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Abstract

In this paper we focus on the analysis of a mixed finite element method for a class of natural
convection problems in two dimensions. More precisely, we consider a system based on the coupling
of the steady-state equations of momentum (Navier-Stokes) and thermal energy by means of the
Boussinesq approximation (coined the Boussinesq problem), where we also take into account a
temperature dependence of the viscosity of the fluid. The construction of this finite element method
begins with the introduction of the pseudostress and vorticity tensors, and a mixed formulation
for the momentum equations, which is augmented with Galerkin-type terms, in order to deal
with the non-linearity of these equations and the convective term in the energy equation, where
a primal formulation is considered. The prescribed temperature on the boundary becomes an
essential condition, which is weakly imposed, leading us to the definition of the normal heat flux
through the boundary as a Lagrange multiplier. We show that this highly coupled problem can be
uncoupled and analysed as a fixed-point problem, where Banach and Brouwer theorems will help us
to provide sufficient conditions to ensure well-posedness of the problems arising from the continuous
and discrete formulations, along with several applications of continuous injections guaranteed by the
Rellich-Kondrachov theorem. Finally, we show some numerical results to illustrate the performance
of this finite element method, as well as to prove the associated rates of convergence.

1 Introduction

Natural convection is a heat transfer process that is present is our everyday life: from the cooling of
little electronic devices, to indoor climate systems, to environmental transport problems. Unlike what
happens in forced convection (where the fluid flow is driven by external sources, e.g. a fan), buoyant
forces arising from density variations constitute the main cause of movement. When these variations
are small around an operating density (cf. [14]), and they depend solely on the temperature of the
fluid, then the problem can be modelled using the equations of momentum (Navier-Stokes), mass and
energy conservation, coupled by means of the Boussinesq approximation, what is commonly known as
the Boussinesq equations, or simply, the Boussinesq problem. The devise of new finite element methods
to approximate the solution of these equations has seen an increasing interest from the mathemati-
cal community. For instance, the problem with constant coefficients has been already considered in
several works, in both primal and mixed-type formulations (see, e.g. [7, 13, 19], and [17, 15, 16, 22],
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respectively, and the references therein). In particular, the authors in [15] propose an augmented
mixed-primal formulation for the problem, where the sought quantities are the pseudostress, the ve-
locity, the temperature and the normal heat flux through the boundary. Under sufficiently small data,
they are able to prove that, when Raviart-Thomas elements are used to approximate the pseudostress,
Lagrange elements for the velocity and temperature, and discontinuous piecewise polynomials for the
normal heat flux, then the finite element method is optimally-convergent. Similarly in [17], the au-
thors propose two formulations for this problem, each of them based on a dual-mixed formulation for
the momentum equation, and a primal and mixed-primal one for the energy equation. Thus, when
the velocity, trace-free gradient and normal heat flux are approximated by discontinuous piecewise
polynomials, the stress by Raviart-Thomas elements and the temperature by Lagrange elements, the
finite element methods are also optimally-convergent provided the data is sufficiently small.

On the other hand, there are several examples where an increase in the temperature of the fluid
can produce a strong variation of its viscosity (even in isobaric conditions) such as the case of oils,
lubricants, metal alloys and the magma beneath the surface of the earth, to name a few, meaning that
the consideration of a temperature-dependent viscosity will provide a better quality model, at the cost
of increasing the non-linearity of these equations. For instance, in a related context, the authors in
[2] deal with a coupled flow-transport problem where the kinematic effective viscosity, the diffusion
coefficient and the one-dimensional flux function describing hindered settling depend non-linearly on
the concentration of species; a problem that under minor modifications, becomes a simplification of the
Boussinesq equations, as the convective term in the Navier-Stokes equations is not present here. They
propose a mixed-primal formulation, which turns out to be well-posed, and the corresponding finite
element method is optimally convergent under smallness-of-data assumptions (the same approach is
later applied to a more general case of this problem in [3] for a sedimentation-consolidation system,
and to the a posteriori error analysis of it in [4]). In these works, the presence of variable parameters
make the analysis more difficult, as the decoupling of the unknowns usually requires the usage of
non-conventional embeddings and fixed-point strategies.

However, up to our knowledge, the full Boussinesq problem with temperature-dependent parameters
is something that has not had great attention, until now (see, e.g. [29, 30, 31, 35, 36] and the
references therein). Indeed, works such as [35] (and a stabilized version of it recently in [36]) deal
with the unsteady problem, where backward euler discretization is used in time, and conforming
finite elements in space, although the problem is linearized using information from the solution in
the previous timestep. More recently, in [30] a conforming finite element method is developed for the
problem with temperature-dependent parameters (viscosity and thermal conductivity) and Dirichlet
boundary conditions. The finite element approximation is done using a pair of Stokes-stable elements
for the velocity and pressure (Taylor-Hood and MINI-element), Lagrange elements for the temperature
and discontinuous piecewise polynomials for the normal heat flux through the boundary, yielding an
optimally convergent method, whose well-posedness is based on the assumption that the exact velocity
and temperature live in W 1,∞(Ω).

According to the above, we extend the results given by [15] to the case where the viscosity of the fluid
depends on the temperature, considering in addition the original Cauchy stress tensor in the Navier-
Stokes equations. To this end, we will introduce the pseudostress and vorticity tensors as new variables
to construct a mixed formulation for the momentum equations, whereas for the energy equation we
will consider a primal formulation, along with the introduction of the normal heat flux through the
boundary as a Lagrange multiplier. Next, to achieve conformity and well-definiteness of the involved
terms in the variational formulation, redundant Galerkin-type terms are included (similarly to what
has been done in [2, 3, 9, 10, 11, 15] for coupled flow-transport, Boussinesq, Navier-Stokes, and related
problems). Then, the well-posedness of the continuous and discrete problems will be proved using
besides smallness-of-data assumptions, fixed-point arguments; a tool basically used in all the works
referenced here so far. In particular, we use the fixed-point approach described in [15] that uncouples
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the problem into two formulations, one related to the mixed formulation of the momentum equations,
and the other one to the primal formulation of the energy equation, which allows us to reuse the results
for the latter problem. We then fulfill the hypotheses of the Banach and Brouwer fixed-point theorems
for the continuous and discrete problems, respectively. In both cases, inspired by the techniques used
in [2], the continuity of the operator is proved based on continuous injections guaranteed by the Rellich-
Kondrachov and Sobolev embedding theorems. Finally, the finite element method is constructed with
Raviart-Thomas elements of order k to approximate the pseudostress, Lagrange elements of order
k+ 1 for the velocity and temperature, and discontinuous piecewise polynomials of degree ≤ k for the
vorticity and normal heat flux through the boundary, which yields optimal a priori error estimates.

1.1 Outline

The rest of this work is organized as follows. First, we end this section by introducing some notation
that will be used throughout the paper. Next, in Section 2, the Boussinesq problem is formally
introduced, along with assumptions on the given data, to then rewrite the momentum equation in
pseudostress-velocity-vorticity formulation. In Section 3, an augmented mixed-primal formulation is
proposed, and the fixed-point approach that uncouples the problem is presented. Then, the well-
posedness of the problem is proved by means of the Lax-Milgram theorem, the Babuška-Brezzi theory
and the Banach fixed-point theorem. Next, in Section 4, an argument similar to the one applied
in the previous section provides the well-posedness of the Galerkin scheme, but this time, thanks
to the Brouwer fixed-point theorem. Then, after a specific choice of finite element subspaces, the
corresponding a priori error estimates are derived in Section 5, to finally in Section 6 present some
numerical examples that validate these results and illustrate the good performance of our augmented
mixed-primal finite element method.

1.2 Preliminaries

Let us denote by Ω ⊂ R2 a given bounded domain with polyhedral boundary Γ, and denote by ν the
outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and
Sobolev spaces W s,2(Ω) =: Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ) is

the space of traces of functions in H1(Ω) and H−1/2(Γ) denotes its dual. By M and M we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space M , and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an operator in any
product functional space. In turn, for any vector fields v = (vi)i=1,2 and w = (wi)i=1,2, we set the
gradient, divergence and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,2

, div v :=

2∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,2.

In addition, for any tensor fields τ = (τij)i,j=1,2 and ζ = (ζij)i,j=1,2, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,2, tr(τ ) :=

2∑
i=1

τii, τ : ζ :=

2∑
i,j=1

τijζij , and τ d := τ − 1

2
tr(τ )I,

where I stands for the identity tensor in R := R2×2. Furthermore, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,
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equipped with the usual norm

‖ τ ‖2div;Ω := ‖ τ ‖20,Ω + ‖div τ ‖20,Ω,

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows, | · | denotes
the Euclidean norm in R := R2. Also, we employ 0 to denote a generic null vector and use C, with
or without subscripts, bars, tildes or hats, to mean generic positive constants independent of the
discretization parameters, which may take different values at different places.

2 The model

We begin by introducing formally the Boussinesq problem, along with assumptions on the data and
the introduction of further notation used in this work.

2.1 The Boussinesq Equations

We are interested in obtaining the steady state of a non-isothermal, incompressible, Newtonian fluid
flow in the region Ω. Hence, we consider the equations of momentum (Navier-Stokes), mass and
thermal energy conservation, coupled by means of the Boussinesq approximation (cf. [14]). The
problem (without dimensionless numbers for readability purposes) reads: Find a velocity field u, a
pressure field p and a temperature field ϕ such that

−div (µ(ϕ)e(u)) + (∇u)u +∇p− ϕg = 0 in Ω, (2.1a)

div u = 0 in Ω, (2.1b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (2.1c)

where e(u) is the strain rate tensor, which corresponds to the symmetric part of the velocity gradient
tensor ∇u, that is, for any velocity v,

e(v) :=
1

2

{
∇v + (∇v)t

}
,

−g ∈ L∞(Ω) is an external force per unit mass (e.g. gravity force, centrifugal force, coriolis force) ,
K ∈ L∞(Ω) is a uniformly positive definite tensor describing the thermal conductivity of the fluid (thus
allowing the possibility of an anisotropy of the material, cf. [28]) and µ : R → R+ is a temperature-
dependent viscosity function, which is assumed to be bounded above and below by positive constants,
that is, there exist µ2 ≥ µ1 > 0 such that

µ1 ≤ µ(s) ≤ µ2 ∀ s ∈ R. (2.2)

We also assume that µ is a Lipschitz continuous function, that is, there exists Lµ > 0 such that

|µ(s)− µ(t)| ≤ Lµ|s− t| ∀ s, t ∈ R. (2.3)

Examples of temperature-dependent viscosity functions may include exponential and power-law cor-
relations (see, e.g. [32])

µ(s) = exp

(
A+

B

s− s0

)
, µ(s) = A(s− s0)B, ∀ s ∈ R,

where A, B are constants and s0 is a reference temperature. It is worth noting that usually these
functions are valid only in a predefined range of temperatures, something that may provide feasible
bounds for (2.2).
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In turn, concerning boundary conditions for the system (2.1), we consider Dirichlet conditions in
both velocity and temperature:

u = uD on Γ, (2.4)

and
ϕ = ϕD on Γ, (2.5)

with uD ∈ H1/2(Γ) and ϕD ∈ H1/2(Γ). Here uD must satisfy the compatibility condition∫
Γ

uD · ν = 0, (2.6)

which comes from an application of the divergence theorem when integrating over Ω the incompress-
ibility condition (2.1b).

2.2 Introduction of the Pseudostress and Vorticity Tensors

Let σ be the pseudostress tensor defined as

σ := µ(ϕ)e(u)− u⊗ u− pI. (2.7)

Then, by taking trace in both sides of the previous equation, and using the incompressibility condition,
it is possible to show that the pressure can be postprocessed as follows:

p = −1

2
tr(σ + u⊗ u). (2.8)

Moreover, let ω(v) be the skew-symmetric part of the tensor ∇v, that is,

ω(v) =
1

2

{
∇v − (∇v)t

}
,

for any vector field v, and let L2
skew(Ω) be the space of skew-symmetric tensors with components in

L2(Ω), i.e.,
L2
skew(Ω) := {η ∈ L2(Ω) : η + ηt = 0}.

Then, in what follows, we consider the vorticity tensor γ defined as

γ := ω(u) ∈ L2
skew(Ω). (2.9)

Thus, introducing this quantity in (2.7), and taking into account the new constitutive equation arising
from the pseudostress definition when the pressure is taken as in (2.8), the associated boundary value
problem becomes: Find (σ,u,γ, ϕ) such that

∇u− γ − 1

µ(ϕ)
(u⊗ u)d =

1

µ(ϕ)
σd in Ω, (2.10a)

−divσ − ϕg = 0 in Ω, (2.10b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (2.10c)

u = uD on Γ, (2.10d)

ϕ = ϕD on Γ, (2.10e)∫
Ω

tr(σ + u⊗ u) = 0. (2.10f)

Notice here that the incompressibility condition is implicitly present in (2.10a). This can be shown by
taking trace in both sides of this equation, having in mind that tr(∇u) = div u and tr(γ) = 0. Also,
uniqueness of a pressure solution of (2.1) is ensured with (2.10f) for it implies (according to (2.8))

that p lies in L2
0(Ω) :=

{
p ∈ L2(Ω) :

∫
Ω p = 0

}
(cf., e.g. [26]).
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3 The Continuous Formulation

3.1 The Augmented Mixed-Primal Formulation

In this section, we derive a weak formulation of the problem (2.10). Multiplying the constitutive
equation (2.10a) by a test function τ ∈ H(div; Ω), integrating by parts, and using the Dirichlet
condition (2.10d), we obtain∫

Ω

1

µ(ϕ)
σd : τ d+

∫
Ω

u·div τ+

∫
Ω
γ : τ+

∫
Ω

1

µ(ϕ)
(u⊗u)d : τ d = 〈 τν,uD 〉Γ ∀ τ ∈ H(div; Ω). (3.1)

In turn, the momentum equilibrium equation (2.10b) can be rewritten as

−
∫

Ω
v · divσ =

∫
Ω
ϕg · v ∀ v ∈ L2(Ω). (3.2)

Next, for the energy equilibrium equation (2.10c), we consider an additional variable λ := −K∇ϕ · ν
on Γ, which is nothing but the normal heat flux through the boundary. Then, multiplying (2.10c) by
a test function ψ ∈ H1(Ω) and integrating by parts, it follows that∫

Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −

∫
Ω
ψu · ∇ϕ ∀ ψ ∈ H1(Ω), (3.3)

where 〈 ·, · 〉Γ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). On the other hand, we
incorporate the Dirichlet condition (2.10e) as

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ), (3.4)

whereas the symmetry of the pseudostress tensor is imposed by

−
∫

Ω
σ : η = 0 ∀ η ∈ L2

skew(Ω). (3.5)

Notice that, due to the tensor product in (3.1) and the term in the right-hand side of (3.3), u must
live in a smaller space than L2(Ω). Indeed, by applying the Cauchy-Schwarz and Hölder inequalities,
and then the continuous injection from H1(Ω) into L4(Ω) (cf. [1, Theorem 4.12], [33, Theorem 1.3.4]),
we find that there exists positive constants c1(Ω) and c2(Ω) such that∣∣∣∣∫

Ω
(u⊗w)d : τ d

∣∣∣∣ ≤ c1(Ω)‖u ‖1,Ω‖w ‖1,Ω‖ τ ‖0,Ω ∀ u,w ∈ H1(Ω), ∀ τ ∈ L2(Ω), (3.6)

and ∣∣∣∣∫
Ω
ψu · ∇ϕ

∣∣∣∣ ≤ c2(Ω)‖u ‖1,Ω‖ψ ‖1,Ω|ϕ|1,Ω ∀ u ∈ H1(Ω) ∀ ϕ,ψ ∈ H1(Ω). (3.7)

In this way, the variational formulation would be given, at first glance, by: Find (σ,u,γ, ϕ, λ) ∈
H(div; Ω)×H1(Ω)× L2

skew(Ω)×H1(Ω)×H−1/2(Γ) such that
∫

Ω tr(σ + u⊗ u) = 0, and∫
Ω

1

µ(ϕ)
σd : τ d +

∫
Ω

u · div τ +

∫
Ω
γ : τ +

∫
Ω

1

µ(ϕ)
(u⊗ u)d : τ d = 〈 τν,uD 〉Γ, (3.8a)

−
∫

Ω
v · divσ −

∫
Ω
σ : η =

∫
Ω
ϕg · v, (3.8b)∫

Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −

∫
Ω
ψu · ∇ϕ, (3.8c)

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ, (3.8d)
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for all (τ ,v,η, ψ, ξ) ∈ H(div; Ω)× L2(Ω)× L2
skew(Ω)×H1(Ω)×H−1/2(Γ). However, notice also that

if (σ,u,γ, ϕ, λ) is a solution to (3.8), then, given any d ∈ R, (σ + dI,u,γ, ϕ, λ), is also a solution to
this problem. To avoid this non-uniqueness issue, we consider the orthogonal decomposition (cf., e.g.
[24, 33])

H(div; Ω) = H0(div; Ω)⊕RI, (3.9)

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω), it is known that there exists a unique ζ0 := ζ−
(

1
2|Ω|

∫
Ω tr(ζ)

)
I

∈ H0(div; Ω) and c := 1
2|Ω|

∫
Ω tr(ζ) ∈ R such that

ζ = ζ0 + cI. (3.10)

Then, the variational formulation (3.8) can be reformulated in terms of the H0(div; Ω)-component of
the pseudostress. The equivalence of these problems is addressed next.

Lemma 3.1. Let (σ,u,γ, ϕ, λ) ∈ H(div; Ω) ×H1(Ω) × L2
skew(Ω) ×H1(Ω) ×H−1/2(Γ) be a solution

to (3.8). Then, there exists σ0 ∈ H0(div; Ω) defined as

σ0 := σ +

(
1

2|Ω|

∫
Ω

tr(u⊗ u)

)
I (3.11)

such that (σ0,u,γ, ϕ, λ) ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω)×H1(Ω)×H−1/2(Γ) satisfies∫

Ω

1

µ(ϕ)
σd

0 : τ d +

∫
Ω

u · div τ +

∫
Ω
γ : τ +

∫
Ω

1

µ(ϕ)
(u⊗ u)d : τ d = 〈 τν,uD 〉Γ, (3.12a)

−
∫

Ω
v · divσ0 −

∫
Ω
σ0 : η =

∫
Ω
ϕg · v, (3.12b)∫

Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −

∫
Ω
ψu · ∇ϕ, (3.12c)

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ, (3.12d)

for all (τ ,v,η, ψ, ξ) ∈ H0(div; Ω)×L2(Ω)×L2
skew(Ω)×H1(Ω)×H−1/2(Γ). Conversely, if (σ0,u,γ, ϕ, λ)

∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω)×H1(Ω)×H−1/2(Γ) is a solution to (3.12), then (σ,u,γ, ϕ, λ), with

σ ∈ H(div; Ω) satisfying (3.11), is also a solution of (3.8).

Proof. Let (σ,u,γ, ϕ, λ) be a solution to (3.8). Then, since σ satisfies
∫

Ω tr(σ + u⊗ u) = 0, it is clear
from (3.10) that σ0 defined as (3.11) is the H0(div; Ω)-part of the orthogonal decomposition of σ.
Thus, it follows that (σ0,u,γ, ϕ, λ) indeed satisfies (3.12). Conversely, if (σ0,u,γ, ϕ, λ) satisfies (3.12),
then using the fact that tr(η) = 0, ∀η ∈ L2

skew(Ω), it readily follows that (σ,u,γ, ϕ, λ), with σ =

σ0 −
(

1

2|Ω|
∫

Ω tr(u⊗ u)

)
I satisfies equations (3.12a)–(3.12d) and the identity

∫
Ω tr(σ + u⊗ u) = 0

holds. Hence, by taking the orthogonal decomposition of the test function τ ∈ H(div; Ω) and applying
the compatibility condition (2.6) as

0 =

∫
Γ

uD · ν = 〈 (dI)ν,uD 〉Γ ∀ d ∈ R,

we deduce that (σ,u,γ, ϕ, λ) satisfies (3.8), which concludes the proof.
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Therefore, our analysis continues from the variational formulation (3.12), but re-denoting σ0 as
simply σ ∈ H0(div; Ω). On the other hand, the fact that now u ∈ H1(Ω) leads us to augment (3.12)
with Galerkin terms that will allow us to effectively analyse the variational formulation:

κ1

∫
Ω

{
e(u)− 1

µ(ϕ)
(u⊗ u)d − 1

µ(ϕ)
σd

}
: e(v) = 0 ∀ v ∈ H1(Ω), (3.13)

κ2

∫
Ω

(divσ + ϕg) · div τ = 0 ∀ τ ∈ H0(div; Ω), (3.14)

κ3

∫
Ω

{
γ − ω(u)

}
: η = 0 ∀ η ∈ L2

skew(Ω), (3.15)

κ4

∫
Γ

u · v = κ4

∫
Γ

uD · v ∀ v ∈ H1(Ω), (3.16)

where κ1, κ2, κ3 and κ4 are positive parameters to be specified later on. Notice that these terms arise
from the constitutive equation (2.10a), the equilibrium equation (2.10b), the definition of the vorticity
(2.9), and the boundary condition for u (2.10d).

Throughout the rest of the paper, we denote

~σ := (σ,u,γ), ~τ := (τ ,v,η), ~% := (%, s,ϑ) (3.17)

as elements of H0(div; Ω) × H1(Ω) × L2
skew(Ω). In this way, we arrive at the following augmented

mixed-primal formulation: Find (~σ, (ϕ, λ)) ∈ H0(div; Ω) × H1(Ω) × L2
skew(Ω) × H1(Ω) × H−1/2(Γ)

such that

Aϕ(~σ, ~τ ) + Bu,ϕ(~σ, ~τ ) = Fϕ(~τ ) + FD(~τ ), (3.18a)

a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ), (3.18b)

b(ϕ, ξ) = G(ξ), (3.18c)

for all (~τ , (ψ, ξ)) ∈ H0(div; Ω) ×H1(Ω) × L2
skew(Ω) × H1(Ω) × H−1/2(Γ), where, given an arbitrary

(w, φ) ∈ H1(Ω) × H1(Ω), the forms Aφ,Bw,φ, a, b, and the functionals FD, Fφ, Fw,φ and G are
defined as

Aφ(~σ, ~τ ) :=

∫
Ω

1

µ(φ)
σd :

{
τ d − κ1e(v)

}
+

∫
Ω

(u + κ2divσ) · div τ + κ1

∫
Ω

e(u) : e(v)

+

∫
Ω
γ : τ −

∫
Ω

v · divσ −
∫

Ω
σ : η + κ3

∫
Ω

{
γ − ω(u)

}
: η + κ4

∫
Γ

u · v,
(3.19)

Bw,φ(~σ, ~τ ) := −
∫

Ω

1

µ(φ)
(u⊗w)d :

{
κ1e(v)− τ d

}
, (3.20)

for all ~σ, ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω);

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ, (3.21)

for all ϕ,ψ ∈ H1(Ω);
b(ψ, ξ) := 〈 ξ, ψ 〉Γ, (3.22)

for all (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ);

FD(~τ ) := 〈 τν,uD 〉Γ + κ4

∫
Γ

uD · v, (3.23)

8



Fφ(~τ ) :=

∫
Ω
φg · (v − κ2div τ ), (3.24)

for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω);

Fw,φ(ψ) = −
∫

Ω
ψw · ∇φ, (3.25)

for all ψ ∈ H1(Ω); and
G(ξ) = 〈 ξ, ϕD 〉Γ, (3.26)

for all ξ ∈ H−1/2(Γ).

Having defined the forms Aφ and Bw,φ, the following properties can be proved by simple algebraical
manipulations.

Lemma 3.2. Let w,w1,w2 ∈ H1(Ω); φ, φ1, φ2 ∈ H1(Ω) and ~σ, ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω).

Then, the following properties hold

i) (Aφ1 −Aφ2)(~σ, ~τ ) =

∫
Ω

µ(φ2)− µ(φ1)

µ(φ1)µ(φ2)
σd :

{
τ d − κ1e(v)

}
,

ii) (Bw,φ1 −Bw,φ2)(~σ, ~τ ) =

∫
Ω

µ(φ2)− µ(φ1)

µ(φ1)µ(φ2)
(u⊗w)d :

{
τ d − κ1e(v)

}
,

iii) (Bw1,φ −Bw2,φ)(~σ, ~τ ) =

∫
Ω

1

µ(φ)

{
u⊗ (w1 −w2)

}d

:

{
τ d − κ1e(v)

}
.

3.2 A Fixed-Point Approach

Although (3.18) is a strongly coupled problem, it can be uncoupled using a fixed-point approach
(see, e.g. [2, 3, 15, 16]) . Indeed, let H := H1(Ω) × H1(Ω) and consider the operator: S : H →
H0(div; Ω)×H1(Ω)× L2

skew(Ω) defined by

S(w, φ) = (S1(w, φ),S2(w, φ),S3(w, φ)) := ~σ, (3.27)

where ~σ is the solution of the problem: Find ~σ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω) such that

Aφ(~σ, ~τ ) + Bw,φ(~σ, ~τ ) = FD(~τ ) + Fφ(~τ ), (3.28)

for all ~τ ∈ H0(div; Ω) ×H1(Ω) × L2
skew(Ω). In addition, let S̃ : H → H1(Ω) be the operator defined

by
S̃(w, φ) := ϕ, (3.29)

where ϕ ∈ H1(Ω) is the first component of the solution of the problem: Find (ϕ, λ) ∈ H1(Ω)×H−1/2(Γ)
such that

a(ϕ,ψ) + b(ψ, λ) = Fw,φ(ψ) ∀ ψ ∈ H1(Ω), (3.30a)

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ). (3.30b)

In this way, by introducing the operator T : H→ H as

T(w, φ) := (S2(w, φ), S̃(S2(w, φ), φ)) ∀ (w, φ) ∈ H, (3.31)

we realize that (3.18) can be rewritten as the fixed-point problem: Find (u, ϕ) ∈ H such that

T(u, ϕ) = (u, ϕ), (3.32)

meaning that the subsequent analysis will focus on how to prove the existence and uniqueness of this
fixed-point. In this regard, we remark that the primal formulation for the energy equation (2.1c) has
been already considered in [15], and therefore, most of the related results to the operator S̃ will only
be cited, unless some substantial difference appears.
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3.3 Well-Posedness of the Uncoupled Problems

As usual, we consider

‖ ~τ ‖ :=

{
‖ τ ‖2div;Ω + ‖v ‖21,Ω + ‖η ‖20,Ω

}1/2

,

for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω), and

‖ (ψ, ξ) ‖ :=

{
‖ψ ‖21,Ω + ‖ ξ ‖2−1/2,Γ

}1/2

,

for all (ψ, ξ) ∈ H1(Ω) ×H−1/2(Γ). We begin by recalling the following lemmas which will be useful
to prove below some ellipticity properties.

Lemma 3.3. There exists c3(Ω) > 0 such that

c3(Ω)‖ τ0 ‖20,Ω ≤
∥∥ τ d ∥∥2

0,Ω
+ ‖div τ ‖20,Ω ∀ τ = τ0 + cI ∈ H(div; Ω).

Proof. See [8, Proposition 3.1], [24, Lemma 2.3].

Lemma 3.4. There exists κ0(Ω) > 0 such that

κ0‖v ‖21,Ω ≤ ‖ e(v) ‖20,Ω + ‖v ‖20,Γ ∀ v ∈ H1(Ω).

Proof. See [23, Lemma 3.1].

The following result establishes sufficient conditions for the operator S being well-defined, equiva-
lently, (3.28) being well-posed.

Lemma 3.5. Assume that for δ1 ∈ (0, 2µ1), δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ4 > 0, and κ3 ∈

(
0, 2δ2κ0 min

{
κ1

(
1− δ1

2µ1

)
, κ4

})
.

Then, there exists r0 > 0 such that for each r ∈ (0, r0), the problem (3.28) has a unique solution
~σ := S(w, φ) ∈ H0(div; Ω)×H1(Ω)×L2

skew(Ω) for each (w, φ) ∈ H such that ‖w ‖1,Ω ≤ r. Moreover,
there exists a constant CS > 0, independent of (w, φ), such that there holds

‖S(w, φ) ‖ = ‖ ~σ ‖ ≤ CS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
. (3.33)

Proof. Let (w, φ) ∈ H. It is clear from (3.19) and (3.20) that Aφ and Bw,φ are bilinear forms. For
Aφ, thanks to the Cauchy-Schwarz inequality, the trace theorem with constant c0(Ω), and the bounds
for µ, we see that

|Aφ(~σ, ~τ )| ≤ 1

µ1

∥∥σd
∥∥

0,Ω

∥∥ τ d ∥∥
0,Ω

+
κ1

µ1

∥∥σd
∥∥

0,Ω
‖ e(v) ‖0,Ω + ‖u ‖0,Ω‖div τ ‖0,Ω

+ κ2‖divσ ‖0,Ω‖div τ ‖0,Ω + κ1‖ e(u) ‖0,Ω‖ e(v) ‖0,Ω + ‖γ ‖0,Ω‖ τ ‖0,Ω
+ ‖v ‖0,Ω‖divσ ‖0,Ω + ‖σ ‖0,Ω‖η ‖0,Ω + κ3‖γ ‖0,Ω‖η ‖0,Ω
+ κ3‖ω(u) ‖0,Ω‖η ‖0,Ω + κ4c0(Ω)2‖u ‖1,Ω‖v ‖1,Ω.

It follows that, there exists a constant CA > 0, depending only on µ1, κ1, κ2, κ3, κ4 and c0(Ω), such
that

|Aφ(~σ, ~τ )| ≤ CA‖ ~σ ‖‖ ~τ ‖, (3.34)
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for all ~σ, ~τ ∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω). On the other hand, for Bw,φ, using the estimation (3.6),

we find that

|Bw,φ(~σ, ~τ )| ≤ c1(Ω)(2 + κ2
1)1/2

µ1
‖w ‖1,Ω‖ ~σ ‖‖ ~τ ‖, (3.35)

for all ~σ, ~τ ∈ H0(div; Ω) × H1(Ω) × L2
skew(Ω). Hence, there exists a positive constant denoted by

‖Aφ + Bw,φ ‖, independent of (w, φ), such that

|(Aφ + Bw,φ)(~σ, ~τ )| ≤ ‖Aφ + Bw,φ ‖‖ ~σ ‖‖ ~τ ‖, (3.36)

for all ~σ, ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω). On the other hand, by using the Cauchy-Schwarz and

Young inequalities, we obtain that for all ~τ ∈ H0(div; Ω) ×H1(Ω) × L2
skew(Ω) and for any δ1, δ2 > 0

there holds

Aφ(~τ , ~τ ) =

∫
Ω

1

µ(φ)
τ d : τ d − κ1

∫
Ω

1

µ(φ)
τ d : e(v) + κ2‖div τ ‖20,Ω + κ1‖ e(v) ‖20,Ω

+ κ3‖η ‖20,Ω − κ3

∫
Ω
ω(v) : η + κ4‖v ‖20,Γ

≥ 1

µ2

∥∥ τ d ∥∥2

0,Ω
− κ1

2δ1µ1

∥∥ τ d ∥∥2

0,Ω
− κ1δ1

2µ1
‖ e(v) ‖20,Ω + κ2‖div τ ‖20,Ω + κ1‖ e(v) ‖20,Ω

+ κ3‖η ‖20,Ω −
κ3

2δ2
‖ω(v) ‖20,Ω −

κ3δ2

2
‖η ‖20,Ω + κ4‖v ‖0,Γ

=

(
1

µ2
− κ1

2µ1δ1

)∥∥ τ d ∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω + κ1

(
1− δ1

2µ1

)
‖ e(v) ‖20,Ω −

κ3

2δ2
|v|21,Ω

+ κ4‖v ‖20,Γ + κ3

(
1− δ2

2

)
‖η ‖20,Ω.

Then, defining the following positive constants

α1 := min

{
1

µ2
− κ1

2µ1δ1
,
κ2

2

}
, α2 := min

{
α1c3(Ω),

κ2

2

}
, α3 := min

{
κ1

(
1− δ1

2µ1

)
, κ4

}
,

α4 := α3κ0 −
κ3

2δ2
, α5 := κ3

(
1− δ2

2

)
,

(3.37)
and using Lemmas 3.3 and 3.4, it is possible to find a positive constant α(Ω) := min{α2, α4, α5},
independent of (w, φ), such that

Aφ(~τ , ~τ ) ≥ α(Ω)‖ ~τ ‖2 ∀ τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω),

which, together with the definition of Bw,φ (cf. (3.20)) and the estimation (3.6), results in the fact
that for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2

skew(Ω) there holds

(Aφ + Bw,φ)(~τ , ~τ ) ≥

(
α(Ω)− c1(Ω)(2 + κ2

1)1/2

µ1
‖w ‖1,Ω

)
‖ ~τ ‖2.

Therefore, we easily see that

(Aφ + Bw,φ)(~τ , ~τ ) ≥ α(Ω)

2
‖ ~τ ‖2, (3.38)

for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω), provided that

α(Ω)

2
≥ c1(Ω)(2 + κ2

1)1/2

µ1
‖w ‖1,Ω,
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that is,

‖w ‖1,Ω ≤
µ1α(Ω)

2c1(Ω)(2 + κ2
1)1/2

=: r0, (3.39)

thus proving ellipticity for Aφ + Bw,φ under the requirement (3.39). Concerning the functionals FD
and Fφ, it is clear from its definitions that they are linear, and by using the Cauchy-Schwarz inequality
and the trace theorem, it is possible to show that

‖FD ‖ ≤ ‖uD ‖1/2,Γ + κ4c0(Ω)‖uD ‖0,Γ, (3.40)

and
‖Fφ ‖ ≤ (2 + κ2

2)1/2‖g ‖∞,Ω‖φ ‖0,Ω. (3.41)

In this way, denoting MS := max{(2 +κ2
2)1/2, κ4c0(Ω)}, we deduce from the previous inequalities that

‖Fφ + FD ‖ ≤MS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖0,Γ + ‖uD ‖1/2,Γ

}
. (3.42)

Hence, by the Lax-Milgram theorem (see, e.g. [24, Theorem 1.1]), there is a unique solution ~σ ∈
H0(div; Ω)×H1(Ω)× L2

skew(Ω) of (3.28), and the corresponding continuous dependence result (3.33)
is satisfied with CS := 2MS

α(Ω) , which is clearly independent of w and φ.

The foregoing lemma provides us with feasible ranges for the stabilization parameters κi, i ∈
{1, 2, 3, 4} such that the well-posedness of (3.28) is achieved. For computational purposes, we make a
particular choice of these κi such that the ellipticity constant for Aφ, i.e., α(Ω) is as large as possible.
With this in mind, we first choose the middle points of the ranges for δ1, δ2 and κ1, that is

δ1 = µ1, δ2 = 1, κ1 =
µ1δ1

µ2
=
µ2

1

µ2
. (3.43)

Then, we aim to maximize α1 and α3 (cf. (3.37)) by taking

κ2 =
1

µ2
, κ4 =

µ2
1

2µ2
, (3.44)

and by choosing κ3 as the middle point of its range:

κ3 =
κ0µ

2
1

2µ2
. (3.45)

Notice that κ0, the constant arising from the Korn-type inequality in Lemma 3.4, is still unknown.
Nevertheless, [9] suggests that a heuristic choice for this parameter is enough for numerical computa-
tions.

In addition, throughout the rest of the article, and for purposes to be clarified below, further
regularity will be assumed for the problem defining the operator S. More precisely, we assume that
uD ∈ H1/2+ε(Γ), with ε ∈ (0, 1), and that for each (z, ψ) ∈ H, with ‖ z ‖1,Ω ≤ r, r > 0 given, there

hold (ζ,v,χ) := S(z, ψ) ∈ H0(div; Ω) ∩Hε(Ω)×H1+ε(Ω)× L2
skew(Ω) ∩Hε(Ω) and

‖ ζ ‖ε,Ω + ‖v ‖1+ε,Ω + ‖χ ‖ε,Ω ≤ C̃S(r)
{
‖g ‖∞,Ω‖ψ ‖1,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
, (3.46)

with C̃S(r) being a positive constant independent of z but depending on the upper bound r of its
H1-norm.

For S̃, a direct application of the Babuška-Brezzi theory provides the well-posedness of (3.30).
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Lemma 3.6. For each (w, φ) ∈ H, there exists a unique pair (ϕ, λ) ∈ H1(Ω)×H−1/2(Γ) solution of
the problem (3.30), and there holds∥∥∥ S̃(w, φ)

∥∥∥ ≤ ‖ (ϕ, λ) ‖ ≤ C
S̃

{
‖w ‖1,Ω|φ|1,Ω + ‖ϕD ‖1/2,Γ

}
. (3.47)

Proof. See [15, Lemma 3.4].

3.4 Solvability Analysis of the Fixed-Point Equation

Having proved the well-posedness of the uncoupled problems (3.28) and (3.30), which ensures that
operators S, S̃, and hence T, are well-defined, we now aim to establish the existence of a unique fixed-
point of the operator T. To do so, we will verify the hypotheses of the Banach fixed-point theorem.
We begin the analysis with the following result.

Lemma 3.7. Let r ∈ (0, r0) with r0 as given in (3.39) and let W := B̄(0, r) be the closed ball in H
with center at 0 and radius r, that is

W :=
{

(w, φ) ∈ H : ‖ (w, φ) ‖ ≤ r
}
.

In addition, assume that the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
+ C

S̃
‖ϕD ‖1/2,Γ ≤ r, (3.48)

where
c(r) := (1 + C

S̃
r)CS max{r, 1}, (3.49)

and CS and C
S̃

are given in Lemmas 3.5 and 3.6, respectively. Then, there holds T(W ) ⊆W .

Proof. The proof follows the scheme in [15, Lemma 3.5], but now based on the continuous dependance
estimates (3.33) and (3.47).

Next, we will establish some results that will help us to check under which conditions T becomes
a continuous mapping.

Lemma 3.8. Let r ∈ (0, r0) with r0 as given in (3.39). Then, there exists a positive constant ĈS(r)
depending on r such that

‖S(w, φ)− S(z, ψ) ‖ ≤ ĈS(r)

{
‖S1(w, φ) ‖ε,Ω‖φ− ψ ‖L2/ε(Ω)

+ ‖S2(w, φ) ‖1,Ω
(
‖w − z ‖1,Ω + ‖φ− ψ ‖1,Ω

)
+ ‖g ‖∞,Ω‖φ− ψ ‖0,Ω

}
(3.50)

for all (w, φ), (z, ψ) ∈ H such that ‖w ‖1,Ω, ‖ z ‖1,Ω ≤ r.

Proof. Let (w, φ), (z, ψ) ∈ H as indicated and let ~σ := S(w, φ) and ~% := S(z, ψ) be the corresponding
solutions of (3.28). From this fact, by adding and subtracting the equality

(Aφ + Bw,φ)(~σ, ~τ ) = (FD + Fφ)(~τ ),

and the term Bw,ψ(·, ·), it is possible to show that, for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω), there

holds

(Aψ + Bz,ψ)(~σ − ~%, ~τ )

= (Aψ −Aφ)(~σ, ~τ ) + (Bz,ψ −Bw,ψ)(~σ, ~τ ) + (Bw,ψ −Bw,φ)(~σ, ~τ ) + Fφ−ψ(~τ ).
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Hence, using the ellipticity of the bilinear form Aψ + Bz,ψ (cf. (3.38)), the foregoing expression and
the properties of the bilinear forms (cf. Lemma 3.2), we obtain

α(Ω)

2
‖ ~σ − ~% ‖2 ≤ (Aψ + Bz,ψ)(~σ − ~%, ~σ − ~%)

=

∫
Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
σd : [(σ − %)d − κ1e(u− s)]

+

∫
Ω

1

µ(ψ)
[u⊗ (w − z)]d : [(σ − %)d − κ1e(u− s)]

+

∫
Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
(u⊗w)d : [(σ − %)d − κ1e(u− s)]

+

∫
Ω

(φ− ψ)g · [(u− s)− κ2div (σ − %)] .

(3.51)

For the last term of (3.51), as it was done for proving the boundedness of Fφ in (3.41), we see that∣∣∣∣∫
Ω

(φ− ψ)g · [(u− s)− κ2div (σ − %)]

∣∣∣∣
≤ ‖g ‖∞,Ω‖φ− ψ ‖0,Ω‖ (u− s)− κ2div (σ − %) ‖0,Ω

≤ (2 + κ2
2)1/2‖g ‖∞,Ω‖φ− ψ ‖0,Ω‖ ~σ − ~% ‖ .

(3.52)

Then, for the second term of the right hand side of (3.51), using the estimation (3.6) and the lower
bound of µ, we get∣∣∣∣∫

Ω

1

µ(ψ)
[u⊗ (w − z)]d : [(σ − %)d − κ1e(u− s)]

∣∣∣∣ ≤ Ĉ1‖u ‖1,Ω‖w − z ‖1,Ω‖ ~σ − ~% ‖, (3.53)

where Ĉ1 :=
c1(Ω)(2+κ21)1/2

µ1
. Now, for the third term, we use the Lipschitz continuity of µ, its lower

bound, and the Hölder and Cauchy-Schwarz inequalities to show that∣∣∣∣∫
Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
(u⊗w)d : [(σ − %)d − κ1e(u− s)]

∣∣∣∣
≤ Ĉ2‖ (φ− ψ)(u⊗w) ‖0,Ω‖ ~σ − ~% ‖

≤ Ĉ2‖φ− ψ ‖L4(Ω)‖u ‖L8(Ω)‖w ‖L8(Ω)‖ ~σ − ~% ‖ ,

(3.54)

where Ĉ2 :=
Lµ(2+κ21)1/2

µ21
. At this point, we recall from the Rellich-Kondrachov Theorem (cf., e.g.

[33, Theorem 1.3.5] that H1(Ω) is compactly embedded (hence continuously) in L8(Ω) when Ω ⊂ R2,
meaning that the previous argument cannot be used in the three dimensional case, where the compact
imbedding of H1(Ω) into Lr(Ω) is valid only for 1 ≤ r ≤ 6. That being said, there exists a constant
Ci depending on the boundedness constants of the corresponding injections such that∣∣∣∣∫

Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
(u⊗w)d : [(σ − %)d − κ1e(u− s)]

∣∣∣∣ ≤ Ĉ2Cir‖u ‖1,Ω‖φ− ψ ‖1,Ω‖ ~σ − ~% ‖. (3.55)

And, for the remaining term in (3.51), using the Lipschitz continuity of µ, along with Cauchy-Schwarz
and Hölder inequalities, we see that with the constant Ĉ2 introduced in (3.54)∣∣∣∣∫

Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
σd : [(σ − %)d − κ1e(u− s)]

∣∣∣∣ ≤ Ĉ2

∥∥ (ψ − φ)σd
∥∥

0,Ω
‖ ~σ − ~% ‖

≤ Ĉ2‖φ− ψ ‖L2q(Ω)‖σ ‖L2p(Ω)‖ ~σ − ~% ‖ ,
(3.56)
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where p, q ∈ [1,+∞) are such that 1
p + 1

q = 1. Taking into consideration the further regularity assumed
in (3.46), the Sobolev Embedding Theorem (cf. [1, Theorem 4.12], [33, Theorem 1.3.4]) establishes
the continuous injection Hε(Ω) ↪→ Lε

∗
(Ω) with boundedness constant Cε, where ε∗ = 2

1−ε . Thus,

choosing p such that 2p = ε∗, i.e., p = 1
1−ε , there holds that effectively σ ∈ L2p(Ω) and

‖σ ‖L2p(Ω) ≤ Cε‖σ ‖ε,Ω.

With this choice of p, 2q becomes

2q =
2p

p− 1
=

2

ε
,

and (3.56) yields∣∣∣∣∫
Ω

µ(φ)− µ(ψ)

µ(ψ)µ(φ)
σd : [(σ − %)d − κ1e(u− s)]

∣∣∣∣ ≤ Ĉ2Cε‖σ ‖ε,Ω‖φ− ψ ‖L2/ε(Ω)‖ ~σ − ~% ‖. (3.57)

Therefore, putting (3.52), (3.53), (3.55) and (3.57) together into (3.51), it is possible to find a constant
ĈS(r) > 0 depending on Lµ, µ1, κ1, κ2, c1(Ω), Ci, Cε, and r such that

‖ ~σ − ~% ‖ ≤ ĈS(r)

{
‖σ ‖ε,Ω‖φ− ψ ‖L2/ε(Ω)

+ ‖u ‖1,Ω
(
‖w − z ‖1,Ω + ‖φ− ψ ‖1,Ω

)
+ ‖g ‖∞,Ω‖φ− ψ ‖0,Ω

}
,

(3.58)

and since σ = S1(w, φ) and u = S2(w, φ), the last inequality is exactly the required estimate (3.50).

Next, concerning the operator S̃, we recall the following result from [15].

Lemma 3.9. There exists a positive constant Ĉ
S̃

such that∥∥∥ S̃(w, φ)− S̃(z, ψ)
∥∥∥ ≤ ĈS̃

{
‖w ‖1,Ω|φ− ψ|1,Ω + ‖w − z ‖1,Ω|ψ|1,Ω

}
, (3.59)

for all (w, φ), (z, ψ) ∈ H.

Proof. See [15, Lemma 3.7].

As a consequence of the previous lemmas, the following can be established for the operator T.

Lemma 3.10. Let r ∈ (0, r0) with r0 as given in (3.39) and W :=
{

(w, φ) ∈ H : ‖ (w, φ) ‖ ≤ r
}

.

Then, there exists a constant CT > 0 such that

‖T(w, φ)−T(z, ψ) ‖ ≤ CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
‖ (w, φ)− (z, ψ) ‖, (3.60)

for all (w, φ), (z, ψ) ∈W .

Proof. Since T(w, φ) =
(
S2(w, φ), S̃(S2(w, φ), φ)

)
∀ (w, φ) ∈ H, by applying the bounds obtained in

Lemma 3.8 and Lemma 3.9 (cf. (3.50) and (3.59)), we find that

‖T(w, φ)−T(z, ψ) ‖ =
∥∥∥(S2(w, φ), S̃(S2(w, φ), φ)

)
−
(
S2(z, ψ), S̃(S2(z, ψ), ψ)

)∥∥∥
≤ ‖S2(w, φ)− S2(z, ψ) ‖+

∥∥∥ S̃(S2(w, φ), φ)− S̃(S2(z, ψ), ψ)
∥∥∥
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and ∥∥∥ S̃(S2(w, φ), φ)− S̃(S2(z, ψ), ψ)
∥∥∥

≤ Ĉ
S̃

{
‖S2(w, φ) ‖1,Ω|φ− ψ |1,Ω + ‖S2(w, φ)− S2(z, ψ) ‖r

}
,

which leads to

‖T(w, φ)−T(z, ψ) ‖

≤ (1 + Ĉ
S̃
r)‖S2(w, φ)− S2(z, ψ) ‖+ Ĉ

S̃
‖S2(w, φ) ‖1,Ω|φ− ψ |1,Ω

≤ (1 + Ĉ
S̃
r)ĈS(r)

{
‖S1(w, φ) ‖ε,Ω‖φ− ψ ‖L2/ε(Ω)

+ ‖S2(w, φ) ‖1,Ω
(
‖w − z ‖1,Ω + ‖φ− ψ ‖1,Ω

)
+ ‖g ‖∞,Ω‖φ− ψ ‖0,Ω

}
+ Ĉ

S̃
‖S2(w, φ) ‖1,Ω|φ− ψ |1,Ω .

Next, considering the continuous injections H1(Ω) ↪→ L2/ε(Ω) and H1+ε(Ω) ↪→ H1(Ω) (guaranteed
by the Sobolev embedding theorem, given that ε ∈ (0, 1)) with boundedness constants C̃ε and C̃i,
respectively, and defining

C1 := ĈS(r)(1 + Ĉ
S̃
r), C2 := max

{
C1C̃ε, (C1 + Ĉ

S̃
)C̃i

}
, C3 := C2C̃S(r)r + ĈSC1, C4 = C2r,

where ĈS(r) and Ĉ
S̃

are the constants defined in Lemma 3.8 and Lemma 3.9, respectively, it is possible
to show from the previous estimate that (3.60) holds with CT := max{C3, C4}.

We are now in a position to establish sufficient conditions for the existence and uniqueness of a
fixed-point for our problem (3.32) (equivalently, the well-posedness of our variational problem (3.18)).
Indeed, we have from Lemmas 3.5 and 3.6 that T is well-defined and maps the ball W of radius r
(with r ∈ (0, r0), r0 given by (3.39)) into the same ball; the latter thanks to Lemma 3.7. Furthermore,
Lemma 3.10 guarantees that T is Lipschitz-continuous, and it becomes a contraction when the data is
small enough. Therefore, thanks to the Banach fixed-point theorem, there exists a unique fixed-point
(u, ϕ) ∈ H for the problem (3.32). This fact provides us with the main result of this section.

Theorem 3.11. Assume that for δ1 ∈ (0, 2µ1), δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ4 > 0, and κ3 ∈

(
0, 2δ2κ0 min

{
κ1

(
1− δ1

2µ1

)
, κ4

})
.

and let W :=
{

(w, φ) ∈ H : ‖ (w, φ) ‖ ≤ r
}

, with r ∈ (0, r0), r0 as in (3.39). In addition, assume that

the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
+ C

S̃
‖ϕD ‖1/2,Γ ≤ r,

with c(r) as in Lemma 3.7, and

CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
< 1.

Then, the problem (3.18) has a unique solution (~σ, (ϕ, λ)) ∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω)×H1(Ω)×

H−1/2(Γ), with (u, ϕ) ∈W . Moreover, there hold

‖ ~σ ‖ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
and

‖ (ϕ, λ) ‖ ≤ C
S̃

{
r‖u ‖1,Ω + ‖ϕD ‖1/2,Γ

}
,

with CS and C
S̃

as in Lemma 3.5 and Lemma 3.6, respectively.
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4 The Galerkin Scheme

In this section, we introduce and analyse the corresponding Galerkin scheme for the augmented mixed-
primal formulation (3.18). The well-posedness of this scheme will be proved following basically the
same techniques used throughout Section 3.4.

4.1 Preliminaries

Let us consider Th a regular triangulation of Ω by triangles K of diameter hK , and define the mesh
size h := max{hK : K ∈ Th}. In addition, given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be
the space of polynomial functions on K of degree ≤ k. To begin with, we consider arbitrary finite-
dimensional subspaces Hσ

h ⊂ H0(div; Ω), Hu
h ⊂ H1(Ω), Hγ

h ⊂ L2
skew(Ω), Hϕ

h ⊂ H
1(Ω), Hλ

h ⊂ H−1/2(Γ)
and denote

~σh := (σh,uh,γh), ~τh := (τh,vh,ηh), ~%h := (%h, sh,ϑh). (4.1)

Hence, according to the continuous formulation (3.18), the corresponding Galerkin scheme reads: Find
(~σh, (ϕh, λh)) ∈ Hσ

h ×Hu
h ×Hγ

h ×H
ϕ
h ×H

λ
h such that

Aϕh(~σh, ~τh) + Buh,ϕh(~σh, ~τh) = Fϕh(~τh) + FD(~τh), (4.2a)

a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh), (4.2b)

b(ϕh, ξh) = G(ξh), (4.2c)

for all (~τh, (ψh, ξh)) ∈ Hσ
h ×Hu

h ×Hγ
h ×H

ϕ
h ×H

λ
h , recalling that the forms Aϕh , Buh,ϕh , a, and b; and

the functionals Fϕh , FD, Fuh,ϕh and G are defined by (3.19)-(3.26). To prove the well-posedness of
the foregoing problem, we proceed using a fixed-point approach as it was done in Section 3.3. Thus,
we define Hh := Hu

h ×H
ϕ
h and let Sh : Hh → Hσ

h ×Hu
h ×Hγ

h be the operator defined as

Sh(wh, φh) = (S1,h(wh, φh),S2,h(wh, φh),S3,h(wh, φh)) := ~σh ∀ (wh, φh) ∈ Hh, (4.3)

where ~σh is the solution to the problem: Find ~σh ∈ Hσ
h ×Hu

h ×Hγ
h such that

Aφh(~σh, ~τh) + Bwh,φh(~σh, ~τh) = FD(~τh) + Fφh(~τh), (4.4)

for all ~τh ∈ Hσ
h ×Hu

h ×Hγ
h . In addition, let S̃h : Hh → Hϕ

h be the operator defined by

S̃h(wh, φh) := ϕh ∀ (wh, φh) ∈ Hh, (4.5)

where ϕh is the first component of the solution of the problem: Find (ϕh, λh) ∈ Hϕ
h ×H

λ
h such that

a(ϕh, ψh) + b(ψh, λh) = Fwh,φh(ψh) ∀ ψh ∈ Hϕ
h , (4.6a)

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h . (4.6b)

Therefore, by introducing the operator Th : Hh → Hh as

Th(wh, φh) := (S2,h(wh, φh), S̃h(S2,h(wh, φh), φh)) ∀ (wh, φh) ∈ Hh, (4.7)

problem (4.2) is now equivalent to the fixed-point problem: Find (uh, ϕh) ∈ Hh such that

Th(uh, ϕh) = (uh, ϕh). (4.8)
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4.2 Solvability Analysis

The proof of the well-posedness of the discrete problem (4.4) follows the same technique used in Lemma
3.5. In fact, it is clear that for every (wh, φh) ∈ Hh, the bilinear form Aφh + Bwh,φh is bounded in
(Hσ

h ×Hu
h ×Hγ

h)× (Hσ
h ×Hu

h ×Hγ
h) with boundedness constant depending only on µ1, κ1, κ2, κ3, κ4,

c0(Ω), c1(Ω) and ‖wh ‖1,Ω, and elliptic in this same space, provided that the stabilization parameters
κi live in the same stipulated ranges, and ‖wh ‖1,Ω ≤ r0, with r0 as in (3.39). Also, FD and Fφh are

linear bounded functionals in Hσ
h ×Hu

h ×Hγ
h as well. The foregoing discussion and the Lax-Milgram

theorem allow us to conclude the following result.

Lemma 4.1. Assume that for δ1 ∈ (0, 2µ1), δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ4 > 0, and κ3 ∈

(
0, 2δ2κ0 min

{
κ1

(
1− δ1

2µ1

)
, κ4

})
.

Then, for each r ∈ (0, r0), r0 given by (3.39), and for each (wh, φh) ∈ Hh such that ‖wh ‖1,Ω ≤ r,

the problem (4.4) has a unique solution ~σh := Sh(wh, φh) ∈ Hσ
h ×Hu

h ×Hγ
h . Moreover, with the same

constant CS from Lemma 3.5, which is independent of (wh, φh), there holds

‖Sh(wh, φh) ‖ = ‖ ~σh ‖ ≤ CS

{
‖g ‖∞,Ω‖φh ‖0,Ω + ‖uD ‖0,Γ + ‖uD ‖1/2,Γ

}
. (4.9)

It is worthwhile to mention that, at this time, no further restrictions are added to either Hσ
h , Hu

h

or Hγ
h . Moreover, they can be chosen as any finite dimensional subspace of H0(div; Ω), H1(Ω) and

L2
skew(Ω), respectively. On the other hand, let Vh be the discrete kernel of the operator induced by b,

that is
Vh :=

{
ψh ∈ Hϕ

h : b(ψh, ξh) = 0 ∀ ξh ∈ Hλ
h

}
. (4.10)

which may not be necessarily contained in V , the continuous kernel. For this reason, ellipticity can
not be assured (straightforwardly) for the bilinear form a in Vh, and so we must introduce further
hypotheses on the discrete spaces Hϕ

h and Hλ
h . Hence, we assume that the following discrete inf-sup

conditions hold:

(H.1) There exists a constant α̂ > 0, independent of h such that

sup
ψh∈Vh
ψh 6=0

a(ψh, φh)

‖ψh ‖1,Ω
≥ α̂‖φh ‖1,Ω ∀ φh ∈ Vh, (4.11)

(H.2) There exists a constant β̂ > 0, independent of h such that

sup
ψh∈Hϕ

h
ψh 6=0

b(ψh, ξh)

‖ψh ‖1,Ω
≥ β̂‖ ξh ‖−1/2,Γ ∀ ξh ∈ Hλ

h . (4.12)

Having this in mind, we have the following result.

Lemma 4.2. For each (wh, φh) ∈ Hh, there exists a unique pair (ϕh, λh) ∈ Hϕ
h × H

λ
h solution of

problem (4.6), and there holds∥∥∥ S̃h(wh, φh)
∥∥∥ ≤ ‖ (ϕh, λh) ‖ ≤ C̃

S̃

{
‖wh ‖1,Ω|φh |1,Ω + ‖ϕD ‖1/2,Γ

}
, (4.13)

where C̃
S̃

is a positive constant depending on ‖a ‖, α̂, β̂ and c2(Ω).
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Proof. It comes as a direct application of the Babuška-Brezzi theory, since (H.1) and (H.2) are part
of its main hypotheses (see [15, Lemma 4.2]).

The solvability of the fixed-point problem (4.8) is now proved by means of the Brouwer fixed-point
theorem, which reads as follows (cf. [12, Theorem 9.9-2]).

Theorem 4.3 (Brouwer). Let W be a compact and convex subset of a finite-dimensional Banach space
X, and let T : W →W be a continuous mapping. Then T has at least one fixed-point.

The discrete version of Lemma 3.7 is given as follows.

Lemma 4.4. Let r ∈ (0, r0) with r0 as given in (3.39), and let Wh be the closed ball in Hh defined as

Wh := {(wh, φh) ∈ Hh : ‖ (wh, φh) ‖ ≤ r} .

Assume that the data satisfy

c̃(r)
{
‖g ‖∞,Ω + ‖uD ‖0,Γ + ‖uD ‖1/2,Γ

}
+ C̃

S̃
‖ϕD ‖1/2,Γ ≤ r, (4.14)

where
c̃(r) := max{r, 1}(1 + C̃

S̃
r)CS,

with CS and C̃
S̃

as in (4.9) and (4.13), respectively. Then, there holds Th(Wh) ⊂Wh.

Proof. It follows the same ideas as in Lemma 3.7, but now using the estimates (4.9) and (4.13).

We now provide the discrete analogues of Lemmas 3.8 and 3.9, which will allow us to prove the
continuity of Th.

Lemma 4.5. Let r ∈ (0, r0) with r0 as given in (3.39). Then, there exists a positive constant C̄S(r),
depending on r, such that

‖Sh(wh, φh)− Sh(zh, ψh) ‖ ≤ C̄S(r)

{
‖S1,h(wh, φh) ‖L4(Ω)‖φh − ψh ‖L4(Ω)

+ ‖S2,h(wh, φh) ‖1,Ω

(
‖wh − zh ‖1,Ω + ‖φh − ψh ‖1,Ω

)
+ ‖g ‖∞,Ω‖φh − ψh ‖0,Ω

}
. (4.15)

for all (wh, φh), (zh, φh) ∈ Hh such that ‖wh ‖1,Ω, ‖ zh ‖1,Ω ≤ r.

Proof. The procedure is almost verbatim to the one for Lemma 3.8, except that, instead of the regu-
larity assumption (3.46), we only need to consider an L4-L4-L2 argument, that is, to take p = q = 2
when applying the Hölder inequality in (3.56):∣∣∣∣∫

Ω

µ(φh)− µ(ψh)

µ(ψh)µ(φh)
σd
h : [(σh − %h)d − κ1e(uh − sh)]

∣∣∣∣ ≤ Ĉ2‖φh − ψh ‖L4(Ω)‖σh ‖L4(Ω)‖ ~σh − ~%h ‖,

with Ĉ2 as in (3.54). The fact that ‖σh ‖L4(Ω) < +∞ and ‖φh − ψh ‖L4(Ω) < +∞ is because σh, φh
and ψh will be chosen as piecewise polynomials functions. We omit further details.

Lemma 4.6. There exists a positive constant C̄
S̃

depending on c2(Ω) (cf. (3.7)) and the discrete
inf-sup constant α̂ (cf. (4.11)) such that∥∥∥ S̃h(wh, φh)− S̃h(zh, ψh)

∥∥∥ ≤ C̄S̃

{
‖wh ‖1,Ω|φh − ψh |1,Ω + ‖wh − zh ‖1,Ω|ψh |1,Ω

}
, (4.16)

for all (wh, φh), (zh, ψh) ∈ Hh.
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Proof. It follows the same arguments as in Lemma 3.9 (cf. [15, Lemma 3.7]), but using the inf-sup
condition (4.11) rather than the V-ellipticity of a, which, of course, cannot be applied here.

As a result of the previous two lemmas, we have the following.

Lemma 4.7. Let r ∈ (0, r0) with r0 as given in (3.39) and Wh :=
{

(wh, φh) ∈ Hh : ‖ (wh, φh) ‖ ≤ r
}

.

Then, there exists a constant CTh > 0 such that

‖Th(wh, φh)−Th(zh, ψh) ‖

≤ CTh

{
‖S1,h(wh, φh) ‖L4(Ω) + ‖S2(wh, φh) ‖1,Ω + ‖g ‖∞,Ω

}
‖ (wh, φh)− (zh, ψh) ‖, (4.17)

for all (wh, φh), (zh, ψh) ∈Wh.

Proof. It follows the same arguments of Lemma 3.10, but now using (4.15), (4.16), and the contin-
uous injection H1(Ω) ↪→ L4(Ω) with boundedness constant C̄i. This results in a constant CTh :=
max{C̄C̄i, C̄ + C̄

S̃
, C̄}, where C̄ := (1 + C̄

S̃
r)C̄S(r).

Notice that the previous lemma provides the continuity required by the Brouwer fixed-point theo-
rem, in the convex and compact set Wh ⊂ Hh. Therefore, we have the following result.

Theorem 4.8. Assume that for δ1 ∈ (0, 2µ1), δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ4 > 0, and κ3 ∈

(
0, 2δ2κ0 min

{
κ1

(
1− δ1

2µ1

)
, κ4

})
,

and let Wh := {(wh, φh) ∈ Hh : ‖ (wh, φh) ‖ ≤ r}, with r ∈ (0, r0), r0 as in (3.39). In addition,
suppose that the data satisfy

c̃(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
+ C̃

S̃
‖ϕD ‖1/2,Γ ≤ r,

with c̃(r) as in Lemma 4.4. Then, the problem (4.2) has at least one solution (~σh, (ϕh, λh)) ∈ Hσ
h ×

Hu
h ×Hγ

h ×H
ϕ
h ×H

λ
h , with (uh, ϕh) ∈Wh. Moreover, there hold

‖ ~σh ‖ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
and

‖ (ϕh, λh) ‖ ≤ C̃
S̃

{
r‖uh ‖1,Ω + ‖ϕD ‖1/2,Γ

}
.

4.3 Specific Finite Element Subspaces

Given an integer k ≥ 0, for each K ∈ Th we define the local Raviart-Thomas space of order k as

RTk(K) := Pk(K)⊕ Pk(K)x,

where according to the terminology described in Section 1, Pk(K) := [Pk(K)]2, and x is a generic
vector in R. Similarly, C(Ω̄) = [C(Ω̄)]2. Thus, we consider the global Raviart-Thomas space of order
k to approximate the pseudostress σ, the Lagrange space given by continuous piecewise polynomial
vectors of degree ≤ k + 1, and piecewise skew-symmetric polynomial tensors of degree ≤ k for the
vorticity tensor γ, respectively

Hσ
h :=

{
τh ∈ H0(div; Ω) : ctτh

∣∣
K
∈ RTk(K), ∀ c ∈ R, ∀ K ∈ Th

}
, (4.18)

Hu
h :=

{
vh ∈ C(Ω̄) : vh

∣∣
K
∈ Pk+1(K), ∀ K ∈ Th

}
, (4.19)

Hγ
h :=

{
ηh ∈ L2

skew(Ω) : ηh
∣∣
K
∈ Pk(K), ∀ K ∈ Th

}
. (4.20)
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To provide finite element subspaces for the approximation of the temperature ϕ and the normal
component of the heat flux λ, we must have in mind the hypotheses (H.1) and (H.2) assumed for
Hϕ
h and Hλ

h (that is, the inf-sup conditions (4.11) and (4.12)).

For the temperature ϕ, we will consider continuous piecewise polynomials of degree ≤ k + 1, that
is

Hϕ
h :=

{
ψh ∈ C(Ω̄) : ψh

∣∣
K
∈ Pk+1(K), ∀ K ∈ Th

}
, (4.21)

and for the normal heat flux λ, we let {Γ̃1, Γ̃2, . . . , Γ̃m} be an independent triangulation of Γ (made
of straight segments), and define h̃ := maxj∈{1,...,m} |Γ̃j |. Then, with the same integer k ≥ 0 used in
definitions (4.18), (4.19), (4.20), we approximate λ by piecewise polynomials of degree ≤ k over this
new mesh, that is

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃

∣∣
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ {1, . . . ,m}

}
. (4.22)

It can be proved (cf. [15, Lemma 4.10], [24, Lemma 4.7]) that Hλ
h̃

do satisfy (H.2), provided that

h ≤ C0h̃, for some constant C0 > 0 (for computational purposes, we consider h̃ as approximately 2h).
In turn, since P0(Γ) ⊆ Hλ

h̃
, it is easy to see that Vh ⊆ Ṽ , where

Ṽ :=

{
ψ ∈ H1(Ω) :

∫
Γ
ψ = 0

}
,

and hence thanks to the generalized Poincaré inequality it follows that ‖ · ‖1,Ω and | · |1,Ω are equivalent

in Ṽ . In this way, a becomes Vh-elliptic, which clearly yields (H.1).

According to [8, 24], the approximation properties of the specific finite element subspaces introduced
here are

(APσ
h ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each σ ∈
Hs(Ω) ∩H0(div; Ω) with divσ ∈ Hs(Ω), there holds

dist (σ,Hσ
h ) ≤ Chs

{
‖σ ‖s,Ω + ‖divσ ‖s,Ω

}
, (4.23)

(APu
h) there exists C > 0, independent of h, such that for each s ∈ (0, k+1], and for each u ∈ Hs+1(Ω),
there holds

dist (u,Hu
h) ≤ Chs‖u ‖s+1,Ω, (4.24)

(APγ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each γ ∈
Hs(Ω) ∩ L2

skew(Ω), there holds

dist
(
γ,Hγ

h

)
≤ Chs‖γ ‖s,Ω, (4.25)

(APϕ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k+1], and for each ϕ ∈ Hs+1(Ω),
there holds

dist
(
ϕ,Hϕ

h

)
≤ Chs‖ϕ ‖s+1,Ω, (4.26)

(APλ
h̃
) there exists C > 0, independent of h̃, such that for each s ∈ (0, k + 1], and for each λ ∈
H−1/2+s(Γ), there holds

dist
(
λ,Hλ

h̃

)
≤ Ch̃s‖λ ‖−1/2+s,Γ. (4.27)
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5 A Priori Error Analysis

Consider in addition to the notation introduced in (3.17) and (4.1) ~ζh := (ζh,wh,χh) ∈ Hσ
h ×Hu

h×H
γ
h .

Then, let (~σ, (ϕ, λ)) ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω)×H1(Ω)×H−1/2(Γ), with (u, ϕ) ∈ W be the

solution of the continuous problem (3.18), and (~σh, (ϕh, λh)) ∈ Hσ
h × Hu

h × Hγ
h × Hϕ

h × Hλ
h , with

(uh, ϕh) ∈Wh be a solution of the discrete problem (4.2), that is,

(Aϕ + Bu,ϕ)(~σ, ~τ ) = (Fϕ + FD)(~τ ) ∀ ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω),

(Aϕh + Buh,ϕh)(~σh, ~τh) = (Fϕh + FD)(~τh) ∀ ~τh ∈ Hσ
h ×Hu

h ×Hγ
h ,

(5.1)

and
a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ ψ ∈ H1(Ω),

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ);

a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ ψh ∈ Hϕ
h ,

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h .

(5.2)

In order to derive an upper bound for ‖ (~σ, (ϕ, λ))− (~σh, (ϕh, λh)) ‖, we will apply the standard
Strang Lemma for elliptic variational problems to the pair (5.1), whereas for the pair (5.2), a Strang-
type estimate for saddle point problems will be applied, as we only have a difference between the
functionals involved at continuous and discrete levels. We refer to [34, Theorems 11.1 and 11.12] to
further information on these results, which we recall next.

Lemma 5.1. Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and V -elliptic
bilinear form. In addition, let {Vh}h>0 be a sequence of finite-dimensional subspaces of V , and for
each h > 0, consider a bounded bilinear form Ah : Vh × Vh → R and a functional Fh ∈ V ′h. Assume
that the family {Ah}h>0 is uniformly elliptic in Vh, that is, there exists a constant α̃ > 0, independent
of h, such that

Ah(vh, vh) ≥ α̃‖ vh ‖2V ∀vh ∈ Vh, ∀h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀ v ∈ V and Ah(uh, vh) = F (vh) ∀ vh ∈ Vh.

Then, for each h > 0, there holds

‖u− uh ‖V ≤ CST

 sup
wh∈Vh
wh 6=0

|F (wh)− Fh(wh)|
‖wh ‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh ‖V + sup
wh∈Vh
wh 6=0

|A(vh, wh)−Ah(vh, wh)

‖wh ‖V


 , (5.3)

where CST := α̃−1 max{1, ‖A ‖}.

Lemma 5.2. Let H and Q be Hilbert spaces, F ∈ H ′, G ∈ Q′, and let a : H × H → R and
b : H × Q → R be bounded bilinear forms satisfying the hypotheses of the Babuška-Brezzi theory.
Furthermore, let {Hh}h>0 and {Qh}h>0 be sequences of finite-dimensional subspaces of H and Q,
respectively, and for each h > 0, consider functionals Fh ∈ H ′h, Gh ∈ Q′h. In addition, assume that a
and b satisfy the hypotheses of the discrete Babuška-Brezzi theory uniformly on Hh and Qh, that is,
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there exists positive constants ᾱ and β̄, both independent of h, such that, denoting by Vh the discrete
kernel of the operator induced by b, there holds

sup
ψH∈Vh
ψh 6=0

a(ψh, φh)

‖ψh ‖H
≥ ᾱ‖φh ‖H ∀ φh ∈ Vh and sup

ψh∈Hh
ψh 6=0

b(ψh, ξh)

‖ψh ‖H
≥ β̄‖ ξh ‖Q ∀ ξh ∈ Qh. (5.4)

In turn, let (ϕ, λ) ∈ H ×Q and (ϕh, λh) ∈ Hh ×Qh such that

a(ϕ,ψ) + b(ψ, λ) = F (ψ) ∀ ψ ∈ H,
b(ϕ, ξ) = G(ξ) ∀ ξ ∈ Q;

and
a(ϕh, ψh) + b(ψh, λh) = Fh(ψh) ∀ ψh ∈ Hh,

b(ϕh, ξh) = Gh(ξh) ∀ ξh ∈ Qh.

Then, for each h > 0, there holds

‖ϕ− ϕh ‖H + ‖λ− λh ‖Q ≤ C̄ST

 inf
ψh∈Hh
ψh 6=0

‖ϕ− ψh ‖H + inf
ξh∈Qh
ξh 6=0

‖λ− ξh ‖Q

+ sup
φh∈Hh
φh 6=0

|F (φh)− Fh(φh)|
‖φh ‖H

+ sup
ηh∈Qh
ηh 6=0

|G(ηh)−Gh(ηh)|
‖ ηh ‖Q

 , (5.5)

where C̄ST is a positive constant depending only on ‖ a ‖, ‖ b ‖, ᾱ and β̄.

5.1 Céa’s Estimate

In what follows, we denote as usual

dist
(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
:= inf

~τh∈Hσ
h×H

u
h×H

γ
h

‖ ~σ − ~τh ‖

and
dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)
:= inf

(ψh,ξh)∈Hϕ
h×H

λ
h

‖ (ϕ, λ)− (ψh, ξh) ‖.

Then, we have the following lemma establishing a preliminary estimate for ‖ ~σ − ~σh ‖.

Lemma 5.3. Let CST := 2
α(Ω) max{1, ‖Aϕ + Bu,ϕ ‖}, where α(Ω)

2 is the ellipticity constant of Aϕ +

Bu,ϕ (cf. (3.38)). Then, there holds

‖ ~σ − ~σh ‖ ≤ CST
{(

1 + 2CA + Ĉ1

(
‖u ‖1,Ω + ‖uh ‖1,Ω

))
dist

(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
+

{
(2 + κ2

2)1/2‖g ‖∞,Ω + Ĉ2CεC̃ε‖σ ‖ε,Ω + Ĉ2Ci‖u ‖21,Ω
}
‖ϕ− ϕh ‖1,Ω

+ Ĉ1‖u ‖1,Ω‖u− uh ‖1,Ω
}
.

(5.6)

Proof. From Lemma 3.5, we see that Aϕ+Bu,ϕ and Aϕh+Buh,ϕh are bilinear, bounded and uniformly

elliptic forms with ellipticity constant
α(Ω)

2
. Also, Fϕ+FD and Fϕh+FD are linear bounded functionals
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in H0(div; Ω)×H1(Ω)×L2
skew(Ω) and Hσ

h×Hu
h×H

γ
h , respectively. Hence , a straightforward application

of Lemma 5.1 to the pair (5.1) yields

‖ ~σ − ~σh ‖ ≤ CST

 sup
~τh∈Hσ

h×H
u
h×H

γ
h

~τh 6=~0

|Fϕ(~τh)− Fϕh(~τh)|
‖ ~τh ‖

+ inf
~ζh∈Hσ

h×H
u
h×H

γ
h

~ζh 6=~0

(∥∥∥ ~σ − ~ζh ∥∥∥

+ sup
~τh∈Hσ

h×H
u
h×H

γ
h

~τh 6=~0

|(Aϕ + Bu,ϕ)(~ζh, ~τh)− (Aϕh + Buh,ϕh)(~ζh, ~τh)|
‖ ~τh ‖

) , (5.7)

where CST :=
2

α(Ω)
max{1, ‖Aϕ + Bu,ϕ ‖}. First, we notice that

|Fϕ(~τh)− Fϕh(~τh)| = |Fϕ−ϕh(~τh)| ≤ ‖g ‖∞,Ω‖ϕ− ϕh ‖0,Ω(2 + κ2
2)1/2‖ ~τh ‖. (5.8)

Then, in order to estimate the last supremum in (5.7), we add and subtract suitable terms to write

(Aϕ + Bu,ϕ)(~ζh, ~τh)− (Aϕh + Buh,ϕh)(~ζh, ~τh)

= (Aϕ + Bu,ϕ)(~ζh − ~σ, ~τh) + (Aϕ −Aϕh)(~σ, ~τh) + (Bu,ϕ −Bu,ϕh)(~σ, ~τh)

+ (Bu,ϕh −Buh,ϕh)(~σ, ~τh) + (Aϕh + Buh,ϕh)(~σ − ~ζh, ~τh)

and so, using boundedness of the bilinear forms Aϕ, Bu,ϕ, Aϕh , Buh,ϕh (cf. (3.34), (3.35)) and the
properties of these forms stated in Lemma 3.2, we get

|(Aϕ + Bu,ϕ)(~ζh, ~τh)− (Aϕh + Buh,ϕh)(~ζh, ~τh)|

≤
{
CA + Ĉ1‖u ‖1,Ω

}∥∥∥ ~σ − ~ζh ∥∥∥‖ ~τh ‖
+

∣∣∣∣ ∫
Ω

µ(ϕh)− µ(ϕ)

µ(ϕh)µ(ϕ)
σd : [τ dh − κ1e(vh)]

∣∣∣∣
+

∣∣∣∣ ∫
Ω

µ(ϕh)− µ(ϕ)

µ(ϕh)µ(ϕ)
(u⊗ u)d : [τ dh − κ1e(vh)]

∣∣∣∣
+

∣∣∣∣ ∫
Ω

1

µ(ϕh)
[u⊗ (u− uh)]d : [τ dh − κ1e(vh)]

∣∣∣∣
+

{
CA + Ĉ1‖uh ‖1,Ω

}∥∥∥ ~σ − ~ζh ∥∥∥‖ ~τh ‖ ,

(5.9)

with Ĉ1 defined as in (3.53). A similar procedure to the one realized in the proof of Lemma 3.8 will lead
us to suitable bounds for the second, third and fourth terms of the foregoing inequality, respectively∣∣∣∣ ∫

Ω

µ(ϕh)− µ(ϕ)

µ(ϕh)µ(ϕ)
σd : [τ dh − κ1e(vh)]

∣∣∣∣ ≤ Ĉ2CεC̃ε‖σ ‖ε,Ω‖ϕ− ϕh ‖1,Ω‖ ~τh ‖,∣∣∣∣ ∫
Ω

µ(ϕh)− µ(ϕ)

µ(ϕh)µ(ϕ)
(u⊗ u)d : [τ dh − κ1e(vh)]

∣∣∣∣ ≤ Ĉ2Ci‖u ‖21,Ω‖ϕ− ϕh ‖1,Ω‖ ~τh ‖,

and ∣∣∣∣ ∫
Ω

1

µ(ϕh)
[u⊗ (u− uh)]d : [τ dh − κ1e(vh)]

∣∣∣∣ ≤ Ĉ1‖u ‖1,Ω‖u− uh ‖1,Ω‖ ~τh ‖,
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with Ĉ2 defined as in (3.54). Putting the last three inequalities back into (5.9) results in

|(Aϕ + Bu,ϕ)(~ζh, ~τh)− (Aϕh + Buh,ϕh)(~ζh, ~τh)|

≤
{

2CA + Ĉ1

(
‖u ‖1,Ω + ‖uh ‖1,Ω

)}∥∥∥ ~σ − ~ζh ∥∥∥‖ ~τh ‖
+ Ĉ2

{
CεC̃ε‖σ ‖ε,Ω + Ci‖u ‖21,Ω

}
‖ϕ− ϕh ‖1,Ω‖ ~τh ‖

+ Ĉ1‖u ‖1,Ω‖u− uh ‖1,Ω‖ ~τh ‖ .

This expression, together with (5.8), and back into (5.7), results in (5.6), concluding this way the
proof.

Then, for ‖ (ϕ, λ)− (ϕh, λh) ‖, we recall the following result from [15].

Lemma 5.4. There exists a constant ĈST , depending only on ‖a ‖, ‖b ‖, α̂ and β̂ (cf. (4.11), (4.12)),
such that

‖ (ϕ, λ)− (ϕh, λh) ‖

≤ ĈST
{
c2(Ω)|ϕ |1,Ω‖u− uh ‖1,Ω + c2(Ω)‖uh ‖1,Ω|ϕ− ϕh |1,Ω + dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)}
. (5.10)

Proof. See [15, Lemma 5.4].

Having established bounds for ‖ ~σ − ~σh ‖ and ‖ (ϕ, λ)− (ϕh, λh) ‖, we are now able to derive the
Céa estimate for the global error. Indeed, by adding the estimates (5.6) and (5.10), we have

‖ ~σ − ~σh ‖+ ‖ (ϕ, λ)− (ϕh, λh) ‖

≤ CST
{

1 + 2CA + Ĉ1

(
‖u ‖1,Ω + ‖uh ‖1,Ω

)}
dist

(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
+ ĈST dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)
+

{
CST

(
(2 + κ2

2)1/2‖g ‖∞,Ω

+ Ĉ2CεC̃ε‖σ ‖ε,Ω + Ĉ2Ci‖u ‖21,Ω
)

+ ĈST c2(Ω)‖uh ‖1,Ω
}
‖ϕ− ϕh ‖1,Ω

+

{
CST Ĉ1‖u ‖1,Ω + ĈST c2(Ω)‖ϕ ‖1,Ω

}
‖u− uh ‖1,Ω

(5.11)

where we recall that Ci, Cε, and C̃ε are boundedness constants coming from the injections H1(Ω) ↪→
L8(Ω), H1(Ω) ↪→ L2/(1−ε)(Ω) and H1(Ω) ↪→ L2/ε(Ω), respectively. In turn, notice that the terms
‖u ‖1,Ω, ‖ϕ ‖1,Ω, ‖uh ‖1,Ω and ‖ϕh ‖1,Ω can be bounded by data using the estimates (3.33), (3.47),
(4.9), and (4.13), respectively; and ‖σ ‖ε,Ω as well by using the further regularity assumption (3.46).
Therefore, after some algebraic work, and introducing the constants:

C1 := Ĉ1, C2 := CST Ĉ2CεC̃ε, C3 := CST Ĉ2Ci, C4 := ĈST c2(Ω)C
S̃
,

C0(g,uD) := CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
,

C0,ε(g,uD) := C̃S(r)
{
r‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
,

C1(g,uD, ϕD) := CST (2 + κ2
2)1/2‖g ‖∞,Ω + C2C0,ε(g,uD) + C3C0(g,uD)2 + ĈST c2(Ω)C0(g,uD),
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C2(g,uD, ϕD) := (CSTC1 + C4r)C0(g,uD) + C4‖ϕD ‖1/2,Ω,

and
C(g,uD, ϕD) := max

{
C1(g,uD, ϕD),C2(g,uD, ϕD)

}
,

it can be shown that

‖ ~σ − ~σh ‖+ ‖ (ϕ, λ)− (ϕh, λh) ‖ ≤
{

1 + 2CA + 2C1C0(g,uD)

}
dist

(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
+ ĈST dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)
+ C(g,uD, ϕD)

{
‖ ~σ − ~σh ‖+ ‖ (ϕ, λ)− (ϕh, λh) ‖

}
, (5.12)

which leads us to the main result of this section.

Theorem 5.5. Assume the data g, uD and ϕD satisfy

Ci(g,uD, ϕD) ≤ 1

2
∀ i ∈ {1, 2}. (5.13)

Then, there exists a positive constant C depending only on parameters, data and other constants, all
of them independent of h, such that

‖ ~σ − ~σh ‖+ ‖ (ϕ, λ)− (ϕh, λh) ‖ ≤ C
{

dist
(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
+ dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)}
(5.14)

Proof. The hypotheses (5.13) assures us that C(g,uD, ϕD) ≤ 1
2 , and hence,

‖ ~σ − ~σh ‖+ ‖ (ϕ, λ)− (ϕh, λh) ‖

≤ 2

{
1 + 2CA + 2C1C0(g,uD)

}
dist

(
~σ,Hσ

h ×Hu
h ×Hγ

h

)
+ 2ĈST dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)
,

thus proving the Céa estimate (5.14) with C := 2 ·max{1 + 2CA + 2C1C0(g,uD), ĈST }.

We end this section with the corresponding rates of convergence of the Galerkin Scheme (4.2) when
the finite element subspaces (4.18)-(4.22) are used.

Theorem 5.6. In addition to the hypotheses of Theorems 3.11, 4.8 and 5.5, assume that there exists
s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), γ ∈ Hs(Ω), ϕ ∈ Hs+1(Ω) and λ ∈
H−1/2+s(Γ). Then, there exists Ĉ > 0, independent of h and h̃ such that for all h ≤ C0h̃ there holds∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))

∥∥ ≤ Ĉh̃min{s,k+1}‖λ ‖−1/2+s,Γ

+ Ĉhmin{s,k+1}
{
‖σ ‖s,Ω + ‖divσ ‖s,Ω + ‖u ‖s+1,Ω + ‖γ ‖s,Ω + ‖ϕ ‖s+1,Ω

}
. (5.15)

Proof. It follows from the Céa’s estimate (5.14) and the approximation properties (APσ
h ), (APu

h),
(APγ

h), (APϕ
h), and (APλ

h̃
) described in Section 4.3.

5.2 Postprocessing of the Pressure

Equation (2.8) and the orthogonal decomposition for the pseudostress tensor provided in Lemma 3.1
(recall that σh ∈ Hσ

h ⊂ H0(div; Ω)) suggests that the discrete pressure should take the form

ph = −1

2
tr(σh + chI + uh ⊗ uh), with ch := − 1

2|Ω|

∫
Ω

tr(uh ⊗ uh). (5.16)
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On the other hand, since σ ∈ H0(div; Ω), the modified equation for the continuous pressure becomes

p = −1

2
tr(σ + cI + u⊗ u), with c := − 1

2|Ω|

∫
Ω

tr(u⊗ u). (5.17)

Then, it is easy to prove that there exists a constant Ĉ independent of h and h̃ such that

‖ p− ph ‖0,Ω ≤ Ĉ
{
‖σ − σh ‖div;Ω + ‖u− uh ‖1,Ω

}
, (5.18)

meaning that the rate of convergence of ph corresponds to the same one provided for the rest of the
variables, according to (5.15).

6 Numerical Results

We present in this section two examples that will illustrate the performance of our augmented mixed-
primal finite element method on a set of quasi-uniform triangulations. The computational implemen-
tation is based on a FreeFem++ code (cf. [27]) and the use of the direct linear solvers UMFPACK
(cf. [20]) for the first example, and the Multifrontal Massively Parallel Solver MUMPS (cf. [5]) for
the second one. Here, the iterative method comes straightforward from the uncoupling strategy pre-
sented in Section 4.1. Then, as a stopping criteria, we finish the algorithm when the relative error
between two consecutive iterations of the complete coefficient vector measured in the discrete `2 norm
is sufficiently small, this is, ∥∥ coeff m+1 − coeff m

∥∥
`2∥∥ coeff m+1

∥∥
`2

< tol,

where tol is a specified tolerance.

Let us first define the error per variable

e(σ) := ‖σ − σh ‖div;Ω,

e(γ) := ‖γ − γh ‖0,Ω,
e(u) := ‖u− uh ‖1,Ω,
e(ϕ) := ‖ϕ− ϕh ‖1,Ω,

e(p) := ‖ p− ph ‖0,Ω,
e(λ) :=

∥∥λ− λ
h̃

∥∥
0,Γ
,

as well as their corresponding rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
,

r(γ) :=
log(e(γ)/e′(γ))

log(h/h′)
,

r(u) :=
log(e(u)/e′(u))

log(h/h′)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(h/h′)
,

r(p) :=
log(e(p)/e′(p))

log(h/h′)
,

r(λ) :=
log(e(λ)/e′(λ)),

log(h̃/h̃′)
,

where h and h′ (respectively h̃ and h̃′) denote two consecutive mesh sizes with errors e and e′.

6.1 Example 1: Smooth Exact Solution

In our first example, we consider Ω := [0, 1]2, viscosity, thermal conductivity and body force given by,

µ(ϕ) = exp(−ϕ), K = exp(x+ y)I, g = (0,−1)t,

and boundary conditions such that the exact solution is given by u(x, y) = (u1(x, y), u2(x, y))t with

u1(x, y) = 4y(x2 − 1)2(y2 − 1), u2(x, y) = −4x(y2 − 1)2(x2 − 1),
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Finite Element: RT0 - P1 - P0 - P1 - P0

DOF h e(σ) r(σ) e(u) r(u) e(p) r(p)

960 0.1901 3.6546e-01 - 6.7123e-01 - 7.5087e-02 -

3536 0.0950 1.7831e-01 1.0353 2.9451e-01 1.1885 3.1834e-02 1.2380

13682 0.0490 8.7436e-02 1.0763 1.4031e-01 1.1199 1.4561e-02 1.1814

53895 0.0244 4.3350e-02 1.0076 6.8960e-02 1.0201 6.9382e-03 1.0646

216315 0.0140 2.1638e-02 1.2426 3.3814e-02 1.2745 3.4183e-03 1.2660

e(γ) r(γ) e(ϕ) r(ϕ) h̃ e(λ) r(λ) Iterations

4.8085e-01 - 3.9769e-02 - 0.2500 8.7301e-01 - 12

1.9790e-01 1.2808 1.8860e-02 1.0763 0.1250 4.2801e-01 1.0284 11

9.1585e-02 1.1638 8.9611e-03 1.1240 0.0625 2.0754e-01 1.0443 10

4.4504e-02 1.0364 4.6255e-03 0.9497 0.0312 1.0216e-01 1.0226 10

2.1647e-02 1.2889 2.2669e-03 1.2754 0.0156 5.0642e-02 1.0124 10

Table 6.1: Convergence history for Example 1, with a uniform mesh refinement and a first order
approximation.

and
p(x, y) = (x− 0.5)(y − 0.5), ϕ(x, y) = cos(xy) + 1.

Notice that in this case, nonzero source terms appear in the momentum and energy equations. Never-
theless, the well-posedness of the corresponding problems is still ensured, since the smoothness of the
exact solution provides right-hand sides with terms in L2(Ω), thus only requiring a minor modification
of the variational formulation in its right-hand side. Concerning the stabilization parameters, these
are taken as pointed out in Section 3.3, that is

κ1 =
µ2

1

µ2
, κ2 =

1

µ2
, κ3 =

κ0µ
2
1

2µ2
, κ4 =

µ2
1

2µ2
,

where the bounds for the viscosity function are estimated in

µ1 := exp(5), µ2 := exp(−5),

and for κ0, we simply take κ0 = 1. Finally, we set the fixed-point algorithm such that it starts with
(u, ϕ) = (0, 0) and stops when error between consecutive iterations reaches tol = 1e− 08.

In Figure 6.1, we compare the approximations to the velocity, pressure (postprocessed according to
(5.16)) and temperature fields, respectively, with their exact counterparts when using 216,315 DOF
and a first order approximation, thus showing the good quality of our numerical results. On the
other hand, we show in Tables 6.1 and 6.2 the convergence history for a sequence of uniform mesh
refinements when the finite element spaces described in Section 4.3 are used with k = 0 and k = 1,
respectively. It can be observed that the rates of convergence are the ones expected from Theorem
5.6 (with s = k + 1), that is O(h) and O(h2), respectively.

6.2 Example 2: Natural Convection in a Square Cavity

In a second example we consider the natural convection of a fluid in a square cavity with differentially
heated walls. This phenomenon has been widely studied with different types of boundary conditions
(see, e.g. [6, 18, 21]). For instance, we first recall from [18] the problem with dimensionless numbers:
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Finite Element: RT1 - P2 - P1 - P2 - P1

DOF h e(σ) r(σ) e(u) r(u) e(p) r(p)

2780 0.1901 2.7406e-02 - 4.7383e-02 - 1.6020e-02 -

10412 0.1025 6.8657e-03 2.2428 9.5429e-03 2.5965 5.0303e-03 1.8769

40658 0.0490 1.6687e-03 1.9165 2.1032e-03 2.0491 1.1836e-03 1.9604

160913 0.0256 4.2746e-04 2.0974 5.3457e-04 2.1094 2.9724e-04 2.1279

e(γ) r(γ) e(ϕ) r(ϕ) h̃ e(λ) r(λ) Iterations

3.2956e-02 - 2.4371e-03 - 0.2500 5.9381e-02 - 10

6.0862e-03 2.7369 4.7855e-04 2.6375 0.1250 1.4765e-02 2.0078 10

1.3314e-03 2.0592 9.9904e-05 2.1225 0.0625 3.6813e-03 2.0039 10

3.4391e-04 2.0845 2.2527e-05 2.2938 0.0312 9.1906e-04 2.0020 10

Table 6.2: Convergence history for Example 1, with a uniform mesh refinement and a second order
approximation.

Figure 6.1: Graphical comparison of the exact solution (u, p, ϕ) (upper row) and its numerical ap-
proximation (uh, ph, ϕh) (lower row) for the data given in Example 1. Results calculated with 216,315
DOF and a first-order approximation (RT0 −P1 − P0 − P1 − P0).
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Find (u, p, ϕ) such that

−Pr div (2µ(ϕ)e(u)) + (∇u)u +∇p− Ra ϕg = 0 in Ω,

div u = 0 in Ω,

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω,

u = uD on Γ,

ϕ = ϕD on Γ.

where Pr and Ra are the Prandtl and Rayleigh numbers, defined respectively as the ratio of momentum
diffusivity to thermal diffusivity, and the ratio of buoyancy forces to viscosity forces times the Prandtl
number. Hence, we model the cavity as Ω = [0, 1]2 and we consider Prandtl and Rayleigh numbers as

Pr = 0.5, Ra = 2000.

In addition, the viscosity, thermal conductivity and body force will be given by

µ(ϕ) = exp(−ϕ), K = I, g = (0, 1)t;

and the boundary conditions will be taken as in [18], that is

uD = 0 and ϕD(x, y) =
1

2

(
1− cos(2πx)

)(
1− y

)
,

both on Γ. The last condition results in the left, top and right walls with zero-temperature, and the
described sinusoidal profile in the bottom wall, with a peak of temperature ϕ = 1 at x = 0.5. In
this case, there are not source terms present, and the analytical solution is unknown. Therefore, to
construct the convergence history for this example, we consider a solution calculated with 3,493,345
DOF as the exact solution. Concerning the stabilization parameters, it can be seen by redoing the
analysis in Lemma 3.5 that these become

κ1 =
2Prµ2

1

µ2
, κ2 =

1

µ2
, κ3 =

κ0µ
2
1Pr

µ2
, κ4 =

Prµ2
1

µ2
,

and we consider κ0 = 1. In this regard, the viscosity bounds are estimated according to the maximum
and minimum values of the temperature on the boundary, that is,

µ1 = exp(−1), µ2 = exp(0) = 1.

Here, the fixed-point algorithm starts with (u, ϕ) = (10−3, 0.5) and stops when error between consec-
utive iterations reaches tol = 1e− 08.

Some contours of the pressure, temperature, velocity and vorticity fields are available in Figure 6.2,
where it is possible to see the expected physical behaviour from [18], that is, convection currents form
inside the cavity in a symmetric configuration and, due to the relatively low Rayleigh number, the
heat transfer throughout the fluid is mainly due to conduction. On the other hand, since the solution
is smooth, it makes sense to expect convergence of O(h) when the approximation is made using the
finite element subspaces from Section 4.3 with k = 0; a fact that can be verified from the results in
Table 6.3.
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Finite Element: RT0 - P1 - P0 - P1 - P0

DOF h e(σ) r(σ) e(u) r(u) e(p) r(p)

960 0.1901 103.8610 - 41.2596 - 42.9775 -

3536 0.1026 30.9625 1.9610 8.9754 2.4716 10.0549 2.3537

13682 0.0490 10.1080 1.5167 2.7914 1.5825 2.6802 1.7914

53895 0.0256 4.4485 1.2640 1.1727 1.3355 1.0559 1.4345

216315 0.0140 2.1506 1.1992 0.5559 1.2315 0.4864 1.2789

855293 0.0078 1.0832 1.1697 0.2720 1.2194 0.2433 1.1812

e(γ) r(γ) e(ϕ) r(ϕ) h̃ e(λ) r(λ) Iterations

62.2405 - 0.5055 - 0.2500 0.9127 - 194

15.9318 2.2079 0.1840 1.6372 0.1250 0.5288 0.7875 20

7.1721 1.0814 0.0739 1.2371 0.0625 0.2660 0.9911 17

3.8341 0.9644 0.0346 1.1677 0.0312 0.1372 0.9558 14

1.8853 1.1711 0.0173 1.1429 0.0156 0.0688 0.9949 14

1.0067 1.0701 0.0087 1.1705 0.0078 0.0324 1.0885 14

Table 6.3: Convergence history for Example 2, with a uniform mesh refinement and a first order
approximation.

Figure 6.2: Contours of temperature, pressure and vorticity magnitude (taken as 2γ21 to coincide with
the usual definition of vorticity) in the upper row, and velocity in the lower row for the data given in
Example 2. Results calculated with 3,493,345 DOF and a first order approximation (RT0−P1−P0−
P1 − P0).
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