Dct]

[
−D−1

st Dct

I

]
= −Dct +Dct = 0 .

The fact that the corresponding functions are linearly independent is a consequence of

the identity block in the definition of B.
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Let Nh,r+1 be the space of Nédélec curl conforming finite elements of degree r + 1.

If ∂Ω has p+ 1 connected components (∂Ω)0, . . . , (∂Ω)p, then it is well known (see e.g.

[8]) that given zh ∈ RTh,r+1, there exists wh ∈ Nh,r+1, such that curl wh = zh if and

only if div zh = 0 and
∫

(∂Ω)k
zh · n∂Ω = 0, for k = 1, 2, . . . , p. Moreover, the dimension

of the space of functions in H0(div; Ω) that are not the curl of any vector potential in

H(curl; Ω) (the second de Rham cohomology group) is equal to p.

It is possible to construct a basis of the space RT 0
h,r+1 with p elements that are

representatives of a basis of the second de Rham cohomology group and the remaining

dRT − (p+ dP ) that are the curl of vector potentials in Nh,r+1.

Let (∂Ω)0 be the external connected component of ∂Ω. We consider the following

problem: given ρh ∈ Ph,r and C ∈ Rp, find ũh ∈ RTh,r+1 such that div ũh = ρh ,∫
(∂Ω)k

ũh · n∂Ω = Ck , for k = 1, 2, . . . , p .

The number of equations is now equal to dP +p, while the number of unknowns remains

equal to dRT . From (1), we have 1 =
∑

α′∈I(r,3) aα′ λ
α′
∣∣∣
f

for any f ∈ F , hence

∫
(∂Ω)k

ũh · n∂Ω =
∑

f∈(∂Ω)k

(
nf · n∂Ω|f

∫
f ũh · nf

)
=

∑
f∈(∂Ω)k

(
nf · n∂Ω|f

∑
α′∈I(r,3)

∫
f ũh · nfaα′λα

′
)
.

So, the new p equations (multiplied by −1) can be written as

−
∑

f∈(∂Ω)k

nf · n∂Ω|f
∑

α′∈I(r,3)

∫
f

ũh · nfaα′λα
′

 = −Ck, k = 1, . . . , p , (8)

or using matrix notation, HŨ = −C, being Ũ ∈ RdRT the vector with the moments of

ũh. Note that the entries of matrix H ∈ Rp×dRT are 0, if f 6∈ (∂Ω)k, or, −nf · n∂Ω|f ,

that is equal to 1 or −1, if f ∈ (∂Ω)k.

Denoting by V ∈ RdP +p the vector V =

[
ρ

C

]
and by D̃Th ∈ R(dP +p)×dRT the

matrix D̃Th =

[
DTh
H

]
, we want to solve the rectangular linear system D̃ThŨ = V .

The matrix D̃Th ∈ R(dP +p)×dRT is an incidence matrix of a new connected and

directed graph M̃ = (Ñ , Ã), with no self loops. This new graph M̃ is similar to the

graphM: the node ofM that corresponds to ∂Ω has been replaced in M̃ by p+1 nodes

corresponding to the different connected components of ∂Ω∫
(∂Ω)k

zh · n∂Ω , k = 0, ..., p ,
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and the number of arcs in M̃ is equal to the number of arcs inM. If f is a face on ∂Ω,

then f ⊆ (∂Ω)k ∩ ∂t for some t ∈ T and some k ∈ {0, ..., p}. In this case the arc [α′, f ],

with α′ ∈ I(r, 3), connects the nodes [R>t,fα
′, t] and [(∂Ω)k] of the graph M̃ and hence

also M̃ is connected.

The all-vertex incidence matrix of M̃ = (Ñ , Ã) has a row for each connected com-

ponent of ∂Ω. The sum of these p + 1 rows is equal to the row corresponding to ∂Ω in

the all-vertex incidence matrix of M. The reference node for the incidence matrix D̃Th
is the one that corresponds to the external connected component of ∂Ω, (∂Ω)0. This

means that in the matrix D̃Th all the columns corresponding to tetrahedron moments or

face moments for internal faces have exactly two entries different from zero, one equal

to 1 and the other equal to −1. Both of them are in rows of DTh . But in D̃Th also the

columns that correspond to face moments for a face f ∈ (∂Ω)k with k ∈ {1, . . . , p} have

two entries different from zero, one in DTh and the other in the k-th row of H. Only

the columns that correspond to face moments for a face f ∈ (∂Ω)0 have just one entry

different from zero.

Let S̃ be a spanning tree of M̃. According to S̃ we identify a set of dP +p columns of

D̃Th that compose an invertible matrix D̃st. Reordering the columns of D̃Th we can write

D̃ThP̃ = [D̃st , D̃ct] . Now we have D̃st ∈ Z(dP +p)×(dP +p) and D̃ct ∈ Z(dP +p)×(dRT−(dP +p)).

Proceeding as before and denoting Ũ = P̃>Ũ we can write

D̃ThŨ = V⇔ D̃ThP̃ Ũ = V⇔ [D̃st , D̃ct]

[
Ũst
Ũct

]
= V .

Here Ũst is the vector with the first dP + p components of Ũ and Ũct the vector with the

remaining dRT − (dP + p) components. Hence

D̃stŨst = V − D̃ctŨct =

[
ρ

C

]
− D̃ctŨct .

Let êk, k ∈ {1, . . . , p} be the elements of the canonical basis of Rp and let ej , j ∈
{1, . . . , dRT − (p + dP )} be the elements of the canonical basis of RdRT−(dP +p). Let us

consider ρ = 0. For k ∈ {1, . . . , p}, we denote Ũst,k ∈ ZdP +p the solution of the linear

system

D̃stŨst,k =

[
0

êk

]
,

and for j ∈ {1, . . . , dRT − (p+ dP )}, we denote Ũst,p+j ∈ ZdP +p the solution of the linear

system

D̃stŨst,p+j = −D̃ctej .
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We denote, respectively, N1 ∈ R(dP +p)×p the matrix with column k equal to Ũst,k, and

N2 ∈ R(dP +p)×(dRT−(dP +p)) the matrix with column j equal to Ũst,p+j . It follows that

D̃stN1 =

[
0

Ip

]
=: Ĩ and D̃stN2 = −D̃ct ,

being Ip the identity matrix in Rp×p. In a more compact way we have

D̃stN = [Ĩ ,−D̃ct] , (9)

with D̃st ∈ Z(dP +p)×(dP +p), N = [N1, N2] ∈ R(dP +p)×(dRT−dP ), Ĩ ∈ R(dP +p)×p and−D̃ct ∈
Z(dP +p)×(dRT−(dP +p)).

Proposition 4. The columns of the matrix

B̃1 = P̃

[
N1

0

]
∈ ZdRT×p

are the moments of functions ũh,k ∈ RTh,r+1 such that div ũh,k = 0 ,∫
(∂Ω)l

ũh,k · n∂Ω = δk,l for l = 1, 2, . . . , p .

The columns of the matrix

B̃2 = P̃

[
N2

IdRT−(dP +p)

]
∈ ZdRT×(dRT−(dP +p)) ,

being IdRT−(dP +p) the identity matrix in R(dRT−(dP +p))×(dRT−(dP +p)), are the moments of

dRT − (dP + p) linearly independent functions, ũh,p+j ∈ RTh,r+1, such that div ũh,p+j = 0 ,∫
(∂Ω)l

ũh,p+j · n∂Ω = 0 for l = 1, 2, . . . , p .

Proof. It is enough to check that D̃ThB̃1 =

[
0

Ip

]
and D̃ThB̃2 = 0. In fact,

D̃ThB̃1 = D̃ThP̃

[
N1

0

]
= [D̃st , D̃ct]

[
N1

0

]
= D̃stN1 =

[
0

Ip

]
.

On the other hand

D̃ThB̃2 = D̃ThP̃

[
N2

IdRT−(dP +p)

]
= [D̃st , D̃ct]

[
N2

IdRT−(dP +p)

]
= −D̃ct + D̃ct = 0 .
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Remark 4. The functions ũh,k, k ∈ {1, . . . , dRT − dP } form a basis of the space

RT 0
h,r+1 = RTh,r+1∩H0(div; Ω). The first p elements ũh,k, k ∈ {1, . . . , p} are divergence-

free functions that are not the curl of any vector potential. They are representatives of a

basis of the second de Rham cohomology group. The remaining dRT − (dP + p) elements

ũh,p+j, j ∈ {1, . . . , dRT − (dP + p)}, are the curl of vector potentials in the space Nh,r+1

of Nédélec finite elements of degree r + 1, because they satisfy div ũh,p+j = 0 ,∫
(∂Ω)l

ũh,p+j · n∂Ω = 0 for l = 1, 2, . . . , p .

6 Numerical results

In this section we illustrate the performance of the method for the construction of a

basis of RT 0
h,r+1 := RTh,r+1 ∩H0(div; Ω) analyzed in Section 5.

The algorithm has been implemented in MATLAB (R2016a). All the numerical

computations have been performed by an Intel Core i7-6700HQ, with a processor at 2.60

GHz on a laptop with 12 GB of RAM. The input is a mesh created by TetGen (see [13]),

the output is the matrix with the degrees of freedom (moments) of a basis of RT 0
h,r+1,

with a column for each element of the basis, as indicated in Proposition 4.

(a) Sphere. p = 0. (b) Cube with a cube cavity. p = 1.

(c) Torus with toroidal cavity. p = 1. (d) Cube with two cubic cavities. p =

2.

Figure 2: The geometry of the considered test cases.
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The algorithm has been tested by computing this matrix for r = 1 and r = 2,

in successive uniformly refined meshes of the domains Ω presented in Figure 2. We

consider four different test cases. In the first one the domain Ω is a sphere, its boundary

is connected, so p = 0. In the second test case Ω is a cube with a concentric cubic cavity,

the boundary has two connected components, so p = 1. In the third test case Ω is a

torus with a concentric toroidal cavity, its boundary has two connected components, so

p = 1. In the last one the domain Ω is a cube with two cubic cavities; the boundary has

three connected components, so p = 2.

In the tables we report, for each test case, the number of elements of the mesh nT , the

dimension dRT of the space RTh,r+1, the dimension dP of the space Ph,r. In the fourth

column, dRT−dP is the dimension of the spaceRT 0
h,r+1. In the fifth column, Prepro. [ms],

indicates in milliseconds the time spent to read the mesh, assemble the matrix D̃Th and

build the spanning tree. In the last column, SL [ms], indicates the time in milliseconds

spent to solve the dRT−dP linear systems in equation (9) using the command backslash of

MATLAB and finally construct the matrix of moments B̃ = [B̃1, B̃2] ∈ RdRT×(dRT−dP ).

6.1 The case r = 1

For the first test case, the sphere, we consider two different spanning trees. In Table 1

(that has in fact seven columns), we report the computational times for eight successive

uniformly refined meshes. In the sixth column, SL b.f [ms], we indicate the time in

milliseconds for solving the dRT − dP linear systems in (9) and finally construct the

matrix of moments B̃ = [B̃1, B̃2] ∈ RdRT×(dRT−dP ) when using a spanning tree built by

using a breadth-first search. In the last column, SL d.f [ms], we indicate again the time

for solving the dRT − dP linear systems in (9) but now using a spanning tree built by

using a depth-first search.

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms] SL d.f [ms]

104 1 092 416 676 302.7 0.9 7.8

1 035 10 095 4 140 5 955 384.7 4.1 921.8

2 625 25 488 10 500 14 988 407.0 11.8 6 320.5

7 829 75 078 31 316 43 762 404.8 34.3 103 916.7

15 690 150 516 62 760 87 756 520.4 82.0 -

31 748 299 880 126 992 172 888 791.1 256.7 -

64 239 604 086 256 956 347 130 1 325.0 620.6 -

128 609 1 201 494 514 436 687 058 2 451.5 1 665.7 -

Table 1: Results for the sphere, (r = 1).

The results show that the time for solving the dRT − dP linear systems in (9) is

much longer when the spanning tree is built by using a depth-first search. Indeed, the

number of elements different from zero in the matrix B̃ = [B̃1, B̃2] ∈ RdRT×(dRT−dP ),
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that contains the moments of a basis of RT 0
h,r+1, is larger with a depth-first search than

that with a breadth-first search spanning tree.

nT dRT dRT − dP Breadth-first [%] Depth-first [%]

104 1 092 676 0.322 9.06

1 035 10 095 5 955 0.055 7.86

2 625 25 488 14 988 0.024 7.38

7 829 75 078 43 762 0.010 7.51

15 690 50 516 87 756 0.005 -

31 748 299 880 172 888 0.004 -

64 239 604 086 347 130 0.002 -

128 609 1 201 494 687 058 0.001 -

Table 2: Sparsity of the matrix B̃ containing the moments of a basis of RT 0
h,r+1, (r = 1).

In Table 2 we report the sparsity of the matrix B̃ associated to these two kinds of

spanning trees.

In Figure 3 we illustrate the behavior, with respect to the dimension of the problem,

of the total computational time (on the left), and of the time to solve the dRT − dP
linear systems in (9) (on the right). In the plot on the left, the slope of the curves

changes when the considered mesh attains a critical size. Before this critical size, the

preprocessing time is more significative than the resolution time, and after, the other

way around. This behavior does not depend on the adopted method to construct the

spanning tree. In the plot on the right, only the resolution time is considered, which

has a rather linear (resp. quadratic) behavior when adopting the breadth-first (resp.

depth-first) spanning tree.
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Figure 3: Total computational time (left), and time for solving the linear systems using

breadth-first or a depth-first spanning tree (right) in the sphere test case, (r = 1).

For the second, third and fourth test cases, we present numerical results only for a

breadth-first spanning tree. These three examples show that the method is successful in
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domains with a non connected boundary. In the case of the torus with a toroidal cavity

the domain is not simply connected; however this aspect does not influence the perfor-

mance of the algorithm. The fourth example shows that the algorithm is robust with

respect to the number of connected components of the boundary. These considerations

are summarized in Figure 4 where we can clearly see that the time for solving the linear

systems is independent of the topology of the test case domain and depends only on the

dimension of the matrix D̃st.
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Figure 4: Time for solving the linear systems using breadth-first spanning tree in the

four test cases, (r = 1).

In Tables 3, 4 and 5, we report the detailed computational times of the second, third

and fourth test cases with successive uniformly refined meshes, respectively.

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

807 8 091 3 228 4 863 386.5 3.8

1 606 16 020 6 424 9 596 442.2 7.3

3 221 32 010 12 884 19 126 493.5 14.2

6 468 63 444 25 872 37 572 555.6 30.1

12 964 124 935 51 856 73 079 719.7 86.2

25 940 246 282 103 760 142 522 825.1 201.4

50 995 480 507 203 980 276 527 1 905.4 496.2

102 169 954 693 408 676 546 017 3 896.7 1 346.0

Table 3: Results for the cube with a concentric cubic cavity, (r = 1).

Finally, in Figure 5 we plot, on the left, the total computational time, and on the

right, the time to solve the dRT − dP linear systems in (9), both as a function of the

problem dimension. We notice again the existence of a critical dimension of the mesh

size starting from which the preprocessing time is not longer dominant. In the plot on

the right, only the resolution time is considered, which has a rather linear behavior with
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nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

1 784 17 664 7 136 10 528 424.5 8.5

3 366 33 327 13 464 19 863 487.8 14.8

6 939 68 781 27 756 41 025 648.5 31.4

13 891 138 555 55 564 82 991 655.9 70.4

27 849 274 611 111 396 163 215 998.0 192.2

55 705 540 477 222 820 317 657 1 414.4 444.4

111 345 1 062 786 445 380 617 406 2 576.3 1 133.8

Table 4: Results for the torus with a concentric toroidal cavity, (r = 1).

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

719 7 149 2 876 4 273 401.2 3.9

1 530 15 072 6 120 8 952 422.7 7.8

3 098 29 991 12 392 17 599 475.6 16.3

6 280 60 150 25 120 35 030 561.3 37.3

12 577 119 199 50 308 68 891 754.7 87.7

25 293 237 951 101 172 136 779 1 168.0 206.4

50 621 472 260 202 484 269 776 2 556.6 498.8

101 288 937 815 405 152 532 663 3 696.9 1 390.7

Table 5: Results for the cube with two cubic cavities, (r = 1).

respect to the problem dimension.

6.2 The case r = 2

We use the same meshes as the ones used for the case r = 1, and we present tables and

figures similar to those of the previous case to show that the algorithm is also robust

with respect the polynomial degree r.

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms] SL d.f [ms]

104 2 808 1 040 1 768 263.9 0.8 53.6

1 035 26 400 10 350 16 050 359.7 8.7 6 906.5

2 625 66 726 26 250 40 476 398.2 25.9 73 048.1

7 829 197 130 78 290 118 840 550.8 111.6 -

15 690 395 172 156 900 238 272 869.4 285.2 -

31 748 790 248 317 480 472 768 1 518.1 785.2 -

64 239 1 593 606 642 390 951 216 2 990.6 1 819.9 -

Table 6: Results for the sphere, (r = 2).

Again, the time for solving the dRT − dP linear systems in (9) is much longer when

using a spanning tree constructed with a depth-first search (see Table 6), since the

number of elements different from zero in B̃ = [B̃1, B̃2] ∈ RdRT×(dRT−dP ) is larger using

a depth-first search than that using a breadth-first search spanning tree (see Table 7).
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(c) Cube with two cubic cavities. p = 2.

Figure 5: Total computational time (left), and time for solving the linear systems (right)

in the three test cases with not connected boundary, (r = 1).

In Figure 6 we represent the total computational time (on the left), and the time to

solve the dRT − dP linear systems in (9) (on the right), with respect to the dimension of

the problem. The behavior of the case r = 2 is similar to the behavior of the case r = 1,

as we can see in Figure 6 and Figure 7.

In Tables 8, 9 and 10, we report the detailed computational times of the second,

third and fourth test cases with successive uniformly refined meshes, respectively.
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nT dRT dRT − dP Breadth-first [%] Depth-first [%]

104 2 808 1 768 0.143 8.45

1 035 26 400 16 050 0.024 5.95

2 625 66 726 40 476 0.010 5.51

7 829 197 130 118 840 0.004 -

15 690 395 172 238 272 0.002 -

31 748 790 248 472 768 0.001 -

64 239 1 593 606 951 216 < 0.001 -

Table 7: Sparsity of the matrix B̃ containing the moments of a basis of RT 0
h,r+1, (r = 2).
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Figure 6: Total computational time (left), and time for solving the linear systems using

breadth-first or a depth-first spanning tree (right) in the sphere test case, (r = 2).

Finally, in Figure 8 we plot, on the left, the total computational time, and on the

right, the time to solve the dRT − dP linear systems in (9), both as a function of the

problem dimension. We remark again the existence of a critical dimension of the mesh

size starting from which the preprocessing time is not longer dominant. In the plot on

the right, only the resolution time is considered, which has a rather linear behavior with

respect to the problem dimension.

7 Conclusions

We have introduced and analyzed an efficient method for the computation of the mo-

ments of a function in the space of Raviart-Thomas finite elements of degree r + 1 with

assigned divergence. The proposed algorithm is based on basic results from graph the-

ory. It turns to be so performant that it can be used to construct a basis of the space

RT 0
h of divergence-free Raviart-Thomas elements of any degree.

Concerning the construction of a basis of divergence-free Raviart-Thomas finite ele-
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Figure 7: Time for solving the linear systems using breadth-first spanning tree in the

four test cases, (r = 2).

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

807 9 936 3 840 6 096 300.3 4.1

1 606 21 024 8 070 12 954 417.5 9.7

3 221 41 676 16 060 25 616 429.1 19.7

6 468 83 346 32 210 51 136 511.6 43.0

12 964 165 696 64 680 101 016 658.4 96.2

25 940 327 654 129 640 198 014 965.9 306.5

50 995 648 204 259 400 388 804 1 646.2 655.4

102 169 1 266 984 509 950 757 034 3 071.5 1 582.1

Table 8: Results for the cube with a concentric cubic cavity, (r = 2).

ments of degree r+1, for r = 1 and r = 2, the numerical tests show that the efficiency of

the algorithm is analogous in the two cases and that the behavior depends on the dimen-

sion of the finite elements space but not on the degree of the approximation. Moreover,

it is robust with respect to the topology of the domain. When using a breadth-first

spanning tree on big enough meshes, the computational time is of order ≈ 1.2 with

respect to the dimension dRT − dP of RT 0
h .
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nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

1 784 46 032 17 840 28 192 427.1 20.4

3 366 86 850 33 660 53 190 484.1 46.6

6 939 179 196 69 390 109 806 765.2 107.2

13 891 360 456 138 910 221 546 889.5 242.2

27 849 716 316 278 490 437 826 1 581.9 640.2

55 705 1 415 184 557 050 858 134 2 792.3 1 482.4

Table 9: Results for the torus with a concentric toroidal cavity, (r = 2).

nT dRT dP dRT − dP Prepro. [ms] SL b.f [ms]

719 18 612 7 190 11 422 372.9 7.3

1 530 39 324 15 300 24 024 411.6 19.9

3 098 78 570 30 980 47 590 476.3 39.9

6 280 157 980 62 800 95 180 635.0 100.1

12 577 313 860 125 770 188 090 998.5 253.4

25 293 627 660 252 930 374 730 1 702.7 581.8

50 621 1 248 246 506 210 742 036 3 069.8 1 401.8

Table 10: Results for the cube with two cubic cavities, (r = 2).
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(c) Cube with two cubic cavities. p = 2.

Figure 8: Total computational time (left), and time for solving the linear systems (right)

in the three test cases with not connected boundary, (r = 2).
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