
A divergence–conforming DG–mixed finite element method

for the stationary Boussinesq problem ∗
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Abstract

In this work we propose and analyze a new fully divergence–conforming finite element method for
the numerical simulation of the Boussinesq problem, describing the motion of a non-isothermal
incompressible fluid subject to a heat source. We consider the standard velocity–pressure formu-
lation for the fluid flow equation and the dual–mixed one for the heat equation. In this way, the
unknowns of the resulting formulation are given by the velocity, the pressure, the temperature and
the gradient of the latter. The corresponding Galerkin scheme makes use of the nonconforming
exactly divergence–free approach to approximate the velocity and pressure, and employ standard
Hdiv–conforming elements for the gradient of the temperature and discontinuous elements for
the temperature. Since here we utilize a dual–mixed formulation for the heat equation, the tem-
perature Dirichlet boundary condition becomes natural, thus there is no need of introducing a
sufficiently small discrete lifting to prove well–posedness of the discrete problem. Moreover, the
resulting numerical scheme yields exactly divergence–free velocity approximations; thus, it is prob-
ably energy-stable without the need to modify the underlying differential equations, and provide
an optimal convergent approximation of the temperature gradient. The analysis of the continuous
and discrete problems are carried out by means of a fixed–point strategy, under a sufficiently small
data assumption. We derive optimal error estimates in the mesh size for smooth solutions and
provide several numerical results illustrating the performance of the method and confirming the
theoretical rates of convergence.
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1 Introduction

Preliminares

Natural convection is a phenomenon present in different important applications in engineering and
industry. Briefly, we can mention that electrical and electronic industries use it for the thermal regula-
tion of components and devices of industrial equipments. Also, this phenomenon appears in geophysics
and oceanography when studying climate predictions and oceanic flows. Roughly speaking, it refers
to a fluid motion generated by density differences due to temperature gradients. Mathematically, it
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is modelled by the Navier–Stokes equations coupled to a convection-diffusion equation through the
Boussinesq approximation (variations in density are neglected everywhere except in the buoyancy
term), reason why it is often called the Boussinesq model.

In the last decades, the devising of suitable numerical methods for solving the Boussinesq equations
and its generalizations, such as temperature-dependent coefficient problems, has become a very active
research area (see, e.g. [1, 2, 8, 12, 13, 14, 18, 19, 23, 24, 31], and the references therein). In
particular, in [8], which up to the authors’s knowledge is one of the first works in analyzing a finite
element discretization for the Boussinesq problem, it is introduced and analysed a primal formulation
where the main unknowns of the respective system are the velocity, the pressure and the temperature
of the fluid. There, suitable assumptions on the finite elements subspaces are introduced to ensuring
that the associated Galerkin scheme is well posed and convergent. In particular, the use of any pair
of stable Stokes elements for the fluid variables and Lagrange elements for the temperature leads to a
convergent scheme.

Recently, in [24] it has been proposed and analyzed a new finite element method with exactly
divergence–free velocities for the numerical simulation of a generalized Boussinesq problem where the
viscosity and the thermal conductivity depend on the temperature of the fluid. The method proposed
in [24], which is based on the works [10] and [11], makes use of divergence–conforming elements for
the velocities, discontinuous elements for the pressure, and standard continuous elements for the tem-
perature. Thus, the resulting method has the distinct property that it yields exactly divergence–free
velocity approximations, which is an essential constraint of the governing equations, and is proba-
bly energy–stable without the need for symmetrization of the convective discretization. However, to
ensure existence and stability of solution of the numerical method, since the temperature Dirichlet
boundary condition becomes essential (due to the fact that the heat equation is discretized by using
an H1–conforming method), it is needed to construct a sufficiently small (in the L3-norm) discrete
lifting of the temperature boundary data. The latter is a delicate matter as the numerical construction
of discrete liftings may be computationally expensive, which constitutes the main drawback of this
approach.

Now, it is well-known that in several physical phenomena where the system exchanges energy with
its surroundings through heat transfer, the heat flux φ := −k∇θ can be employed to calculate the
energy balance, where θ is the temperature and κ the thermal conductivity. Hence, the gradient
of the temperature is a must know variable and the more accurate its approximation, the better
the approximation of the energy balance. Then, the employment of a mixed method for solving the
corresponding heat equation seems to be the best option. In this direction, in [18] the authors introduce
a new mixed formulation for the two-dimensional Boussinesq problem. There, it is introduced the
gradient of the temperature as an additional unknown, which together to the velocity and its gradient,
as well as the pressure and the temperature of the fluid, constitute the main unknowns of the resulting
dual-mixed variational system. The associated Galerkin scheme makes use of the Raviart-Thomas
element of lowest order for the gradient of the velocity and the temperature, and piecewise constants
for the velocity, temperature and pressure. Existence of solution and convergence of the numerical
scheme are proved near a nonsingular solution and only quasi–optimal error estimates are provided.
In turn, in [13] it is introduced a new augmented fully–mixed finite element method for the stationary
Boussinesq problem. The method is based on the introduction of a pseudostress tensor depending
on the pressure, and the diffusive and convective terms of the Navier–Stokes equations for the fluid,
and an auxiliary vector unknown involving the temperature, its gradient and the velocity for the
heat equation. The resulting variational formulation is then augmented by using the constitutive and
equilibrium equations of the system and the boundary conditions, and as a consequence, it is obtained
an augmented fully-mixed formulation for the coupled problem, which allows the utilization of Hdiv–
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conforming spaces for approximating the unknowns of both, the Navier-Stokes and convection-diffusion
equations.

According to the discussion above, and with the purpose of contributing to the development of
new numerical methods to approximate the solution of natural convection problems, allowing a direct
approximation of the gradient of the temperature, in this work we propose and analyse a fully Hdiv–
conforming finite element method for the numerical simulation of the Boussinesq problem. Here
we consider the standard velocity–pressure formulation for the fluid flow equation and similarly to
[18] we introduce the gradient of the temperature as a further unknown and employ a dual-mixed
formulation for the heat equation. In this way, the unknowns of the resulting formulation are given by
the velocity, the pressure, the temperature and its gradient. For the corresponding Galerkin scheme
we employ the divergence–conforming approach utilized in [24] for the discretization of the fluid
equation, and differently from [24], the heat equation is discretized by using standard Hdiv–conforming
elements for the gradient of the temperature and discontinuous elements for the temperature. We
emphasize that, since here we utilize a dual–mixed formulation for the heat equation, the temperature
Dirichlet boundary condition becomes natural, thus there is no need of introducing a discrete lifting
to ensure well–posedness of the problem. In turn, it allows to approximate directly the gradient of the
temperature, thus avoiding numerical differentiation of the temperature field. Moreover, differently
from [18] we prove that our method is optimal convergent, and this optimality can be achieved without
incorporating any stabilization parameter as it is done in [13]. In addition, it exactly preserves the
divergence–free velocity constraint. The analysis of the continuous and discrete problems are carried
out by means of a sufficiently small data assumption and a fixed–point strategy. More precisely,
similarly to the analysis in [13] (see also [12, 3]), we rewrite the variational problem as an equivalent
fixed–point problem and apply the classical Schauder (Brouwer) and Banach fixed–point theorems to
prove existence and uniqueness of solution of the continuous (discrete) problem. Finally, we derive
optimal error estimates in the mesh size for smooth solutions.

The rest of the paper is organized as follows. In Section 2 we introduce the model problem, derive
the corresponding weak formulation and analyze its existence and uniqueness of solution. Next in Sec-
tion 3 we propose the Hdiv–conforming method and analyze the well–posedness of the corresponding
Galerkin scheme by mimicking the analysis developed for the continuous problem. In Section 4 we
prove that our numerical method is optimal convergent. Finally, in Section 5 we provide several nu-
merical results illustrating the performance of the primal-mixed finite element method and conforming
the theoretical rates of convergence.

We end this section by fixing some notations and well–known previous results. To that end, let us
denote by Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ, and denote by
n the outward unit normal vector on Γ.

In the sequel, standard notations will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces
Wt,p(Ω) endowed with the norms ‖ · ‖Lp(Ω), ‖ · ‖Wt,p(Ω) and the seminorm by | · |Wt,p(Ω) respectively.
Note that W0,p(Ω) = Lp(Ω), and if p = 2, we write Ht(Ω) in place of Wt,2(Ω), and denote the norm
by ‖ · ‖t,Ω and the seminorm by | · |t,Ω. The spaces of vector-valued functions are denoted in bold
face. For example, Ht(Ω) :=

[
Ht(Ω)

]n
, t ≥ 0 We denote H1/2(Γ) as the space of traces of functions

in H1(Ω) and H−1/2(Γ) denotes its dual. Along with the above we denote 〈·, ·〉 as the duality pairing
of H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ) inner product. By ‖ · ‖, with no subscripts, will
stand for the natural norm of either an element or an operator in any product functional space. We
employ 0 to denote a generic null vector. In addition, in the sequel we will make use of the well-known
Hölder, Poincaré inequalities, given respectively by∫

Ω
|fg| ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω), ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with

1

p
+

1

q
= 1, (1.1)
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‖w‖1,Ω ≤ C |w|1,Ω, ∀w ∈ H1
0(Ω), (1.2)

Finally, we recall that H1(Ω) is continuously embedded into Lp(Ω) for p ≥ 1 if n = 2 or p ∈ [1, 6] if
n = 3. More precisely, we have the following inequality

‖w‖Lp(Ω) ≤ CSob(p) ‖w‖1,Ω, ∀w ∈ H1(Ω), (1.3)

with CSob(p) > 0 depending only on |Ω|, and p (see [26, Theorem 1.3.4]).

2 Continuous problem

In this section we introduce a model problem, cast it into weak form, discuss the stability properties
of the forms involved, and review some theoretical properties regarding existence and uniqueness of
solution. We start by introducing the model problem.

2.1 The model problem and its weak formulation

In this work we are interested in approximating the solution of the stationary Boussinesq problem
consisting of a system of equations where the incompressible Navier–Stokes equation:

−ν∆u + (u · ∇)u + ∇ p − g θ = 0 in Ω, div u = 0 in Ω,

u = 0 on Γ and

∫
Ω
p = 0,

(2.1)

is coupled with the convection-diffusion equation:

− κ∆θ + u · ∇θ = 0 in Ω, θ = θD on Γ, (2.2)

where Ω is a bounded domain in Rn, n ∈ {2, 3}, with polyhedral boundary Γ. Above, the unknowns
are the velocity u, the pressure p and the temperature θ of the fluid occupying the region Ω, and the
given data are the fluid viscosity ν > 0, the thermal conductivity κ > 0, the external force per unit
mass g ∈ L2(Ω), and the boundary temperature θD ∈ H1/2(Γ).

Now, since we want to derive a numerical scheme allowing a divergence–conforming approximation
for the whole coupled system, differently from [24], here we introduce the flux

σ := κ∇θ in Ω, (2.3)

as a further unknown and realize that (2.2) can be rewritten as the following first–order set of equations,

κ−1 σ −∇θ = 0 in Ω, −divσ + κ−1 u · σ = 0 in Ω, θ = θD on Γ. (2.4)

As a consequence, in the sequel we derive our variational formulation based on the coupled system
given by (2.1) and (2.4). To that end, as usual we first multiply the first equation of (2.1) by a test
function v ∈ H1

0(Ω), integrate by parts to obtain

ν

∫
Ω
∇u : ∇v +

∫
Ω

((u · ∇)u) · v −
∫

Ω
p div v −

∫
Ω
θ(g · v) = 0, ∀v ∈ H1

0(Ω), (2.5)

and incorporate the second equation of (2.1) weakly through∫
Ω
q div u = 0 ∀ q ∈ L2

0(Ω), (2.6)
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which suggests to look for the unknowns u and p in the Hilbert spaces H1
0(Ω) and L2

0(Ω), respectively.

Next, to write equations (2.4) in weak form we first recall that H1(Ω) is continuously embedded
into Lt(Ω), with t ≥ 1 if n = 2 and 1 ≤ t ≤ 6 if n = 3 (see for instance [26, Theorem 1.3.4]), and
observe that if particularly t > 2 and if u ∈ H1

0(Ω) and σ ∈ L2(Ω), then

u · σ ∈ Lr(Ω), (2.7)

with

r :=
2t

t+ 2
∈
(

1,
6− n

2

)
, n ∈ {2, 3}. (2.8)

Consequently, and according to the second equation of (2.4), we obtain that divσ ∈ Lr(Ω) which
suggests us to introduce the Banach space

H(divr; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ Lr(Ω)

}
, with r ∈

(
1,

6− n
2

)
, n ∈ {2, 3}, (2.9)

equipped with the norm
‖τ‖2H(divr;Ω) := ‖τ‖20,Ω + ‖div τ‖2Lr(Ω).

Observe that H(div ; Ω) ⊂ H(divr; Ω).

Then, multiplying the first equation of (2.4) by τ ∈ H(divr; Ω), integrating by parts, and using the
boundary condition θ = θD on Γ, we obtain

κ−1

∫
Ω
σ · τ +

∫
Ω
θ div τ = 〈τ · n, θD〉Γ ∀ τ ∈ H(divr; Ω). (2.10)

Finally, since −divσ + κ−1u · σ ∈ Lr(Ω), we impose this identity weakly as follows∫
Ω
ψ divσ − κ−1

∫
Ω
ψ(u · σ) = 0 ∀ψ ∈ Ls(Ω), (2.11)

with

s :=
2t

t− 2
, (2.12)

satisfying 1
r + 1

s = 1. Notice that s > n for n = 2, 3 and that 1
t + 1

2 + 1
s = 1.

In this way, from now on we fix t > 2, define r and s as in (2.8) and (2.12), respectively, and sum
up properly equations (2.5)–(2.11), to arrive at the variational coupled problem: Find (u, p,σ, θ) ∈
H1

0(Ω)× L2
0(Ω)×H(divr,Ω)× Ls(Ω) such that

AS(u,v) + OS(u; u,v) − BS(v, p)−D(θ,v) = 0,

BS(u, q) = 0,

AT(σ, τ ) +BT(τ , θ) = G(τ ),

BT(σ, ψ) +OT(u;σ, ψ) = 0,

(2.13)

for all (v, q, τ , ψ) ∈ H1
0(Ω)× L2

0(Ω)×H(divr,Ω)× Ls(Ω), where the forms AS : H1
0(Ω)×H1

0(Ω)→ R,
AT : H(divr,Ω) × H(divr,Ω) → R, BS : H1

0(Ω) × L2
0(Ω) → R, BT : H(divr,Ω) × Ls(Ω) → R,

OS : H1
0(Ω)×H1

0(Ω)×H1
0(Ω)→ R, OT : H1

0(Ω)×H(divr,Ω)× Ls(Ω)→ R, D : Ls(Ω)×H1
0(Ω)→ R,
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and the functional GT : H(divr,Ω)→ R are defined, respectively, as

AS(u,v) = ν

∫
Ω
∇u : ∇v, AT(σ, τ ) = κ−1

∫
Ω
σ · τ ,

BS(v, q) =

∫
Ω
q div v, BT(τ , ψ) =

∫
Ω
ψ div τ ,

OS(w; u,v) =

∫
Ω

[(w · ∇)u] · v, OT(w;σ, ψ) = −κ−1

∫
Ω

(w · σ)ψ,

D(θ,v) =

∫
Ω
θ g · v, G(τ ) = 〈τ · n, θD〉Γ .

(2.14)

2.1.1 Stability properties

In what follows we establish the stability properties of the forms involved. We begin by observing
that, after simple computations, the bilinear forms AS, AT, BS and BT are bounded:

|AS(u,v)| ≤ ν ‖u‖1,Ω ‖v‖1,Ω, |AT(σ, τ )| ≤ κ−1 ‖σ‖H(divr,Ω) ‖τ‖H(divr,Ω), (2.15)

and
|BS(v, q)| ≤ ‖v‖1,Ω‖q‖0,Ω, |BT(τ , ψ)| ≤ ‖τ‖H(divr,Ω) ‖ψ‖Ls(Ω). (2.16)

In turn, owing to the Hölder’s and Sobolev inequalities, (1.1) and (1.3), respectively, it is not difficult
to see that OS satisfies

|OS(w1 −w2; u,v)| ≤ LS
O‖w1 −w2‖Lt(Ω)‖u‖1,Ω‖v‖1,Ω, (2.17)

|OS(w1 −w2; u,v)| ≤ CS
O‖w1 −w2‖1,Ω‖u‖1,Ω‖v‖1,Ω, (2.18)

for all w1,w2,u,v ∈ H1
0(Ω), with LS

O := CSob(s) and CS
O := CSob(s)CSob(t). Similarly, for OT we have

|OT(w1 −w2; τ , ψ)| ≤ LT
O‖w1 −w2‖Lt(Ω)‖τ‖H(divr;Ω)‖ψ‖Ls(Ω), (2.19)

|OT(w1 −w2; τ , ψ)| ≤ CT
O‖w1 −w2‖1,Ω‖τ‖H(divr;Ω)‖ψ‖Ls(Ω), (2.20)

for all w1,w2 ∈ H1
0(Ω), τ ∈ H(divr; Ω), ψ ∈ Ls(Ω), where LT

O := κ−1 and CT
O := κ−1CSob(t).

Using again (1.1) and (1.3) we can readily see that

|D(ψ,v)| ≤ CD ‖ψ‖Ls(Ω) ‖g‖0,Ω ‖v‖1,Ω ψ ∈ Ls(Ω), v ∈ H1
0(Ω) (2.21)

and
|G(τ )| ≤ CG ‖τ‖H(divr,Ω) ‖θD‖1/2,Γ τ ∈ H(divr; Ω), (2.22)

with CD := CSob(t) and CG := CSob(s). For the latter we refer the reader to [9].

Now we let
KS := {v ∈ H1

0(Ω) : BS(v, q) = 0, ∀ q ∈ L2
0(Ω)}

= {v ∈ H1
0(Ω) : div v = 0, in Ω},

(2.23)

and observe that for any w ∈ KS, there holds

OS(w,v,v) = 0, ∀v ∈ H1
0(Ω). (2.24)
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In addition, owing to the well-known Poincaré inequality we have that AS is elliptic, that is

AS(v,v) ≥ αS ‖v‖21,Ω, ∀v ∈ H1
0(Ω), (2.25)

which together with (2.24) implies that for each w ∈ KS, the bilinear form AS(·, ·) + OS(w; ·, ·) :
H1

0(Ω)×H1
0(Ω)→ R is H1

0(Ω)–elliptic. Similarly, we let

KT := {τ ∈ H(divr,Ω) : BT(τ , ψ) = 0, ∀ψ ∈ Ls(Ω)}

= {τ ∈ H(divr,Ω) : div τ = 0 in Ω} ,
(2.26)

and realize that AT satisfies

AT(τ , τ ) ≥ κ−1 ‖τ‖2H(divr,Ω) ∀ τ ∈ KT. (2.27)

For the caracterization of KT and the proof of (2.27) we refer the reader to [9, Lemma 2.2].

Let us now recall that the bilinear forms BS and BT satisfy the following inf-sup conditions

sup
v∈H1

0(Ω)\{0}

BS(v, q)

‖v‖1,Ω
≥ βS ‖q‖0,Ω, ∀ q ∈ L2

0(Ω), (2.28)

sup
τ∈H(divr,Ω)\{0}

BT(τ , ψ)

‖τ‖H(divr,Ω)
≥ βT ‖ψ‖Ls(Ω), ∀ψ ∈ Ls(Ω). (2.29)

For the proof of these inequalities we refer the reader to [27, Section 2.2] and [9, Lemma 2.1] respec-
tively.

Finally, let us consider the bilinear form A : H(divr,Ω)× Ls(Ω)→ R, defined by

A((σ, θ), (τ , ψ)) = AT(σ, τ ) +BT(τ , θ) +BT(σ, ψ), (2.30)

for all (σ, θ), (τ , ψ) ∈ H(divr,Ω)×Ls(Ω). Owing to the properties (2.27) and (2.29) and applying [20,
Proposition 2.36] it is not difficult to see that A satisfies the following inf-sup condition:

sup
(τ ,ψ)∈[H(divr,Ω)×Ls(Ω)]\{0}

A((ζ, φ), (τ , ψ))

‖(τ , ψ)‖
≥ γ‖(ζ, φ)‖ ∀ (ζ, φ) ∈ H(divr,Ω)× Ls(Ω), (2.31)

where γ > 0 is the constant defined by

γ =
κβ2

T

κ2 β2
T + 4κβT + 2

. (2.32)

2.2 Existence and uniqueness of solution

In what follows, similarly to [12] and [13] (see also [3]), we study the well–posedness of problem (2.13)
by means of a fixed–point strategy and the classical Babuška–Brezzi theory. We begin by introducing
the associated fixed-point operator.
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2.2.1 The fixed–point operator

In view of the fixed-point strategy to be used in the proof of solvability of problem (2.13), let us
introduce first the reduced problem: Find (u,σ, θ) ∈ KS ×H(divr,Ω)× Ls(Ω) such that

AS(u,v) + OS(u; u,v) −D(θ,v) = 0,

AT(σ, τ ) +BT(τ , θ) = G(τ ),

BT(σ, ψ) +OT(u;σ, ψ) = 0,

(2.33)

for all (v, τ , ψ) ∈ KS ×H(divr,Ω)× Ls(Ω). It is not difficult to see that, according to the definition
of KS and owing to the inf-sup condition (2.28), problem (2.33) is equivalent to (2.13). This result is
established next. The proof of this result follows analogously to the proof of [25, Lemma 2.1], reason
why it is omitted.

Lemma 2.1 If (u, p,σ, θ) ∈ H1
0(Ω)×L2

0(Ω)×H(divr; Ω)×Ls(Ω) is a solution of (2.13), then u ∈ KS

and (u,σ, θ) is a solution of (2.33). Conversely, if (u,σ, θ) ∈ KS ×H(divr; Ω)× Ls(Ω) is a solution
of (2.33), then there exists p ∈ L2

0(Ω) such that (u, p,σ, θ) is a solution of (2.13).

Now, let us introduce the bounded and convex set

X1 :=

{
w ∈ KS : ‖w‖1,Ω ≤

CDCG
αSγ

‖g‖0,Ω‖θD‖1/2,Γ
}

(2.34)

and define the operator
T : X1 → X1

w → T(w) = u,
(2.35)

with u being the first component of the solution of the linearized version of problem (2.33): Find
(u,σ, θ) ∈ KS ×H(divr,Ω)× Ls(Ω) such that

AS(u,v) + OS(w; u,v) = D(θ,v) ,

AT(σ, τ ) +BT(τ , θ) = G(τ ),

BT(σ, ψ) +OT(w;σ, ψ) = 0,

(2.36)

for all (v, τ , ψ) ∈ KS ×H(divr,Ω)× Ls(Ω).

It is clear that (u,σ, θ) ∈ KS ×H(divr,Ω) × Ls(Ω) is a solution of problem (2.33), if and only if,
T(u) = u. This result, together with the equivalence between (2.13) and (2.33), imply the following
relations:

T(u) = u ⇔ (u,σ, θ) ∈ KS ×H(divr,Ω)× Ls(Ω) satisfies (2.33)

⇔ (u, p,σ, θ) ∈ H1
0(Ω)× L2

0(Ω)×H(divr,Ω)× Ls(Ω) satisfies (2.16).
(2.37)

In this way, in establishing the well-posedness of (2.13), or equivalently (2.33), it suffices to prove that
T has a unique fixed-point in X1. Before proceeding with the solvability analysis, we first state the
well-definiteness of the fixed-point operator T.
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2.2.2 Well-definiteness of the fixed-point operator

For the forthcoming analysis we define the sets

X =

{
(w, φ) ∈ KS × Ls(Ω) : ‖w‖1,Ω ≤

CDCG
αSγ

‖g‖0,Ω‖θD‖1/2,Γ, ‖φ‖Ls(Ω) ≤
CG
γ
‖θD‖1/2,Γ

}
, (2.38)

and

X2 :=

{
φ ∈ Ls(Ω) : ‖φ‖Ls(Ω) ≤

CG
γ
‖θD‖1/2,Γ

}
, (2.39)

and the operators
R : X → X1

(w, φ) → R(w, φ) = u,
(2.40)

with u being the unique solution of problem: Find u ∈ KS, such that

AS(u,v) + OS(w; u,v) = D(φ,v) ∀v ∈ KS, (2.41)

and
S : X1 → H(divr; Ω)×X2

w → S(w) = (S1(w),S2(w)) = (σ, θ),
(2.42)

where (σ, θ) ∈ H(divr,Ω) ×X2 is the unique solution of problem: find (σ, θ) ∈ H(divr; Ω) × Ls(Ω),
such that

AT(σ, τ ) +BT(τ , θ) = G(τ ) ∀ τ ∈ H(divr,Ω),

BT(σ, ψ) +OT(w;σ, ψ) = 0 ∀ψ ∈ Ls(Ω).
(2.43)

Then, it readily follows that operator T can be rewritten in terms of R and S as follows

T(w) = R(w,S2(w)) ∀w ∈ X1. (2.44)

In addition, provided a fixed-point u = T(u), the element (σ, θ) ∈ H(divr,Ω) × Ls(Ω) such that
(u,σ, θ) ∈ KS ×H(divr,Ω)× Ls(Ω) is a solution to (2.33) (see (2.37)), satisfies the identity

(σ, θ) = S(u). (2.45)

According to the above, to proving that T is well–defined, it suffices to prove that operators R and
S are both well–defined separately. We begin with the well–definiteness of R.

Lemma 2.2 For each (w, φ) ∈ X, there exists a unique u ∈ X1, such that R(w, φ) = u.

Proof. Let (w, φ) ∈ X. Owing to the H1
0(Ω)–ellipticity of the bilinear form AS(·, ·) + OS(w; ·, ·), the

well–posedness of (2.41) is a direct consequence of the Lax-Milgram lemma, which is clearly equivalent
to the existence of a unique u ∈ X1, such that R(w, φ) = u. Moreover, from (2.41) with v = u, from
(2.21) and from the definition of X (cf. (2.38)), it readily follows that

‖u‖1,Ω ≤
CD
αS
‖g‖0,Ω ‖φ‖Ls(Ω) ≤

CDCG
αSγ

‖g‖0,Ω ‖θD‖1/2,Γ. (2.46)

which implies that u ∈ X1. �
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Now, to prove that the mapping S is well defined, for a fixed w ∈ X1, let us define the bilinear
form Aw : H(divr,Ω)× Ls(Ω)→ R, given by

Aw((σ, θ), (τ , ψ)) := A((σ, θ), (τ , ψ)) +OT(w;σ, ψ) ∀ (σ, θ), (τ , ψ) ∈ H(divr,Ω)× Ls(Ω), (2.47)

where A is the bilinear form defined in (2.30). Using the estimate (2.31), it is not difficult to see that
Aw satisfies the conditions of the Banach-Nečas-Babuška theorem (cf. [20, Theorem 2.6]). This result
is established next.

Lemma 2.3 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

CT
OCDCG
αSγ2

‖θD‖1/2,Γ‖g‖0,Ω ≤
1

2
. (2.48)

Then, for each w ∈ X1, the bilinear form Aw satisfies the following estimates

S1 := sup
(τ ,ψ)∈[H(divr,Ω)×Ls(Ω)]\{0}

Aw((ζ, φ), (τ , ψ))

‖(τ , ψ)‖
≥ γ

2
‖ζ‖H(divr;Ω) + γ‖φ‖Ls(Ω), (2.49)

∀ (ζ, φ) ∈ H(divr,Ω)× Ls(Ω), and

S2 := sup
(τ ,ψ)∈H(divr,Ω)×Ls(Ω)

Aw((τ , ψ), (ζ, φ)) > 0 ∀ (ζ, φ) ∈ [H(divr,Ω)× Ls(Ω)] \{0}, (2.50)

where γ > 0 is the constant defined in (2.32).

Proof. In what follows we proceed analogously to the proof of [9, Theorem 4.1].

First, using (2.31) and the continuity of OT in (2.18), we easily obtain that for all (ζ, φ) ∈
H(divr,Ω)× Ls(Ω),

S1 ≥ γ‖(ζ, φ)‖ − CT
O‖w‖1,Ω‖ζ‖H(divr,Ω).

Hence, utilizing the fact that w ∈ X1 and assumption (2.48), from the latter inequality we easily
obtain (2.49). In turn, since the bilinear form A (cf. (2.30)) is symmetric, it is clear that (2.31) yields

sup
(τ ,ψ)∈[H(divr,Ω)×Ls(Ω)]\{0}

A((τ , ψ), (ζ, φ))

‖(τ , ψ)‖
≥ γ‖(ζ, φ)‖ ∀ (ζ, φ) ∈ H(divr,Ω)× Ls(Ω),

which together to the continuity of OT, the fact that w ∈ X1 and estimate (2.48), implies

Ŝ2 := sup
(τ ,ψ)∈[H(divr,Ω)×Ls(Ω)]\{0}

Aw((τ , ψ), (ζ, φ))

‖(τ , ψ)‖
≥ γ‖(ζ, φ)‖ − CT

O‖w‖1,Ω‖φ‖Ls(Ω)

≥ γ‖ζ‖H(divr;Ω) +
γ

2
‖φ‖Ls(Ω),

for all (ζ, φ) ∈ H(divr,Ω) × Ls(Ω). Then, since S2 ≥ Ŝ2, from the latter inequality it is not difficult
to see that Aw satisfies (2.50), which concludes the proof. �

The following lemma establishes the well-definiteness of S.

Lemma 2.4 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that (2.48)
holds. Then, for each w ∈ X1, there exists a unique (σ, θ) ∈ H(divr; Ω)×X2, such that S(w) = (σ, θ).
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Proof. The existence of a unique (σ, θ) ∈ H(divr; Ω) × Ls(Ω) such that S(w) = (σ, θ) is a direct
consequence of Lemma 2.3 and the Banach-Nečas-Babuška theorem. In turn, since (σ, θ) satisfies
equations (2.43), using (2.22) we readily obtain

|Aw((σ, θ), (τ , ψ))| = |G(τ )| ≤ CG‖θD‖1/2,Γ‖(τ , ψ)‖, (2.51)

which together to (2.49) implies that θ ∈ X2 and concludes the proof. �

Remark 2.1 Observe that from (2.51) we actually deduce that S(w) ∈ Z, with

Z :=
{

(τ , ψ) ∈ H(divr,Ω)× Ls(Ω) :
γ

2
‖τ‖H(divr;Ω) + γ‖ψ‖Ls(Ω) ≤ CG‖θD‖1/2,Γ

}
. (2.52)

The latter will be employed later to conclude the corresponding a priori estimate.

We conclude this section by establishing the well–definiteness of operator T.

Theorem 2.5 Assume that (2.48) holds. Then, for each w ∈ X1, there exists a unique u ∈ X1 such
that u = T(w).

Proof. According to the identity (2.44), the well–definiteness of T follows straightforwardly from
Lemmas 2.2 and 2.4. �

2.2.3 The main result

Now we prove the main result of this section, namely, existence and uniqueness of solution of problem
(2.13). First, we address the existence of solution by employing the classical Schauder’s fixed point
theorem written in the following form:

Let W be a closed and convex subset of a Banach space X and let T : W → W be a continuous
mapping such that T (W ) is compact. Then T has at least one fixed point.

Next, for the uniqueness of solution we apply the classical Banach’s fixed–point theorem, which, for
the sake of completeness, is established now:

Let X be a Banach space and let T : X → X be a contraction mapping, that is, there exists
0 < ρ < 1, such that

‖T (x)− T (y)‖X ≤ ρ‖x− y‖X ,∀x, y ∈ X.

Then there exists a unique fixed–point of T in X.

We begin with the existence of solution. To that end we first establish the following preliminary
results.

Lemma 2.6 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let s = 2t
t−2 . Then there exist positive

constants LR1 and LR2, and CR such that

‖R(w1, φ1)−R(w2, φ2)‖1,Ω ≤ LR1‖w1 −w2‖Lt(Ω) + LR2‖φ1 − φ2‖Ls(Ω) (2.53)

and
‖R(w1, φ1)−R(w2, φ2)‖1,Ω ≤ CR‖w1 −w2‖1,Ω + LR2‖φ1 − φ2‖Ls(Ω), (2.54)

for all (w1, φ1), (w2, φ2) ∈ X.
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Proof. Let (w1, φ1), (w2, φ2) ∈ X, and u1, u2 ∈ X1 such that R(w1, φ1) = u1 and R(w2, φ2) = u2.
Then, from the definition of R (cf. (2.41)) it readily follows that

AS(ui,v) + OS(wi; ui,v) = D(φi,v) ∀v ∈ KS, ∀ i ∈ {1, 2}. (2.55)

Then, from (2.55), by subtracting both equations, choosing the test function v = u1 − u2, using the
identity (2.24), and adding and subtracting suitable terms, we obtain

AS(u1 − u2,u1 − u2) = −OS(w1 −w2; u1,u1 − u2) + D(φ1 − φ2,u1 − u2). (2.56)

In this way, estimate (2.53) can be obtained after a straightforward application of the ellipticity of
AS (cf. (2.25)), the continuity of D (cf. (2.21)), the fact that u1 ∈ X1, and estimate (2.17), with
constants LR1 and LR2 , given by

LR1 =
LS
OCDCG
γα2

S

‖g‖0,Ω‖θD‖1/2,Γ and LR2 =
CD
αS
‖g‖0,Ω. (2.57)

Analogously, estimate (2.54) can be obtained from (2.56) by employing (2.25), (2.21), the fact that
u1 ∈ X1, and estimate (2.18), with constant CR given by

CR =
CS
OCDCG
γα2

S

‖g‖0,Ω‖θD‖1/2,Γ. (2.58)

�

Lemma 2.7 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that
hypothesis (2.48) holds. Then, there exist positive constants LS and CS, such that

1

2
‖S1(w1)− S1(w2)‖H(divr;Ω) + ‖S2(w1)− S2(w2)‖Ls(Ω) ≤ LS‖w1 −w2‖Lt(Ω) (2.59)

and
1

2
‖S1(w1)− S1(w2)‖H(divr;Ω) + ‖S2(w1)− S2(w2)‖Ls(Ω) ≤ CS‖w1 −w2‖1,Ω (2.60)

for all w1, w2 ∈ X1.

Proof. Given w1, w2 ∈ X1, let (σ1, θ1), (σ2, θ2) ∈ H(divr,Ω) ×X2, such that S(w1) = (σ1, θ1) and
S(w2) = (σ2, θ2). From the definition of S (cf. (2.42) and (2.43)), there holds

AT(σi, τ ) + BT(τ , θi) + BT(σi, ψ) + OT(wi;σi, ψ) = G(τ ),

for i ∈ {1, 2} and for all (τ , ψ) ∈ H(divr,Ω)× Ls(Ω), which after simple computations, implies

AT(σ1 − σ2, τ ) + BT(τ , θ1 − θ2) + BT(σ1 − σ2, ψ) + OT(w1;σ1 − σ2, ψ) = −OT(w1 −w2;σ2, ψ),

for all (τ , ψ) ∈ H(divr,Ω)× Ls(Ω), or equivalently

Aw1((σ1 − σ2, θ1 − θ2), (τ , ψ)) = −OT(w1 −w2;σ2, ψ), (2.61)

for all (τ , ψ) ∈ H(divr,Ω)× Ls(Ω), where Aw1 is the bilinear form defined in (2.47).

In turn, let us observe that for i ∈ {1, 2}, S(wi) = (σi, θi) ∈ Z (cf. (2.52)), which in particular
implies that ‖σ2‖H(divr;Ω) ≤ 2CG

γ ‖θD‖1/2,Γ. Then, using this inequality, the fact that w1 ∈ X1, and
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assumption (2.48), it is not difficult to see that estimate (2.59) follows from (2.49), (2.19) and (2.61),
with

LS =
2LT

OCG
γ2

‖θD‖1/2,Γ. (2.62)

Analogously, estimate (2.60) follows from (2.49), (2.20) and (2.61), with CS given by

CS =
2CT

OCG
γ2

‖θD‖1/2,Γ. (2.63)

�

Now, we are in position of establishing the existence of solution of (2.13).

Theorem 2.8 Given t > 2 if n = 2 and t ∈ (2, 6) if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

hypothesis (2.48) holds. Then there exists (u, p,σ, θ) ∈ H1
0(Ω)× L2

0(Ω)×H(divr,Ω)× Ls(Ω) solution
to (2.13). Moreover, there exists C > 0, independent of the solution, such that

‖u‖1,Ω + ‖p‖0,Ω + ‖σ‖H(divr,Ω) + ‖θ‖Ls(Ω) ≤ C‖θD‖1/2,Γ. (2.64)

Proof. We begin the proof by noticing that here, for the 3D case, the interval (2, 6) must be open
in both sides since we shall employ the fact that H1(Ω) is compactly embedded into Lt(Ω) (see [26,
Theorem 1.3.5]).

As mentioned before, and according to (2.37), to proving the existence of solution of (2.13) it suffices
to proving that T has at least one fixed-point by means of the Shauder’s fixed-point theorem. To that
end we first recall that (cf. (2.44))

T(w) = R(w,S2(w)) ∀w ∈ X1,

and observe that from (2.53) and (2.59), there holds

‖T(w1)−T(w2)‖1,Ω ≤ LR1‖w1 −w2‖Lt(Ω) + LR2‖S2(w1)− S2(w2)‖Ls(Ω)

≤ (LR1 + LR2LS)‖w1 −w2‖Lt(Ω).
(2.65)

for all w1, w2 ∈ X1.

From (2.65) and (1.3), it can be readily seen that T is a continuous operator. Moreover, using
the fact that Lt(Ω) is compactly embedded into H1(Ω) it is not difficult to prove that T(X1) is
compact. In fact, let {zk}k∈N be a sequence of X1, which is clearly bounded. It follows that there
exists a subsequence {z̃k}k∈N ⊆ {zk}k∈N and z ∈ H1

0(Ω) such that z̃k
w−→ z. Then since H1(Ω) is

compactly embedded into Lt(Ω), we deduce that z̃k −→ z in Lt(Ω), which owing to (2.65) implies
that T(z̃k) −→ T(z) in H1

0(Ω). Hence, T(X1) is compact. Therefore, by applying the Shauder’s
fixed-point theorem we obtain that T has at least one fixed–point, or equivalently, problem (2.13) has
at least one solution.

Now, to deduce (2.64) we first observe that u ∈ X1 (cf. (2.34)) which implies that

‖u‖1,Ω ≤
CDCG
αSγ

‖g‖0,Ω‖θD‖1/2,Γ. (2.66)

In turn, from Remark 2.1 and according to (2.45), it follows that (σ, θ) = S(u) ∈ Z (cf. (2.52)), which
implies

γ

2
‖σ‖H(divr;Ω) + γ‖θ‖Ls(Ω) ≤ CG‖θD‖1/2,Γ. (2.67)
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Finally, for the estimate of the pressure p, we make use of the inf-sup condition of BS (2.28), the
continuity of AS, OS and D (cf. (2.15), (2.21)), and the first equation of (2.13), to arrive at

βS ‖p‖0,Ω ≤ sup
v∈H1

0(Ω)\{0}

BS(v, p)

‖v‖1,Ω

= sup
v∈H1

0(Ω)\{0}

AS(u,v) + OS(u; u,v) − D(θ,v)

‖v‖1,Ω

≤
(
ν ‖u‖1,Ω + CS

O ‖u‖21,Ω + CD ‖θ‖Ls(Ω) ‖g‖0,Ω
)
.

(2.68)

From (2.66)–(2.68) we easily deduce (2.64), which concludes the proof. �

We end the analysis of the continuous problem (2.13) by establishing the corresponding uniqueness
result.

Theorem 2.9 Given t > 2 if n = 2 and t ∈ (2, 6) if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

CDCG
αSγ

(
CS
O

αS
+

2CT
O

γ

)
‖g‖0,Ω‖θD‖1/2,Γ < 1. (2.69)

Then, the solution of problem (2.13) is unique.

Proof. First, we observe that if we assume (2.69), then hypothesis (2.48) holds, which implies that
problem (2.13) admits at least one solution.

Now, proceeding analogously to the proof of Theorem 2.8, that is, recalling that (cf. (2.44))

T(w) = R(w,S2(w)) ∀w ∈ X1,

and using estimates (2.54) and (2.60), we easily deduce that

‖T(w1)−T(w2)‖1,Ω ≤ (CR + LR2CS)‖w1 −w2‖1,Ω, (2.70)

for all w1, w2 ∈ X. Then, observing that

CR + LR2CS =
CDCG
αSγ

(
CS
O

αS
+

2CT
O

γ

)
‖g‖0,Ω‖θD‖1/2,Γ,

from (2.70) and hypothesis (2.69) we readily obtain that operator T is a contraction mapping. There-
fore, employing the classical Banach’s fixed–point theorem we conclude that T possesses a unique
fixed–point u ∈ X1, or equivalently, according to (2.37), problem (2.13) has a unique solution. �

3 A nonconforming finite element discretization

In this section we introduce our nonconforming finite element method for approximating the solution
of problem (2.13). As we shall see next in the forthcoming sections, the analysis of the corresponding
discrete problem follows straightforwardly by adapting the fixed-point strategy introduced and ana-
lyzed in Section 2.2. We emphasize that the latter is feasible since, similarly as in [24], we consider
here the exactly divergence–free finite element method proposed in [11] to approximate the velocity
of the fluid. More precisely, using the incompressibility property of the fluid, which it is exactly sat-
isfied here, we can introduce the discrete version of problem (2.33) and the corresponding discrete
fixed–point operator, satisfying the same properties as the ones described in Sections 2.2.1–2.2.3.

We start by introducing our Galerkin scheme and reviewing the discrete stability properties of the
forms involved.
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3.1 The discrete problem

Let Th be a regular triangulation of Ω by triangles K (resp. tetrahedra K) of diameter hK and define
the mesh size h = max{hK : K ∈ Th}. In addition given an integer l ≥ 0, for each K ∈ Th we let
Pl(K) be the space of polynomials functions on K of degree ≤ l, and define the corresponding local
Raviart–Thomas space of order l as

RTl(K) := Pl(K)⊕ P̃l(K)x,

where Pl(K) = [Pl(K)]n, x is the generic vector in Rn, and P̃l(K) ⊂ Pl(K) denotes the space of
polynomials of total degree equal to l. Employing this definitions we introduce the finite–dimensional
spaces

Hl
h := {z ∈ H(div ; Ω) : z|K ∈ RTl(K), ∀K ∈ Th}

Y l
h :=

{
z ∈ L2(Ω) : z|K ∈ Pl(K), ∀K ∈ Th

}
,

(3.1)

and then, for a given k ≥ 1, we define the finite element subspaces to approximate the unknowns u,
and p, σ, and θ, respectively by

Vu
h := Hk

h ∩H0(div ; Ω), Qph := Y k
h , Ξσ

h := Hk−1
h and Ψθ

h := Y k−1
h , (3.2)

where
H0(div ; Ω) := {v ∈ H(div ; Ω) : v · n = 0, on Γ} .

Observe that Ξσ
h ⊂ H(div ; Ω) ⊂ H(divr; Ω), whereas Vu

h is not a subspace of H1
0(Ω), thus the method

is nonconforming. Then in order to deal with the nonconformity of our approach we must introduce
discrete versions of the forms AS and OS. To do that we first introduce some additional notations and
definitions.

For each K we denote by nK the unit outward normal vector on the boundary ∂K. In addition,
we denote by EI(Th) the set of all interior edges (faces) of Th, by EB(Th) the set of all boundary edges
(faces), and define Eh(Th) = EI(Th) ∪ EB(Th). The (n− 1)-dimensional diameter of an edge (face) e is
denoted by he.

We will use standard average and jump operators. To define them, let K+ and K− be two adjacent
elements of Th, and e = ∂K+ ∩ ∂K− ∈ EI(Th). Let u and M be a piecewise smooth vector-valued,
respectively matrix-valued function, and let us denote by u±, M± the traces of u, M on e, taken from
within the interior of K±. Then, we define the jump of u, respectively the mean value of M at x ∈ e
by

JuK = u+ ⊗ nK+ + u− ⊗ nK− , {{M}} =
1

2
(M+ + M−), (3.3)

where we denote by u⊗ n the tensor product matrix [u⊗ n]i,j = uinj , 1 ≤ i, j ≤ n. For a boundary
edge (face) e = ∂K+ ∩Γ, we set JuK = u+⊗n, with n denoting the unit outward normal vector on Γ,
and {{M}} = M+.

For the discrete version of AS we take the symmetric interior penalty (SIP) form (see [4]) given by

AhS(u,v) = ν

∫
Ω
∇hu : ∇hv − ν

∑
e∈Eh(Th)

∫
e
{{∇hu}} : JvK

− ν
∑

e∈Eh(Th)

∫
e
{{∇hv}} : JuK +

∑
e∈Eh(Th)

νa0

he

∫
e
JuK : JvK.

(3.4)

Here, a0 > 0 is the interior penalty parameter, and we denote by ∇h the broken gradient operator.
As discussed in [11], other choices for AhS are equally feasible (such as LDG or BR methods), provided

15



that the stability properties in Section 3.1.1 below hold. For the convection term, we take the standard
upwind form [22] defined by

OhS(w; u,v) =

∫
Ω

(w · ∇h)u · v +
∑
K∈Th

∫
∂K\Γ

1

2
(w · nK − |w · nK |)(ue − u) · v, (3.5)

where ue is the trace of u taken from within the exterior of K. We note that convective forms with
no upwinding can also be chosen in our setting, such as the trilinear form in [17, Section 6].

Having introduced the additional notations described above, we now introduce our discrete problem:
Find (uh, ph,σh, θh) ∈ Vu

h ×Q
p
h ×Ξσ

h ×Ψθ
h such that

AhS(uh,v) + OhS(uh; uh,v) − BS(v, ph)−D(θh,v) = 0,

BS(uh, q) = 0,

AT(σh, τ ) +BT(τ , θh) = G(τ ),

BT(σh, ψ) +OT(uh;σh, ψ) = 0,

(3.6)

for all (v, q, τ , ψ) ∈ Vu
h×Q

p
h×Ξσ

h ×Ψθ
h, where BS, D, AT, BT, OT and G are the forms and functional

defined in Section 2.1.

3.1.1 Discrete stability properties

Here we discuss the stability properties of the forms involved restricted to the corresponding discrete
spaces. We begin by observing that the form AT and BT as well as the functional GT, are continuous
with the exact same constants described in Section 2.1.1 (see (2.15)–(2.22)). To establishing the
continuity of the remaining forms we need to introduce first the broken norms

‖v‖21,Th =
∑
K∈Th

‖∇h v‖20,K +
∑
e∈Eh

a0 h
−1
e ‖J v K‖20,e v ∈ H1(Th), (3.7)

and
‖v‖22,Th = ‖v‖21,Th +

∑
K∈Th

h2
K |v|22,K v ∈ H2(Th), (3.8)

where
Hl(Th) :=

{
v ∈ L2(Ω) : v|K ∈ Hr(K) ∀K ∈ Th

}
, l ≥ 1.

By using the inverse estimate |p|2,K ≤ Ch−1
K |p|1,K , for all K ∈ Th, p ∈ Pk(K), it can be readily seen

that
‖v‖2,Th ≤ C ‖v‖1,Th v ∈ Vu

h . (3.9)

In turn, the following Sobolev inequality holds: for each t ∈ I(n) ⊂ R, with I(2) = [1,∞) and
I(3) = [1, 6], there exists a constant Cemb(t) > 0, such that

‖v‖Lt(Ω) ≤ Cemb(t)‖v‖1,Th v ∈ H1(Th). (3.10)

For n = 2, this has been proved in [28, Lemma 6.2]. In the case n = 3, the proof follows along the
lines of [32, Lemma 5.15, Theorem 5.16].

To proving the continuity of the form AhS we can proceed analogously to [5] and utilize the trace
inequalities

‖v‖0,∂K ≤ C (h
−1/2
K ‖v‖0,K + h

1/2
K |v|1,K), v ∈ H1(K) (3.11)
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and
‖p‖0,∂K ≤ C h

−1/2
K ‖p‖0,K , p ∈ Pk(K), (3.12)

to obtain
|AhS(u,v)| ≤ CS

A ‖u‖1,Th ‖v‖1,Th , u,v ∈ Vu
h , (3.13)

and
|AhS(u,v)| ≤ C̃S

A ‖u‖2,Th ‖v‖1,Th , u ∈ H2(Th), v ∈ Vu
h . (3.14)

Now, owing to the Sobolev embedding (3.10) with t = 4 and the trace inequalities (3.11) and (3.12)
(see for instance [24, Lemma 3.4]), we have

|OhS(w1 −w2; u,v)| ≤ ĈS
O ‖w1 −w2‖1,Th ‖u‖1,Th ‖v‖1,Th , (3.15)

for all w1, w2,u ∈ H2(Th) and for all v ∈ Vu
h , with ĈS

O > 0 independent of h. Similarly, for OT (cf.
(2.14)), we have that

|OT(w1 −w2; τ , ψ)| ≤ ĈT
O ‖w1 −w2‖1,Th ‖τ‖H(divr;Ω) ‖ψ‖Ls(Ω), (3.16)

with ĈT
O := κ−1Cemb(t), and for D we easily get that for t > 2 if n = 2 and t ∈ (2, 6] if n = 3, and for

s = 2t
t−2 , there holds

|D(ψ,v)| ≤ ĈD ‖g‖0,Ω ‖ψ‖Ls(Ω) ‖v‖1,Th , v ∈ H1(Th), ψ ∈ Ψθ
h, (3.17)

with ĈD := Cemb(t). In addition, by using the Hölder’s inequality (1.1) we readily obtain

|BS(v, q)| ≤ ‖v‖1,Th ‖q‖0,Ω, v ∈ H1(Th), q ∈ Qph. (3.18)

Next, we establish the ellipticity of the forms AhS and AT. First, for AhS we recall that, provided
that a0 > 0 is a sufficiently large constant (see [17, Lemma 4.12]), there holds

AhS(v,v) ≥ α̂S ‖v‖21,Th , ∀v ∈ Vu
h . (3.19)

Let us now define the sets

KS,h :=
{
v ∈ Vu

h : BS(v, q) = 0, ∀ q ∈ Qph
}

and KT,h :=
{
τ ∈ Ξσ

h : BT(τ , ψ) = 0,∀ψ ∈ Ψθ
h

}
.

Since the pairs (Vu
h , Q

p
h) and (Ξσ

h ,Ψ
θ
h) satisfy

div Vu
h ⊆ Q

p
h and div Ξσ

h ⊆ Ψθ
h,

it readily follows that
KS,h := {v ∈ Vu

h : div v = 0 in Ω} (3.20)

and
KT,h = {τ ∈ Ξσ

h : div τ = 0 in Ω} . (3.21)

In particular, on KT,h we have that AT is elliptic:

AT(τ , τ ) ≥ κ−1 ‖τ‖2H(divr;Ω) ∀ τ ∈ KT,h. (3.22)

Moreover, on KS,h it is well-known (see, e.g., [22, 10]) that OhS satisfies

OhS(w; v,v) =
1

2

∑
e∈EI(Th)

∫
e
|w · ne||JvK|2 ds ≥ 0 w ∈ KS,h, v ∈ Vu

h , (3.23)
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which together to (3.19) implies that for each w ∈ KS,h the bilinear form AhS(·, ·)+OhS(w; ·, ·) is elliptic.
In (3.23), in the integrals over edges (faces) e, the vector ne denotes any unit vector normal to e.

Now, let us recall that the bilinear forms BS and BT satisfy the following inf-sup conditions:

sup
Vu
h∈Vh\{0}

BS(vh, qh)

‖vh‖1,Th
≥ β̂S ‖qh‖0,Ω, ∀ qh ∈ Qph, (3.24)

and

sup
τh∈Ξσ

h \{0}

BT(τ h, ψh)

‖τ h‖H(divr,Ω)
≥ β̂T ‖ψh‖Ls(Ω), ∀ψh ∈ Ψθ

h, (3.25)

where β̂S and β̂T are positive constants independent of the mesh size. The proof of (3.24) follows
along the lines of [29] from the surjectivity of div : H1

0(Ω)→ L2
0(Ω) and the properties of the Raviart–

Thomas interpolator, whereas the proof of (3.25) can be found in [9, Lemma 3.3].

We end this section by observing that, owing to the properties (3.22) and (3.25) and applying [20,
Proposition 2.36], the bilinear form A defined in (2.30) satisfies the following discrete inf-sup condition:

sup
(τh,ψh)∈[Ξσ

h×Ψθh]\{0}

A((ζh, φh), (τ h, ψh))

‖(τ h, ψh)‖
≥ γ̂‖(ζh, φh)‖ ∀ (ζh, φh) ∈ Ξσ

h ×Ψθ
h, (3.26)

where γ̂ > 0 is the constant defined by

γ̂ =
κ β̂2

T

κ2 β̂2
T + 4κ β̂T + 2

. (3.27)

3.2 Existence and uniqueness of solution of the discrete problem

In this section we address the well-posedness of problem (3.6). Here we proceed analogously to the
continuous case and prove the existence and uniqueness of solution of (3.6) by means of a fixed–point
strategy. For the uniqueness of solution we use again the Banach’s fixed–point theorem, whereas for
the existence result we employ the well–known Brower’s fixed–point theorem in the following form:

Let W be a compact and convex subset of a finite dimensional Banach space X and let T : W →
W be a continuous mapping. Then T has at least one fixed point.

Similarly to the analysis of the continuous problem, we begin by introducing the fixed–point oper-
ator.

3.2.1 The discrete fixed–point operator

Analogously to the continuous case we start by defining the following reduced version of problem (3.6):
find (uh,σh, θh) ∈ KS,h ×Ξσ

h ×Ψθ
h such that

AhS(uh,v) + OhS(uh; uh,v) −D(θh,v) = 0,

AT(σh, τ ) +BT(τ , θh) = G(τ ),

BT(σh, ψ) +OT(uh;σh, ψ) = 0,

(3.28)

for all (v, τ , ψ) ∈ KS,h × Ξσ
h × Ψθ

h, with KS,h being the set defined in (3.20). Owing to the inf-sup
condition (3.24), here we also obtain that both (3.6) and (3.28) are equivalent.
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Lemma 3.1 If (uh, ph,σh, θh) ∈ Vu
h × Q

p
h × Ξσ

h × Ψθ
h is a solution of (3.6), then uh ∈ KS,h and

(uh,σh, θh) is a solution of (3.28). Conversely, if (uh,σh, θh) is a solution of (3.28), then there exists
ph ∈ Qph, such that (uh, ph,σh, θh) is a solution of (3.6).

We continue by defining the bounded and convex set

X1,h :=

{
wh ∈ KS,h : ‖wh‖1,Th ≤

ĈDCG
α̂Sγ̂

‖g‖0,Ω‖θD‖1/2,Γ

}
(3.29)

and the discrete version of the operator T (cf. (2.35)):

Th : X1,h → X1,h

wh → Th(wh) = uh,
(3.30)

with uh being the first component of the solution of the linearized version of problem (3.28): Find
(uh,σh, θh) ∈ KS,h ×Ξσ

h ×Ψθ
h such that

AhS(uh,vh) + OhS(wh; uh,vh) = D(θh,vh) ,

AT(σh, τ h) +BT(τ h, θh) = G(τ h),

BT(σh, ψh) +OT(wh;σh, ψh) = 0,

(3.31)

for all (vh, τ h, ψh) ∈ KS,h ×Ξσ
h ×Ψθ

h.

As for the continuous case, we have the following equivalences

Th(uh) = uh ⇔ (uh,σh, θh) ∈ KS,h ×Ξσ
h ×Ψθ

h satisfies (3.28)

⇔ (uh, ph,σh, θh) ∈ Vu
h ×Q

p
h ×Ξσ

h ×Ψθ
h satisfies (3.6).

(3.32)

In consequence, to proving that problem (3.6) is well posed, in what follows we prove equivalently
that Th possesses a unique fixed–point. Before doing that, we first verify that our discrete fixed–point
operator is well–defined. This is addressed in the following section.

3.2.2 Well-definiteness of the discrete fixed-point operator

Let us first define the sets

Xh =

{
(wh, φh) ∈ KS,h ×Ψθ

h : ‖wh‖1,Th ≤
ĈDCG
α̂Sγ̂

‖g‖0,Ω‖θD‖1/2,Γ, ‖φh‖Ls(Ω) ≤
CG
γ̂
‖θD‖1/2,Γ

}
,

(3.33)
and

X2,h :=

{
φh ∈ Ψθ

h : ‖φh‖Ls(Ω) ≤
CG
γ̂
‖θD‖1/2,Γ

}
, (3.34)

and the discrete operators

Rh : Xh → X1,h

(wh, φh) → R(wh, φh) = uh,
(3.35)

with uh being the unique solution of problem: Find uh ∈ KS,h, such that

AhS(uh,vh) + OhS(wh; uh,vh) = D(φh,vh) ∀vh ∈ KS,h, (3.36)
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and
Sh : X1,h → Ξσ

h ×X2,h

wh → Sh(wh) = (S1,h(wh),S2,h(wh)) = (σh, θh),
(3.37)

where (σh, θh) ∈ Ξσ
h ×X2,h is the unique solution of problem: find (σh, θh) ∈ Ξσ

h ×Ψθ
h, such that

AT(σh, τ h) +BT(τ h, θh) = G(τ h) ∀ τ h ∈ Ξσ
h ,

BT(σh, ψh) +OT(wh;σh, ψh) = 0 ∀ψh ∈ Ψθ
h.

(3.38)

Analogously to the continuous case, from the definition of operators Th, Rh and Sh it can be readily
seen that the following discrete version of (2.44) holds:

Th(wh) = Rh(wh,S2,h(wh)) ∀wh ∈ X1,h. (3.39)

In addition, provided a fixed–point uh = Th(uh), we have that the pair (σh, θh) ∈ Ξσ
h ×Ψθ

h, such that
(uh,σh, θh) ∈ KS,h ×Ξσ

h ×Ψθ
h is a solution to (3.28), satisfies the identity

(σh, θh) = Sh(uh). (3.40)

The following lemma establishes that operator Rh is well-defined.

Lemma 3.2 For each (wh, φh) ∈ Xh, there exists a unique uh ∈ X1,h, such that Rh(wh, φh) = uh.

Proof. Since for any wh ∈ KS,h the bilinear form AhS(·, ·)+OhS(wh; ·, ·) is Vu
h–elliptic, the proof follows

analogously to the proof of Lemma 2.2 by means of the Lax-Milgram lemma. We omit further details.
�

Next, we prove that operator Sh is well-defined. To this end we first establish the discrete version
of Lemma 2.3.

Lemma 3.3 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

ĈT
OĈDCG
α̂Sγ̂2

‖θD‖1/2,Γ‖g‖0,Ω ≤
1

2
. (3.41)

Then, for each wh ∈ X1,h, the bilinear form Awh
satisfies the following estimate

sup
(τh,ψh)∈[Ξσ

h×Ψθh]\{0}

Awh
((ζh, φh), (τ h, ψh))

‖(τ h, ψh)‖
≥ γ̂

2
‖ζh‖H(divr;Ω) + γ̂‖φh‖Ls(Ω), (3.42)

∀ (ζh, φh) ∈ Ξσ
h ×Ψθ

h, where γ̂ > 0 is the constant defined in (3.27).

Proof. By applying the estimates (3.16) and (3.26), this result follows analogously to the proof of
estimate (2.49). We omit further details. �

Employing this lemma we can easily obtain that operator Sh is well-defined. This result is estab-
lished next.

Lemma 3.4 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume
that (3.41) holds. Then, for each wh ∈ X1,h, there exists a unique (σh, θh) ∈ Ξσ

h ×X2,h, such that
Sh(wh) = (σh, θh).
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Proof. Similarly to the proof of Lemma 2.4, by applying Lemma 3.3 and the discrete version of the
Banach-Nečas-Babuška theorem (cf. [20, Theorem 2.6]) it can be readily seen that problem (3.38)
admits a unique solution (σh, θh) ∈ Ξσ

h × Ψθ
h. In addition, using (3.42) we can easily obtain that

θh ∈ X2,h. We emphasize here that differently from the continuous case, the discrete version of (2.50)
is not needed since for finite dimensional linear problems, injectivity is equivalent to surjectivity. We
omit further details. �

Remark 3.1 Similarly to the continuous case, employing (3.26) one can actually deduce that Sh(wh)
= (σh, θh) ∈ Zh, for all wh ∈ X1,h, where

Zh :=

{
(τ h, ψh) ∈ Ξσ

h ×Ψθ
h :

γ̂

2
‖τ h‖H(divr;Ω) + γ̂‖ψh‖Ls(Ω) ≤ CG‖θD‖1/2,Γ

}
. (3.43)

Now we are in position of establishing the well-definiteness of operator Th.

Theorem 3.5 Assume that (3.41) holds. Then, for each wh ∈ X1,h, there exists a unique uh ∈ X1,h

such that uh = Th(wh).

Proof. This result is a direct consequence of the identity (3.39) and Lemmas 3.2 and 3.4. �

3.2.3 Main result

In this section we provide the well–posedness of problem (3.6). As already announced first we employ
the Brower’s fixed point theorem to prove existence of solution whereas for the uniqueness result
we make use of the Banach’s fixed point theorem. We begin by establishing the discrete version of
Lemmas 2.6 and 2.7.

Lemma 3.6 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let s = 2t
t−2 . Then there exist positive

constants ĈR1 and ĈR2 such that

‖Rh(w1, φ1)−Rh(w2, φ2)‖1,Th ≤ ĈR1‖w1 −w2‖1,Th + ĈR2‖φ1 − φ2‖Ls(Ω), (3.44)

for all (w1, φ1), (w2, φ2) ∈ Xh.

Proof. Using the estimates (3.19), (3.15) and (3.17), the result can be obtained analogously to the
proof of Lemma 2.6 with constants CR1 and CR2 given by

ĈR1 =
ĈS
OĈDCG
γ̂α̂2

S

‖g‖0,Ω‖θD‖1/2,Γ and ĈR2 =
ĈD
α̂S
‖g‖0,Ω. (3.45)

We omit further details. �

Lemma 3.7 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

hypothesis (3.41) holds. Then, there exists a positive constant ĈS, such that

1

2
‖S1(w1)− S1(w2)‖H(divr;Ω) + ‖S2(w1)− S2(w2)‖Ls(Ω) ≤ ĈS‖w1 −w2‖1,Th (3.46)

for all w1, w2 ∈ X1,h.
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Proof. Utilizing exactly the same arguments employed in the proof of Lemma 2.7 we can obtain (3.46)
with

ĈS =
2ĈT

OCG
γ̂2

‖θD‖1/2,Γ. (3.47)

We omit further details. �

In the following result we establish that problem (3.6) admits a solution.

Theorem 3.8 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

hypothesis (3.41) holds. Then there exists (uh, ph,σh, θh) ∈ Vu
h × Q

p
h × Ξσ

h × Ψθ
h solution to (3.6).

Moreover, there exists Ĉ > 0, independent of the solution, such that

‖uh‖1,Ω + ‖ph‖0,Ω + ‖σh‖H(divr,Ω) + ‖θh‖Ls(Ω) ≤ Ĉ‖θD‖1/2,Γ. (3.48)

Proof. We start by noticing that from (3.39), (3.44) and (3.46), analogously to the proof of Theorem
2.8, we obtain

‖Th(w1)−Th(w2)‖1,Th ≤ ĈR1‖w1 −w2‖1,Th + ĈR2‖S2,h(w1)− S2,h(w2)‖Ls(Ω)

≤ (ĈR1 + ĈR2ĈS)‖w1 −w2‖1,Th ,
(3.49)

for all w1, w2 ∈ X1,h, which implies that Th is continuous on X1,h. Then, as previously announced,
by utilizing the classical Brower’s fixed–point theorem, we conclude that Th admits a fixed–point uh ∈
X1,h, or equivalently, owing to (3.32), that problem (3.6) admits at least one solution (uh, ph,σh, θh) ∈
Vu
h ×Q

p
h ×Ξσ

h ×Ψθ
h. Moreover, since uh ∈ X1,h and (σh, θh) = Sh(uh) ∈ Zh (see (3.40) and Remark

3.1), there holds

‖uh‖1,Th ≤
ĈDCG
α̂Sγ̂

‖g‖0,Ω‖θD‖1/2,Γ and
γ̂

2
‖σh‖H(divr;Ω) + γ̂‖θh‖Ls(Ω) ≤ CG‖θD‖1/2,Γ (3.50)

In turn, from the inf–sup condition (3.24), and the continuity of AS
h O

h
S and D (see (3.13), (3.15) and

(3.17), respectively), analogously to (2.68) we can deduce that

β̂S ‖ph‖0,Ω ≤
(
CS
A ‖uh‖1,Th + ĈS

O ‖uh‖21,Th + ĈD ‖θh‖Ls(Ω) ‖g‖0,Ω
)
. (3.51)

Then, from (3.50) and (3.51) we readily obtain (3.48), which concludes the proof. �

We conclude this section by stating the uniqueness of solution of problem (3.6)

Theorem 3.9 Given t > 2 if n = 2 and t ∈ (2, 6] if n = 3, let r = 2t
t+2 and s = 2t

t−2 . Assume that

ĈDCG
α̂Sγ̂

(
ĈS
O

αS
+

2ĈT
O

γ̂

)
‖g‖0,Ω‖θD‖1/2,Γ < 1. (3.52)

Then, the solution of problem (3.6) is unique.

Proof. From (3.45) and (3.47) it can be readily seen that

(ĈR1 + ĈR2ĈS) =
ĈDCG
α̂Sγ̂

(
ĈS
O

αS
+

2ĈT
O

γ̂

)
‖g‖0,Ω‖θD‖1/2,Γ,

which together to (3.49) and (3.52) implies that Th is a contraction mapping. Therefore, the unique-
ness of solution of problem (3.6) is a direct consequence of (3.32) and the Banach’s fixed–point theorem.
�
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4 Error analysis

In what follows we carry out the error analysis of the finite element approximation presented in Section
3 under an extra regularity assumption on the solution and, similarly to the above, by assuming that
the data θD is sufficiently small in the H1/2–norm. We start by establishing some previous results and
definitions.

In the sequel we make use of the Raviart-Thomas operator Πl
h : H1(Ω) → Hl

h (cf. (3.1)) which,
given l ≥ 0, is characterized by the following identities:∫

e
Πl
h(z) · n ξ =

∫
e
z · n ξ ∀ edge/face e ∈ Th, ∀ ξ ∈ Pl(e) when l ≥ 0 , (4.1)

and ∫
K

Πl
h(z) · q =

∫
K

z · q ∀K ∈ Th, ∀q ∈ Pl−1(K) when l ≥ 1 . (4.2)

We shall also employ the L2-projection P lh : L2(Ω)→ Y l
h, which is defined through the identity∫

Ω
λ(z − P lh(z)) = 0 ∀λ ∈ Y l

h.

Next, to simplify the subsequent analysis, we denote the corresponding errors by

eu = u− uh, ep = p− ph, eσ = σ − σh, eθ = θ − θh

and, given k ≥ 1, we decompose these errors into

eu = ξu + χu, ep = ξp + χp, eθ = ξθ + χθ, eσ = ξσ + χσ. (4.3)

with
ξu = u−Πk

h(u), χu = Πk
h(u)− uh,

ξp = p− Pkh(p), χp = Pkh(p)− ph,

ξσ = σ −Πk−1
h (σ), χσ = Πk−1

h (σ)− σh,

ξθ = θ − Pk−1
h (θ), χθ = Pk−1

h (θ)− θh.

(4.4)

Owing to the approximation properties of operators Πl
h and P lh (see for instance [7, 21]), it can be

readily seen that

‖ξu‖2,Th ≤ Chk‖u‖k+1,Ω, ‖ξp‖0,Ω ≤ Chk+1‖p‖k+1,Ω

‖ξσ‖H(divr;Ω) ≤ Chk{‖σ‖k,Ω + ‖divσ‖Wk,r(Ω)}, ‖ξθ‖Ls(Ω) ≤ Chk‖p‖Wk,s(Ω).
(4.5)

In particular, for the last two estimates we refer the reader to [20, Section 1.6.3] and [9, Section 3.1].

Having introduced the main tools to be employed in the forthcoming analysis, now we establish the
the theoretical rate of convergence of our method.

Theorem 4.1 Assume that estimates (2.69) and (3.52) hold and let (u, p,σ, θ) ∈ H1
0(Ω) × L2

0(Ω) ×
H(divr,Ω)× Ls(Ω) and (uh, ph,σh, θh) ∈ Vu

h ×Q
p
h × Ξσ

h ×Ψθ
h be the unique solutions of (2.13) and

(3.6), respectively. Assume further that

CG
α̂Sγ

(
ĈS
OCD
αS

+
2ĈT

OĈD
γ̂

)
‖g‖0,Ω‖θD‖1/2,Γ ≤

1

2
, (4.6)
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and for a given k ≥ 1, u ∈ Hk+1(Ω), p ∈ Hk+1(Ω), σ ∈ Hk(Ω), divσ ∈ Wk,r(Ω) and θ ∈ Wk,s(Ω).
Then, there exists C > 0, independent of h, such that

‖eu‖1,Th + ‖ep‖0,Ω + ‖eσ‖H(divr;Ω) + ‖eθ‖Ls(Ω) ≤
Chk

{
‖u‖k+1,Ω + ‖p‖k+1,Ω + ‖σ‖k,Ω + ‖divσ‖Wk,r(Ω) + ‖θ‖Wk,s(Ω)

}
.

(4.7)

Proof. First, since we are assuming that u ∈ Hk+1(Ω), it can be readily seen by integration by parts
that

AhS(u,v) + OhS(u; u,v) − BS(v, p)−D(θ,v) = 0 ∀v ∈ Vu
h ,

from which
AhS(u,v) + OhS(u; u,v)−D(θ,v) = 0 ∀v ∈ KS,h.

Thus, combining the latter identity with the first equation of (3.28) we obtain the orthogonality
property

AhS(eu,v) + OhS(u; u,v)−OhS(uh; uh,v)−D(eθ,v) = 0 ∀v ∈ KS,h, (4.8)

which after simple algebraic manipulations can be rewritten as

AhS(χu,v) + OhS(uh;χu,v) = −OhS(χu; u,v) +D(χθ,v)

−OhS(ξu; u,v) +D(ξθ,v)−OhS(uh; ξu,v)−AhS(ξu,v),

for all v ∈ KS,h. In particular, for v = χu ∈ KS,h, employing the ellipticity of the bilinear form
AhS(·, ·) + OhS(uh; ·, ·), and the continuity of OhS and D (see (3.15) and (3.17), respectively), we obtain

α̂S‖χu‖21,Th ≤ Ĉ
S
O‖u‖1,Th‖χu‖21,Th + ĈD‖g‖0,Ω‖χθ‖Ls(Ω)‖χu‖1,Th + L1(ξu, ξθ)‖χu‖1,Th , (4.9)

with
L1(ξu, ξθ) := (ĈS

O‖u‖1,Th + ĈS
O‖uh‖1,Th + CS

A)‖ξu‖1,Th + ĈD‖g‖0,Ω‖ξθ‖Ls(Ω).

On the other hand, since Ξσ
h ⊂ H(divr; Ω) and Ψθ

h ⊆ Ls(Ω), from the third and fourth equations
of (2.33) and (3.28) it follows that the following orthogonality property holds

AT(eσ, τ ) +BT(τ , eθ) = 0,

BT(eσ, ψ) + [OT(u;σ, ψ)−OT(uh;σh, ψ) ] = 0,

for all (τ , ψ) ∈ Ξσ
h ×Ψθ

h. From this property, the definition of the bilinear form Aw (cf. (2.47)), the
decomposition (4.3), and simple computations it can be obtained the identity

Auh((χσ, χθ), (τ , ψh)) = −OT (χu;σ, ψ)−Auh((ξσ, ξθ), (τ , ψ))−OT (ξu;σ, ψ). (4.10)

Then, utilizing the inf-sup condition (3.42), and the continuity of AT, BT and OT in (2.15), (2.16)
and (3.16), respectively, from (4.10) we obtain

γ̂

2
‖χσ‖H(divr;Ω) + γ̂‖χθ‖Ls(Ω) ≤ ĈT

O‖χu‖1,Th‖σ‖H(divr;Ω) + L2(ξσ, ξθ, ξu), (4.11)

with

L2(ξσ, ξθ, ξu) := (1 + κ−1 + ĈT
O‖uh‖1,Th)‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ĈT

O‖σ‖H(divr;Ω)‖ξu‖1,Th .
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In particular, from (4.11) we have that

‖χθ‖Ls(Ω) ≤
ĈT
O

γ̂
‖σ‖H(divr;Ω)‖χu‖1,Th +

1

γ̂
L2(ξσ, ξθ, ξu),

which combined with (4.9), implies(
α̂S − ĈS

O‖u‖1,Th −
ĈDĈ

T
O

γ̂
‖g‖0,Ω‖σ‖H(divr;Ω)

)
‖χu‖1,Th ≤ L1(ξu, ξθ) +

ĈD
γ̂
‖g‖0,ΩL2(ξσ, ξθ, ξu).

(4.12)
Hence, recalling that (see (2.66), (2.67) and (3.50))

‖σ‖H(divr;Ω) ≤
2CG
γ
‖θD‖1/2,Γ, ‖u‖1,Th ≤ ‖u‖1,Ω ≤

CDCG
αSγ

‖g‖0,Ω‖θD‖1/2,Γ

and

‖uh‖1,Th ≤
ĈDCG
α̂Sγ̂

‖g‖0,Ω‖θD‖1/2,Γ,

we have

L1(ξu, ξθ) ≤ C1(‖ξu‖1,Th+‖ξθ‖Ls(Ω)) and L2(ξσ, ξθ, ξu) ≤ C2(‖ξσ‖H(divr;Ω) +‖ξθ‖Ls(Ω) +‖ξu‖1,Th),

which together to (4.12), and estimate (4.6), yields

‖χu‖1,Th ≤ C(‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ‖ξu‖1,Th). (4.13)

Using this estimate, from (4.11) we also obtain

‖χσ‖H(divr;Ω) + ‖χθ‖Ls(Ω) ≤ C(‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ‖ξu‖1,Th). (4.14)

In this way, from (4.13) and (4.14) and utilizing (4.3) and the triangle inequality, we readily obtain

‖eu‖1,Th + ‖eσ‖H(divr;Ω) + ‖eθ‖Ls(Ω) ≤ C(‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ‖ξu‖1,Th). (4.15)

Now, to estimate ep we first observe that, owing to the discrete inf-sup condition (3.24), there holds

β̂S ‖χp‖0,Ω ≤ sup
vh∈Vu

h\{0}

BS(vh, χp)

‖vh‖1,Th

≤ sup
vh∈Vu

h\{0}

BS(vh, ep)

‖vh‖1,Th
+ sup

vh∈Vu
h\{0}

BS(vh,−ξp)
‖vh‖1,Th

≤ sup
vh∈Vu

h\{0}

BS(vh, ep)

‖vh‖1,Th
+ ‖ξp‖0,Ω.

(4.16)

In turn, from the first equations of (2.13) and (3.6), and adding and subtracting suitable terms,
analogously to (4.8) we can obtain

BS(v, ep) = AhS(eu,v) + OhS(u; u,v) − OhS(uh; uh,v) − D(eθ,v)

= AhS(eu,v) + OhS(eu; u,v) + OhS(uh; eu,v) − D(eθ,v),
(4.17)

for all v ∈ Vu
h . Then, utilizing (4.15), (4.17), (2.66) and (3.50), from (4.16) we obtain

‖χp‖0,Ω ≤ C(‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ‖ξu‖1,Th + ‖ξp‖0,Ω),
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which together to the triangle inequality and (4.3), implies

‖ep‖0,Ω ≤ C(‖ξσ‖H(divr;Ω) + ‖ξθ‖Ls(Ω) + ‖ξu‖1,Th + ‖ξp‖0,Ω).

This latter estimate, together to (4.15), (4.5) and the fact that ‖ξu‖1,Th ≤ ‖ξu‖2,Th , readily implies
(4.7), which concludes the proof. �

Remark 4.1 Although the theory above has been developed considering the Raviart-Thomas element
for the unknowns u and σ, the analysis can be easily adapted for other choices of finite element
spaces, such as the well–known Brezzi–Douglas–Marini element. In fact, given an integer k ≥ 1, one
can consider the space

Hk
h := {z ∈ H(div ; Ω) : z|K ∈ Pk(K), ∀K ∈ Th} ,

and redefine problem (3.6) with the spaces

Vu
h := Hk

h ∩H0(div ; Ω), Qph := Y k−1
h ∩ L2

0(Ω) Ξσ
h := Hk

h and Ψθ
h := Y k−1

h , (4.18)

where Y k
h is the space defined in (3.1). Analogously to the analysis developed above it is not difficult to

prove that problem (3.6) is well posed, and employing the approximation properties of the corresponding
discrete spaces (see [7, Chapter 2, Section 2.5]) one can easily obtain the following theoretical rate of
convergence

‖eu‖1,Th+ ‖ep‖0,Ω + ‖eσ‖H(divr;Ω) + ‖θ‖Ls(Ω) ≤
Chk

{
‖u‖k+1,Ω + ‖p‖k,Ω + ‖σ‖k,Ω + ‖divσ‖Wk,r(Ω) + ‖θ‖Wk,s(Ω)

}
.

(4.19)

We end this remark by mentioning that clearly both, Raviart-Thomas and BDM elements, can also
be combined for discretazing the coupled problem, that is, one can choose RTk − Pk to approximate
the pair (u, p) and BDMk − Pk−1 for (σ, θ), or vice versa.

5 Numerical results

In this section we present some numerical results illustrating the performance of our mixed finite
element scheme (3.6) on a set of quasi-uniform triangulations of the corresponding domain and con-
sidering the finite element spaces introduces in Section 3 and in Remark 4.1. Our implementation is
based on a FreeFem++ code, in conjunction with the direct linear UMFPACK. For all the examples
below we define the penalization term as a0 = 5, choose r = 4/3, s = 4, and utilize a Picard-type
algorithm with a fixed tolerance tol = 1e− 6. The iterations are terminated once the relative error of
the entire coefficient vectors between two consecutive iterates is sufficiently small, that is,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 stands for the usual euclidean norm in Rdof, with dof denoting the total number of
degrees of freedom defining the finite element subspaces Vu

h , Qph, Ξσ
h and Ψθ

h. Now, we introduce
some additional notations. The individual errors are denoted by e(u), e(p), e(σ) and e(θ). Also, we
let r(u), r(p), r(σ) and r(θ) be the experimental rates of convergence given by

r(u) :=
log(e(u)/e′(u))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(θ) :=

log(e(θ)/e′(θ))

log(h/h′)
,
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where h and h′ denote two consecutive mesh sizes with their respective errors e and e′.

In our first example we illustrate the accuracy of our method considering a manufactured exact
solution defined on Ω = (−1/2, 3/2)×(0, 2). We consider the thermal conductivity κ = 1, the external
force g = (0,−1)t, and the terms on the right-hand side are adjusted so that the exact solution is
given by the functions:

u(x, y) :=

(
1− eλx cos(2πy)
λ
2πe

λx sin(2πy)

)
, p(x, y) :=

−1

2
e2λx + p̄, θ(x, y) := x2y2 + 1,

where

λ :=
−8π2

ν−1 +
√
ν−2 + 16π2

,

with ν > 0 being the viscosity of the fluid and the constant p̄ is chosen in such a way that
∫

Ω p = 0.
We observe that (u, p) is the well-known analytic solution for the Navier-Stokes problem obtained by
Kovasznay in [30].

In Table 1 we summarize the convergence history, on a sequence of quasi-uniform triangulations, of
two finite element families corresponding to RT1 − P1 −RT0 − P0 and BDM1 − P0 −BDM1 − P0

and considering the viscosity ν = 1. We observe there that the rate of convergence O(h) predicted
by Theorem 4.1 and Remark 4.1 is attained in all the cases. In addition, the last columns of Table
1 illustrates that the velocity is practically divergence free for all refinement steps, and for both
RT1 − P1 −RT0 − P0 and BDM1 − P0 −BDM1 − P0. We remark that in both cases the algorithm
stopped after around 10 iterations.

errors and rates of convergence for the DG-Mixed
RT1 − P1 −RT0 − P0 approximation.

h DOF e(u) r(u) e(p) r(p) e(σ) r(σ) e(θ) r(θ) ‖div uh‖l∞
0.745 402 69.249 – 67.956 – 3.835 – 1.033 – 1.21e-13
0.380 1665 44.241 0.6655 21.272 1.7252 1.719 1.1917 0.634 0.7241 1.03e-13
0.190 6417 23.284 0.9261 12.898 0.7218 0.861 0.9983 0.309 1.0379 1.42e-14
0.095 25560 11.346 1.0377 6.863 0.9107 0.422 1.0301 0.147 1.0677 1.51e-13
0.053 101688 5.592 1.2100 3.452 1.1751 0.210 1.1912 0.081 1.0315 1.55e-14
0.027 410331 2.700 1.0556 1.698 1.0289 0.104 1.0265 0.039 1.0623 1.58e-13

errors and rates of convergence for the DG-Mixed
BDM1 − P0 −BDM1 − P0 approximation.

h DOF e(u) r(u) e(p) r(p) e(σ) r(σ) e(θ) r(θ) ‖div uh‖l∞
0.745 402 69.249 – 68.724 – 2.692 – 1.033 – 1.21e-13
0.380 1665 44.241 0.6655 27.826 1.3430 1.053 1 .3947 0.635 0.7230 1.03e-13
0.190 6417 23.284 0.9261 17.840 0.6413 0.402 1.3880 0.309 1.0393 1.43e-14
0.095 25560 11.346 1.0377 9.733 0.8747 0.178 1.1769 0.147 1.0679 1.51e-13
0.053 101688 5.592 1.2100 4.705 1.2430 0.087 1.2284 0.081 1.0315 1.55e-14
0.027 410331 2.700 1.0556 2.324 1.0226 0.042 1.0501 0.039 1.0623 1.57e-13

Table 1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence and ... for the mixed
RT1 − P1 −RT0 − P0 and BDM1 − P0 −BDM1 − P0 approximations of the Boussinesq equations.
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In our second example we study the behaviour of a fluid in a square cavity Ω = (0, 1)2 with
differentially heated walls. To that end we first recall from [15] the problem with dimensionless
numbers:

−Ra ∆u + (u · ∇)u + ∇ p − Pr Ra g θ = 0 in Ω,

div u = 0 in Ω,

u = 0 on Γ,

−κ∆θ + u · ∇θ = 0 in Ω,

θ = θD on Γ,

(5.1)

where Pr and Ra are the Prandtl and Rayleigh numbers. Here we fix the Prandtl and Rayleigh
numbers as

Pr = 0.5 and Ra = 2000,

the thermal conductivity κ = 1, and analogously to [15] we choose the boundary condition θD(x, y) =
0.5(1 − cos(2πx))(1 − y) on Γ. Notice that θD = 0 on the left, top and right walls whereas on the
bottom wall θD has a sinusoidal profile with a peak of temperature θD = 1 at x = 0.5. For the
natural convection problem in a cavity with other boundary conditions we refer the reader to [6, 16].
In Figures 1 and 2 we display the approximate solutions obtained with a BDM1 − P0 −RT0 − P0

discretization with 254294 degrees of freedom. In Figure 1 we show the components of the velocity,
the velocity vector field and the pressure. There, it is possible to see the expected physical behaviour
from [15], that is, convection currents form inside the cavity in a symmetric configuration. In addition,
in Figure 2 it can be seen the components of the temperature gradient, the heat-flux vector field, and
the temperature. There, as expected, we observe that the heat-flux moves from higher temperature
regions to lower temperature regions.
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for the Boussinesq problem with temperature-dependent viscosity. Preprint 2017-18, Centro de
Investigación en Ingenieŕıa Matemática (CI2MA), UDEC, (2017).
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(bottom-left) and pressure (bottom-right).

29



-3.08 3.08 -3.69 0.839

0.00707 3.9
6.51e-06 0.992
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left) and temperature (bottom-right).
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Modelling and Numerical Analysis, vol. 29, no. 7, pp. 871-921, (1995)
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[10] B. Cockburn, G. Kanschat, and D. Schötzau, A locally conservative LDG method for
the incompressible Navier-Stokes equations. Mathematics of Computation. Vol. 74, no. 251, pp.
1067-1095 (2005).

[11] B. Cockburn, G. Kanschat, and D. Schötzau, A Note on Discontinuous Galerkin
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