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Abstract

In this work we present a Finite Difference scheme used to solve a High order Nonlinear Schrödinger Equation.
These equations can model the propagation of solitons travelling in fiber optics ([3], [17]). The scheme is designed
to preserve the numerical L2 norm and the energy, for a suitable initial condition. We show numerical results
displaying conservation properties of the schemes using solitons as initial conditions.

1 Introduction

We will study a numerical solution of a Higher order Non-Linear Schrödinger (HNLS) equation:

iut + αuxx + iβuxxx + γ|u|2u+ iδ|u|2ux + iεu|u|2x = 0, u(x, 0) = u0(x) (1)

where α, β, γ, δ, ε ∈ R and u = u(x, t), x, t ∈ R is a complex valued function. This equation plays an important rule
in soliton theory. It has applications in the propagation of femtosecond optical pulses in a monomode optical fiber,
accounting for additional effects such as third order dispersion, self-steeping of the pulse, and self-frequency shift [17].
We can also consider equation (1) as a generalization of the classical Nonlinear Schrödinger (NLS) equation

iut + αuxx + γ|u|2u = 0 (2)

which can be obtained using β = δ = ε = 0 in (1). This equation describes the electric field envelope of a laser
beam in a medium with Kerr nonlinearity [13]. It is also known in plasma physics, where it describes Langmuir waves
in a plasma with non-homogeneous density [15]. If in (1) we also take α = γ = 0, β = 1, ε = 0 and δ = 6, we
can obtain the modified Korteweg-de Vries (KdV) equation which studies, for example, surface waves on conducting
nonviscous incompressible liquid under the presence of a transverse electric field [25]. The KdV equation has also
great importance in the study of surface water waves [18]. In this sense, numericallly solving (1) can also solve many
subproblems derived from it.

Carvajal proved in [8] for βε 6= 0 the global well-posedness of the Cauchy Problem (1) in Hs(R), s > 1
4 when

γ = α(δ − 2ε)/(3β). Meanwhile, Takaoka proved in [32], for β = 1, the local well-posedness for the Cauchy Problem
(1) in Hs(T), s > 1

2 , where T is a unidimensional torus. Similar conclusions were obtained also by Takaoka in [31] for

β = 0, where the well-posedness is over H
1
2 (R). Regularity properties were studied by Alves et al. [2] when δ = ε = 0.

Exact solutions for (1) can be found using the Inverse Scattering Transform (IST) [1], proposed originally in
Zakharov et al. [36]. Its integration depends on the values of β, δ and ε. In particular: for α = 1

2 , γ = 1, and rewriting
equation (1) as

iut +
1

2
uxx + |u|2u+ iε(β1uxxx + β2|u|2ux + β3|u|2xu) = 0 (3)

where β1, β2, β3, ε are real constants, then exact solutions can be obtained via IST for the following cases:
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• For the derivative NLS equation of type I: β1 : β2 : β3 = 0 : 1 : 1 [3].

• For the derivative NLS equation of type II: β1 : β2 : β3 = 0 : 1 : 0 [11].

• For the Hirota equation: β1 : β2 : β3 = 1 : 6 : 0 [14].

• For the Sasa-Satsuma equation: β1 : β2 : β3 = 1 : 6 : 3 [28].

Exact solutions are all of solitonic form. N -soliton solutions can also be obtained [14]. Potasek [27] shows some
particular solutions that has been proven experimentally. But even when continuous solutions can be found for some
specific initial conditions and some values for the real constans in (1), numerical solutions can prescinde from those
requirements when computed. We can even use non-solitonic initial conditions in order to obtain a result. One way
to compute numerical solutions is using the Finite Difference Method, whose computational implementation can be
done in an fast and efficient way.

Other ways to obtain numerical solutions for (1) has been studied by different authors in the recents years. One of
the first scheme were proposed by Delfour, Fortin and Payre [12], which solves the NLS equation (2) proposing a rule
to discretize powers of the nonlinearity multiplying the γ term. Their method has a strong property: it preserves the
discrete versions of both the L2 norm and the energy of the numerical solution, where their continuous versions are
given by:

||u||2L2(Ω)(t) =

∫
Ω

|u(x, t)|2dx

E(t) :=
α

2

∫
Ω

|∇u(x, t)|2dx− γ

4

∫
Ω

|u(x, t)|4dx

for u = u(x, t) ∈ Ω ⊂ R× R+ 7−→ C the exact solution of (1). The convergence of the numerical method is proved in
Matsuo and Furihata [21]. Pazoto et al [24] proposed a finite difference scheme which solves the critical generalilzed
Kortewetg-de Vries equation (GKdV-4) in a bounded domain. The higher-power term u4ux was rewritten as a linear
combination of other derivatives in order to obtain specific conservation properties. Smadi and Bahloul [29] [30]
combined a Compact Padé Finite Difference scheme [20] with a fourth order Runge-Kutta (RK4) scheme. They
splitted the problem in two parts: a linear section which is solved using the finite difference scheme; and the nonlinear,
which is solved using the RK4 scheme. The method was implemented with an interesting success, but no analysis of
the error, convergence or conserved quantities was made.

The purpose of this work is to search for numerical solutions of the IVP (1) using a Finite Difference scheme which
preserves the numerical L2 norm and delimits the energy. The structure of this work is as follows: Section 2 illustrates
the definitions, notation, and properties used along this paper. We will also define the proposed numerical scheme
and show its properties. In Theorem 4 we demonstrate that the numerical scheme is of second order in both variables.
Section 3 will present results for some experiments, and Section 4 will show our conclusions.

2 Notation, Numerical Scheme, and Properties

In this section we will introduce our numerical scheme and its properties, but first we shall introduce some notation.

For the space coordinate x ∈ R, let us discretize it using a space-step ∆x. We will do the same for the time coordinate
t ∈ R.t > 0, using a time-step ∆t. For some n ∈ N, we denote the solution vector in the n-th timestep as un ∈ CZ,
where unj , j ∈ Z will be is its j-th element. We will use the usual inner product between two vectors u, v ∈ CZ, which
is denoted and defined as

(u, v) := u · v =
∑
j∈Z

ujvj∆x (4)

where vj denotes the complex conjugate of the element vj . This induces the discrete L2 norm ||u||22 := (u, u). From
here, we define the difference between the maximum and minimum values of ||u||2 as

∆`2 := max
n,m∈N

∣∣∣||u(n)||2 − ||u(m)||2
∣∣∣
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We will now introduce the operators which shall be used to discretize the partial derivatives in (1). Let us define the
operator D0, which represents a centered finite difference approximation of ∂/∂x, such that it maps a vector v ∈ CZ

to CZ where the j-th component of D0v is given by

[D0(v)]j := D0(vj) =
vj+1 − vj−1

2∆x

The time derivative will be approximated using a forward finite difference quotient, whose operator Dt acting over a
vector vn ∈ CZ for some n ∈ N is given by

[Dt(v
n)]j := Dt(v

n
j ) =

vn+1
j − vnj

∆t

In the same way we’ve defined the operator D0, we define the operator D2
0 which approximates the second space

derivative using centered finite differences, where the j-th component of D2
0u, for a u ∈ CZ is given by

[D2
0(u)]j := D2

0(uj) =
uj+1 − 2uj + uj−1

∆x2

in the same sense, the operator D3
0 discretizes the third space derivative using centered finite differences, such that

the j-th component is given by

[D3
0(u)]j := D3

0(uj) =
− 1

2uj−2 + uj−1 − uj+1 + 1
2uj+2

∆x3

We also define the forward and backwards finite difference operators for the first derivative, D+ and D− respectively,
as follows:

[D+(u)]j := D+uj :=
uj+1 − uj

∆x

[D−(u)]j := D−uj :=
uj − uj−1

∆x

With these two operators, in combination with D0, it is easy to check that we can re-write D2
0u and D3

0u as

D2
0u = D+D−u

D3
0u = D0D

2u = D0D
+D− (5)

2.1 Numerical Scheme

In order to construct the numerical method, we will write a similar form of equation (1). This is because the terms
multiplying δ and ε are rather complicated to deal with. The modification of equation (1) will then proceed by adding
and substracting the same nonlinear term as follows:

iut + αuxx + γ|u|2u+ iβuxxx + iδ
(
|u|2ux + (|u|2u)x

)
+ iεu|u|2x − iδ(|u|2u)x = 0 (6)

For the time being, we will not discretize this expression directly. We will focus for a moment on the last term
in (6). For a sufficiently differentiable function u(x, t) : R2 −→ C, we can write (|u|2u)x as a convex combination of
itself, (|u|2xu+ |u|2ux) and (u2ux + 2|u|2ux). Hence,

∂

∂x

(
|u|2u

)
= α0

∂

∂x

(
|u|2u

)
+ β0

(
u2 ∂u

∂x
+ 2|u|2 ∂u

∂x

)
+ (1− α0 − β0)

(
u
∂

∂x
(|u|2) + |u|2 ∂u

∂x

)
(7)

where α0, β0 ∈ [0, 1]. Using (7), equation (6) can be written as

iut + αuxx + γ|u|2u+ iβuxxx + iδ
(
|u|2ux + (|u|2u)x

)
+ iεu|u|2x

−iδ
[
α0

∂

∂x

(
|u|2u

)
+ β0

(
u2 ∂u

∂x + 2|u|2 ∂u∂x
)

+ (1− α0 − β0)
(
u ∂
∂x (|u|2) + |u|2 ∂u∂x

) ]
= 0

(8)
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Which will be the expression to discretize using the finite differences, aiming to preserve the L2 norm of the numerical
solution.

Let us discretize the real axis as xj = j∆x, j ∈ Z, for a predefined spacestep ∆x. We shall also discretize the
time domain writing tn := t0 + n∆t, n ∈ N, for a timestep ∆t. For a given n ∈ N, we define the vector un ∈ CZ

to be the approximation of the function u(x, t = tn), solution of equation (1). With this, is straightforward to write

unj ≈ u(xj , tn). We also write u
n+ 1

2
j := 1

2

(
un+1
j + unj

)
. We shall now be on our way to propose the numerical scheme,

based on a finite difference approximation of (8). The time derivative will be discretized using the forward finite
difference quotient in time:

∂u

∂t
(xj , tn) ≈

un+1
j − unj

∆t
= Dt(u

n
j )

The terms multiplied by α and β are discretized using a Crank-Nicolson method:

∂2u

∂x2
(xj , tn) ≈ 1

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+
unj+1 − 2unj + unj−1

∆x2

)
=

1

2

(
D2

0(un+1
j ) +D2

0(unj )
)

= D2
0(u

n+ 1
2

j )

∂3u

∂x3
(xj , tn) ≈ 1

2

(
− 1

2u
n+1
j−2 + un+1

j−1 − u
n+1
j+1 + 1

2u
n+1
i+2

∆x3
+
− 1

2u
n
j−2 + unj−1 − unj+1 + 1

2u
n
j+2

∆x3

)

=
1

2

(
D3

0(un+1
j ) +D3

0(unj )
)

= D3
0(u

n+ 1
2

j )

The discretization of the term multiplied by γ will be given by:

|u(xj , tn)|2u(xj , tn) ≈ |un+ 1
2

j |2
(
u
n+ 1

2
j

)
We will associate it an operator Fγ : CZ → CZ such that

u
(p)
j −→ [Fγ(u(p))]j :=

∣∣∣∣∣u
(p)
j + unj

2

∣∣∣∣∣
2
(u(p)

j + unj
2

)

For the terms multiplied by δ and −δ, and using α0 = 1
2 , β = 0 in (8), we write:

|u(xj , tn)|2 (u(xj , tn))x +
(
|u(xj , tn)|2u(xj , tn)

)
x
−
(
|u(xj , tn)|2u(xj , tn)

)
x

≈ 1

2

(
|un+ 1

2
j |2D0(u

n+ 1
2

j ) +D0

(
|un+ 1

2
j |2un+ 1

2
j

))
− 1

2
D0(|un+ 1

2
j |2)u

n+ 1
2

j

where we define the operator

Fδ : CZ −→ CZ

u
(p)
j −→ [Fδ(u

(p))]j :=
1

2

(∣∣∣upj + unj
2

∣∣∣2D0

(upj + unj
2

)
+D0

(upj + unj
2

upj + unj
2

))
− 1

2
D0

(∣∣∣upj + unj
2

∣∣∣2)(upj + unj
2

)
The ε term will be discretized directly:

u(xj , tn)
∣∣∣u(xj , tn)

∣∣∣2
x
≈ un+ 1

2
j D0

(
|un+ 1

2
j |2

)
where we define its representing function

Fε : CZ −→ CZ

u
(p)
j −→ [Fε(u

(p))]j :=

(
upj + unj

2

)
D0

∣∣∣∣∣u
p
j + unj

2

∣∣∣∣∣
2


Hence, ∀j ∈ Z, ∀n ∈ N, and for a given u0 ∈ CN the numerical scheme will be given component-wise by

iDtu
n
j + αD2

0(u
n+ 1

2
j ) + γ[Fγ(u(n+1))]j + iβD3

0(u
n+ 1

2
j ) + iδ[Fδ(u

(n+1))]j + iε[Fε(u
(n+1))]j = 0 (9)
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2.2 Conservation of the L2-norm

This numerical scheme was designed to preserve the L2-norm of the numerical solution. In order to demonstrate that
property, we will show the next lemma

Lemma 1 ∀ϕ ∈ CZ, we have

Im(D2
0ϕ,ϕ) = 0 (10)

Re(D3
0ϕ,ϕ) = 0 (11)

Re(|ϕ|2D0ϕ+ D0

(
|ϕ|2ϕ

)
, ϕ) = 0 (12)

(ϕ2D0ϕ+ D0(|ϕ|2ϕ), ϕ) = 0 (13)

(ϕD0(|ϕ|2), ϕ) = 0 (14)

Proof: To get (10), note that

[D2
0(ϕ)]j = D2

0(ϕj) =
ϕj+1 − 2ϕj + ϕj−1

∆x2
=

1

∆x
(D+ϕj −D−ϕj)

Which can be extended to the other elements of D2
0(ϕ). Hence, we have.

(D2
0(ϕ), ϕ) =

1

∆x
(D+ϕ−D−ϕ,ϕ) =

1

∆x
(−(D−ϕ,ϕ) + (D+ϕ,ϕ)) = (D2

0(ϕ), ϕ)

from here, we get (10). In order to obtain (11), and as in the previous case, we must first note that

D3
0ϕj = D0(D2

0ϕj)

Which can be extended to the other elements D0ϕ. Thus, equation (11) follows because (D0u, v) = −(u,D0v). To
obtain (12), we have

|ϕ|2D0ϕ · ϕ = |ϕ|2ϕ ·D0ϕ = −D0

(
|ϕ|2ϕ

)
· ϕ = −D0 (|ϕ|2ϕ) · ϕ

Hence, we have
Re
[
|ϕ|2D0ϕ · ϕ+ D0

(
|ϕ|2ϕ

)
· ϕ
]

= 0

where we can conclude (12). To obtain (13), we have:

ϕ2D0ϕ · ϕ = ϕ2ϕ ·D0ϕ = −D0(ϕ2ϕ) · ϕ = −D0(|ϕ|2ϕ) · ϕ

Therefore, we can conclude (13). In the identity (14) we have

ϕD0(|ϕ|2) · ϕ = D0(|ϕ|2) · |ϕ|2 = −|ϕ|2 ·D0(|ϕ|2) = −D0(|ϕ|2)ϕ · ϕ

Then, we have (14), concluiding the proof of the lemma. �

The previous lemmas will now give us reasons to write the numerical scheme (8). From the convex combination
(7), we want to re-write it in function of the conserved quantities of the lemma 2. In other words, we want something
like

∂

∂x
(|ϕ|2ϕ) = A

(
|ϕ|2ϕx + (|ϕ|2ϕ)x

)
+B(|ϕ|2xϕ) (15)

where A and B are real constants whose values must be obtained. Comparing (15) with the convex combination (7),
and solving the resulting linear system of equations, gives A = B = 1

2 or α0 = 1
2 and β0 = 0. This leads to the

proposed scheme in (8). Now we are in conditions to state the following theorem:

Theorem 1 Let u0 ∈ CZ : ||u0||22 < ∞. Then, ∀n ∈ N, and for un ∈ CZ, the numerical method written in (9)
preserves the numerical L2 norm in time, i.e. for the numerical solution of (1) at the n-th timestep, we have∑

j∈Z
|un+1
j |2∆x =

∑
j∈Z
|unj |2∆x = ||u0||22 (16)
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Proof: we will multiply equation (9) by
(
un+1
j +unj

)
∆x, sum all the terms of the array, and extract the complex part.

We will study each resulting term separately, and neglecting by the moment the ∆x term. For the time derivative
term, we have

i
un+1
j − unj

∆t
(un+1
j + unj ) =

i

∆t

(
|un+1
j |2 − |unj |2 + 2iIm(un+1

j unj )
)

(17)

Hence, when extracting the complex part, we have to demonstrate that the other terms of the scheme are reals or
zeros. The complex part of the second term which multiplies the α constant, is zero due to (10) for ϕ = un+ 1

2 . In the
case of the γ term, the result obtained is real; thus, its complex part is equal to zero. The same conclusion is valid for
the term multiplied by β, but using ϕ = un+ 1

2 in (11). Finally, the complex parts of the terms involving δ, ε are also
zero as a consequence of (12), (13) and (14) in Lemma 1. Hence, adding all the previous results, and extracting the
complex part, we have,

0 =
∑
j∈Z

(
|un+1
j |2∆x− |unj |2∆x)

)
, n ∈ N. (18)

this allow us to conclude if we consider ||u0||22 <∞. �.

2.3 Conservation of the Energy.

Before presenting the result, let us define the discrete L4 norm of un as

||un||44 :=
(
(un)2, (un)2

)
=
∑
j

|unj |4∆x

Let us also define the discrete energy E(n) of the numerical solution un, at a timestep n, as

E(n) :=
α

2
||D+u

n||22 −
γ

4
||un||44 (19)

where
∆E := max

n,m∈N

∣∣∣E(n) − E(m)
∣∣∣

Finally, we will define the space H2
∆x as the space endorsed with the inner product (·, ·)H2

∆x
defined as

(u, v)H2
∆x

:= (u, v) + (D+u,D+v) + (D2u,D2v)

where (·, ·) is the inner product defined in (4), and u, v ∈ CN : {u,D+u,D2u} ⊂ `2, {v,D+v,D2v} ⊂ `2. For a ϕ ∈ CN

then, this induces the following norm:

||ϕ||2H2
∆x

:= ||ϕ||22 + ||D+ϕ||22 + ||D2ϕ||22

The following result is obtained:

Theorem 2 Let un ∈ CN the numerical solution of (1) using scheme (9), such that un ∈ H2
∆x. If 3βγ = α(ε+ 2δ),

then the following property holds
E(n+1) = E(n) +O(∆t+ ∆x2) (20)

Before proving the theorem, we will state and prove the following lemma:

Lemma 2 ∀ϕ ∈ CZ, and for ϕ+, ϕ− ∈ CZ : (ϕ+)j = ϕj+1, (ϕ−)j = ϕj−1, we have

Re
(
|ϕ|2D0ϕ,D

2ϕ
)

=
1

2
|ϕ|2 ·

(
D+

(
|D−ϕ|2

))
(21)

Re
(
D0(|ϕ|2)ϕ,D2ϕ

)
=
|ϕ+|2 + 2|ϕ|2 + |ϕ−|2

4
·D+

(
D−|ϕ|2

)
(22)

Re
(
D0(|ϕ|2ϕ),D2ϕ

)
=
|ϕ+|2 + |ϕ|2 + |ϕ−|2

2
·D+

(
|D−ϕ|2

)
+

∆x2

2

(
D0|ϕ|2

)
·
∣∣D2ϕ

∣∣2 (23)

Re
(
D3ϕ,D2ϕ

)
= 0 (24)
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Proof: starting with (21), we have

|ϕj |2D0ϕjD2ϕj = |ϕj |2D0ϕjD+D−ϕj

=
1

2
|ϕj |2

(
D+ϕjD−D+ϕj

)
+

1

2
|ϕj |2

(
D−D+D−ϕj

)
(25)

At this point we will use the following identities for a, b ∈ C:

Re
(
b(b− a)

)
=

1

2

(
|b|2 − |a|2

)
+

1

2
|b− a|2 (26)

Re
(
a(b− a)

)
=

1

2

(
|b|2 − |a|2

)
− 1

2
|b− a|2 (27)

using this over the real part in (25), we get

Re
(
|ϕj |2D0ϕjD2ϕj

)
=

1

4
|ϕj |2D+

(
|Dϕj |2

)
− ∆x2

4
|D+Dϕj |2|ϕj |2

+
1

4
|ϕj |2D−

(
D−(|D+ϕj |2)

)
+

∆x2

4
|D−D+ϕj |2|ϕj |2

=
1

4
|ϕj |2

(
D+
(
|D−ϕj |2

)
+D−

(
|D+ϕj |2

))
.

Summing over j, we get

Re
(
|ϕ|2D0ϕ,D

2ϕ
)

=
1

4
|ϕ|2 ·

(
D+

(
|D−ϕ|2

))
− 1

4

((
D+|ϕ|2

)
·
(
|D+ϕ|2

))
=

1

2
|ϕ|2 ·D+

(
|D−ϕ|2

)
hence, (21) is proved. To obtain (22), we will first require the following property for a, b ∈ CZ:

D0(ajbj) = aj+1
D+bj

2
+ aj−1

D−bj
2

+ bjD0aj (28)

D−(ajbj) = bj−1Daj + ajD
−bj (29)

Using this over all the components of ϕ in (22), we get(
D0ϕ,D

2ϕ
)

= −
(
D−

(
D0(|ϕ|2)ϕ

)
,D−ϕ

)
= −

(
D0(|ϕ|2)D−ϕ,D−ϕ

)
−
(
ϕ−D

−D0(|ϕ|2)D−ϕ
)

= −
(
D0(|ϕ|2), |D−ϕ|2

)
−
(
ϕ−D

−D0(|ϕ|2),D−ϕ
)

extracting the real part,

Re
(
D0ϕ,D

2ϕ
)

=
(
|ϕ|2,D0(|ϕ|2)

)
−
(
D−D0(|ϕ|2),

(1

2
D−|ϕ|2 − ∆x

2
|D−ϕ|2

))
=
(
|ϕ|2,D0(|ϕ|2)

)
− 1

2

(
D0

(
D−|ϕ|2

)
,D−|ϕ|2

)
+

∆x

2

(
D0D

−(|ϕ|2)), |D−ϕ|2
)

=
(
|ϕ|2,D0(|ϕ|2)

)
− ∆x

2

(
D−(|ϕ|2),D0(|D−ϕ|2)

)
=
(
|ϕ|2,D0(|ϕ|2)

)
−

[
1

2

(
|ϕ|2,D0

(
|D0ϕ|2

))
−
(
|ϕ|2,D0

(
|D+ϕ|2

))]
=
(
|ϕ|2,D0

[
|D−ϕ|2 + |D+ϕ|2

])
= −

(
D0|ϕ|2,

[
|D−ϕ|2 + |D+ϕ|2

])
= −1

4

(
D−|ϕ+|2 + 2D−|ϕ|2 + D−|ϕ−|2, |D−ϕ|2

)
=
( |ϕ+|2 + 2|ϕ|2 + |ϕ−|2

4
,D+

(
|D−ϕ|2

))
.
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Hence, (22) is proved. To prove (23), and starting by using (28), we have(
D0

(
|ϕ|2ϕ

)
,D2ϕ

)
=
[(

D0

(
|ϕ|2

)
ϕ,D2ϕ

)
+

1

2

(
ϕ+|2D+ϕ+ |ϕ−|2D−ϕ,D2ϕ

)]
(30)

extracting the real part, and by (26) and (27) respectively, we have

Re
(
|ϕ+|2D+ϕ,D2ϕ

)
=

1

2
|ϕ+|2 ·D+

(
|D+ϕ|2

)
+

∆x

2
|ϕ+|2 ·

(
|D2ϕ|2

)
(31)

Re
(
|ϕ−|2D−ϕ,D2ϕ

)
=

1

2
|ϕ−|2 ·D+

(
|D−ϕ|2

)
− ∆x

2
|ϕ−|2 ·

(
|D2ϕ|2

)
(32)

replacing (31) and (32) over the real part of (30), we get

Re
(
D0

(
|ϕ|2ϕ

)
,D2ϕ

)
= Re

(
D0

(
|ϕ|2

)
ϕ,D2ϕ

)
+

1

4

(
|ϕ+|2 + |ϕ−|2

)
·D+

(
|D−ϕ|2

)
+

∆x

4

(
|ϕ+|2 − |ϕ−|2

)
·
(
|D2ϕ|2

)
= Re

(
D0

(
|ϕ|2

)
ϕ,D2ϕ

)
+

1

4

(
|ϕ+|2 + |ϕ−|2

)
·D+

(
|D−ϕ|2

)
+

∆x2

2

(
D0|ϕ|2

)
·
(
|D2ϕ|2

)
and recalling (22), the conclusion follows. Finally for (24),(

D3ϕ,D2ϕ
)

=
(
D0D

2ϕ,D2ϕ
)

= −
(
D2ϕ,D0D

2ϕ
)

= −
(
D3ϕ,D2ϕ

)
and hence, the proof of the Lemma is complete. �
Proof of Theorem 2: we will multiply (9) with Dtu

n
j , sum over j, and extract the real part. This will lead us to

0 =
α

2∆t
(||D+un+1||2 − ||D+un||2)− γ

∑
j∈Z

Re
(
Fγ(un+1)jDtu

n
j

)
(33)

+ β
∑
j∈Z

Im
(
D3u

n+ 1
2

j Dtuj
n
)

+ δ
∑
j∈Z

Im
(
Fδ(u

n+1)jDtu
n
j

)
+ ε
∑
j∈Z

Im
(
Fε(u

n+1)jDtu
n
j

)
(34)

and replacing Dtu
n
j from the numerical scheme on the last three products,

0 =
α

2∆t
(||D+un+1||2 − ||D+un||2)− γ

∑
j∈Z

Re
(
Fγ(un+1)Dtu

n
j

)

+
∑
j∈Z

Im

[(
βD3u

n+ 1
2

j + δFδ(u
n+1)j + εFε(u

n+1)j

)(
iαD2u

n+ 1
2

j − βD3u
n+ 1

2
j + iγFγ(un+1)j + δFδ(un+1)j + εFε(un+1)j

)]

0 =
α

2∆t

(
||D+un+1||2 − ||D+un||2

)
− γ

∑
j∈Z

Re
(
Fγ(un+1)Dtu

n
j

)
+ αβ

∑
j∈Z

Re
(
D3u

n+ 1
2

j D2u
n+ 1

2
j

)
+ αδ

∑
j∈Z

Re
(
Fδ(u

n+1)jD2u
n+1 1

2
j

)
+ αε

∑
j∈Z

Re
(
Fε(u

n+1)jD2u
n+ 1

2
j

)
(35)

+ βγ
∑
j∈Z

Re
(
D3u

n+ 1
2

j Fγ(un+1)j

)
+ γδ

∑
j∈Z

Re
(
Fδ(u

n+1)jFγ(un+1)j

)
+ γε

∑
j∈Z

Re
(
Fε(u

n+1)jFγ(un+1)j

)
We will study each term in (35) by components if possible. For the second term in (35), let us note that

|un+ 1
2

j |2un+ 1
2

j −
|un+1
j |2 + |unj |2

2
u
n+ 1

2
j = −∆t2

8
u
n+ 1

2
j |Dtu

n
j |2.

Hence,

Re
(
Fγ(un+1)jDtunj

)
= Re

(
|un+ 1

2
j |2un+ 1

2
j Dtunj

)
= Re

( |un+1
j |2 + |unj |2

2
u
n+ 1

2
j Dtunj −

∆t2

8
u
n+ 1

2
j |Dtu

n
j |2Dtunj

)
=

1

4∆t

(
|un+1
j |4 − |unj |4

)
− ∆t2

8
Re
(
u
n+ 1

2
j |Dtu

n
j |2Dtunj

)
(36)
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Meanwhile, and thanks to (24) in Lemma 2, we can get rid of the third term in (35). For the fourth term, and by (22)
in Lemma 2:

Re
(
Fδ(u

n+1)D2un+1 1
2

)
= D0(|un+ 1

2 |2)un+ 1
2 ·D2un+ 1

2

=
|un+ 1

2
+ |2 + 2|un+ 1

2 |2 + |un+ 1
2

− |2

8
·D+

(
D−|un+ 1

2 |2
)

(37)

where u+ ∈ CZ : (u+)j = uj+1, and u− ∈ CZ : (u−)j = uj−1. For the fifth term in (35), and using (21), (22) and (23)
in Lemma 2:

Re
(
Fε(u

n+1)D2un+ 1
2

)
=

1

2

(
|un+ 1

2 |2D0u
n+ 1

2 + D0

(
|un+ 1

2 |2un+ 1
2

)
−D0(|un+ 1

2 |2)un+ 1
2

)
·D2u

=
1

4
|un+ 1

2 |2 ·D+
(
|D−un+ 1

2 |2
)

+
|un+ 1

2
+ |2 + |un+ 1

2 |2 + |un+ 1
2

− |2

4
·D+

(
|D−un+ 1

2 |2
)

+
∆x2

4
D0

(
|un+ 1

2 |2
)
·
∣∣D2un+ 1

2

∣∣2 − |un+ 1
2

+ |2 + 2|un+ 1
2 |2 + |un+ 1

2
− |2

8
·D+

(
D−|un+ 1

2 |2
)

=
|un+ 1

2
+ |2 + 2|un+ 1

2 |2 + |un+ 1
2

− |2

8
·D+

(
|D−un+ 1

2 |2
)

+
∆x2

4
D0

(
|un+ 1

2 |2
)
·
∣∣D2un+ 1

2

∣∣2. (38)

Meanwhile, the sixth term can be worked thanks to (23) in Lemma 2:

Re
(
D3u

n+ 1
2

j Fγ(un+1)j

)
= Re

(
D3u

n+ 1
2

j |un+ 1
2

j |2un+ 1
2

j

)
= −Re

(
D0

(
|un+ 1

2
j |2un+ 1

2
j

)
D2u

n+ 1
2

j

)
= −|ϕj+1|2 + |ϕj |2 + |ϕj−1|2

2
D+
(
|D−ϕj |2

)
+

∆x2

2
D0

(
|ϕj |2

)∣∣D2ϕj
∣∣2. (39)

The last two terms in (35) require more effort. For the last one, and because Re(Du, u) = 0, ∀u ∈ CZ, we have

Re
(
Fε(u

n+1)jFγ(un+1)j

)
= Re

(
1

2
|un+ 1

2
j |2D0u

n+ 1
2

j |un+ 1
2

j |2un+ 1
2

j +
1

2
D0

(
|un+ 1

2
j |2un+ 1

2
j

)
|un+ 1

2
j |2un+ 1

2
j

− 1

2
D0|u

n+ 1
2

j |2un+ 1
2

j |un+ 1
2

j |2un+ 1
2

j

)

=
1

2
Re

(
|un+ 1

2
j |4un+ 1

2
j D0u

n+ 1
2

j − |un+ 1
2

j |4D0

(
|un+ 1

2
j |2

))
(40)

using the following identities for a, b ∈ R,

b2(b− a) =
1

3
(b3 − a3)− 1

3
(b− a)3 + b(b− a)2

a2(b− a) =
1

3
(b3 − a3)− 1

3
(b− a)3 − a(b− a)2

we can write

|un+ 1
2

j |4D0

(
|un+ 1

2
j |2

)
=

∆x2

6

(
D+|un+ 1

2
j |2

)3

(41)

on the other hand, and by a(b− a) = 1
2 (a2 − b2) + 1

2 (a− b)2, we can write

|un+ 1
2

j |4un+ 1
2

j D0u
n+ 1

2
j =

∆x2

12
(D+|un+ 1

2
j |2)3 +

∆x2

4
D+
(
|un+ 1

2
j |4

)
|un+ 1

2
j |2 (42)

then, replacing (41) and (42) in (40), we will get

Re
(
Fε(u

n+1)jFγ(un+1)j

)
= −∆x2

24

(
D+|un+ 1

2
j |2

)3
+

∆x2

8
D+
(
|un+ 1

2
j |4

)
|D+u

n+ 1
2

j |2. (43)
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Using the same technique, we can write

Re
(
Fδ(u

n+1)jFγ(un+1)j

)
=

∆x2

6

(
D+|un+ 1

2
j |2

)3

. (44)

Replacing (36), (37), (38), (39), and the sums of (43) and (44), all in (35); using the fact that 3βγ = α(ε + 2δ),
multiplying by ∆t, and recalling definition (19), we get

E(n+1) = E(n) − γ∆t3

8
Re
(
un+ 1

2 |Dtu
n|2 ·Dtun

)
+ ∆tβγ

(
∆x2

8
D2
(
|un+ 1

2 |2
)
·D+

(
|D−un+ 1

2 |2
)

+
∆x2

4

( 3ε

ε+ 2δ
− 2
)
D0

(
|un+ 1

2 |2
)
·
(
|D2un+ 1

2 |2
))

+ ∆tεγ

((
− ∆x2

24

(
D+|un+ 1

2 |2
)2 · (D+|un+ 1

2 |2
)

+
∆x2

8
D+|un+ 1

2 |4 · |D+un+ 1
2 |2
))

+ δγ
∆x2

6

(
D+|un+ 1

2 |2
)2

·
(
D+|un+ 1

2 |2
)

= E(n) +O(∆t+ ∆x2)

hence, the theorem is proved. �

2.4 Estimation of the trunctation error

We will define the truncation error τnk , for an exact solution ϕnk of (1), as

τnk := iDtϕ
n
k + αD2ϕ

n+ 1
2

k + γ|ϕn+ 1
2

k |2ϕn+ 1
2

k + iβD3ϕ
n+ 1

2
k

+i
δ

2

[
|ϕn+ 1

2
k |2D0ϕ

n+ 1
2

k +D0

(
|ϕn+ 1

2
k |2ϕn+ 1

2
k

)
− ϕn+ 1

2
k D0

(
|ϕn+ 1

2
k |2

)]
+ iεϕ

n+ 1
2

k D0

(
|ϕn+ 1

2
k |2

)
(45)

The following estimate holds:

Theorem 3 Assuming that ϕn = ϕ(x, tn), solution of (1) at the time t = tn = n∆t, is in C2
[
[−T, T ], C5

]
, then

there exist a real constant C0 > 0 such that

∆t

N∑
n=0

||τ (n)||2 ≤ C2
0T (∆t4 + ∆x4) (46)

where T = N∆t.

Proof: for the exact solution ϕn, we will calculate its Taylor expansion over (xk, tn) := (xk, tn + ∆t
2 ) for each term

in (45). It is known that the linear terms are approximations of order 2 in both space and time variables; hence,
we will only study the nonlinear terms. We will also use the following notation: we shall use ϕnx,k to denote the

partial derivative ∂ϕ
∂x evaluated in (xk, tn), ϕnxx,k will denote the derivative ∂ϕ2

∂x2 over (xk, tn), and ϕnxt,k will denote the

derivative ∂ϕ2

∂t∂x . Similar forms will be used for further derivatives.

We will study each term separately:

• γ term: let us recall the following:

ϕn+1
k = ϕnk +

∆t

2
ϕnt,k +

∆t2

4
ϕntt,k +O(∆t3)

ϕnk = ϕnk −
∆t

2
ϕnt,k +

∆t2

4
ϕntt,k +O(∆t3)
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hence,

ϕn+1
k + ϕnk

2
= ϕnk +O(∆t2) (47)

then,

|ϕn+ 1
2

k |2ϕn+ 1
2

k = |ϕnk |2ϕnk +O(∆t2)

• δ and ε terms. We need to study the last three terms in (45). For the one multiplying δ
2 , due to (47), and

because D0 is a second order aproximation of the first derivative, we can write

|ϕn+ 1
2

k |2D0ϕ
n+ 1

2

k = |ϕnk |2ϕnx,k +O(∆t2 + ∆x2).

Using similar arguments over the term multiplying δ
2 ,

D0

(
|ϕn+ 1

2

k |2
)
ϕ
n+ 1

2

k = |ϕnk |2xϕnk +O(∆t2 + ∆x2).

For the last term in (45),

ϕ
n+ 1

2

k D0

(
|ϕn+ 1

2

k |2
)

= ϕnk |ϕnk |2x +O(∆x2 + ∆t2)

we can then conclude after combining all the previous results, extracting the square at both sides, summing from
n = 0 to n = N ∈ N, and multiplying by ∆t for a constant C0 ∈ R depending on the continuity conditions of ϕ. �

3 Numerical Results

In this section we will show some numerical experiments with results supporting the theorems demonstrated in the
previous sections. In particular, we will test the scheme with some known examples whose exact solutions are previ-
ously known. Finally, we will test the code for an initial condition representing two colliding solitons.

3.1 Computing Strategy

Let us consider the space domain [−L,L] ⊂ R. The calculation of the numerical solution will consider periodic
boundary conditions, i.e. un−N = unN , where unN = u(N∆x = L, tn), N ∈ N. Some comments on this regard must be
made:

• A bounded domain in R is considered because of computational limitations. As such, the space domain will be
discretized using 2N equally spaced grids. Also, the numerical solution un will be considered as a complex-valued
vector with 2N elements for each timestep. Theorems proved in the previous sections will still hold.

• The finite difference operators D0, D2
0 and D3

0 can be represented as matrices in R2N×2N operating over complex-
valued vectors. Furthermore: because these operators will act only over the numerical solution un, and because

11



of our choice on the boundary conditions, their matrix representations can be written as:

D0 =
1

∆x



0 1 −1

−1 0
. . .

. . .
. . .

. . .

. . . 0 1
1 −1 0



D2
0 =

1

∆x2



−2 1 1

1 −2
. . .

. . .
. . .

. . .

. . . −2 1
1 1 −2



D3
0 =

1

∆x3



0 −1 1
2 − 1

2 1
1 0 −1 1

2 − 1
2

− 1
2 1 0 −1 1

2
. . .

. . .
. . .

. . .
. . .

− 1
2 1 0 −1 1

2
1
2 − 1

2 1 0 −1
−1 1

2 − 1
2 1 0



• Therefore, the numerical scheme can be rewritten using matrix notation: for a given u0 ∈ CN , the numerical
scheme (9) allows us to compute un ∈ CN , the numerical approximation of the solution u(·, tn) ∈ L2(Ω), as
follows:[
− 1

∆t
I + i

α

2
D2

0 −
β

2
D3

0

]
un+1 +

[
1

∆t
I + i

α

2
D2

0 −
β

2
D3

0

]
un = δFδ(u

n+1) + εFε(u
n+1)− iγFγ(un+1) (48)

To compute the numerical solution, we will use a fixed-point method in order to solve equation (48) for each
time-step. As in Delfour, Fortin and Payre [12], for a up=1 = un ∈ CZ given, we compute a sequence of complex
vectors {up}, p = 2, 3, 4, . . . , until a stopping criteria is verified. The sequence is given by

up =

[
− 1

∆t
I + i

α

2
D2

0 −
β

2
D3

0

]−1

(49)[
δFδ(u

p−1) + εFε(u
p−1)− iγFγ(up−1)− δF−δ(up−1)−

(
1

∆t
I + i

α

2
D2

0 −
β

2
D3

0

)
un
]

(50)

In other words, we have to solve a linear system of equations many times per timestep until a stopping criterion
is fulfilled, where the matrix to invert has a pentadiagonal structure. Because of the pentadiagonal structure
of the matrix, and because of the periodic boundary conditions, we’ve used the method proposed by Navon
[22]. The resulting pentadiagonal system (with no periodic boundary conditions) is solved using the algorithm
PTRANS-II proposed by Askar and Karawia [4]. As a stopping criterion, we’ve considered two consecutive terms
in the sequence {up}, p = 1, 2, . . . . The fixed point scheme stops if we have

||up − up−1||L2(Ω) < δ̂

where δ̂ is given. In that case, we do un+1 = up in order to continue with the next timestep. The scheme has
linear convergence for ∆t enoughly small.

3.2 Case 1: modified KdV equation for a 1-soliton

In (1), using α = γ = ε = 0, β = 1, δ = 6, we can derive the modified KdV equation:

ut + uxxx + 6u2ux = 0 (51)
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Absolute Value of the Solution
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Figure 1: Case 1. Left: absolute value of the numerical solution for (51). Right: numerical error of the solution, in `2
norm.

where an exact solution is given by
u(x, t) = 2sech(2x− 8t) (52)

We have computed the numerical solution for this problem using the numerical scheme (48) with u(x, 0) in (52)
as an initial condition. The space domain is Ω = [−120π, 120π], and t ∈ [0, 1], while ∆t = 10−2 is fixed. In the
space variable, we’ve used ∆x = 120π

214 ≈ 0.023. Figure 1 left shows the time evolution of the soliton, and Figure1
right shows the numerical error of the numerical solution. The numerical L2 norm is conserved with a difference of
∆`2 = 3.597083 · 10−15.

3.3 Case 2: solution for a HNLS equation.

The next example will consider a solution for (1) from Potasek and Tabor [27]:

u(x, t) = u0e
i(nt+rx)sech(kx+ lt) (53)

in (1), the equation parameters are α = β = 1
2 , γ = 1, δ = 0, ε = 1. Inside the fixed-point iteration, we have used

δ̂ = 10−15. For k = 1, this yields n ≈ 0.733796, r = − 1
6 , l = − 7

24 and |u0|2 = 3
2 . Figure 2 presents the results of a

simulation using ∆t = 0.01 and ∆x = 28π
215 ≈ 0.002684. Figure 2 right shows the behavior of the error, while figure 2

left shows the absolute value of the numerical solution. There, the numerical L2 norm is completely conserved; that
is, ∆`2 = 0, while ∆E = 1.344651 · 10−6. Both of those quantities are shown in figure 3.

3.4 Case 3: solution for another HNLS equation.

Let us now consider the solution given in Kumar and Chand [19]. In particular: we will consider the following solution:

u(x, t) = Aei(−kt+ωx+θ)sech(B(t− vx)) (54)
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Figure 2: Case 2. Left: color plot of the numerical solution (in absolute value) of equation (53). Right : time behavior
of the error.
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Figure 3: Case 2. Time evolution of the conserved quantities for the numerical solution.

where, besides the energy conservation condition 3βγ = α(ε+ 2δ), another condition is imposed in order to prove the
existence of solitonic solutions: δ = −2ε. Furthermore,

ω =
αv ±

√
α2v2 + 3β2v3B − 3βv

3βv

B = ±1

v

√
k − αω2 + βω3

3βω − α

A = ±

√
2(k − αω2 + βω3)

δω − γ

the parameters k and v can be chosen, and in our case k = 0.0001 and v = 10. With this parameters, a non-linear
system is solved for ω in order to get the values of A and B. Figure 4 shows the time evolution and the numerical
error of the solution. Figure 5 shows the evolution of the numerical L2 norm and the energy, where ∆`2 = 0 and
∆E = 5.71114 · 10−6

3.5 Case 4: colliding solitons for the KdV equation

Using again equation (??), let us consider the following function as initial condition describing two colliding solitons:

u(x, 0) =
√

5sech(
√

5(x+ 5)) + sech(x− 5)

in this computation, ∆x = 120π
214 , ∆t = 0.01, t ∈ [0, 1]. Figure 6 shows the behavior of the solitons and the evolution

of the numerical L2 norm.
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Figure 4: Case 3. Left: color plot of the numerical solution (in absolute value) of equation (53). Right : time behavior
of the error.
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Figure 5: Case 3. Time evolution of the conserved quantities for the numerical solution.
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Figure 6: Case 3. Left: color plot of the numerical solution (in absolute value). Right : time behavior of the numerical
L2 norm.
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3.6 Case 5: colliding solitons for a HNLS equation.

This experiment consist in use the following expression as initial condition [14]

u0(x) :=
G(x)

F (x)
.

Both functions are defined as follows:

F (x) = 1 + a(1, 1∗)eη1+η∗1 + a(1, 2∗)eη1+η∗2 + a(2, 1∗)eη2+η∗1 + a(2, 2∗)eη2+η∗2 + a(1, 2, 1∗, 2∗)eη1+η2+η∗1+η∗2

G(x) = eη1 + eη2 + a(1, 2, 1∗)eη1+η2+η∗1 + a(1, 2, 2∗)eη1+η2+η∗2

where for ω := α
2γ and P1, P2 ∈ C, i, j = 1, 2,

ηi = Pix− η0
i

Ωi = −iβP 2
i + γP 3

i

a(i, j∗) =
ω

(Pi + P ∗j )2

a(i, j) =
(Pi − Pj)2

ω

a(i∗, j∗) =
(Pi − P ∗j )2

ω
a(i, j, k∗) = a(i, j)a(i, k∗)a(j, k∗)

a(i, j, k∗, l∗) = a(i, j)a(i, k∗)a(i, l∗)a(j, k∗)a(j, l∗)a(k∗, l∗)

The constants P1, P2, η
0
1 and η0

2 can be chosen in order to obtain colliding solitons. For our experiment, we have done
P1 = −1, P2 = 1

2 , η0
1 = −1, and η0

2 = 1. In (1), α = 0.5, β = −1, γ = 1, δ = −6 and ε = 0. Also, ∆t = 0.01 and
∆x = 120

214 .

Figure 7 shows the behavior of the solitons. Figure 8 shows the behavior of the discrete L2 norm and the energy.
The energy is not preserved in this example. This is maybe due to the nature of the iniial condition.

4 Conclusion

We have proposed a new way to solve equation (1) using a finite difference scheme. The procedure involved the
re-writing of a particular nonlinearity as a convex combination in order to get the conservation of the numerical L2

norm. The numerical energy can also be conserved for an appropiate initial condition. The algorithm proposed in
this paper can be programmed with ease in any computer with a linear algebra library available. This work can be an
inspiration for solving other problems involving higher order derivatives and nonlinearities, and can be easely adapted
to work on other problems involving full damping terms like in [23], [33], and localized weak damping like [6] and [10],
as well as when the damping coefficient λ(x, t) may vanish at infinity [9].
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Figure 7: Case 5. Color plot of the numerical solution (in absolute value).
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[23] T. Özsari, V. K. Kalantarov, I. Lasiecka. Uniform decay rates for the energy of weakly damped defocusing semilin-
ear Schrödinger equations with inhomogeneous Dirichlet boundary control. J. Differential equations 251 (2011),
no. 7, 1841-1863.
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