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November 22, 2017

Abstract A novel central weighted essentially non-oscillatory (central WENO;
CWENO)-type scheme for the construction of high-resolution approximations to
discontinuous solutions to hyperbolic systems of conservation laws is presented.
This procedure is based on the construction of a global average weight using the
whole set of Jiang-Shu smoothness indicators associated to stencil. By this device
one does not to have to rely on ideal weights, which, under certain stencil ar-
rangements and interpolating point locations, do not define a convex combination
of the interpolating lower-degree polynomials of the corresponding sub-stencils.
Moreover, this procedure also prevents accuracy loss near smooth extrema. These
properties result in a more flexible scheme that overcomes these issues, at the cost
of only few additional computations with respect to classical WENO schemes.
Numerical examples illustrate the performance of the new CWENO schemes.
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1 Introduction

1.1 Scope

Weighted Essentially Non-Oscillatory (WENO) schemes [7,9] have been widely
used in the literature, especially in the context of the approximation of discontin-
uous solutions to hyperbolic systems of conservation laws. The main feature of the
WENO procedure is based on the fact that a reconstruction polynomial can be de-
composed as a certain convex combination of reconstruction polynomials of lower
order, provided they are evaluated at points within a certain range. This prop-
erty is attained in the case of the well-known classical odd-order WENO schemes,
both when the WENO procedure is applied for interpolation of a function from
point values (as is expounded in [12, Sect. 2.1]) and for the reconstruction of a
function from cell averages (see [12, Sect. 2.2]). The latter usage is more relevant
to the numerical solution of conservation laws. The weights used to ponder the
contribution of each lower-order polynomial depend on the interpolating point and
are known as ideal weights. WENO schemes define nonlinear weights based on the
ideal weights so as to construct an essentially non oscillatory interpolant. However,
there are some circumstances in which the ideal linear weights are negative and
thus the non-linear WENO weights do not satisfy the required properties, namely
to attain the optimal order under smoothness assumptions and to be essentially
non-oscillatory when a discontinuity crosses the stencil. This is a well-known prob-
lem and strategies to solve it are summarized in [12, Sect. 2.3.3]. Therefore, since
there are some practical situations in which classical WENO schemes are not suit-
able for use, some authors have proposed solutions to overcome the aforementioned
issues by introducing the so-called central WENO (CWENO) schemes [8].

It is the purpose of this paper to propose an alternative approach to the pre-
vious works, based on a global average weight which does not depend on the ideal
weights and is built using only the classical Jiang-Shu smoothness indicators [7]
that would be considered to compute the classical WENO weights. Hence, it suf-
fices to consider only two additional items: on one hand, the global average weight,
which is defined using the smoothness indicators through elementary operations;
and on the other hand, the evaluation of the reconstruction polynomial from the
whole stencil. Therefore, it is expected that the computational cost regarding this
scheme is not much higher than for classical WENO schemes.

Finally, it should be remarked as well that, as will be shown along the paper,
this procedure is also capable to overcome the issue of loss of order of accuracy
near smooth extrema associated with the original WENO schemes.

1.2 Related work

To further put the paper into the proper perspective, we recall that WENO
schemes build on the previously family of essentially nonoscillatory (ENO) schemes
that are based on selecting the least oscillatory polynomial for reconstruction
(among several available candidates defined by their respective stencils), see Harten
et al. [5] and Shu and Osher [13,14]. The underlying idea of WENO schemes,
namely to utilize a weighted combination of these polynomials, was introduced in
[9] and put into a general framework to construct arbitrary-order accurate finite
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difference schemes in [7]. These schemes have gained a vast amount of popularity
and interest. For general information and references also to applications we refer
to review articles and handbook entries including [11,12,15].

The concept of central WENO (CWENO) schemes was advanced first by Levy,
Doron and Russo [8], where a new reconstruction polynomial, based on the infor-
mation of the whole stencil, together with the addition of an ideal weight associated
to such reconstruction, is proposed. This modification allows to attain the optimal
order for any convex combination of such weights, yielding a much more versa-
tile scheme. See also [3] and references therein for further details regarding the
aforementioned schemes.

1.3 Outline of the paper

The remainder of the paper is divided as follows. In Section 2, we briefly present the
context in which we will stress out the performance of the proposed scheme along
the paper. Section 3 is devoted to the description of the novel CWENO scheme in
full detail. A motivation for developing such technique is presented in Section 3.1,
in which some cases are shown in which classical WENO schemes fail to provide
a satisfactory strategy to perform spatial reconstructions. Section 3.2 is focused
on the formulation of our new scheme. Finally, in Section 3.3 some theoretical
results involving the accuracy of the weights and the reconstructions through our
scheme are shown. Next, in Section 4, several numerical tests are presented in
order to validate with numerical evidence the theoretical considerations drawn
in the previous sections regarding the scheme presented in this paper. On one
hand, Section 4.1 is devoted to an extensive accuracy analysis; on the other hand,
Section 4.2 is focused on several tests to check the behaviour of the proposed
scheme in shock problems from hyperbolic conservation laws, and to compare
them with the results obtained through the classical WENO scheme.

Finally, in Section 5 some conclusions are drawn.

2 Equations and numerical method

Although WENO schemes are an approximation not directly related to numerical
schemes for a determined type of PDE, we focus on hyperbolic conservation laws.
Therefore, we will briefly describe in this section the equations and their discretiza-
tion procedure. The partial differential equations (PDEs) considered in this work
are hyperbolic systems of m scalar conservation laws in d space dimensions:

ut +
d∑
i=1

f i(u)xi = 0, (x, t) ∈ Ω ×R+ ⊆ Rd ×R+, x = (x1, . . . , xd), (2.1)

where u = u(x, t) ∈ Rm is the sought solution, f i : Rm → Rm are given flux
density vectors, and

u =

u1
...
um

 , f i =

 f i1
...

f im

 , i = 1, . . . , d, f =
[
f1 . . . fd

]
.
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System (2.1) is complemented with the initial condition

u(x, 0) = u0(x), x ∈ Ω,

and prescribed boundary conditions.
To describe the spatial discretization, we introduce a Cartesian grid G formed

by points (cell centers) x = xj1,...,jd = ((j1 − 1
2 )h, . . . , (jd − 1

2 )h) ∈ G for h > 0. In
what follows, we use the index vector j = (j1, . . . , jd), let ei denote the i-th d-
dimensional unit vector, and assume that J is the set of all indices j for which
point values need to be updated. We then define

U(t) :=
(
u(xj , t)

)
j∈J .

Then we utilize the Shu-Osher finite difference scheme [14] with upwind spatial
reconstructions of the flux function that are incorporated into numerical flux vec-
tors f̂ i through a Donat-Marquina flux-splitting [4]. Thus, the contribution to the
flux divergence in direction xi at point x = xj is given by

f i(U)xi(xj , t) ≈
1

h

(
f̂ ij+ 1

2
ei

(
U(t)

)
− f̂ ij− 1

2
ei

(
U(t)

))
.

As a particular case of interest we consider WENO reconstructions [7] of order 2r+
1. To specify the time discretization, we write the semi-discrete scheme compactly
as

d

dt
U(t) = L(U(t)), L

(
U(t)

)
=
(
Lj(U(t))

)
j∈J ,

where we define

Lj(U(t)) :=
1

h

d∑
i=1

(
f̂ ij+ 1

2
ei

(
U(t)

)
− f̂ ij− 1

2
ei

(
U(t)

))
(with suitable modifications for boundary points). For the time discretization, we
use the third-order Runge-Kutta TVD scheme proposed in [13].

Assuming that Un := U(tn) is given and Un+1 = U(tn+1) is sought, where
tn+1 = tn +∆t, this scheme is defined as follows:

U (1) = Un −∆tL(Un),

U (2) =
3

4
Un +

1

4
U (1) − 1

4
∆tL(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) − 2

3
∆tL(U (2)).

3 Central weighted essentially nonoscillatory (CWENO) scheme

3.1 Motivation

To motivate the novel approach, which can be considered as an alternative CWENO
scheme, let us focus on d = 1 space dimension, and for ease of notation on a scalar
equation (m = 1). We drop the t-dependence of u for simplicity.
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The key ingredient for obtaining highly accurate schemes for hyperbolic con-
servation is the use of reconstructions that, given some contiguous cell-averages
of an assumedly unknown function, produce precise local evaluations. For classi-
cal finite volume schemes, the reconstructions act on the evolved cell-averages of
the solution to precisely approximate the values of the solution at cell-interfaces,
whereas for finite difference schemes [14] the reconstructions are applied to split-
fluxes to obtain at the end highly accurate approximations to flux derivatives in
conservative form.

Assume now that fj−r, . . . , fj+r are cell-averages associated to a stencil of 2r+1
points, such that

fj+l =
1

h

∫ xj+l+1/2

xj+l−1/2

f
(
x
)

dx, l = −r, . . . , r,

and one wishes to obtain an approximation

f̂j+τ = f
(
xj+τ

)
+O(h2r+1) for 0 ≤ τ < 1,

taking into account as well the eventual presence of discontinuities in the data
from the stencil. The case τ = 1/2 is well known and is handled properly by the
traditional WENO schemes [7], originally proposed in [9]. The general case of τ is
more complicated, since then the ideal weights do not satisfy the same favourable
properties as for τ = 1/2. Let us analyze the particular case of our interest, which
is r = 2 (namely, a fifth-order scheme), for cell-average reconstructions. The three
polynomials of degree 2 that interpolate three successive points of the stencil,
and whose evaluations at xj+τ = xj + hτ are to be weighted within the WENO
reconstruction, are given by

p0,j(xj+τ ) =
−1 + 12τ + 12τ2

24
fj−2 +

1− 24τ − 12τ2

6
fj−1 +

23 + 36τ + 12τ2

24
fj ,

p1,j(xj+τ ) =
−1− 12τ + 12τ2

24
fj−1 +

13− 12τ2

6
fj +

−1 + 12τ + 12τ2

24
fj+1,

p2,j(xj+τ ) =
23− 36τ + 12τ2

24
fj +

1 + 24τ − 12τ2

6
fj+1 +

−1− 12τ + 12τ2

24
fj+2.

On the other hand, the result of interpolating on the whole stencil of five points
and evaluating the resulting polynomial of degree 4 at xj+τ is

pj(xj+τ ) =
9 + 200τ − 120τ2 − 160τ3 + 80τ4

1920
fj−2

+
−29− 340τ + 360τ2 + 80τ3 − 80τ4

480
fj−1

+
1067− 1320τ2 + 240τ4

960
fj

+
−29 + 340τ + 360τ2 − 80τ3 − 80τ4

480
fj+1

+
9− 200τ − 120τ2 + 160τ3 + 80τ4

1920
fj+2.

The ideal weights c0(τ), c1(τ) and c2(τ) are rational expressions in τ for which

c0(τ)p0(xj+τ ) + c1(τ)p1(xj+τ ) + c2(τ)p2(xj+τ ) = p(xj+τ ).



6 A. Baeza, R. Bürger, P. Mulet and D. Zoŕıo

In this case, we obtain

c0(τ) =
9 + 200τ − 120τ2 − 160τ3 + 80τ4

−80 + 960τ + 960τ2
,

c1(τ) =
49− 4548τ2 + 5360τ4 − 960τ6

40− 6720τ + 5760τ2
,

c2(τ) =
9− 200τ − 120τ2 + 160τ3 + 80τ4

−80− 960τ + 960τ2
.

Unfortunately, the ideal weights do not behave well for 0 ≤ τ ≤ 1, in the sense that
they not only do not satisfy the property 0 ≤ ci(τ) ≤ 1, but also are unbounded
inside such range of 0 ≤ τ < 1, which makes them unusable in practice.

One can readily check that, for instance, c0 has a pole at τ = −1
2 +

√
3
3 ≈ 0.07.

However, we must point out that there are values τ which attain the desired
properties involving ci(τ), such as for τ = 1/2, corresponding to the ideal linear
weights associated to the classical WENO schemes

3.2 New formulation

The previous discussion related to the shortcomings of ideal weights motivates
a new strategy to design weights for WENO reconstructions. This strategy is to
attain the optimal order, 2r + 1, when the stencil contains smooth data, and to
reduce to r-th order when there is some discontinuity in the data. To this end, we
utilize the same smoothness indicators Ii,j as those defined in [7], namely

Ii,j =
r∑

k=1

∫ xj+1/2

xj−1/2

h2k−1(p(k)i (x)
)2

dx, 0 ≤ i ≤ r.

We utilize the global average weight as defined in [2], namely

ωj =
(r + 1)2(

r∑
i=0

(Ii + ε)m
)(

r∑
i=0

1

(Ii + ε)m

) , m > 0, (3.1)

where ε > 0 is a small number to avoid divisions by zero. Moreover, loss of accuracy
at smooth extrema is also avoided if one sets ε = O(h2). By [2, Prop. 2], ωj satisfies
0 ≤ ωj ≤ 1 and, moreover, ωj = 1−O(h2r) if the data from the stencil is smooth
enough (assuming ε = O(h2)) and ω = O(h2m) if there is a discontinuity.

Combining properly the weight ωj defined by (3.1) with the r+ 1 polynomials
of degree r, namely pi,j for i = 0, . . . , r, and the polynomial associated to the whole
stencil of degree 2r + 1, pj , one can define the reconstructed value as

f̂j+τ = ωjpi(xj+τ ) + (1− ωj)qj(xj+τ ), where qj(xj+τ ) :=
r∑
i=0

ωi,jpi,j(xj+τ )

and the so-called subweights are defined by

ωi,j :=
αi,j

α0,j + · · ·+ αr,j
, αk,j :=

ck
(Ik,j + ε)s

, s > 0, (3.2)
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where the constants ck can be chosen such that 0 < ck < 1 and c0+· · ·+cr = 1. This
fact is the essential property of the so-called Central WENO schemes, proposed in
[8], since, as pointed out in [3], and extrapolating now the claim for reconstructions
of arbitrary order, the set of ideal weights in this case is now imposed only by the
condition c0 + · · ·+ cr = 1, rather than the much more restrictive condition

r∑
i=0

cipi,j(xj+1/2) = pi(xj+1/2).

For instance, one can simply choose ck = 1
r+1 (arithmetic average) or the ideal

weights of the case τ = 1/2 (the classical WENO schemes), which satisfy the
required properties for any r. By all the above considerations, one can easily show
that

f̂j+τ = f
(
xj+τ

)
+O(h2r+1)

if there is smoothness and ε = O(h2), and that

f̂j+τ = f
(
xj+τ

)
+O(hr+1)

otherwise. As for our choice for the fifth-order scheme (with r = 2), we set ci to
be the arithmetic average, namely, c0 = c1 = c2 = 1

3 . Regarding the Jiang-Shu
smoothness indicators, they are:

I0,j =
1

3

(
(4fj−2 − 19fj−1 + 11fj)fj−2 + (25fj−1 − 31fj)fj−1 + (10fj)fj

)
,

I1,j =
1

3

(
(4fj−1 − 13fj + 5fj+1)fj−1 + (13fj − 13fj+1)fj + (4fj+1)fj+1

)
,

I2,j =
1

3

(
(10fj − 31fj+1 + 11fj+2)fj + (25fj+1 − 19fj+2)fj+1 + (4fj+2)fj+2

)
.

3.3 Accuracy analysis

We next study in full detail the accuracy of the reconstruction described in Section
3.2, focusing in terms of the choice of ε and the number of consecutive derivatives
of f , starting by the first one, that vanishes. This will be done through a proper
discussion of the parameters m and s that appear in (3.1) and (3.2), respectively.
In the case that ε in (3.1) is chosen such that ε = O(h2), the number of vanishing
derivatives of f does not have any impact on ωj or ωi,j , 0 ≤ i ≤ r (see [1] for
further details), since these quantities unconditionally satisfy

ωj =

{
1−O(h2r) if the stencil is smooth,

O(h2m) if a discontinuity crosses the stencil,

ωi,j =

{
O(1) if the corresponding substencil is smooth,

O(h2s) if a discontinuity crosses the corresponding substencil.

Therefore, taking into account that ω0,j + · · ·+ ωr,j = 1, one has

qj(xj+τ ) =

{
f(xj+τ ) +O(hr+1) if the stencil is smooth,

f(xj+τ ) +O(ha) if a discontinuity crosses the stencil,
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where a = min{2s, r+ 1}. Therefore, to attain the optimal order in the latter case,
r + 1, it suffices to take

s =

⌈
r + 1

2

⌉
. (3.3)

Finally,

f̂j+τ

{
f(xj+τ ) +O(h2r+1) if the stencil is smooth,

f(xj+τ ) +O(hb) if a discontinuity crosses the stencil,

where b = min{2m, r+ 1}. Thus, to achieve the optimal order in the latter case as
well, r + 1, one can set m = d(r + 1)/2e.

Alternatively, one may set the parameter ε in (3.1) to a fixed very small quan-
tity to prevent divisions by zero, and which can be thus neglected in the accuracy
analysis. In this case, we must take into account the impact of the smooth extrema
in the accuracy of the weights, which is analyzed next. Then, it is convenient to
remap accordingly the weight ωj as

ωj = (1− (1− ρj)s1)s2 , where we define ρj :=
(r + 1)2(

r∑
i=0

(Ii + ε)

)(
r∑
i=0

1

Ii + ε

) .
Under these conditions, and assuming that k0 is the maximum order of consec-

utive vanishing derivatives, namely, such that the k-th derivative of f(u) vanishes
at xj+τ , for 1 ≤ k ≤ k0, but the (k0 + 1)− th derivative does not, i.e.,

dk

dxk
f(u)

∣∣
xj+τ

= 0, 1 ≤ k ≤ k0;
dk0+1

dxk0+1
f(u)

∣∣
xj+τ

6= 0

then invoking once again [2, Prop. 2] and defining k1 := max{r− k0, 0}, we get

ωj =

{
1−O(h2k1s1) if the stencil is smooth,

O(h2s2) if a discontinuity crosses the stencil.

It should be noted that in the case where k0 ≥ r, then k1 = 0, and ωj does
not approximate 1, yielding an unavoidable loss of accuracy. We next show that
otherwise, namely, when k0 < r, then optimal accuracy both in case of smoothness,
that is, of order 2r+ 1, and in case of a discontinuity in the stencil, of order r+ 1,
can be recovered by setting properly s1 and s2. Indeed, by setting as in the previous
case the parameter of the weights ωi,j , namely, s given by (3.3), we have that

q(xj+τ ) = f
(
xj+τ

)
+O(hr+1),

whether the stencil is smooth or not.
On the other hand, taking into consideration the above remarks, we have the

following. If there is smoothness, then

f̂j+τ = ωjpj(xj+τ ) + (1− ωj)qj(xj+τ )

= (1− ωj)
(
f(xj+τ ) +O(h2r+1)

)
+ ωj

(
f(xj+τ ) +O(hr+1)

)
= f(xj+τ ) + (1− ωj)O(h2r+1) + ωjO(hr+1)
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= f(xj+τ ) +
(
1−O(h2k1s1)

)
O(h2r+1) +O(h2k1s1)O(hr+1)

= f(xj+τ ) +O(h2r+1) +O(h2k1s1+r+1).

Thus, to achieve a (2r + 1)-th accuracy order, one should impose

2k1s1 + r + 1 ≥ 2r + 1⇐⇒ s1 ≥
r

2k1
.

Finally, since the worst-case scenario under the assumption k0 < r is k0 = r − 1,
namely, k1 = 1, then the optimal exponent choice is s1 = dr/2e. On the other
hand, if there is a discontinuity, following the same reasoning as in the previous
cases, the optimal parameter in this case is s2 = d(r + 1)/2e.

Finally, it is worth mentioning that a classical WENO scheme of order 2r + 1
has actually order r + 1 + |r − k|, with k = min{l ≥ 1 | f (l)(xj+1/2) 6= 0} − 1.
Therefore, if we take into account our theoretical considerations, for 0 < k < r the
accuracy order of our scheme is the optimal, namely, 2r+ 1, whereas the accuracy
order of the classical WENO schemes in that case is 2r + 1− k, and hence under
these conditions the latter will have lower accuracy than the former.

4 Numerical experiments

The numerical experiments that will be presented next are divided into two groups.
In order to illustrate that the good behaviour of our procedure is agnostic about the
type of reconstructions to be weighted, we will use different type of reconstructions
in each of these groups.

The first group of numerical experiments is devoted to algebraic problems
where we test the performance of our CWENO method both on smooth problems
and on discontinuous problems. In this case, the type of reconstructions used are
those interpreting the data from stencil as pointwise values of a certain unknown
function f . These experiments will be performed in Subsection 4.1.

As for the second group of numerical experiments, they are shown in Subsection
4.2 and involve numerical solutions of hyperbolic conservation laws through the
Shu-Osher finite-difference method [13,14], and thus, in this case the data from
the stencils is interpreted as cell averages of some unknown function f(u).

4.1 Accuracy tests

Some numerical tests, where we stress out the performance of our scheme against
the classical WENO schemes counterpart, will be presented next. These tests will
be especially focused on the quantitative behaviour in presence of smooth extrema
and discontinuities. To do so, we use an arbitrary precision library, MPFR [10],
using its C++ wrapper [6], by setting a precision of 333 bits (≈ 100 digits).

Example 1: Smooth extrema analysis

Let us consider the family of functions fk : R→ R, k ∈ N, given by

fk(x) = xk+1ex.
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WENO3 CWENO3
r = 1 k = 0 k = 1 k = 0 k = 1
n Error Order Error Order Error Order Error Order
5 5.11e-03 — 1.00e-02 — 3.33e-04 — 1.00e-02 —
10 6.06e-04 3.07 2.50e-03 2.00 1.46e-04 1.18 2.50e-03 2.00
20 7.32e-05 3.05 6.25e-04 2.00 2.19e-05 2.74 6.25e-04 2.00
40 8.97e-06 3.03 1.56e-04 2.00 2.86e-06 2.93 1.56e-04 2.00
80 1.11e-06 3.01 3.91e-05 2.00 3.63e-07 2.98 3.91e-05 2.00
160 1.38e-07 3.01 9.77e-06 2.00 4.56e-08 2.99 9.77e-06 2.00
320 1.72e-08 3.00 2.44e-06 2.00 5.71e-09 3.00 2.44e-06 2.00
640 2.15e-09 3.00 6.10e-07 2.00 7.15e-10 3.00 6.10e-07 2.00
1280 2.68e-10 3.00 1.53e-07 2.00 8.94e-11 3.00 1.53e-07 2.00

Table 1: Error table for WENO3 and CWENO3 for Example 1. In this case, both
methods have the same accuracy for all the cases considered (both dropping to
second order when k = 1), accordingly to the previous theoretical considerations.

Then fk has a smooth extreme at x = 0 of order k.
We now perform several tests involving different values of k and r, where in

each case the corresponding CWENO scheme with ε = 10−100 (negligible) and
optimal parameters, s1 = dr/2e, s2 = d(r+1)/2e, is compared against the classical
WENO scheme of the same order, also with ε = 10−100. In all cases, we define the
following stencil:

xj =

(
j − 1

2

)
h, −r ≤ j ≤ r,

and perform the reconstruction at x = 0 for different values of h > 0. Since in
this case one has a centered reconstruction point, we use the same ideal weights
of the traditional WENO schemes to define the subweights. In this case, since the
reconstructions are performed in the classical sense, namely, τ = 1/2, we choose as
the non-linear subweights for the CWENO schemes those based on the ideal linear
weights. We will perform accuracy tests for 1 ≤ r ≤ 4, namely, from (C)WENO3 to
(C)WENO9, using the reconstructions from pointwise values to pointwise values,
choosing in each case the lowest possible exponents, s1, s2, to attain the optimal
order discussed before, that is, s1 = dr/2e and s2 = d(r+1)/2e. Assuming h = 1/n,
n ∈ N, the results are shown in Tables 1–4, where the error is |P (0)−fk(0)|, where
P (0) denotes the corresponding reconstruction from pointwise values to pointwise
values at x = 0.

According to the tables, one can conclude that the numerical results agree with
the theoretical considerations.

Example 2: Discontinuous data analysis

We next consider instead the function g : R→ R given by

g(x) =

{
ex x ≤ 0,

ex+1 x > 0,

and perform the accuracy tests for 1 ≤ r ≤ 4 with the same setup as the previous
case. Results are shown in Tables 5–6.
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r = 2 k = 0 k = 1 k = 2
n Error Order Error Order Error Order

W
E

N
O

5
5 1.52e-04 — 2.02e-04 — 1.90e-03 —
10 6.67e-06 4.51 1.34e-06 7.23 2.08e-04 3.20
20 2.29e-07 4.86 1.37e-06 -0.03 1.97e-05 3.40
40 7.35e-09 4.96 1.44e-07 3.25 1.90e-06 3.37
80 2.31e-10 4.99 1.09e-08 3.72 1.98e-07 3.27
160 7.25e-12 5.00 7.44e-10 3.88 2.21e-08 3.16
320 2.27e-13 5.00 4.84e-11 3.94 2.60e-09 3.09
640 7.09e-15 5.00 3.08e-12 3.97 3.14e-10 3.05
1280 2.22e-16 5.00 1.95e-13 3.99 3.86e-11 3.02
2560 6.93e-18 5.00 1.22e-14 3.99 4.78e-12 3.01
5120 2.16e-19 5.00 7.66e-16 4.00 5.95e-13 3.01
10240 6.77e-21 5.00 4.79e-17 4.00 7.42e-14 3.00
20480 2.11e-22 5.00 3.00e-18 4.00 9.26e-15 3.00
40960 6.61e-24 5.00 1.87e-19 4.00 1.16e-15 3.00

C
W

E
N

O
5

5 1.91e-05 — 1.51e-04 — 7.86e-04 —
10 5.62e-07 5.09 1.99e-06 6.25 1.15e-04 2.78
20 1.79e-08 4.97 3.64e-08 5.77 1.35e-05 3.09
40 5.65e-10 4.98 6.16e-10 5.88 1.42e-06 3.25
80 1.78e-11 4.99 1.61e-11 5.26 1.53e-07 3.21
160 5.57e-13 5.00 1.29e-12 3.64 1.74e-08 3.14
320 1.74e-14 5.00 5.45e-14 4.57 2.06e-09 3.08
640 5.45e-16 5.00 1.94e-15 4.81 2.50e-10 3.04
1280 1.70e-17 5.00 6.43e-17 4.91 3.08e-11 3.02
2560 5.33e-19 5.00 2.07e-18 4.96 3.82e-12 3.01
5120 1.67e-20 5.00 6.57e-20 4.98 4.76e-13 3.01
10240 5.20e-22 5.00 2.07e-21 4.99 5.94e-14 3.00
20480 1.63e-23 5.00 6.48e-23 4.99 7.41e-15 3.00
40960 5.08e-25 5.00 2.03e-24 5.00 9.26e-16 3.00

Table 2: Error table for WENO5 and CWENO5 for Example 1. The gradual loss
of accuracy as k increases can be clearly seen in the case of WENO5, whereas
CWENO5 keeps the optimal accuracy order for k < 2.

From the results it can be concluded that the order in presence of discontinuities
is the optimal through the indicated choices for the parameters s1 and s2. This
feature is thus shared by the classical WENO schemes with the suitable choice of
the parameter s.

Example 3: Non-aligned stencil with smooth data

We now consider again the setup as in Example 1, with the difference that now
the stencil is based on the following grid points, which are based on choosing the
displacement parameter τ = 3/4:

xj =

(
j − 3

4

)
h, −r ≤ j ≤ r.

Since we want to interpolate at x = 0, in this case the stencil is displaced with
respect to x, and thus the classical WENO procedure cannot provide a satisfactory
procedure to solve this problem, whereas our approach is able to by just choosing,
for instance, the subweights based on the uniform ideal weights, as it can be seen
in Tables 7–10.
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r = 3 k = 0 k = 1 k = 2 k = 3
n Error Order Error Order Error Order Error Order

W
E

N
O

7

5 1.91e-06 — 7.10e-06 — 7.40e-04 — 9.20e-04 —
10 2.19e-08 6.44 9.44e-07 2.91 2.16e-05 5.10 5.65e-05 4.03
20 1.92e-10 6.84 1.27e-08 6.22 3.76e-07 5.84 3.51e-06 4.01
40 1.55e-12 6.96 1.59e-10 6.32 5.48e-09 6.10 2.19e-07 4.00
80 1.22e-14 6.99 2.12e-12 6.22 6.53e-11 6.39 1.37e-08 4.00
160 9.54e-17 7.00 3.04e-14 6.13 3.28e-13 7.64 8.54e-10 4.00
320 7.46e-19 7.00 4.52e-16 6.07 1.70e-14 4.27 5.34e-11 4.00
640 5.83e-21 7.00 6.89e-18 6.04 9.61e-16 4.15 3.34e-12 4.00
1280 4.55e-23 7.00 1.06e-19 6.02 3.68e-17 4.71 2.09e-13 4.00
2560 3.56e-25 7.00 1.65e-21 6.01 1.25e-18 4.87 1.30e-14 4.00
5120 2.78e-27 7.00 2.57e-23 6.00 4.09e-20 4.94 8.15e-16 4.00
10240 2.17e-29 7.00 4.01e-25 6.00 1.30e-21 4.97 5.09e-17 4.00
20480 1.70e-31 7.00 6.26e-27 6.00 4.11e-23 4.99 3.18e-18 4.00
40960 1.33e-33 7.00 9.78e-29 6.00 1.29e-24 4.99 1.99e-19 4.00
81920 1.04e-35 7.00 1.53e-30 6.00 4.04e-26 5.00 1.24e-20 4.00

C
W

E
N

O
7

5 2.00e-07 — 1.22e-06 — 5.42e-04 — 8.93e-04 —
10 1.63e-09 6.94 9.71e-09 6.97 4.29e-06 6.98 5.34e-05 4.06
20 1.30e-11 6.97 7.79e-11 6.96 9.32e-09 8.85 3.32e-06 4.01
40 1.03e-13 6.98 6.17e-13 6.98 1.36e-11 9.42 2.09e-07 3.99
80 8.10e-16 6.99 4.85e-15 6.99 3.29e-14 8.69 1.31e-08 4.00
160 6.35e-18 7.00 3.81e-17 6.99 1.93e-16 7.41 8.19e-10 4.00
320 4.97e-20 7.00 2.98e-19 7.00 1.48e-18 7.03 5.12e-11 4.00
640 3.88e-22 7.00 2.33e-21 7.00 1.16e-20 6.99 3.20e-12 4.00
1280 3.03e-24 7.00 1.82e-23 7.00 9.09e-23 7.00 2.00e-13 4.00
2560 2.37e-26 7.00 1.42e-25 7.00 7.11e-25 7.00 1.25e-14 4.00
5120 1.85e-28 7.00 1.11e-27 7.00 5.56e-27 7.00 7.83e-16 4.00
10240 1.45e-30 7.00 8.68e-30 7.00 4.34e-29 7.00 4.89e-17 4.00
20480 1.13e-32 7.00 6.79e-32 7.00 3.39e-31 7.00 3.06e-18 4.00
40960 8.84e-35 7.00 5.30e-34 7.00 2.65e-33 7.00 1.91e-19 4.00
81920 6.90e-37 7.00 4.14e-36 7.00 2.07e-35 7.00 1.19e-20 4.00

Table 3: Error table for WENO7 and CWENO7 for Example 1. The gradual loss
of accuracy as k increases can be clearly seen in the case of WENO7, whereas
CWENO7 keeps the optimal accuracy order for k < 3.

The results show that our scheme is also suitable for problems where the re-
construction point is not centered and attains the optimal order as in the centered
case.

Example 4: Non-aligned stencil with discontinuous data

Now, we change our setup to the one defined in Example 2, with the stencil
arrangement and subweights of Example 3. Results are shown in Table 11.

From the results, it can be concluded that in the case of non-centered recon-
struction points the order is also the optimal in presence of discontinuities in the
data.
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r = 4 k = 0 k = 1 k = 2 k = 3 k = 4
n Error Order Error Order Error Order Error Order Error Order

W
E

N
O

9

5 2.98e-08 — 3.86e-06 — 3.10e-05 — 1.74e-04 — 2.80e-04 —
10 1.24e-10 7.91 1.22e-08 8.31 4.28e-07 6.18 6.32e-06 4.78 9.97e-06 4.81
20 2.78e-13 8.80 3.40e-11 8.49 2.09e-09 7.68 7.23e-08 6.45 2.07e-07 5.59
40 5.61e-16 8.95 1.00e-13 8.40 7.02e-12 8.22 3.66e-10 7.63 1.70e-09 6.93
80 1.11e-18 8.99 3.26e-16 8.27 3.03e-14 7.86 8.24e-13 8.80 3.88e-11 5.45
160 2.17e-21 9.00 1.14e-18 8.16 1.68e-16 7.49 3.20e-15 8.01 2.64e-12 3.88
320 4.23e-24 9.00 4.19e-21 8.09 1.10e-18 7.26 4.95e-17 6.01 1.04e-13 4.67
640 8.27e-27 9.00 1.59e-23 8.05 7.83e-21 7.13 2.05e-19 7.91 3.58e-15 4.86
1280 1.62e-29 9.00 6.10e-26 8.02 5.86e-23 7.06 3.57e-21 5.85 1.17e-16 4.94
2560 3.16e-32 9.00 2.36e-28 8.01 4.48e-25 7.03 1.18e-22 4.92 3.73e-18 4.97
5120 6.16e-35 9.00 9.20e-31 8.01 3.46e-27 7.02 2.37e-24 5.64 1.18e-19 4.98
10240 1.20e-37 9.00 3.59e-33 8.00 2.69e-29 7.01 4.12e-26 5.84 3.70e-21 4.99
20480 2.35e-40 9.00 1.40e-35 8.00 2.09e-31 7.00 6.78e-28 5.93 1.16e-22 5.00
40960 4.59e-43 9.00 5.46e-38 8.00 1.63e-33 7.00 1.09e-29 5.96 3.63e-24 5.00
81920 8.97e-46 9.00 2.13e-40 8.00 1.28e-35 7.00 1.72e-31 5.98 1.14e-25 5.00
163840 1.75e-48 9.00 8.33e-43 8.00 9.96e-38 7.00 2.70e-33 5.99 3.55e-27 5.00
327680 3.42e-51 9.00 3.25e-45 8.00 7.78e-40 7.00 4.23e-35 6.00 1.11e-28 5.00
655360 6.68e-54 9.00 1.27e-47 8.00 6.08e-42 7.00 6.62e-37 6.00 3.47e-30 5.00

C
W

E
N

O
9

5 2.26e-09 — 1.71e-08 — 9.48e-06 — 1.73e-04 — 2.80e-04 —
10 4.59e-12 8.94 3.65e-11 8.87 4.84e-10 14.26 4.39e-06 5.30 9.77e-06 4.84
20 9.16e-15 8.97 7.31e-14 8.96 5.19e-13 9.86 1.14e-08 8.60 1.93e-07 5.66
40 1.81e-17 8.98 1.45e-16 8.98 1.01e-15 9.00 6.13e-12 10.86 1.58e-09 6.93
80 3.56e-20 8.99 2.85e-19 8.99 1.99e-18 8.99 1.07e-15 12.49 3.65e-11 5.44
160 6.97e-23 9.00 5.58e-22 8.99 3.90e-21 8.99 3.11e-19 11.74 2.50e-12 3.87
320 1.36e-25 9.00 1.09e-24 9.00 7.63e-24 9.00 3.36e-22 9.86 9.88e-14 4.66
640 2.67e-28 9.00 2.13e-27 9.00 1.49e-26 9.00 1.66e-25 10.98 3.41e-15 4.86
1280 5.21e-31 9.00 4.17e-30 9.00 2.92e-29 9.00 9.10e-29 10.83 1.11e-16 4.93
2560 1.02e-33 9.00 8.14e-33 9.00 5.70e-32 9.00 1.67e-31 9.09 3.56e-18 4.97
5120 1.99e-36 9.00 1.59e-35 9.00 1.11e-34 9.00 4.49e-34 8.54 1.12e-19 4.98
10240 3.88e-39 9.00 3.11e-38 9.00 2.17e-37 9.00 1.07e-36 8.72 3.53e-21 4.99
20480 7.58e-42 9.00 6.07e-41 9.00 4.25e-40 9.00 2.30e-39 8.85 1.11e-22 5.00
40960 1.48e-44 9.00 1.18e-43 9.00 8.29e-43 9.00 4.73e-42 8.93 3.46e-24 5.00
81920 2.89e-47 9.00 2.31e-46 9.00 1.62e-45 9.00 9.48e-45 8.96 1.08e-25 5.00
163840 5.65e-50 9.00 4.52e-49 9.00 3.16e-48 9.00 1.87e-47 8.98 3.38e-27 5.00
327680 1.10e-52 9.00 8.83e-52 9.00 6.18e-51 9.00 3.68e-50 8.99 1.06e-28 5.00
655360 2.16e-55 9.00 1.72e-54 9.00 1.21e-53 9.00 7.22e-53 9.00 3.30e-30 5.00

Table 4: Error table for WENO9 and CWENO9 for Example 1. The gradual loss
of accuracy as k increases can be clearly seen in the case of WENO9, whereas
CWENO9 keeps the optimal accuracy order for k < 4.

4.2 Conservation laws experiments

Example 5. 1D Euler equations: Shu-Osher problem

The 1D Euler equations for gas dynamics are given by (2.1) for m = 3 and d = 1
with u = (ρ, ρv, E)T and f(u) = f1(u) = (ρv, p + ρv2, v(E + p))T, where ρ is the
density, v is the velocity and E is the specific energy of the system. The variable
p stands for the pressure and is given by the equation of state

p = (γ − 1)

(
E − 1

2
ρv2
)
,

where γ is the adiabatic constant that will be taken as γ = 1.4. We now consider
the interaction with a Mach 3 shock and a sine wave. The spatial domain is now
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WENO3 CWENO3 WENO5 CWENO5
n Error Order Error Order Error Order Error Order
5 4.25e-03 — 2.13e-02 — 1.67e-03 — 1.38e-03 —
10 2.59e-03 0.71 8.65e-03 1.30 2.48e-04 2.75 2.25e-04 2.62
20 9.13e-04 1.50 2.73e-03 1.66 3.45e-05 2.85 3.28e-05 2.78
40 2.68e-04 1.77 7.65e-04 1.83 4.58e-06 2.91 4.47e-06 2.88
80 7.22e-05 1.89 2.02e-04 1.92 5.91e-07 2.95 5.84e-07 2.94
160 1.87e-05 1.95 5.21e-05 1.96 7.51e-08 2.98 7.46e-08 2.97
320 4.77e-06 1.97 1.32e-05 1.98 9.46e-09 2.99 9.43e-09 2.98
640 1.20e-06 1.99 3.32e-06 1.99 1.19e-09 2.99 1.19e-09 2.99
1280 3.03e-07 1.99 8.34e-07 1.99 1.49e-10 3.00 1.49e-10 3.00
2560 7.58e-08 2.00 2.09e-07 2.00 1.86e-11 3.00 1.86e-11 3.00
5120 1.90e-08 2.00 5.23e-08 2.00 2.33e-12 3.00 2.33e-12 3.00

Table 5: Error table for r = 1 and r = 2, Example 2. It can be seen that the
obtained accuracy order is consistent with our theoretical considerations.

WENO7 CWENO7 WENO9 CWENO9
n Error Order Error Order Error Order Error Order
5 8.43e-06 — 3.53e-04 — 5.20e-05 — 5.13e-05 —
10 2.38e-06 1.82 2.84e-05 3.63 2.00e-06 4.70 1.98e-06 4.69
20 2.97e-07 3.00 2.06e-06 3.78 6.92e-08 4.85 6.90e-08 4.85
40 2.44e-08 3.60 1.40e-07 3.88 2.28e-09 4.92 2.28e-09 4.92
80 1.73e-09 3.82 9.10e-09 3.94 7.31e-11 4.96 7.31e-11 4.96
160 1.15e-10 3.91 5.81e-10 3.97 2.32e-12 4.98 2.32e-12 4.98
320 7.41e-12 3.96 3.67e-11 3.98 7.29e-14 4.99 7.28e-14 4.99
640 4.70e-13 3.98 2.31e-12 3.99 2.28e-15 5.00 2.28e-15 5.00
1280 2.96e-14 3.99 1.44e-13 4.00 7.15e-17 5.00 7.15e-17 5.00
2560 1.86e-15 3.99 9.04e-15 4.00 2.24e-18 5.00 2.24e-18 5.00
5120 1.16e-16 4.00 5.65e-16 4.00 6.99e-20 5.00 6.99e-20 5.00

Table 6: Error table for r = 3 and r = 4, Example 2. It can be seen that the
obtained accuracy order agrees with our theoretical analysis.

r = 1 k = 0 k = 1
n Error Order Error Order
5 3.55e-03 — 4.05e-03 —
10 1.17e-04 4.92 1.05e-03 1.95
20 4.17e-06 4.81 2.69e-04 1.97
40 1.59e-06 1.39 6.82e-05 1.98
80 2.61e-07 2.61 1.72e-05 1.99
160 3.64e-08 2.84 4.31e-06 1.99
320 4.78e-09 2.93 1.08e-06 2.00
640 6.12e-10 2.97 2.70e-07 2.00
1280 7.73e-11 2.98 6.75e-08 2.00
2560 9.72e-12 2.99 1.69e-08 2.00
5120 1.22e-12 3.00 4.22e-09 2.00

Table 7: Error table for CWENO3 for Example 3. The results are consistent with
our theoretical considerations, attaining the optimal order for k < 1.
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r = 2 k = 0 k = 1 k = 2
n Error Order Error Order Error Order
5 8.55e-05 — 4.32e-03 — 1.13e-03 —
10 7.23e-07 6.88 2.39e-04 4.18 2.17e-04 2.37
20 1.60e-08 5.50 8.39e-06 4.83 2.84e-05 2.94
40 4.65e-10 5.11 2.62e-07 5.00 3.56e-06 2.99
80 1.43e-11 5.02 8.03e-09 5.03 4.45e-07 3.00
160 4.47e-13 5.00 2.48e-10 5.02 5.56e-08 3.00
320 1.40e-14 5.00 7.68e-12 5.01 6.94e-09 3.00
640 4.37e-16 5.00 2.39e-13 5.01 8.68e-10 3.00
1280 1.37e-17 5.00 7.45e-15 5.00 1.08e-10 3.00

Table 8: Error table for CWENO5 for Example 3. The optimal order is attained
for k < 2, and thus, the results are consistent with our theoretical analysis.

r = 3 k = 0 k = 1 k = 2 k = 3
n Error Order Error Order Error Order Error Order
5 1.47e-07 — 5.16e-06 — 7.63e-04 — 3.80e-04 —
10 1.23e-09 6.90 6.76e-09 9.58 2.86e-05 4.74 2.25e-05 4.08
20 9.95e-12 6.95 5.92e-11 6.83 2.37e-07 6.92 1.49e-06 3.91
40 7.92e-14 6.97 4.74e-13 6.97 1.14e-09 7.69 1.00e-07 3.90
80 6.24e-16 6.99 3.74e-15 6.98 4.67e-12 7.94 6.48e-09 3.95
160 4.90e-18 6.99 2.94e-17 6.99 1.83e-14 8.00 4.11e-10 3.98
320 3.84e-20 7.00 2.30e-19 7.00 7.07e-17 8.01 2.59e-11 3.99
640 3.00e-22 7.00 1.80e-21 7.00 2.71e-19 8.03 1.62e-12 3.99
1280 2.35e-24 7.00 1.41e-23 7.00 1.02e-21 8.05 1.02e-13 4.00
2560 1.83e-26 7.00 1.10e-25 7.00 3.71e-24 8.10 6.36e-15 4.00
5120 1.43e-28 7.00 8.60e-28 7.00 1.23e-26 8.23 3.98e-16 4.00
10240 1.12e-30 7.00 6.72e-30 7.00 3.14e-29 8.62 2.49e-17 4.00
20480 8.75e-33 7.00 5.25e-32 7.00 8.65e-33 11.82 1.55e-18 4.00
40960 6.83e-35 7.00 4.10e-34 7.00 1.06e-33 3.03 9.72e-20 4.00
81920 5.34e-37 7.00 3.20e-36 7.00 1.21e-35 6.45 6.07e-21 4.00
163840 4.17e-39 7.00 2.50e-38 7.00 1.10e-37 6.79 3.80e-22 4.00
327680 3.26e-41 7.00 1.96e-40 7.00 9.18e-40 6.90 2.37e-23 4.00
655360 2.55e-43 7.00 1.53e-42 7.00 7.41e-42 6.95 1.48e-24 4.00
1310720 1.99e-45 7.00 1.19e-44 7.00 5.88e-44 6.98 9.27e-26 4.00
2621440 1.55e-47 7.00 9.32e-47 7.00 4.63e-46 6.99 5.79e-27 4.00
5242880 1.21e-49 7.00 7.28e-49 7.00 3.63e-48 6.99 3.62e-28 4.00
10485760 9.48e-52 7.00 5.69e-51 7.00 2.84e-50 7.00 2.26e-29 4.00

Table 9: Error table for CWENO7 for Example 3. The results agree with our
theoretical considerations, with optimal order for k < 3.

given by Ω := (−5, 5) 3 x1 =: x, with the initial condition

(ρ, v, p)(x, 0) =

{
(3.857143, 2.629369, 10.33333) if x ≤ −4,

(1.0 + 0.2 sin(5x), 0, 1) if x > −4,

with left inflow and right outflow boundary conditions.
We run one simulation until T = 1.8 and compare the results obtained with

the classical WENO5 scheme and the proposed CWENO schemes for 1 ≤ s1 ≤ 3
(let us recall that the smallest parameter to achieve the fifth order accuracy in this
case is r1 = 1), s2 = 2 (the smallest parameter to achieve the optimal accuracy
in presence of discontinuities), using the subweights based on the classical WENO



16 A. Baeza, R. Bürger, P. Mulet and D. Zoŕıo

r = 4 k = 0 k = 1 k = 2 k = 3 k = 4
n Error Order Error Order Error Order Error Order Error Order
5 1.63e-09 — 7.12e-08 — 3.19e-04 — 1.26e-04 — 3.77e-04 —
10 3.39e-12 8.91 2.71e-11 11.36 1.20e-08 14.69 1.40e-05 3.17 9.07e-06 5.38
20 6.86e-15 8.95 5.46e-14 8.95 3.86e-12 11.61 2.79e-07 5.65 2.93e-07 4.95
40 1.36e-17 8.97 1.09e-16 8.97 1.25e-15 11.60 1.18e-09 7.88 9.07e-09 5.01
80 2.69e-20 8.99 2.15e-19 8.99 1.56e-18 9.64 2.85e-12 8.69 2.81e-10 5.01
160 5.28e-23 8.99 4.22e-22 8.99 2.96e-21 9.05 5.82e-15 8.94 8.76e-12 5.01
320 1.03e-25 9.00 8.26e-25 9.00 5.78e-24 9.00 1.14e-17 9.00 2.73e-13 5.00
640 2.02e-28 9.00 1.62e-27 9.00 1.13e-26 9.00 2.22e-20 9.01 8.52e-15 5.00
1280 3.95e-31 9.00 3.16e-30 9.00 2.21e-29 9.00 4.32e-23 9.00 2.66e-16 5.00

Table 10: Error table for CWENO9 for Example 3. The optimal order is attained
for k < 4, and therefore the results are again consistent with our theoretical con-
siderations.

CWENO3 CWENO5 CWENO7 CWENO9
n Error Order Error Order Error Order Error Order
5 1.50e-02 — 3.20e-03 — 4.26e-05 — 1.08e-04 —
10 7.35e-03 1.03 4.84e-04 2.72 3.49e-06 3.61 4.25e-06 4.67
20 2.47e-03 1.57 6.72e-05 2.85 2.22e-07 3.98 1.49e-07 4.83
40 7.12e-04 1.80 8.88e-06 2.92 1.34e-08 4.05 4.94e-09 4.92
80 1.91e-04 1.90 1.14e-06 2.96 8.07e-10 4.05 1.59e-10 4.96
160 4.94e-05 1.95 1.45e-07 2.98 4.94e-11 4.03 5.04e-12 4.98
320 1.26e-05 1.98 1.82e-08 2.99 3.05e-12 4.02 1.59e-13 4.99
640 3.17e-06 1.99 2.29e-09 2.99 1.89e-13 4.01 4.97e-15 4.99
1280 7.95e-07 1.99 2.86e-10 3.00 1.18e-14 4.00 1.56e-16 5.00
2560 1.99e-07 2.00 3.58e-11 3.00 7.36e-16 4.00 4.87e-18 5.00

Table 11: Error table for Example 4. The results are consistent with our theoretical
considerations.

ideal weights, n = 200 cells, CFL = 0.5 with a reference solution computed with
16000 grid points. The results are shown in Figure 1 for the density field.

From the results, one can conclude that the CWENO schemes capture better
both the smooth extrema and the discontinuities in the numerical solution, yielding
better results as the parameter s1 increases (namely, when the global average
weight involving the spatial reconstructions is closest to 1, thus increasing the
impact of the full degree reconstruction polynomial on the reconstruction).

Finally, in order to stress the performance of our new scheme, we also show a
comparison between the schemes involving the CPU time versus the error in ‖ · ‖1,
which is shown in Figure 2.

Example 6. 2D Euler equations: Double Mach Reflection

The equations that will be considered in this section are the two-dimensional Euler
equations for inviscid gas dynamics given by (2.1) for m = 4 and d = 2, where
setting x = x1 and y = x2, we have

u =


ρ

ρvx

ρvy

E

 , f1(u) =


ρvx

p+ ρ(vx)2

ρvxvy

vx(E + p)

 , f2(u) =


ρvy

ρvxvy

p+ ρ(vy)2

vy(E + p)

 .
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Fig. 1: Example 5 (Shu-Osher problem), 200 points, s2 = 2, T = 1.8. Density field.
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Fig. 2: Example 5 (Shu-Osher problem), CPU comparison.

Here ρ is the density, (vx, vy) is the velocity, E is the specific energy, and p is the
pressure that is given by the equation of state

p = (γ − 1)

(
E − 1

2
ρ((vx)2 + (vy)2)

)
,
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Schemes/Cost r = 1 r = 2 r = 3 r = 4
WENO 29.156423 47.148631 66.884421 83.571249

CWENO 30.775380 48.400079 68.383047 83.975357
Ratio 1.0555 1.0265 1.0224 1.0048

Table 12: Efficiency table for Example 6 (Double Mach Reflection problem) with
a 256× 64 points grid (cost in seconds).

where the adiabatic constant is again chosen as γ = 1.4.
This experiment uses these equations to model a vertical right-going Mach 10

shock colliding with an equilateral triangle. By symmetry, this is equivalent to a
collision with a ramp with a slope of 30◦ with respect to the horizontal line.

For the sake of simplicity, we consider the equivalent problem in a rectangle,
consisting in a rotated shock, whose vertical angle is 30◦. The domain is the
rectangle Ω = [0, 4]× [0, 1], whose initial conditions are

(ρ, vx, vy, E)(x, y, 0) =

{
c1 = (ρ1, v

x
1 , v

y
1 , E1) if y ≤ 1

4 + tan(π6 )x,

c2 = (ρ2, v
x
2 , v

y
2 , E2) if 1

4 + tan(π6 )x,

c1 =
(
8, 8.25 cos(π/6),−8.25 sin(π/6), 563.5

)
, c2 = (1.4, 0, 0, 2.5).

We impose inflow boundary conditions, with value c1, at the left side, {0}× [0, 1],
outflow boundary conditions both at [0, 14 ]×{0} and {4}×[0, 1], reflecting boundary
conditions at ]14 , 4]×{0} and inflow boundary conditions at the upper side, [0, 4]×
{1}, which mimics the shock at its actual traveling speed:

(ρ, vx, vy, E)(x, 1, t) =

c1 if x ≤ 1
4 + 1+20t√

3
,

c2 if x > 1
4 + 1+20t√

3
.

We run different simulations until T = 0.2 both at a resolution of 2048×512 points,
shown in Figure 3, and a resolution of 2560 × 640 points, shown in Figure 4, in
both cases with CFL = 0.4 and involving the classical WENO5 scheme and our
CWENO schemes with 1 ≤ s1 ≤ 3, s2 = 2, and using the subweights based on the
classical WENO ideal weights in the latter case.

From the results, it can be seen that our scheme captures better some features
of a complex weak solution, such as turbulence and vorticity. Moreover, and in
qualitative terms, the results obtained with a CWENO5 scheme in a resolution
of 2048 × 512 points are similar to those obtained through the classical WENO5
scheme in a resolution of 2560× 640 points.

Finally, Table 12 shows a comparison in regards of the computational cost for
the corresponding (2r+ 1)-th schemes, with 1 ≤ r ≤ 4, for a resolution of 256× 64
points.

5 Conclusions

This paper proposes a novel WENO approach based on the computation of a global
average weight as an additional measure of the global smoothness in a stencil. Such
weight is then used to confer a stronger control involving the average between a
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(a) WENO5 (b) CWENO5, s1 = 1

(a) CWENO5, s1 = 2 (b) CWENO5, s1 = 3

Fig. 3: Example 6 (Double Mach Reflection), enlarged view to turbulence zone,
2048× 512, s2 = 2, T = 0.2 (Schlieren plot).

reconstruction using the whole stencil, which ideally is performed when there is
smoothness, and a reconstruction using properly half of the information from a
smooth region, ideally performed when there is a discontinuity in the stencil.

We have seen both theoretically and in practice that this approach overcomes
whenever possible the well-known issues of the classical WENO schemes involving
the loss of accuracy near smooth extrema and handling properly discontinuities,
both quantitatively (theoretical results and numerical evidence) and qualitatively
(best resolution near smooth extrema and shocks). Moreover, this approach can
be used to easily tackle further issues regarding the WENO schemes, such as
the presence of negative ideal weights for certain reconstructions (see for instance
[12] for further details involving reconstructions with negative weights) and the
reconstruction at non-centered points.

Regarding the aforementioned considerations, we plan to use these schemes in
several contexts, such as WENO reconstructions of derivatives and as a part of
a more accurate boundary extrapolation algorithm, which will be illustrated in
forthcoming works.
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(a) WENO5 (b) CWENO5, s1 = 1

(a) CWENO5, s1 = 2 (b) CWENO5, s1 = 3

Fig. 4: Example 6 (Double Mach Reflection), enlarged view to turbulence zone,
2560× 640, s2 = 2, T = 0.2 (Schlieren plot).
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