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Abstract

We analyse the solvability of a static coupled system of PDEs describing the diffusion of a solute
into an elastic material, where the process is affected by the stresses generated in by the solid
motion. The problem is formulated in terms of solid stress, rotation tensor, solid displacement,
and concentration of the solute. Existence and uniqueness of weak solutions follow from adapting
a fixed-point strategy decoupling linear elasticity from a generalised Poisson equation. We then
construct mixed-primal and augmented mixed-primal Galerkin discretisations based on adequate
finite element spaces, for which we rigorously derive a priori error bounds. The convergence of
these methods is confirmed through a set of computational tests in 2D and 3D.
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1 Introduction

This work is motivated by the mathematical and numerical investigation of stress-enhanced diffusion
processes in deformable solids. Starting from the early works by e.g. Truesdell [27], Podstrigach [23],
or Aifantis [2], a number of applicative studies and different models have been developed. Many of
these contributions have focused on the modelling of hydrogen diffusion in metals [26], damage of
electrodes in lithium ion batteries [5], sorption in fibre-reinforced polymeric materials [25], drying
of liquid paint layers [28], gels and general-purpose solute penetration [20, 29], anisotropy of cardiac
dynamics [9], and several other effects. Irrespective of the specific interaction under consideration, the
assumptions in these models convey that the species diffuses on the elastic medium obeying a Fickean
law enriched with additional contributions arising from local effects by exerted stresses.

Although there exist numerous advances on the modelling considerations for stress-assisted and
strain-assisted diffusion problems, their counterparts from the viewpoint of mathematical and nu-
merical analysis are still far behind. A few punctual references include the study of plane steady
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solutions [19], asymptotic analysis [12,28], and the very recent general well-posedness theory for static
and transient problems in a primal formulation, developed in [22]. Our goal at this stage is to focus on
a simple stationary problem that represents the main ingredients of diffusion-deformation interaction
models where the Cauchy stress acts as a coupling variable. We will concentrate on the regime of
linear elasticity, and we will further assume that there are no additional nonlinearities in the diffusion
process other than the coupling through stresses. In turn, it is supposed that the diffusing species
affects the motion of the solid skeleton through external forces, constituting a two-way coupled system.

Apart from stress and displacement, the elasticity equations will incorporate the tensor of solid
rotations as supplementary field variable, serving to impose symmetry of the Cauchy stress. This
approach has been exploited in several mixed formulations for elastostatics [6,16,17], and in our case
has particular importance as the stress influences directly the diffusion process. In contrast, we will
use a primal formulation for the diffusion equation. Existence and uniqueness of weak solutions to
the coupled system will be established invoking the Lax-Milgram lemma, the Babuška-Brezzi theory,
suitable regularity estimates, and fixed-point arguments permitting us to decouple the solid mechanics
from the generalised Poisson problem. More specifically, Schauder’s fixed-point theorem will yield
existence of weak solutions, whereas Banach’s fixed-point theorem (in combination with assumptions
on the data) will give uniqueness of solution. Additionally, the Sobolev embedding and Rellich-
Kondrachov compactness theorems will constitute essential tools in the analysis of the continuous
problem. The regularity estimates needed for the uncoupled elasticity and diffusion problems will be
adapted from those appearing in [7] and [13], respectively. Even if these results are valid provided one
restricts the analysis to convex domains in two spatial dimensions, our computational tests indicate
that this requirement is only technical.

Regarding the numerical approximation of the problem, we propose two families of finite element
discretisations: one that will follow the same mixed-primal character as in the continuous case, and a
second one that utilises augmentation through redundant Galerkin contributions in order to achieve
conformity and well-definiteness of appropriate terms. The Brouwer fixed-point theorem will be
utilised to establish existence of solutions to the associated Galerkin schemes. In this context, the
recent theory leading to the well-posedness of Stokes-transport coupled systems developed in [3,4] will
be modified accordingly. The convergence analysis in each case will be conducted using a blend of
a Strang-type argument, Céa estimates, and the approximation properties of specific finite element
spaces. To the best of our knowledge, the results presented in this paper constitute the first rigorous
analysis of continuous and discrete mixed formulations for stress-assisted diffusion problems. The
structure of the paper is as follows. Required definitions and preliminary notation are recalled in the
remainder of this section, where we also present the governing equations in strong form together with
main assumptions on the model. The weak formulation stated in mixed-primal form, as well as its
solvability analysis, are provided in Section 2. We then provide a mixed-primal Galerkin method and
derive existence of discrete solution along with the corresponding a priori error estimates in Section 3.
Section 4 is dedicated to the derivation and analysis of an augmented mixed-primal formulation in
continuous form, a suitable discretisation, and the derivation of error bounds. We finalise with a set
of numerical examples in Section 5.

Preliminaries. Let us denote by Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with polyhedral
boundary Γ = ∂Ω, and denote by ν the outward unit normal vector on the boundary. We will adopt
a fairly standard notation for Lebesgue and Sobolev spaces: Lp(Ω) and Hs(Ω), respectively. Norms
and seminorms for the latter will be written as ‖·‖s,Ω and | · |s,Ω. The space H1/2(Γ) contains traces

of functions of H1(Ω), and H−1/2(Γ) denotes its dual. In general, the notation M and M will refer to
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vectorial and tensorial counterparts of a generic scalar functional space M. Furthermore, by

‖w‖∞,Ω := max
i=1,n
{‖wi‖∞,Ω}, and ‖ψ‖1,∞,Ω := max

α≤1

(
ess sup

x∈Ω
|∂αψ(x)|

)
,

we will denote norms for the Banach spaces L∞(Ω) and W1,∞(Ω), respectively. Next we recall the
definition of the tensorial Hilbert space and its usual norm

H(div,Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
, ‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω ,

where div τ indicates the divergence operator acting along the rows of the tensor field τ . As usual,
I stands for the identity tensor in Rn×n, and | · | denotes both the Euclidean norm in Rn and the
Frobenius norm in Rn×n. Finally, for any tensor fields τ = (τij)i,j=1,n, and ζ = (ζij)i,j=1,n, we recall
the transpose, trace, tensor product, and deviatoric splitting operators defined respectively as

τ t := (τij)i,j=1,n, tr(τ ) :=

n∑
i=1

τii τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I.

A model for stress-assisted diffusion in elastic solids. The following system of partial differential
equations describes balance laws governing the motion of an elastic solid occupying the domain Ω and
a diffusing solute interacting with it:

σ = λ trε(u) I + 2µε(u) , − divσ = f(φ),

σ̃ = ϑ̃(ε(u))∇φ , − div σ̃ = g(u),
(1.1)

where φ represents the local concentration of species, σ is the Cauchy solid stress, u is the displacement
field, ε(u) := 1

2

(
∇u+∇ut

)
is the infinitesimal strain tensor (symmetrised gradient of displacements),

σ̃ is the diffusive flux, λ, µ > 0 are the Lamé constants (dilation and shear moduli) characterising
the properties of the material, ϑ̃ : Rn×n → Rn×n is a tensorial diffusivity function, f : R → Rn is a
vector field of body loads (which will depend on the species concentration), and g : Rn → R denotes
an additional source term depending locally on the solid displacement. Specific requirements on these
functions will be given below. We note that system (1.1) describes the constitutive relations inherent
to linear elastic materials, conservation of linear momentum, the constitutive description of diffusive
fluxes, and the mass transport of the diffusive substance, respectively. It also assumes that diffusive
time scales are much lower than those of the elastic wave propagation, justifying the static character
of the system (cf. [22]).

Hooke’s law [14, eq. (2.36)] asserts that C−1σ = ε(u), where C−1 is the fourth order compliance
tensor. This relation allows us to recast the strain-dependent diffusivity ϑ̃(ε(u)) as a stress-dependent
diffusivity ϑ(σ) := ϑ̃(C−1σ). Throughout this work we will suppose that ϑ is of class C1 and uniformly
positive definite, meaning that there exists ϑ0 > 0 such that

ϑ(τ )w ·w ≥ ϑ0|w|2 ∀w ∈ Rn, ∀ τ ∈ Rn×n. (1.2)

We will also require uniform boundedness and Lipschitz continuity: there exist positive constants
ϑ1, ϑ2 and Lϑ, such that

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2, |ϑ(τ )− ϑ(ζ)| ≤ Lϑ|τ − ζ| ∀ τ , ζ ∈ Rn×n. (1.3)
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Similar assumptions will be placed on the load and source functions f and g: we suppose that there
exist positive constants f1, f2, Lf , g1, g2 and Lg, such that

f1 ≤ |f(s)| ≤ f2, |f(s)− f(t)| ≤ Lf |s− t| ∀ s, t ∈ R, (1.4)

g1 ≤ g(w) ≤ g2, |g(v)− g(w)| ≤ Lg|v −w| ∀v,w ∈ Rn. (1.5)

Moreover, for each γ ∈ (0, 1), there exists a constant Cγ > 0, such that g(w) ∈ Hγ(Ω) for each
w ∈ Hγ(Ω) and

‖g(w)‖γ,Ω ≤ Cγ ‖w‖γ,Ω . (1.6)

An additional assumption is that for every φ ∈ H1(Ω), we have f(φ) ∈ H1(Ω). Finally, given
uD ∈ H1/2(Γ), the following Dirichlet boundary conditions complement (1.1): u = uD and φ = 0 on
Γ. Thus, we arrive at the following coupled system:

σ = λ trε(u) I + 2µε(u) and − divσ = f(φ) in Ω, u = uD on Γ,

σ̃ = ϑ(σ)∇φ and − div σ̃ = g(u) in Ω, φ = 0 on Γ.
(1.7)

2 The mixed-primal formulation

In this section we derive a mixed-primal variational formulation for (1.7) and verify the hypotheses
of Schauder’s fixed-point theorem, implying existence of weak solutions. In turn, an application of
Banach’s fixed-point theorem will be employed to prove uniqueness of solution under the assumption
of adequately small data.

2.1 The continuous setting

The present treatment follows closely those in [3,14]. First we note that Hooke’s law can be recast in
terms of the rotation tensor as follows

C−1σ = ε(u) = ∇u− ρ, where ρ :=
1

2
(∇u−∇ut),

and we observe that ρ ∈ L2
skew(Ω) := {η ∈ L2(Ω) : η + ηt = 0}. The weak form associated to the

first row of (1.7) eventually reads: find (σ, (u,ρ)) ∈ H(div,Ω)× (L2(Ω)× L2
skew(Ω)) such that

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ H(div,Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

(2.1)

where the bilinear forms a : H(div,Ω)×H(div,Ω)→ R and b : H(div,Ω)× (L2(Ω)× L2
skew(Ω))→ R

are specified as

a(ζ, τ ) :=
1

2µ

∫
Ω
ζ : τ − λ

2µ(nλ+ 2µ)

∫
Ω

tr(ζ) tr(τ ), (2.2)

b(τ , (v,η)) :=

∫
Ω
v · div τ +

∫
Ω
η : τ , (2.3)

for ζ, τ ∈ H(div,Ω) and (v,η) ∈ L2(Ω) × L2
skew(Ω). In turn, the functionals Fφ ∈ H(div,Ω)′ and

G ∈ (L2(Ω)× L2
skew(Ω))′ are given by

G(τ ) := 〈τν,uD〉Γ and Fφ(v,η) := −
∫

Ω
f (φ) · v , (2.4)
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defined for (τ , (v,η)) ∈ H(div,Ω)× (L2(Ω)×L2
skew(Ω)), where 〈·, ·〉Γ stands for the duality pairing of

H−1/2(Γ) and H1/2(Γ) with respect to the inner product in L2(Γ).

From (2.2) and (2.3) it follows that, for any (τ , (v,η)) ∈ H(div,Ω) × (L2(Ω) × L2
skew(Ω)), there

holds

a(I, τ ) =
1

nλ+ 2µ

∫
Ω

tr(τ ) and b(I, (v,η)) = 0. (2.5)

Algebraic manipulations then show that the bilinear form a can be recast as

a(ζ, τ ) =
1

µ

∫
Ω
ζd : τ d +

1

n(nλ+ 2µ)

∫
Ω

tr(ζ) tr(τ ) ∀ ζ, τ ∈ H(div,Ω).

On the other hand, we recall from [8] that H(div,Ω) = H0(div,Ω)⊕ RI, where

H0(div,Ω) :=

{
τ ∈ H(div,Ω) :

∫
Ω

tr(τ ) = 0

}
,

that is, for each τ ∈ H(div,Ω) there exist unique

τ 0 := τ −
{

1

n|Ω|

∫
Ω

tr(τ )

}
I ∈ H0(div,Ω) and d :=

1

n|Ω|

∫
Ω

tr(τ ) ∈ R,

such that τ = τ 0 + dI. In particular, we obtain from the first row of (1.7) that

tr (σ) = (nλ+ 2µ) divu,

which yields σ = σ0 + cI, where

σ0 ∈ H0(div,Ω) and c :=
nλ+ 2µ

n|Ω|

∫
Γ
uD · ν.

Then, replacing σ by the expression σ0 + cI in (2.1), applying (2.5) and denoting from now on the
remaining unknown σ0 ∈ H0(div,Ω) simply by σ, we find that the mixed variational formulation for
the elasticity problem (cf. first row of (1.7)) reduces to: find (σ, (u,ρ)) ∈ H0(div,Ω) × (L2(Ω) ×
L2

skew(Ω)) such that

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω).

(2.6)

On the other hand, the boundary condition for φ indicates the appropriate trial and test space

H1
0(Ω) :=

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
,

and Poincaré’s inequality implies that there exists cp > 0, depending only on Ω and Γ, such that

‖ψ‖1,Ω ≤ cp|ψ|1,Ω ∀ ψ ∈ H1
0(Ω). (2.7)

We can then deduce a primal formulation for the diffusion equation: find φ ∈ H1
0(Ω) such that

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω), (2.8)

where

Aσ(φ, ψ) :=

∫
Ω
ϑ(σ)∇φ · ∇ψ ∀ φ, ψ ∈ H1

0(Ω), (2.9)

Gu(ψ) :=

∫
Ω
g(u)ψ ∀ ψ ∈ H1

0(Ω). (2.10)
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In this way, the mixed-primal formulation for (1.7) consists in (2.6) and (2.8), that is: find
(σ, (u,ρ), φ) ∈ H0(div,Ω)× (L2(Ω)× L2

skew(Ω))×H1
0(Ω), such that

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω).

(2.11)

2.2 Fixed-point approach and well-posedness of the uncoupled problems

In this section, we proceed similarly as in [3,11] and utilise a fixed-point strategy to prove that (2.11)
is uniquely solvable. Let S : H1

0(Ω)→ H0(div,Ω)× (L2(Ω)× L2
skew(Ω)) be the operator defined by

S(φ) := (S1(φ), (S2(φ),S3(φ))) := (σ, (u,ρ)) ∀φ ∈ H1
0(Ω),

where, for a given φ, the triple (σ, (u,ρ)) is the unique solution of (2.6). In turn, let S̃ : H0(div,Ω)×
L2(Ω)→ H1

0(Ω) be the operator defined by

S̃(σ,u) := φ ∀ (σ,u) ∈ H0(div,Ω)× L2(Ω),

where φ is the unique solution of (2.8), for a given pair (σ,u). Then, we define the map T : H1
0(Ω)→

H1
0(Ω) as

T(φ) := S̃(S1(φ),S2(φ)) ∀φ ∈ H1
0(Ω),

and one readily realises that solving (2.11) is equivalent to seeking a fixed point of the solution operator
T, that is: find φ ∈ H1

0(Ω) such that
T(φ) = φ. (2.12)

The following technical lemma will serve to establish solvability of (2.6) for a given φ.

Lemma 2.1 There exists c1 > 0 such that

c1 ‖τ‖20,Ω ≤ ‖τ
d‖20,Ω + ‖div τ‖20,Ω ∀τ ∈ H0(div,Ω).

Proof. See [14, Lemma 2.3]. �

We now proceed to show that the uncoupled problems defined by S and S̃ are well-posed.

Lemma 2.2 For each φ ∈ H1
0(Ω) the problem (2.6) has a unique solution S(φ) := (σ, (u,ρ)) ∈ H :=

H0(div,Ω)× (L2(Ω)× L2
skew(Ω)). Moreover, there exists cS > 0 independent of φ, such that

‖S(φ)‖H = ‖(σ, (u,ρ))‖H ≤ cS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
. (2.13)

Proof. Along the lines of [14, Section 2.4.3], we first observe that

|a(ζ, τ )| ≤ 1

µ
‖ζ‖div,Ω ‖τ‖div,Ω ∀ ζ, τ ∈ H0(div,Ω),

proving that A : H0(div,Ω)→ H0(div,Ω), the operator induced by a, is bounded with ‖A‖ ≤ 1
µ . In

turn we define the operator induced by the bilinear form b as B : H0(div,Ω) → L2(Ω) × L2
skew(Ω),

with

B(τ ) :=

(
div τ ,

1

2
(τ − τ t)

)
∀τ ∈ H0(div,Ω), (2.14)
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from which one readily has that ‖B‖ ≤ 1. Next, from (2.14) we deduce that

V := N(B) =
{
τ ∈ H0(div,Ω) : div τ = 0 in Ω, τ = τ t in Ω

}
.

Consequently, using Lemma 2.1, we find that

a(τ , τ ) ≥ 1

2µ
‖τ d‖20,Ω ≥

c1

2µ
‖τ‖20,Ω = α ‖τ‖2div,Ω ∀τ ∈ V, (2.15)

thus showing that a is V -elliptic with ellipticity constant α1 :=
c1

2µ
. On the other hand, the surjectivity

of B follows exactly as in [14, Sect. 2.4.3.1]. Finally, from (2.4), we find that the functionals G and
Fφ are bounded with

‖G‖ ≤ ‖uD‖1/2,Γ and ‖Fφ‖ ≤ f2|Ω|1/2. (2.16)

Therefore, a straightforward application of the Babuška-Brezzi theory [14, Thm. 2.3] guarantees that,
for each φ ∈ H1

0(Ω), problem (2.6) has a unique solution (σ, (u,ρ)) ∈ H0(div,Ω)×(L2(Ω)×L2
skew(Ω)),

and there holds
‖S(φ)‖H = ‖(σ, (u,ρ))‖H ≤ cS

{
‖uD‖1/2,Γ + f2|Ω|1/2

}
,

where cS is a constant depending on α1, µ and the inf-sup constant associated to the bilinear form b.

�

The following result asserts the unique solvability of (2.8).

Lemma 2.3 For each (σ,u) ∈ H0(div,Ω) × L2(Ω), the problem (2.8) has a unique solution φ :=
S̃(σ,u) ∈ H1

0(Ω). Moreover, there exists a constant r > 0 depending on cp, ϑ0, g2 and Ω (cf .(2.7),
(1.2), (1.5)), such that

‖S̃(σ,u)‖1,Ω = ‖φ‖1,Ω ≤ r. (2.17)

Proof. We note from (2.9) that Aσ is a bilinear form. Next, from (1.3) and (2.9), we deduce that

|Aσ(φ, ψ)| ≤ ϑ2 ‖φ‖1,Ω ‖ψ‖1,Ω ∀φ, ψ ∈ H1
0(Ω),

which gives ‖Aσ‖ ≤ ϑ2, and thus Aσ is bounded independently of σ and u. Furthermore, from (1.2)
and the estimate (2.7), for each φ ∈ H1

0(Ω), we find that

Aσ(φ, φ) =

∫
Ω
ϑ(σ)∇φ · ∇φ ≥ ϑ0

c2
p

‖φ‖21,Ω , (2.18)

which proves that Aσ is H1
0(Ω)-elliptic with constant α2 := ϑ0

c2p
, independently of σ and u as well.

Now, using (1.5), (2.10) and applying Cauchy-Schwarz’s inequality, we deduce that

|Gu(ψ)| ≤ g2|Ω|1/2 ‖ψ‖0,Ω ∀ψ ∈ H1
0(Ω), (2.19)

which implies that Gu ∈ H1
0(Ω)′ and ‖Gu‖ ≤ g2|Ω|1/2. Thus, a straightforward application of the

Lax-Milgram Lemma (see, e.g. [14], Thm. 1.1) proves that for each (σ,u) ∈ H0(div,Ω) × L2(Ω),
problem (2.8) has a unique solution φ := S̃(σ,u) ∈ H1

0(Ω). Moreover, the corresponding continuous
dependence on the data is formulated as

‖φ‖1,Ω ≤ r,
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where

r :=
c2
p

ϑ0
g2|Ω|1/2 .

�

The next step consists in deriving regularity estimates for the problems defining S and S̃. The
following theorem (cf. [7, Thm 3.1]) is particularly crucial in the treatment for the operator S.

Theorem 2.4 Given a convex polygonal domain Ω ⊆ R2 and F ∈ Hγ(Ω) for some γ ∈ (0, 1), we let
u be the solution of the elasticity problem

µ∆u+ (µ+ λ)∇(∇ · u) = F in Ω,

u = 0 on ∂Ω,

where the Lamé moduli are bounded as µ ∈ [µ1, µ2] and λ ∈ [0,∞), with fixed constants µ1, µ2 > 0.
Then, the shift estimate

‖u‖2+γ,Ω ≤ C̃1 ‖F‖γ,Ω

holds with a constant C̃1 independent of the Lamé coefficients.

In view of exploiting Theorem 2.4, we concentrate in the case where Ω is a convex polygonal
domain and n = 2. We then recall that f(ψ) ∈ H1(Ω) for each ψ ∈ H1

0(Ω), and assume that
uD ∈ H1/2+γ(Ω) for some γ ∈ (0, 1). Then, applying the theorem and recalling from the constitutive
equation that the regularities of the unknowns are connected, we immediately find that S(ψ) ∈
H0(div,Ω) ∩H1+γ(Ω)×H2+γ(Ω)× L2

skew(Ω) ∩H1+γ(Ω).

In turn, for the operator S̃, we invoke [18, Remark (a)] and [13, Thm. 3.12], and observe that, for
a given pair (ζ,w) := (S1(ψ),S2(ψ)) ∈ H0(div,Ω) ∩H1+γ(Ω)×H2+γ(Ω) (which denote the first and
second components of the unique solution produced by the operator S), relation (1.6) implies that
g(w) ∈ Hγ(Ω) for each γ ∈ (0, 1). If one further assumes that the coefficients ϑ(ζ)ij are in C1+γ(Ω),

then φ := S̃(ζ,w) ∈ H2+γ
0 (Ω), and we conclude that there exists a constant C̃2 > 0 such that

‖S̃(ζ,w)‖2+γ,Ω = ‖φ‖2+γ,Ω ≤ C̃2 ‖g(w)‖γ,Ω . (2.20)

On the other hand, the Sobolev embedding theorem (cf. [1], Thm. 4.12, [21], Thm. A.5) gives the
continuous injection iγ : H2+γ(Ω) −→ C1(Ω), with boundedness constant C̃γ , where γ ∈ (0, 1). Then,
using the aforementioned continuous injection and applying (2.20), we deduce that

‖S̃(ζ,w)‖1,∞,Ω = ‖φ‖1,∞,Ω ≤ C̃γ ‖φ‖2+γ,Ω ≤ C̃γC̃2 ‖g(w)‖γ,Ω . (2.21)

Finally, using (1.6) and (2.13), we find that

‖S̃(ζ,w)‖1,∞,Ω = ‖φ‖1,∞,Ω ≤ C∞ cS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
, (2.22)

where C∞ is a positive constant depending on Cγ , C̃γ and C̃2 (cf. (1.6), (2.20), (2.21)).

2.3 Solvability of the fixed-point equation

In this section we address the solvability analysis of the fixed-point equation (2.12). To this end, we
will verify the hypotheses of the Schauder fixed-point theorem (see, e.g. [10, Thm. 9.12-1(b)]).
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Lemma 2.5 For the closed ball W :=
{
φ ∈ H1

0(Ω) : ‖φ‖1,Ω ≤ r
}

, it holds that T(W ) ⊆W.

Proof. It suffices to recall the definition of T (cf. Section 2.2), and simply apply estimate (2.17). �

Lemma 2.6 There exists CS > 0 depending on µ,Lf , α (cf .(1.1), (1.4), (2.15)) and the inf-sup con-
stant of b, such that

‖S(φ)− S(ϕ)‖H ≤ CS ‖φ− ϕ‖0,Ω ∀φ, ϕ ∈ H1
0(Ω). (2.23)

Proof. Given φ, ϕ ∈ H1
0(Ω), we let (σ, (u,ρ)), (ζ, (w,χ)) ∈ H be two solutions to (2.6), corresponding

to φ and ϕ, respectively. That is, (σ, (u,ρ)) = S(φ) and (ζ, (w,χ)) = S(ϕ). We then invoke the
linearity of the forms a and b to deduce (using both formulations arising from (2.6)) that

a(σ − ζ, τ ) + b(τ , (u,ρ)− (w,χ)) = 0 ∀ τ ∈ H0(div,Ω),

b(σ − ζ, (v,η)) = (Fφ − Fϕ)(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω).

(2.24)

From (2.4), we readily note that ‖Fφ − Fϕ‖ ≤ Lf ‖φ− ϕ‖0,Ω. Consequently, and similarly to the proof

of Lemma 2.2, the Babuška-Brezzi theory implies that for each φ, ϕ ∈ H1
0(Ω), problem (2.24) has a

unique solution (σ − ζ, (u−w,ρ− χ)) ∈ H, as well as the continuous dependence on the data

‖S(φ)− S(ϕ)‖H = ‖(σ, (u,ρ))− (ζ, (w,χ))‖H ≤ CS ‖φ− ϕ‖0,Ω ,

which gives (2.23) and concludes the proof. �

The following result is a consequence of Lemma 2.6.

Lemma 2.7 Assume that CS is as in Lemma 2.6. Then, for each φ, ϕ ∈ H1
0(Ω), there holds

‖T(φ)−T(ϕ)‖1,Ω ≤
1

α2
CS

{
Lg + Lϑ ‖T(ϕ)‖1,∞,Ω

}
‖φ− ϕ‖0,Ω . (2.25)

Proof. Firstly we recall that T(φ) = S̃(S1(φ),S2(φ)) and T(ϕ) = S̃(S1(ϕ),S2(ϕ)) ∀φ, ϕ ∈ H1
0(Ω).

In view of unifying the notation throughout the paper, we apply the following renaming

(σ,u) := (S1(φ),S2(φ)) and (ζ,w) := (S1(ϕ),S2(ϕ)),

where (σ,u), (ζ,w) ∈ H0(div,Ω)×L2(Ω). In addition, we let φ̃ := S̃(σ,u) and ϕ̃ := S̃(ζ,w), that is

Aσ(φ̃, ψ̃) = Gu(ψ̃) and Aζ(ϕ̃, ψ̃) = Gw(ψ̃) ∀ ψ̃ ∈ H1
0(Ω).

Adding and subtracting appropriate terms, and appealing to the ellipticity of Aσ, we readily find that

α2‖φ̃− ϕ̃‖21,Ω ≤ Aσ(φ̃, φ̃− ϕ̃)−Aσ(ϕ̃, φ̃− ϕ̃)

= (Gu −Gw)(φ̃− ϕ̃) + (Aζ −Aσ)(ϕ̃, φ̃− ϕ̃).
(2.26)

Next we use (2.9), (2.10), we apply Cauchy-Schwarz’s inequality, and exploit the assumptions (1.3)
and (1.5), to obtain the bounds

|(Gu −Gw)(φ̃− ϕ̃)| =

∣∣∣∣∫
Ω

(g(u)− g(w))(φ̃− ϕ̃)

∣∣∣∣
≤ Lg ‖u−w‖0,Ω ‖φ̃− ϕ̃‖0,Ω ,

(2.27)
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and

|(Aζ −Aσ)(ϕ̃, φ̃− ϕ̃)| =

∣∣∣∣∫
Ω

(ϑ(ζ)− ϑ(σ))∇ϕ̃ · ∇(φ̃− ϕ̃)

∣∣∣∣
≤ Lϑ‖∇ϕ̃‖∞,Ω ‖σ − ζ‖0,Ω |φ̃− ϕ̃|1,Ω .

(2.28)

We then observe that the inequalities (2.26)-(2.28) imply that

‖φ̃− ϕ̃‖1,Ω ≤
1

α2

{
Lg ‖u−w‖0,Ω + Lϑ ‖ϕ̃‖1,∞,Ω ‖σ − ζ‖0,Ω

}
. (2.29)

Next, according to the definitions given at the beginning of the proof, we can rewrite (2.29) as

‖S̃(S1(φ),S2(φ))− S̃(S1(ϕ),S2(ϕ)‖1,Ω

≤ 1

α2

{
Lg ‖S2(φ)− S2(ϕ)‖0,Ω + Lϑ‖S̃(S1(ϕ),S2(ϕ))‖1,∞,Ω ‖S1(φ)− S1(ϕ)‖0,Ω

}
.

(2.30)

It is important to note here that the term ‖S̃(S1(ϕ),S2(ϕ))‖1,∞,Ω is bounded for each ϕ ∈ H1
0(Ω),

thanks to (2.22). In this way, we are in a position to prove the Lipschitz continuity of T. In fact, from
(2.23) and (2.30) we find that

‖T(φ)−T(ϕ)‖1,Ω = ‖S̃(S1(φ),S2(φ))− S̃(S1(ϕ),S2(ϕ)‖1,Ω

≤ 1

α2
{Lg ‖S(φ)− S(ϕ)‖H + Lϑ‖T(ϕ)‖1,∞,Ω ‖S(φ)− S(ϕ)‖H}

≤ 1

α2
CS

{
Lg + Lϑ ‖T(ϕ)‖1,∞,Ω

}
‖φ− ϕ‖0,Ω ,

which gives (2.25) and completes the proof. �

Lemma 2.8 Let W be as in Lemma 2.5. Then, T : W →W is continuous and T(W ) is compact.

Proof. It follows analogously to the proof of [3, Lemma 3.12], and it is a consequence of the Rellich-
Kondrachov compactness Theorem [1, Thm. 6.3] in combination with (2.22), and the fact that every
bounded sequence in a Hilbert space has a weakly convergent subsequence. �

The main result of this section is stated next.

Theorem 2.9 The mixed-primal problem (2.11) has at least one solution (σ, (u,ρ), φ) ∈ H0(div,Ω)×
(L2(Ω)× L2

skew(Ω))×H1
0(Ω) satisfying the bounds

‖φ‖1,Ω ≤ r (2.31)

and
‖(σ, (u,ρ))‖H ≤ cS

{
‖uD‖1/2,Γ + f2|Ω|1/2

}
. (2.32)

Moreover, if the data is such that

1

α2
CS

{
Lg + LϑC∞cS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}
< 1, (2.33)

then the solution φ is unique in W.

Proof. Thanks to Lemmas 2.5 and 2.8, the existence of solution is merely an application of the
Schauder fixed-point theorem. In turn, the estimates (2.31) and (2.32) follow from Lemmas 2.3 and
2.2, respectively. Furthermore, given another solution ϕ ∈W of (2.12), the estimate in (2.22) confirms
(2.33) as a sufficient condition for concluding, together with (2.25), that φ = ϕ. �
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3 A mixed-primal Galerkin scheme

In this section we define a first numerical approximation associated to (2.11). We derive general
hypotheses on the finite-dimensional subspaces defining the Galerkin finite element method, and en-
suring that the discrete problem is indeed well-posed. Existence of solutions will follow by means of
Brouwer’s fixed-point theorem, and we will derive adequate a priori error estimates.

3.1 The mixed-primal discrete formulation

Let Th be a regular partition of Ω into triangles K of diameter hK , where h := max {hK : K ∈ Th} is
the meshsize. Let us also consider arbitrary finite-dimensional subspaces

Hσh ⊆ H0(div,Ω), Hu
h ⊆ L2(Ω), Hρh ⊆ L2

skew(Ω) and Hφ
h ⊆ H1

0(Ω),

whose specification will be made clear later on, in Section 3.4. The corresponding Galerkin scheme
can be already defined as: find (σh, (uh,ρh), φh) ∈ Hσh × (Hu

h ×Hρh)×Hφ
h such that

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh,

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hφ
h.

(3.1)

A discrete analogue to the fixed-point strategy from Section 2.2 will be presented in what follows.

3.2 Discrete fixed-point approach

Let us introduce the operator Sh : Hφ
h → Hσh × (Hu

h ×Hρh) defined by

Sh(φh) := (S1,h(φh), (S2,h(φh),S3,h(φh))) := (σh, (uh,ρh)) ∀φh ∈ Hφ
h,

where (σh,uh,ρh) solves uniquely the problem

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh,
(3.2)

with Fφh defined in (2.4) with φ = φh. On the other hand, we define S̃h : Hσh ×Hu
h → Hφ

h as

S̃h(σh,uh) := φh ∀ (σh,uh) ∈ Hσh ×Hu
h ,

where φh is the unique solution of

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hφ
h, (3.3)

with Aσh and Guh being defined by (2.9) with σ = σh and (2.10) with u = uh, respectively. Therefore,

solving (3.1) is equivalent to find φh ∈ Hφ
h such that

Th(φh) = φh,

where the fixed-point operator is characterised by

Th : Hφ
h → Hφ

h, Th(φh) := S̃h(S1,h(φh),S2,h(φh)) ∀φh ∈ Hφ
h.
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The well-definition of Th then hinges on the well-posedness of S̃h and Sh. For the latter, we
anticipate that further hypotheses on the discrete spaces Hσh ,Hu

h and Hρh will be required. To this
end, we now let Vh be the discrete kernel of b, that is

Vh :=
{
τ h ∈ Hσh : b(τ h, (vh,ηh)) = 0 ∀ (vh,ηh) ∈ Hu

h ×Hρh
}
,

and assume the following discrete inf-sup conditions (which do hold for some finite element spaces, as
those listed in Section 3.4):

[H.0] There exists a constant α̂ > 0, independent of h, such that

sup
τh∈Vh
τh 6=0

a(σh, τ h)

‖τ h‖div,Ω
≥ α̂ ‖σh‖div,Ω ∀σh ∈ Vh. (3.4)

[H.1] There exists a constant β̂ > 0, independent of h, such that

sup
τh∈H

σ
h

τh 6=0

b(τ h, (vh,ηh))

‖τ h‖div,Ω
≥ β̂ ‖(vh,ηh)‖L2(Ω)×L2

skew(Ω) ∀ (vh,ηh) ∈ Hu
h ×Hρh. (3.5)

Lemma 3.1 For each φh ∈ Hφ
h the problem (3.2) has a unique solution Sh(φh) := (σh, (uh,ρh)) ∈

Hσh × (Hu
h ×Hρh). Moreover, there exists C̃ > 0, depending on µ, α̂, β̂, but independent of φh, such that

‖Sh(φh)‖H = ‖(σh, (uh,ρh))‖H ≤ C̃
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.

Proof. It follows directly from the discrete Babuška-Brezzi theory [14, Thm. 2.4]. Indeed, the induced
operators for the forms a and b are bounded on subspaces of the corresponding continuous spaces.
Furthermore, the linear functional G restricted to Hσh is bounded as indicated in (2.16), and for each

φh ∈ Hφ
h, the functional Fφh restricted to Hu

h ×Hρh is bounded as well. The remaining hypotheses are
precisely [H.0] and [H.1], and hence the proof is finished. �

Lemma 3.2 Let (σh,uh) ∈ Hσh ×Hu
h . Then, there exists a unique φh := S̃h(σh,uh) ∈ Hφ

h solution
of (3.3). Moreover, with the same constant r provided by Lemma 2.3, there holds

‖S̃h(σh,uh)‖1,Ω = ‖φh‖1,Ω ≤ r.

Proof. It suffices to note that for each (σh,uh) ∈ Hσh ×Hu
h , the operator Aσh is elliptic on Hφ

h with

the same constant α2 from Lemma 2.3, and that Guh restricted to Hφ
h is bounded as in (2.19). Hence,

the result is a direct application of the Lax-Milgram Lemma. �

3.3 Solvability of the discrete fixed-point equation

The following steps verify the hypotheses of the Brouwer fixed-point theorem (see, e.g. [10, Thm.
9.9-2]).

Lemma 3.3 For the closed ball Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}

, we have that Th(Wh) ⊆Wh.

Proof. It is a straightforward consequence of Lemma 3.2. �

12



Lemma 3.4 There exists C > 0 depending on µ,Lf , α̂ and β̂ (cf .(1.1), (1.4), (3.4), (3.5)) such that

‖Sh(φh)− Sh(ϕh)‖H ≤ C ‖φh − ϕh‖0,Ω ∀φh, ϕh ∈ Hφ
h.

Proof. It follows analogously to the proof of Lemma 2.6. �

Lemma 3.5 For each (σh,uh), (ζh,wh) ∈ Hσh ×Hu
h , there holds

‖S̃h(σh,uh)− S̃h(ζh,wh)‖1,Ω ≤
1

α2

{
Lg ‖uh −wh‖0,Ω + Lϑ‖∇S̃h(ζh,wh)‖∞,Ω ‖σh − ζh‖0,Ω

}
. (3.6)

Proof. Given (σh,uh), (ζh,wh) ∈ Hσh ×Hu
h , we let φh := S̃h(σh,uh) and ϕh := S̃h(ζh,wh). We then

proceed similarly to the proof of Lemma 2.7 to obtain

α2 ‖φh − ϕh‖21,Ω ≤
{
Lg ‖uh −wh‖0,Ω + Lϑ‖∇ϕh‖∞,Ω ‖σh − ζh‖0,Ω

}
‖φh − ϕh‖1,Ω ,

and realise that Hφ
h consists of piecewise polynomials (see Section 3.4) to conclude that ‖∇ϕh‖∞,Ω <

+∞, and hence (3.6) holds. �

The following result is a consequence of Lemmas 3.3, 3.4 and 3.5.

Lemma 3.6 Let C be as in Lemma 3.4. Then, for all φh, ϕh ∈ Hφ
h, there holds

‖Th(φh)−Th(ϕh)‖1,Ω ≤
1

α2
C (Lg + Lϑ‖∇Th(ϕh)‖∞,Ω) ‖φh − ϕh‖0,Ω .

Proof. It follows after recalling that Th(φh) = S̃h(S1,h(φh),S2,h(φh)) for all φh ∈ Hφ
h, and applying

Lemmas 3.3, 3.4 and 3.5. �

Finally, Lemmas 3.3 and 3.6 imply the main result of this section, stated as follows.

Theorem 3.7 The Galerkin scheme (3.1) has at least one solution (σh, (uh,ρh), φh) ∈ Hσh × (Hu
h ×

Hρh)×Hφ
h. Furthermore, there exists C̃ independent of the discretisation parameters, such that

‖φ‖1,Ω ≤ r and ‖(σh, (uh,ρh))‖H ≤ C̃
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.

3.4 Specific finite element subspaces

Given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial functions on K
of degree ≤ k and recall the definition of the local Raviart-Thomas space of order k as RTk(K) :=
Pk(K)⊕Pk(K)x, where Pk(K) = [Pk(K)]2, and x is the generic vector in R2. In addition, we let bK
be the element bubble function defined as the unique polynomial in Pk+1(K) vanishing on ∂K with∫
K bK = 1. Then, for each K ∈ Th we consider the bubble space of order k, by

Bk(K) := Pk(K)

(
∂bK
∂x2

,−∂bK
∂x1

)
.

Appropriate finite element subspaces approximating the elasticity unknowns are as follows

Hσh := {τ h ∈ H0(div,Ω) : τ h|K ∈ RTk(K)⊕Bk(K) ∀K ∈ Th} , (3.7)

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
, (3.8)

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh ∈ C(Ω) and ηh|K ∈ Pk+1(K) ∀K ∈ Th
}
. (3.9)
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The discrete product space Hσh ×Hu
h ×Hρh constitutes the classical PEERS elements introduced in [6]

for the mixed finite element approximation of Dirichlet linear elasticity. In contrast, the approximation
of the diffusion problem will be carried out using Lagrange finite elements of degree ≤ k + 1, that is

Hφ
h :=

{
ψh ∈ C(Ω) ∩ H1

0(Ω) ψh|K ∈ Pk+1(K) ∀K ∈ Th
}
. (3.10)

Useful approximation properties of these spaces are listed as follows (see e.g. [8, 14]):

(APσh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
σ ∈ Hs(Ω) ∩ H0(div,Ω) with div (σ) ∈ Hs(Ω), there holds

dist(σ,Hσh ) ≤ Chs
{
‖σ‖s,Ω + ‖div (σ)‖s,Ω

}
.

(APuh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
u ∈ Hs(Ω), there holds

dist(u,Hu
h ) ≤ Chs ‖u‖s,Ω .

(APρh) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
ρ ∈ Hs(Ω), there holds

dist(ρ,Hρh) ≤ Chs ‖ρ‖s,Ω .

(APφ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

φ ∈ Hs+1(Ω), there holds

dist(φ,Hφ
h) ≤ Chs ‖φ‖s+1,Ω .

Next, we recall from [14, Sect. 4.5] that the discrete kernel of b is given by

Vh :=

{
τ h ∈ Hσh : div τ h = 0 in Ω and

∫
Ω
ηh : τ h = 0 ∀ηh ∈ Hρh

}
,

and according to (2.15) and Lemma 2.1, the bilinear form a is Vh-elliptic, implying that [H.0] is
satisfied. Concerning assumption [H.1] we have the following result, proven in [14, Sect. 4.5].

Lemma 3.8 There exists β̂ > 0 such that

sup
τh∈Hσh \{0}

b(τ h, (vh,ηh))

‖τ h‖div,Ω
≥ β̂ ‖(vh,ηh)‖L2(Ω)×L2

skew(Ω) ∀ (vh,ηh) ∈ Hu
h ×Hρh.

3.5 A priori error analysis

Let (σ, (u,ρ), φ) ∈ H0(div,Ω) × (L2(Ω) × L2
skew(Ω)) × H1

0(Ω) with φ ∈ W , and (σh, (uh,ρh), φh) ∈
Hσh × (Hu

h ×Hρh)×Hφ
h with φh ∈Wh; be the solutions of (2.11) and (3.1), respectively. That is,

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh

(3.11)

and

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω),

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hφ
h.

(3.12)

Next, we recall a generalised Strang inequality (cf. [24, Thm. 11.2]), to be applied in (3.11).
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Lemma 3.9 For Hilbert spaces H,Q, let a : H ×H → R, b : H ×Q → R be bounded bilinear forms
and F ∈ H ′, G ∈ Q′ satisfying the hypotheses of the Babuška-Brezzi theory. Furthermore, let {Hh}h>0

and {Qh}h>0 be sequences of finite-dimensional subspaces of H and Q, respectively, and suppose that
a, b and Fh ∈ H ′h, Gh ∈ Q′h satisfy the hypotheses of the discrete Babuška-Brezzi theory uniformly on
Hh and Qh, that is, there exist positive constants α and β independent of h, such that

sup
ψh∈Hh
ψh 6=0

a(ψh,ψh)

‖ψh‖H
≥ α ‖ψh‖H ∀ψh ∈ Vh and sup

ψh∈Hh
ψh 6=0

b(ψh, µh)

‖ψh‖H
≥ β ‖µh‖Q ∀µh ∈ Qh, (3.13)

where Vh is the discrete kernel of b. Then, there exists a constant CST dependent only on ‖a‖ , ‖b‖ , α
and β such that if (ϕ, λ) ∈ H ×Q and (ϕh, λh) ∈ Hh ×Qh are solutions to

a(ϕ,ψ) + b(ψ, λ) = F (ψ) ∀ ψ ∈ H,
b(ϕ, µ) = G(µ) ∀ µ ∈ Q,

and

a(ϕh, ψh) + b(ψh, λh) = Fh(ψh) ∀ ψh ∈ Hh,

b(ϕh, µh) = Gh(µh) ∀ µh ∈ Qh,

respectively, then for each h > 0, there holds

‖ϕ− ϕh‖H + ‖λ− λh‖Q ≤ CST

 inf
ψh∈Hh
ψh 6=0

‖ϕ− ψh‖H + inf
µh∈Qh
µh 6=0

‖λ− µh‖Q

+ sup
φh∈Hh
φh 6=0

|F (φh)− Fh(φh)|
‖φh‖H

+ sup
ηh∈Qh
ηh 6=0

|G(ηh)−Gh(ηh)|
‖ηh‖H

 .

For the subsequent analysis we will adopt the fairly common notation

dist
(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

:= inf
(τh,(vh,ηh))∈Hσh×(Huh×H

ρ
h)
‖(σ, (u,ρ))− (τ h, (vh,ηh))‖H ,

and
dist

(
φ,Hφ

h

)
:= inf

ψh∈Hφh

‖φ− ψh‖1,Ω .

The following lemma provides an estimate for ‖(σ, (u,ρ))− (σh, (uh,ρh))‖H .

Lemma 3.10 There exists CST > 0, depending on µ, α̂ and β̂ (cf . (1.1), (3.4), (3.5)), such that

‖(σ, (u,ρ))− (σh, (uh,ρh))‖H ≤ CST

{
dist

(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

+Lf ‖φ− φh‖0,Ω
}
. (3.14)

Proof. We clearly observe that (3.4) and (3.5) imply that the hypothesis (3.13) in Lemma 3.9 is
satisfied. Then, a straightforward application of Lemma 3.9 to (3.11), readily gives

‖(σ, (u,ρ))− (σh, (uh,ρh))‖

≤ CST

{
‖(Fφ − Fφh)|Huh×Hρh‖+ inf

(τh,(vh,ηh))∈Hσh×(Huh×H
ρ
h)
‖(σ, (u,ρ))− (τ h, (vh,ηh))‖H

}
.

(3.15)
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Next, and analogously to the proof of Lemma 2.6, we can assert that

‖(Fφ − Fφh)|Huh×Hρh‖ ≤ Lf ‖φ− φh‖0,Ω , (3.16)

and finally, by replacing (3.16) back into (3.15), we get the desired result. �

Lemma 3.11 Let α2 be the ellipticity constant of the bilinear form Aσ (cf . (2.18)). Then, there holds

‖φ− φh‖1,Ω ≤
Lg
α2
‖u− uh‖0,Ω +

(
1 +

ϑ2

α2

)
dist(φ,Hφ

h) +
Lϑ
α2
‖φ‖1,∞,Ω ‖σ − σh‖0,Ω . (3.17)

Proof. We first observe by triangle inequality that

‖φ− φh‖1,Ω ≤ ‖φ− ψh‖1,Ω + ‖φh − ψh‖1,Ω ∀ψh ∈ Hφ
h. (3.18)

Then, applying the ellipticity of Aσh and adding and subtracting the expression Guh(φh − ψh) =
Aσh(φh − ψh), (cf. (3.12)) we find that

α2 ‖φh − ψh‖21,Ω ≤ Aσh(φh − ψh, φh − ψh)

≤ |Guh(φh − ψh)−Gu(φh − ψh)|+ |Aσ(φ, φh − ψh)−Aσh(ψh, φh − ψh)|.
(3.19)

Next, analogously to (2.27), we get

|Guh(φh − ψh)−Gu(φh − ψh)| ≤ Lg ‖uh − u‖0,Ω ‖φh − ψh‖0,Ω . (3.20)

In turn, adding and subtracting

∫
Ω
ϑ(σh)∇φ · ∇(φh − ψh), and applying the upper bound of ϑ (cf.

(1.3)), we arrive at

|Aσ(φ, φh − ψh)−Aσh(ψh, φh − ψh)|
≤ ϑ2|φ− ψh|1,Ω|φh − ψh|1,Ω + Lϑ ‖∇φ‖∞,Ω ‖σ − σh‖0,Ω |φh − ψh|1,Ω.

(3.21)

Thus, the inequalities (3.19), (3.20) and (3.21), imply that

‖φh − ψh‖1,Ω ≤
Lg
α2
‖u− uh‖0,Ω +

ϑ2

α2
‖φ− ψh‖1,Ω +

Lϑ
α2
‖φ‖1,∞,Ω ‖σ − σh‖0,Ω . (3.22)

Finally, replacing (3.22) back into (3.18) and taking the infimum on ψh ∈ Hφ
h, completes the proof. �

To derive the Céa estimation for the total error ‖φ− φh‖1,Ω + ‖(σ, (u,ρ))− (σh, (uh,ρh))‖H , we
combine the inequalities provided by Lemmas 3.10 and 3.11. For sake of notational convenience we
introduce the following constants

C1 :=
Lg
α2
CST, C2 :=

Lϑ
α2
C∞CST, C3 := 1 +

ϑ2

α2
. (3.23)

Hence, replacing the bound for ‖u− uh‖0,Ω and ‖σ − σh‖0,Ω into (3.17), applying (2.22), and per-
forming algebraic manipulations, we can deduce the bounds

‖φ− φh‖1,Ω ≤ C1

{
dist

(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

+ Lf ‖φ− φh‖0,Ω
}

+ C3 dist(φ,Hφ
h)

+ C2 cS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}{
dist

(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

+ Lf ‖φ− φh‖0,Ω
}

≤
{
C1 + C2 cS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}{
dist

(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)}

+ Lf

{
C1 + C2 cS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}
‖φ− φh‖1,Ω + C3 dist (φ,Hφ

h).

(3.24)

Consequently, we can establish the following result which provides the complete Céa estimate.
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Theorem 3.12 Assume that the data satisfy

Lf

{
C1 + C2 cS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}
<

1

2
. (3.25)

Then, there exist positive constants C4 and C5 independent of h, such that

‖φ− φh‖1,Ω + ‖(σ, (u,ρ))− (σh, (uh,ρh))‖H
≤ C4 dist (φ,Hφ

h) + C5 dist
(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)
.

(3.26)

Proof. The estimate for ‖φ− φh‖1,Ω follows from (3.24) and (3.25), and the proof is complete after
inserting the bound back into (3.14). �

Theorem 3.13 In addition to the hypotheses of Theorems 2.9, 3.7 and 3.12, assume that there exists
s > 0 such that σ ∈ Hs(Ω), div (σ) ∈ Hs(Ω), u ∈ Hs(Ω), ρ ∈ Hs(Ω) and φ ∈ H1+s(Ω). Then, there
exists Ĉ > 0, independent of h, such that, with the finite element subspaces defined by (3.7), (3.8), (3.9)
and (3.10), there holds

‖φ− φh‖1,Ω + ‖(σ, (u,ρ))− (σh, (uh,ρh))‖H
≤ Ĉhmin{s,k+1}

{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω + ‖ρ‖s,Ω + ‖φ‖1+s,Ω

}
.

(3.27)

Proof. It follows as a combination of the Céa estimate (3.26), and the approximation properties

(APσh ), (APuh ), (APρh) and (APφ
h). �

4 An augmented mixed-primal formulation

In this section we follow the approach from previous works (see, e.g. [3, 11, 15, 16] and the references
therein) and put forward an augmented mixed-primal formulation for (1.7). We establish the aug-
mented mixed-primal variational formulation of (1.1) and show that it is well-posed. Next, we define
the corresponding Galerkin scheme, prove its solvability, introduce an specific mixed finite element
method, and finally we establish the corresponding a priori error estimate.

4.1 The continuous setting

In order to increase flexibility in choosing discrete spaces for the approximation of the elasticity
problem, we incorporate the following redundant terms in the variational formulation (2.6):

κ1

∫
Ω

(
ε(u)− C−1σ

)
: ε(v) = 0 ∀v ∈ H1(Ω),

κ2

∫
Ω

divσ · div τ = −κ2

∫
Ω
f(φ) · div τ ∀ τ ∈ H0(div,Ω),

κ3

∫
Ω

(ρ− (∇u− ε(u)) : η = 0 ∀η ∈ L2
skew(Ω),

κ4

∫
Γ
u · v = κ4

∫
Γ
uD · v ∀v ∈ H1(Ω),

(4.1)

where (κ1, κ2, κ3, κ4) is a vector of positive parameters to be specified later on. It is important to
observe here that the above terms now require that the displacement u live in H1(Ω).
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Then, and alternatively to (2.6), we may consider the following augmented mixed formulation for
the elasticity problem: find (σ,u,ρ) ∈ H0(div,Ω)×H1(Ω)× L2

skew(Ω) such that

B̃((σ,u,ρ), (τ ,v,η)) = F̃φ(τ ,v,η) ∀(τ ,v,η) ∈ H0(div,Ω)×H1(Ω)× L2
skew(Ω), (4.2)

where the multilinear form and the associated right hand side functional are defined as

B̃((σ,u,ρ), (τ ,v,η)) := a(σ, τ ) + b(τ , (u,ρ))− b(σ, (v,η)) + κ1

∫
Ω

(
ε(u)− C−1σ

)
: ε(v)

+ κ2

∫
Ω

divσ · div τ + κ3

∫
Ω

(ρ− (∇u− ε(u)) : η + κ4

∫
Γ
u · v, (4.3)

F̃φ(τ ,v,η) := G(τ )− Fφ(v,η)− κ2

∫
Ω
f(φ) · div τ + κ4

∫
Γ
uD · v. (4.4)

The augmented mixed-primal formulation for (1.7) reduces therefore to (2.8) and (4.2), i.e.: find
(σ,u,ρ, φ) ∈ H0(div,Ω)×H1(Ω)× L2

skew(Ω)×H1
0(Ω) such that

B̃((σ,u,ρ), (τ ,v,η)) = F̃φ(τ ,v,η) ∀ (τ ,v,η) ∈ H0(div,Ω)×H1(Ω)× L2
skew(Ω),

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω).

(4.5)

We proceed to adapt the approach from Sections 2.2 and 2.3. Since now u ∈ H1(Ω), we can define

S : H1
0(Ω)→ H0(div,Ω)×H1(Ω)× L2

skew(Ω), S(φ) := (S1(φ),S2(φ),S3(φ)) := (σ,u,ρ),

where (σ,u,ρ) is the unique solution of (4.2) with a given φ ∈ H1
0(Ω). In turn, we define the operator

S̃ : H0(div,Ω)×H1(Ω)→ H1
0(Ω), S̃(σ,u) := φ ∀ (σ,u) ∈ H0(div,Ω)×H1(Ω),

where φ is the unique solution of (2.8) with the given (σ,u). Next, the definition of T and the
fixed-point strategy follow exactly as in Section 2.2. The analysis of S̃ can be therefore omitted.

The following lemma will be instrumental in showing the well-posedness of (4.2) for a given φ.

Lemma 4.1 There exists c2 > 0 such that

‖ε(v)‖21,Ω + ‖v‖20,Γ ≥ c2 ‖v‖21,Ω ∀v ∈ H1(Ω).

Proof. See [16, Lemma 3.1 and (3.9)]. �

Lemma 4.2 Assume that κ1 ∈ (0, 4δµ) and κ3 ∈
(

0, 2c2κ1δ̃
(
1− δ

2

))
with δ, δ̃ ∈ (0, 2), and that

κ2, κ4 > 0. Then, for each φ ∈ H1
0(Ω), problem (4.2) has a unique solution S(φ) := (σ,u,ρ) ∈ H :=

H0(div,Ω)×H1(Ω)× L2
skew(Ω). Moreover, there exists kS > 0, independent of φ, such that

‖S(φ)‖H = ‖(σ,u,ρ)‖H ≤ kS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
∀φ ∈ H1

0(Ω).

Proof. We first observe from (4.3) that B is a bilinear form. Next, applying Cauchy-Schwarz’s
inequality together with the trace theorem (with constant c3), we can assert that

|B̃((σ,u,ρ), (τ ,v,η))| ≤ 1

µ
‖σ‖0,Ω‖τ‖0,Ω + ‖u‖0,Ω ‖div τ‖0,Ω + ‖ρ‖0,Ω ‖τ‖0,Ω + ‖v‖0,Ω ‖divσ‖0,Ω

+ ‖η‖0,Ω ‖σ‖0,Ω + κ1 ‖ε(u)‖0,Ω ‖ε(v)‖0,Ω +
κ1

µ
‖σ‖0,Ω ‖ε(v)‖0,Ω + κ2 ‖divσ‖0,Ω ‖div τ‖0,Ω

+ κ3 ‖ρ‖0,Ω ‖η‖0,Ω + κ3|u|1,Ω ‖η‖0,Ω + κ3 ‖ε(u)‖0,Ω ‖η‖0,Ω + κ4c
2
3 ‖u‖1,Ω ‖v‖1,Ω .
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It follows that there exists ‖B̃‖ > 0 depending on µ, κ1, κ2, κ3, κ4 and c3, such that

|B̃((σ,u,ρ), (τ ,v,η))| ≤ ‖B̃‖ ‖(σ,u,ρ)‖H ‖(τ ,v,η)‖H ∀ (σ,u,ρ), (τ ,v,η) ∈ H,

implying that B̃ is bounded independently of φ ∈ H1
0(Ω). The H-ellipticity analysis of B̃ will be

conducted as in the proof of [17, Thm. 3.1]. For each (τ ,v,η) ∈ H, Young’s inequality yields

B̃((τ ,v,η), (τ ,v,η)) =

∫
Ω
C−1τ : τ + κ1 ‖ε(v)‖20,Ω − κ1

∥∥C−1τ
∥∥

0,Ω
‖ε(v)‖0,Ω + κ2 ‖div τ‖20,Ω

+ κ3 ‖η‖20,Ω−κ3 ‖∇v − ε(v)‖0,Ω ‖η‖0,Ω + κ4 ‖v‖20,Γ

=

∫
Ω
C−1τ : τ − κ1

2δ

∥∥C−1τ
∥∥2

0,Ω
+ κ1 ‖ε(v)‖20,Ω −

κ1δ

2
‖ε(v)‖20,Ω + κ2 ‖div τ‖20,Ω

+ κ3 ‖η‖20,Ω −
κ3

2δ̃
‖∇v − ε(v)‖20,Ω −

κ3δ̃

2
‖η‖20,Ω + κ4 ‖v‖20,Γ ,

from which, taking δ, δ̃, κ1, κ2, κ3, κ4 as stated in the hypotheses, applying Lemmas 2.1 and 4.1, and
using the relation ‖∇v − ε(v)‖20,Ω = |v|21,Ω − ‖ε(v)‖20,Ω , we can deduce that

B̃((τ ,v,η), (τ ,v,η)) ≥ 1

2µ

(
1− κ1

4δµ

)
‖τ d‖20,Ω + κ2 ‖div τ‖20,Ω + κ1

(
1− δ

2

)
‖ε(v)‖20,Ω

+ κ3

(
1− δ̃

2

)
‖η‖20,Ω −

κ3

2δ̃
|v|21,Ω + κ4 ‖v‖20,Γ

= α̃2 ‖τ‖2div,Ω +

(
c2α̃3 −

κ3

2δ̃

)
‖v‖21,Ω + κ3

(
1− δ̃

2

)
‖η‖20,Ω ,

where α̃1 := min{ 1
2µ

(
1− κ1

4δµ

)
, κ22 }, α̃2 := min{c1α̃1,

κ2
2 }, and α̃3 := min{κ1

(
1− δ

2

)
, κ4}. In this

way, defining α̃ := min{α̃2, c2α̃3 − κ3
2δ̃
, κ3

(
1− δ̃

2

)
}, which depends on µ, δ, δ̃, κ1, κ2, κ3, κ4, c1 and c2,

we conclude that
B̃((τ ,v,η), (τ ,v,η)) ≥ α̃ ‖(τ ,v,η)‖2H ∀ (τ ,v,η) ∈ H. (4.6)

Next, given φ ∈ H1
0(Ω), we look at the functional F̃φ, which is certainly linear. Similarly to the proof

of [3, Lemma 3.4], there exists a positive constant ‖F̃‖ depending on κ2, κ4 and c3, such that

|F̃φ(τ ,v,η)| ≤ ‖F̃‖
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
‖(τ ,v,η)‖H . (4.7)

The foregoing inequality shows the boundedness of F̃φ with

‖F̃φ‖ ≤ ‖F̃‖
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
. (4.8)

Finally, a straightforward application of the Lax-Milgram Lemma proves that for each φ ∈ H1
0(Ω),

problem (4.2) has a unique solution S(φ) := (σ,u,ρ) ∈ H. Moreover, the corresponding continuous
dependence result together with the estimates (4.6) and (4.7) give

‖S(φ)‖H = ‖(σ,u,ρ)‖H ≤
1

α̃
‖F̃φ‖H′ ≤ kS

{
‖uD‖1/2,Γ + f2|Ω|1/2

}
,

with kS :=
‖F̃‖
α̃

, thus completing the proof. �
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Lemma 4.3 Let α̃ be the ellipticity constant provided in Lemma 4.2. Then, there exists KS > 0
depending on Lf , κ2 and α̃ (cf . (1.4), (4.1), (4.6)), such that

‖S(φ)− S(ϕ)‖H ≤ KS ‖φ− ϕ‖0,Ω ∀φ, ϕ ∈ H1
0(Ω). (4.9)

Proof. We follow [3, Lemma 3.9], and fix φ, ϕ ∈ H1
0(Ω). We then take (σ,u,ρ) = S(φ) and (ζ,w,χ) =

S(ϕ), that is

B̃((σ,u,ρ), (τ ,v,η)) = F̃φ(τ ,v,η) and B̃((ζ,w,χ), (τ ,v,η)) = F̃ϕ(τ ,v,η) ∀(τ ,v,η) ∈ H.

Exploiting the ellipticity of B̃ we readily get

α̃ ‖(σ,u,ρ)− (ζ,w,χ)‖2H ≤ B̃((σ,u,ρ), (σ,u,ρ)− (ζ,w,χ))− B̃((ζ,w,χ), (σ,u,ρ)− (ζ,w,χ))

= (F̃φ − F̃ϕ)((σ,u,ρ)− (ζ,w,χ)),

(4.10)

and the definition of F̃φ in combination with Cauchy-Schwarz’s inequality and (1.4) implies that

|(F̃φ − F̃ϕ)((σ,u,ρ)− (ζ,w,χ))|

=

∣∣∣∣∫
Ω

(f(φ)− f(ϕ)) · (u−w)− κ2

∫
Ω

(f(φ)− f(ϕ)) · div(σ − ζ)

∣∣∣∣
≤ Lf (1 + κ2

2)1/2 ‖φ− ϕ‖0,Ω ‖(σ,u,ρ)− (ζ,w,χ)‖H

(4.11)

Back substitution of (4.11) into (4.10) then yields

α̃ ‖(σ,u,ρ)− (ζ,w,χ)‖2H ≤ Lf (1 + κ2
2)1/2 ‖φ− ϕ‖0,Ω ‖(σ,u,ρ)− (ζ,w,χ)‖H ,

which finally gives (4.9). �

Lemma 4.4 Let W be the closed ball defined in Lemma 2.5 and KS be as in Lemma 4.3. Then, for
each φ, ϕ ∈ H1

0(Ω), there holds

‖T(φ)−T(ϕ)‖1,Ω ≤
1

α2
KS

(
Lg + Lϑ ‖T(ϕ)‖1,∞,Ω

)
‖φ− ϕ‖0,Ω .

Proof. The definition of T together with Lemma 2.3 imply that T(W ) ⊆ W . The remainder of the
proof proceeds exactly as the one of Lemma 2.7. �

Theorem 4.5 The mixed-primal problem (2.11) has at least one solution (σ,u,ρ, φ) ∈ H0(div,Ω)×
H1(Ω)× L2

skew(Ω)×H1
0(Ω), satisfying

‖φ‖1,Ω ≤ r and ‖(σ,u,ρ)‖H ≤ kS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.

Moreover, if the data satisfy

1

α2
KS

{
Lg + LϑC∞ kS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}
< 1,

then the solution φ is unique in W.

Proof. It follows as in the proof of Theorem 2.9. �
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4.2 The discrete scheme

Similarly to Section 3.1, we begin by considering the finite dimensional-subspaces

Hσh ⊆ H0(div,Ω), Hu
h ⊆ H1(Ω), Hρh ⊆ L2

skew(Ω) and Hφ
h ⊆ H1

0(Ω),

which for the augmented mixed-primal formulation, we can define as follows

Hσh :=
{
τ h ∈ H0(div,Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

Hu
h := {vh ∈ C(Ω) vh|K ∈ Pk+1(K) ∀K ∈ Th} ,

Hρh :=
{
ηh ∈ L2

skew(Ω) ηh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hφ
h :=

{
ψh ∈ C(Ω) ∩ H1

0(Ω) ψh|K ∈ Pk+1(K) ∀K ∈ Th
}
.

(4.12)

A Galerkin scheme for (4.5) then reads: find (σh,uh,ρh, φh) ∈ Hσh ×Hu
h ×Hρh ×Hφ

h such that

B̃((σh,uh,ρh), (τ h,vh,ηh)) = F̃φh(τ h,vh,ηh) ∀ (τ h,vh,ηh) ∈ Hσ
h ×Hu

h ×Hρh, (4.13)

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hφ
h. (4.14)

We can now proceed analogously to Section 4.1 and define a fixed-point scheme for the analysis of the
coupled problem (4.13)-(4.14). For this purpose, we define Sh : Hφ

h → Hσh ×Hu
h ×Hρh as

Sh(φh) := (S1,h(φh),S2,h(φh),S3,h(φh)) := (σh,uh,ρh) ∀φh ∈ Hφ
h,

where the triple (σh,uh,ρh) is the unique solution of (4.13), with B̃ and F̃φh defined by (4.3) and

(4.4), respectively, with φ = φh. In turn, the operators S̃h and Th are defined as in Section 3.2.

As the analysis of the operator S̃h follows verbatim from Section 3.2, we can omit the details here.
Concerning Sh, we start by investigating the well-posedness of (4.13).

Lemma 4.6 Assume that κ1 ∈ (0, 4δµ) and κ3 ∈
(

0, 2c2κ1δ̃
(
1− δ

2

))
with δ, δ̃ ∈ (0, 2), and that

κ2, κ4 > 0. Then, for each φh ∈ Hφ
h the problem (4.13) has a unique solution S(φh) := (σh,uh,ρh) ∈

Hσh ×Hu
h ×Hρh. Moreover, with the same constant kS > 0 provided by Lemma 4.2, there holds

‖Sh(φh)‖H = ‖(σh,uh,ρh)‖H ≤ kS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
∀φh ∈ Hφ

h.

Proof. It suffices to note that for each φh ∈ Hφ
h, the multilinear form B̃ is elliptic on Hσh ×Hu

h × Hρh
with the same constant α̃ from Lemma 4.2 and that ‖F̃φh‖(Hσh×Huh×Hρh)

′ is bounded as in (4.8) with

φh in place of φ. Hence, the result follows from a direct application of the Lax-Milgram Lemma. �

We now provide the discrete analogues of Lemmas 4.3, 4.4 and Theorem 4.5, whose proofs, which
are almost verbatim of the corresponding continuous ones, are omitted.

Lemma 4.7 Let KS be the constant provided by Lemma 4.3. Then, there holds

‖Sh(φh)− Sh(ϕh)‖H ≤ KS ‖φh − ϕh‖0,Ω ∀φh, ϕh ∈ Hφ
h.

Lemma 4.8 Let Wh be as in Lemma 3.3. Then

‖Th(φh)−Th(ϕh)‖1,Ω ≤
1

α2
KS

(
Lg + Lϑ ‖∇Th(ϕh)‖∞,Ω

)
‖φh − ϕh‖0,Ω ∀φh, ϕh ∈ Hφ

h.

Theorem 4.9 Let Wh be as in Lemma 3.3. Then, the Galerkin scheme (4.13) − (4.14) has at least

one solution (σh,uh,ρh, φh) ∈ Hσh ×Hu
h ×Hρh ×Hφ

h, and there holds

‖φh‖1,Ω ≤ r and ‖(σh,uh,ρh)‖H ≤ kS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.
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4.3 A priori error analysis

The goal of this section is to derive an estimate for ‖(σ,u,ρ)− (σh,uh,ρh)‖H , where (σ,u,ρ) and
(σh,uh,ρh) are the solutions to the problems

B̃((σ,u,ρ), (τ ,v,η)) = F̃φ(τ ,v,η) ∀ (τ ,v,η) ∈ H0(div,Ω)×H1(Ω)× L2
skew(Ω),

B̃((σh,uh,ρh), (τ h,vh,ηh)) = F̃φh(τ h,vh,ηh) ∀ (τ h,vh,ηh) ∈ Hσh ×Hu
h ×Hρh ,

(4.15)
respectively. For this purpose, we recall (again from [24]) a Strang-type lemma, which will be applied
to (4.15).

Lemma 4.10 Let H be a Hilbert space, F ∈ H ′ and a : H×H → R be a bounded and elliptic bilinear
form. In addition, let {Hh}h>0 be a sequence of finite dimensional subspaces of H and for each h > 0
consider a bounded bilinear form ah : Hh × Hh → R and a functional Fh ∈ H ′h. Assume that the
family {ah}h>0 is uniformly elliptic, that is, there exists a constant α > 0, independent of h, such that

ah(vh, vh) ≥ α ‖vh‖2H ∀ vh ∈ Hh, ∀h > 0.

In turn, let u ∈ H and uh ∈ Hh such that

a(u, v) = F (v) ∀ v ∈ H and ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh.

Then, for each h > 0, there holds

‖u− uh‖H

≤ C̃ST

 sup
wh∈Hh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖H

+ inf
vh∈Hh
vh 6=0

‖u− vh‖V + sup
wh∈Hh
wh 6=0

|a(vh, wh)− ah(vh, wh)|
‖wh‖H


 .

where C̃ST := α−1 max{1, ‖a‖}.

Proof. See [24, Thm. 11.1]. �

Lemma 4.11 Let C̃ST := α̃−1 max{1, ‖B̃‖}, where α̃ is the constant yielding the ellipticity of B̃
(cf . (4.6)). Then, there holds

‖(σ,u,ρ)− (σh,uh,ρh)‖H
≤ C̃ST

{
dist

(
(σ,u,ρ),Hσh ×Hu

h ×Hρh
)

+ Lf (1 + κ2
2)1/2 ‖φ− φh‖0,Ω

}
.

(4.16)

Proof. Analogously to the proof of [11, Lemma. 5.3], we note that the bilinear form B̃ and the
functionals F̃φ and F̃φh satisfy the hypotheses of Lemma 4.10. Then, a straightforward application of
Lemma 4.10 to the context (4.15) gives

‖(σ,u,ρ)− (σh,uh,ρh)‖H

≤ C̃ST

{
‖(F̃φ − F̃φh)|Hσh×Huh×Hρh‖+ inf

(τh,vh,ηh)∈Hσh×H
u
h×H

ρ
h

‖(σ,u,ρ)− (τ h,vh,ηh)‖H

}
.

(4.17)

Next, similarly as in the proof of Lemma 4.3, we deduce that

‖(F̃φ − F̃φh)|Hσh×Huh×Hρh‖ ≤ Lf (1 + κ2
2)1/2 ‖φ− φh‖0,Ω . (4.18)
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Finally, by replacing (4.18) back into (4.17), we get (4.16) and the lemma follows. �

At this point, we realise that in the present context the estimate for ‖φ− φh‖1,Ω stays exactly as
in (3.17). Consequently, the corresponding Céa estimate for the total error

‖φ− φh‖1,Ω + ‖(σ, (u,ρ))− (σh, (uh,ρh))‖H

is derived by combining (3.17) and (4.16). By virtue of the aforementioned, we can establish the
analogues of Theorems 3.12 and 3.13, whose proofs are omitted.

Theorem 4.12 Let C1 and C2 be the constants defined in (3.23), and assume that the data satisfy

Lf (1 + κ2
2)1/2

{
C1 + C2 kS

(
‖uD‖1/2,Γ + f2|Ω|1/2

)}
<

1

2
.

Then, there exist positive constants C6 and C7, independent of h, such that

‖φ− φh‖1,Ω + ‖(σ,u,ρ)− (σh,uh,ρh)‖H
≤ C6 dist (φ,Hφ

h) + C7 dist
(
(σ,u,ρ),Hσh ×Hu

h ×Hρh
)
.

Theorem 4.13 In addition to the hypotheses of Theorems 4.5, 4.9 and 4.12, assume that there exists
s > 0 such that σ ∈ Hs(Ω), div (σ) ∈ Hs(Ω), u ∈ H1+s(Ω), ρ ∈ Hs(Ω) and φ ∈ H1+s(Ω). Then, there
exists Ĉ > 0, independent of h, such that, with the finite element subspaces defined by (4.12), there
holds

‖φ− φh‖1,Ω + ‖(σ,u,ρ)− (σh,uh,ρh)‖H
≤ Ĉhmin{s,k+1}

{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖ρ‖s,Ω + ‖φ‖1+s,Ω

}
.

(4.19)

5 Numerical results

In this section we provide a set of computational tests. The first one serves to illustrate the convergence
rates anticipated by our previous analysis for the mixed-primal and the augmented Galerkin schemes,
whereas the remaining examples address a few cases not covered by our analysis (mixed boundary
conditions, non-convex domains, and the 3D case).

Example 1: Error history for a constructed solution in 2D. We consider (1.7) in the unit
square Ω = (0, 1)2 and propose exact solutions and coupling terms (tensorial diffusivity, body load,
and diffusive source) as follows

u =

(
d1 sin(πx1) cos(πx2) +

x21
2λ

−d1 cos(πx1) sin(πx2) +
x22
2λ

)
, σ = λ trε(u) I + 2µε(u) , ρ = ∇u− ε(u),

φ =x1 (1− x2)x2 (1− x2), ϑ(σ) = D0 I +D2σ
2, f(φ) = d2

(
φ2

−φ

)
, g(u) = d2|u|.

(5.1)

These closed-form solutions satisfy the boundary conditions uD = u on Γ and φ = 0 on Γ. Moreover,
the elasticity and diffusion equations are considered non-homogeneous and the extra source terms are
chosen according to (5.1). This treatment does not compromise the continuous and discrete analyses,
as the smoothness of the exact solution provides right-hand sides with terms in L2(Ω), thus only
requiring a slight modification of the functionals in the variational formulation. Additionally, we pick
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N h e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(φ) r(φ) iter
Mixed-primal PEERS-Lagrange scheme with k = 0

129 0.7071 124.43 – 1.72e-2 – 5.49e-2 – 0.1125 – 4
457 0.3536 65.778 0.9197 9.11e-3 0.9201 2.87e-2 0.9376 6.72e-2 0.7425 5
1713 0.1768 33.305 0.9819 4.61e-3 0.9829 1.45e-2 0.9858 3.81e-2 0.8216 6
6625 0.0883 16.703 0.9956 2.32e-3 0.9962 7.26e-3 0.9968 1.87e-2 1.0254 6
26049 0.0441 8.3584 0.9989 1.15e-3 0.9991 3.63e-3 0.9992 8.35e-3 1.1622 6
103297 0.0221 4.1802 0.9997 5.78e-4 0.9998 1.81e-3 0.9998 3.91e-3 1.0961 6

Augmented scheme with k = 0

67 0.7071 132.53 – 0.1043 – 0.1120 – 0.1105 – 5
219 0.3536 70.733 0.9059 0.0643 0.6976 0.1036 0.1116 0.0708 0.6427 5
787 0.1768 35.492 0.9949 0.0323 0.9909 0.0789 0.3933 0.0427 0.7277 6
2979 0.0883 17.604 1.0120 0.0157 1.0430 0.0463 0.7684 0.0230 0.8912 6
11587 0.0441 8.7683 1.0060 0.0077 1.0190 0.0242 0.9319 0.0108 1.0830 6
45699 0.0221 4.3792 1.0022 3.86e-3 1.0061 0.0129 0.9821 4.62e-3 1.2334 6

Augmented scheme with k = 1

195 0.7071 38.856 – 0.0309 – 0.0169 – 0.0358 – 6
691 0.3536 10.373 1.9050 0.0088 1.8070 0.0074 1.1920 0.0100 1.8320 6
2595 0.1768 2.6473 1.9700 0.0023 1.9300 0.0029 1.3300 0.0024 2.0100 6
10051 0.0883 0.6637 1.9960 0.0005 1.9770 0.0009 1.6770 0.0006 2.0300 6
39555 0.0441 0.1658 2.0010 0.0001 1.9910 0.0002 1.8580 0.0001 2.0210 8
156931 0.0221 0.0414 2.0013 3.72e-5 1.9962 6.65e-5 1.9356 3.68e-5 2.0334 6

Table 1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence, and number of Picard
iterations for the mixed-primal PEERS-P1 and augmented RTk −Pk+1 − Pk − Pk+1 approximations
of the coupled problem with k = 0, 1, and using ν = 0.4 and κ2 = 0.5µ, κ4 = µ. In the first block of
the table, the displacement error is measured in the L2−norm.

out the following value to the model parameters: displacement and forcing term scalings d1 = 0.05,
d2 = 0.1; Young’s modulus E = 1e3; Poisson’s ratio ν = 0.4; the constants specifying ϑ given by
D0 = 1.0 and D2 = 0.1, and the Lamé constants λ = Eν(1 + ν)−1(1− 2ν)−1 and µ = E/(2 + 2ν).
We consider a heuristic value for Korn’s constant (cf. Lemma 4.1) as c2 = 0.1; and using the proof of
Lemma 4.2, the stabilisation parameters assume the values δ = δ̃ = 1, κ1 = 2µ, κ2 = 0.5µ, κ3 = 0.1µ,
and κ4 = µ. We generate a sequence of uniformly refined meshes and proceed to define errors and
convergence rates as usual:

e(σ) = ‖σ − σh‖div,Ω , e(u) = ‖u− uh‖j,Ω , e(ρ) = ‖ρ− ρh‖0,Ω , e(φ) = ‖φ− φh‖1,Ω , r(·) = log(e(·)/ê(·))
log(h/ĥ)

,

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ; and where j = 0, 1
will be used to measure the displacement error for the mixed-primal and augmented mixed-primal
schemes, respectively.

On each refinement level we generate approximate solutions with the lowest-order PEERS-Lagrange
elements indicated in Section 3.4, and also with the RTk−Pk+1−Pk−Pk+1 scheme specified in Section
4.2, for k = 0, 1. The output of this error study is collected in Table 1 (where we tabulate errors,
experimental convergence rates, and iteration count). We observe an asymptotic O(hk+1) convergence
for all individual errors (stress, displacement, rotation, and concentration), which agrees with the
theoretical error bounds derived in Section 3.5 (cf. (3.27)) and Section 4.3 (cf . (4.19)). Around six
Picard iterations are necessary to reach the prescribed tolerance Tol=1e-6 imposed on the `∞−norm
of the total residual. At each fixed-point step the resulting linear systems were solved with the direct
method SuperLU. For completeness, we also depict in Figure 1 the obtained numerical solutions
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Fig. 1: Example 1: RT0 − P1 − P0 − P1 approximation of stress magnitude |σh| (a), displacement
magnitude |uh| (b), relevant component of the rotation tensor ρh (c), and concentration of the diffusive
substance φh (d); using ν = 0.4. All fields are plotted on the deformed domain.

N h e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(φ) r(φ) iter
Mixed-primal PEERS-Lagrange scheme with k = 0

129 0.7071 9189.7 – 6.05e-2 – 0.1477 – 1.9940 – 6
457 0.3536 605.93 2.985 9.14e-3 2.7261 2.88e-2 2.3541 9.59e-2 4.3771 6
1713 0.1768 30.604 4.3071 4.61e-3 0.9882 1.45e-2 0.9929 3.67e-2 1.3051 6
6625 0.0883 15.390 0.9917 2.31e-3 0.9961 7.26e-3 0.9976 1.89e-2 0.9565 6
26049 0.0441 7.7948 0.9815 1.15e-3 0.9991 3.63e-3 0.9994 8.41e-3 1.1706 6
103297 0.0221 3.9011 0.9986 5.78e-4 0.9998 1.81e-3 0.9999 3.91e-3 1.1032 6

Augmented scheme with k = 0

67 0.7071 5525.5 – 1.6922 – 7.7691 – 0.1523 – 4
219 0.3536 853.17 5.0217 0.1672 3.4132 0.9461 4.1424 8.05e-2 0.7210 5
787 0.1768 33.563 4.6268 7.50e-2 1.2925 0.3937 1.2511 3.75e-2 1.0462 6
2979 0.0883 16.784 0.9997 3.39e-2 1.0484 0.1467 1.1646 1.97e-2 0.9248 6
11587 0.0441 8.2505 1.0235 1.95e-2 0.9229 7.43e-2 0.9412 1.03e-2 0.9426 6
45699 0.0221 4.0961 1.0131 9.73e-3 0.9973 3.73e-2 0.9843 4.54e-3 1.1831 6

Augmented scheme with k = 1

195 0.7071 172.52 – 1.2010 – 1.4012 – 7.34e-2 – 10
691 0.3536 9.4288 4.945 2.33e-2 5.6831 2.28e-2 5.9361 1.84e-2 1.4234 6
2595 0.1768 1.8711 2.5968 2.36e-3 3.3072 2.86e-3 2.9962 4.19e-3 2.0471 6
10051 0.0883 0.8375 2.1415 5.90e-4 1.9993 9.05e-4 1.6644 7.26e-4 1.9036 6
39555 0.0441 0.1559 2.2426 1.48e-4 1.9924 2.52e-4 1.8433 1.49e-4 2.1285 6
156931 0.0221 3.91e-2 1.9960 3.72e-5 1.9936 6.65e-5 1.9295 3.79e-5 1.9689 6

Table 2: Example 1: Error history produced using a higher Poisson ratio ν = 0.49999 and setting
κ2 = κ4 = 0.001µ. In the first block of the table, the displacement error is measured in the L2−norm.

computed with the lowest-order augmented method. We also mention that the proposed methods
maintain their accuracy in the incompressibility limit. This is confirmed by replicating the same
experimental analysis, now considering ν = 0.49999. The error history for this case is displayed in
Table 2, where we observe that the magnitude of errors and convergence rates are comparable to those
in Table 1. However, if the stabilisation parameters are kept as in the first case, then the number of
Picard iterations needed to achieve the prescribed tolerance for the augmented schemes is considerably
higher. Similar iteration counts as those in the non-augmented case can be obtained with much smaller
values of κ2 and κ4: here we choose κ2 = κ4 = 0.001µ.
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Fig. 2: Example 2: Approximate solutions (stress components, displacement magnitude with direc-
tions, rotation, and concentration) using a lowest order PEERS-Lagrange scheme displayed on the
undeformed domain (a); and individual errors computed with respect to a reference solution (b).

Example 2: Convergence in a non-convex domain. The goal of this example is to observe
the behaviour of the numerical method producing solutions on a non-convex domain (we recall that
convexity was required in the analysis of the fixed-point operators defining the coupled continuous
problem). To this end we consider a ring-shaped membrane bounded by an outer circle of radius 1
and an inner circle of radius 0.5. Initial guesses for stress, displacement, and concentration are zero.
Differently from Example 1, we now apply the following tensorial diffusivity, body load, source of
species, and prescribed boundary displacement on the outer ring

ϑ(σ) = D0 I +D1σ +D2σ
2, f(φ) = d2

(
φ

φ(1− φ)

)
, g(u) = d3|u|, uD =

(
d1 sin(πx1) cos(πx2)
−d1 cos(πx1) sin(πx2)

)
,

whereas on the inner ring the structure is clamped. We impose a concentration of 1 on the outer ring
and zero on the inner boundary. The coefficients defining the problem assume the valuesD0 = d1 = 0.1,
D1 = D2 = 0.05, d2 = 0.025, d3 = −1, E = 100 and ν = 0.33, and the numerical solutions generated
with the lowest-order PEERS-Lagrange scheme are presented in Figure 2(a).

In view of assessing the convergence of the lowest-order primal-mixed method, and in the absence
of a closed-form expression for the solution of this problem, we consider a reference solution computed
in a highly refined mesh (of around 50K elements) and proceed to compute approximate solutions on
coarser meshes. The obtained errors (with respect to the reference solutions projected to each coarse
mesh) and convergence rates are shown in Figure 2(b), where one sees that all fields exhibit an O(h)
accuracy, and note that the stress error is dominant. For all refinement levels the fixed-point algorithm
took less than five iterations to converge.

We exploit the same setting to study the influence of different values of values for the additional
diffusion parameters D1 = D2 (representing scenarios where the stress-assisted diffusion decreases in
intensity). Figure 3 compares three different cases, where a substantial difference is observed in the
generated diffusion patterns. A similar effect as the one produced with very low values of D1 and D2

(the profiles in Figure 3(c) show a very smooth diffusion going uniformly from φ = 1 on the outer
circle, to φ = 0 on the inner boundary) can be achieved by softening the material, prescribing a Young
modulus of E = 1.
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Fig. 3: Example 2: Concentration profiles of the diffusive substance φh plotted on the deformed
domain, for different values of the additional diffusivity constants.

Example 3: Stress-assisted diffusion on a 3D slab. In much the same way as in Exam-
ple 2, here we will confirm that the other assumption in Theorem 2.4 (the restriction to two spa-
tial dimensions) can be obviated at the implementation stage, and that it does not compromise
the behaviour of the proposed methods. Let us now regard a porous block occupying the domain
Ω = (0, 250) × (0, 250) × (0, 50) and construct an unstructured tetrahedral mesh of 55K elements.
The stress-dependent diffusivity is considered as in Example 2: ϑ(σ) = D0 I + D1σ + D2σ

2, the
concentration-dependent body load is f(φ) = d2(φ, φ, φ(1 − φ))t, and the displacement-dependent
source is now g(u) = d3 divu. We will take the parameter values D0 = 0.5, D1 = 0.025, D2 = −0.015,
d2 = 0.1, d3 = 0.25, E = 1e4, and ν = 0.49. Boundary conditions for the elasticity problem
differ from the ones analysed in the paper: The block is clamped on the surface x1 = 0, a nor-
mal traction force is imposed on the surface x1 = 250, σν = 3/4µν, and zero normal stresses
are considered elsewhere on the boundary, σν = 0. On the surface x1 = 0 we fix the concentration
φ = x2(250−x2)x3(50−x3)/(25 ·125)2, we impose zero-flux boundary conditions on the face x1 = 250,
σ̃ ·ν = 0; and consider an homogeneous Dirichlet boundary condition for concentration on the remain-
der of ∂Ω. Once again we consider the augmented mixed-primal method of lowest order, for which
the penalisation constants adopt the values κ1 = 2µ, κ2 = 0.5µ, κ3 = 0.01µ, and κ4 = 1. The linear
systems encountered at each Picard step are solved with the GMRES method preconditioned with
an incomplete LU factorisation. The computational results are summarised in Figure 4, indicating
that stresses are concentrated on the corners of the boundaries where Dirichlet conditions are set for
displacements, and rotations are higher on the vicinities of the rectangles at x1 = 0 and x1 = 250. For
this case the Picard method takes eight iterations to converge. Next we investigate the effect of the
stress-diffusion coupling (which is actually encoded in the magnitude of the parameters D1, D2 and
d2, d3) on the performance of the fixed-point iteration count. We conduct six rounds of simulations,
first fixing the tensorial diffusivity constants D1, D2 and increasing d2, d3; and then fixing d2, d3 and
decreasing D1, D2 (large contributions from stresses will only increase diffusion, therefore making the
generalised Poisson problem more stable). Figure 5 presents the response of the method in terms
of number of fixed-point iterations needed to reach the tolerance Tol=1e-6. We observe that as the
coupling terms depart from the base case, the solver performs a larger number of steps.

Finally we point out that the physical context of this last test was motivated by the study of stress-
assisted diffusion in actively deforming hyperelastic media [9], whose analysis constitutes one of the
forthcoming extensions of the present work.
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Fig. 4: Example 3: Augmented mixed-primal approximation of stress magnitude |σh| (a), displacement
magnitude |uh| (b), rotation tensor magnitude |ρh| (c), and concentration of the diffusive substance
φh (d); all plotted on the deformed domain and showing the undeformed skeleton mesh.
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Fig. 5: Example 3: Iteration count produced when varying the coupling parameters defining the
concentration-dependent body load and displacement-dependent source (a), and the stress-assisted
diffusivity parameters (b).
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